Since 2.6.28 zone->prev_priority is unused. Then it can be removed
safely. It reduce stack usage slightly.
Now I have to say that I'm sorry. 2 years ago, I thought prev_priority
can be integrate again, it's useful. but four (or more) times trying
haven't got good performance number. Thus I give up such approach.
The rest of this changelog is notes on prev_priority and why it existed in
the first place and why it might be not necessary any more. This information
is based heavily on discussions between Andrew Morton, Rik van Riel and
Kosaki Motohiro who is heavily quotes from.
Historically prev_priority was important because it determined when the VM
would start unmapping PTE pages. i.e. there are no balances of note within
the VM, Anon vs File and Mapped vs Unmapped. Without prev_priority, there
is a potential risk of unnecessarily increasing minor faults as a large
amount of read activity of use-once pages could push mapped pages to the
end of the LRU and get unmapped.
There is no proof this is still a problem but currently it is not considered
to be. Active files are not deactivated if the active file list is smaller
than the inactive list reducing the liklihood that file-mapped pages are
being pushed off the LRU and referenced executable pages are kept on the
active list to avoid them getting pushed out by read activity.
Even if it is a problem, prev_priority prev_priority wouldn't works
nowadays. First of all, current vmscan still a lot of UP centric code. it
expose some weakness on some dozens CPUs machine. I think we need more and
more improvement.
The problem is, current vmscan mix up per-system-pressure, per-zone-pressure
and per-task-pressure a bit. example, prev_priority try to boost priority to
other concurrent priority. but if the another task have mempolicy restriction,
it is unnecessary, but also makes wrong big latency and exceeding reclaim.
per-task based priority + prev_priority adjustment make the emulation of
per-system pressure. but it have two issue 1) too rough and brutal emulation
2) we need per-zone pressure, not per-system.
Another example, currently DEF_PRIORITY is 12. it mean the lru rotate about
2 cycle (1/4096 + 1/2048 + 1/1024 + .. + 1) before invoking OOM-Killer.
but if 10,0000 thrreads enter DEF_PRIORITY reclaim at the same time, the
system have higher memory pressure than priority==0 (1/4096*10,000 > 2).
prev_priority can't solve such multithreads workload issue. In other word,
prev_priority concept assume the sysmtem don't have lots threads."
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Chris Mason <chris.mason@oracle.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Michael Rubin <mrubin@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Introduce numa_mem_id(), based on generic percpu variable infrastructure
to track "nearest node with memory" for archs that support memoryless
nodes.
Define API in <linux/topology.h> when CONFIG_HAVE_MEMORYLESS_NODES
defined, else stubs. Architectures will define HAVE_MEMORYLESS_NODES
if/when they support them.
Archs can override definitions of:
numa_mem_id() - returns node number of "local memory" node
set_numa_mem() - initialize [this cpus'] per cpu variable 'numa_mem'
cpu_to_mem() - return numa_mem for specified cpu; may be used as lvalue
Generic initialization of 'numa_mem' occurs in __build_all_zonelists().
This will initialize the boot cpu at boot time, and all cpus on change of
numa_zonelist_order, or when node or memory hot-plug requires zonelist
rebuild. Archs that support memoryless nodes will need to initialize
'numa_mem' for secondary cpus as they're brought on-line.
[akpm@linux-foundation.org: fix build]
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Signed-off-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Nick Piggin <npiggin@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Eric Whitney <eric.whitney@hp.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: <linux-arch@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add global mutex zonelists_mutex to fix the possible race:
CPU0 CPU1 CPU2
(1) zone->present_pages += online_pages;
(2) build_all_zonelists();
(3) alloc_page();
(4) free_page();
(5) build_all_zonelists();
(6) __build_all_zonelists();
(7) zone->pageset = alloc_percpu();
In step (3,4), zone->pageset still points to boot_pageset, so bad
things may happen if 2+ nodes are in this state. Even if only 1 node
is accessing the boot_pageset, (3) may still consume too much memory
to fail the memory allocations in step (7).
Besides, atomic operation ensures alloc_percpu() in step (7) will never fail
since there is a new fresh memory block added in step(6).
[haicheng.li@linux.intel.com: hold zonelists_mutex when build_all_zonelists]
Signed-off-by: Haicheng Li <haicheng.li@linux.intel.com>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Reviewed-by: Andi Kleen <andi.kleen@intel.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For each new populated zone of hotadded node, need to update its pagesets
with dynamically allocated per_cpu_pageset struct for all possible CPUs:
1) Detach zone->pageset from the shared boot_pageset
at end of __build_all_zonelists().
2) Use mutex to protect zone->pageset when it's still
shared in onlined_pages()
Otherwises, multiple zones of different nodes would share same boot strapping
boot_pageset for same CPU, which will finally cause below kernel panic:
------------[ cut here ]------------
kernel BUG at mm/page_alloc.c:1239!
invalid opcode: 0000 [#1] SMP
...
Call Trace:
[<ffffffff811300c1>] __alloc_pages_nodemask+0x131/0x7b0
[<ffffffff81162e67>] alloc_pages_current+0x87/0xd0
[<ffffffff81128407>] __page_cache_alloc+0x67/0x70
[<ffffffff811325f0>] __do_page_cache_readahead+0x120/0x260
[<ffffffff81132751>] ra_submit+0x21/0x30
[<ffffffff811329c6>] ondemand_readahead+0x166/0x2c0
[<ffffffff81132ba0>] page_cache_async_readahead+0x80/0xa0
[<ffffffff8112a0e4>] generic_file_aio_read+0x364/0x670
[<ffffffff81266cfa>] nfs_file_read+0xca/0x130
[<ffffffff8117b20a>] do_sync_read+0xfa/0x140
[<ffffffff8117bf75>] vfs_read+0xb5/0x1a0
[<ffffffff8117c151>] sys_read+0x51/0x80
[<ffffffff8103c032>] system_call_fastpath+0x16/0x1b
RIP [<ffffffff8112ff13>] get_page_from_freelist+0x883/0x900
RSP <ffff88000d1e78a8>
---[ end trace 4bda28328b9990db ]
[akpm@linux-foundation.org: merge fix]
Signed-off-by: Haicheng Li <haicheng.li@linux.intel.com>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Reviewed-by: Andi Kleen <andi.kleen@intel.com>
Reviewed-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Got this while compiling for ARM/SA1100:
mm/sparse.c: In function '__section_nr':
mm/sparse.c:135: warning: 'root' is used uninitialized in this function
This patch follows Russell King's suggestion for a new calculation for
NR_SECTION_ROOTS. Thanks also to Sergei Shtylyov for pointing out the
existence of the macro DIV_ROUND_UP.
Atsushi Nemoto observed:
: This fix doesn't just silence the warning - it fixes a real problem.
:
: Without this fix, mem_section[] might have 0 size so mem_section[0]
: will share other variable area. For example, I got:
:
: c030c700 b __warned.16478
: c030c700 B mem_section
: c030c701 b __warned.16483
:
: This might cause very strange behavior. Your patch actually fixes it.
Signed-off-by: Marcelo Roberto Jimenez <mroberto@cpti.cetuc.puc-rio.br>
Cc: Atsushi Nemoto <anemo@mba.ocn.ne.jp>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Sergei Shtylyov <sshtylyov@mvista.com>
Cc: Russell King <rmk@arm.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The fragmentation index may indicate that a failure is due to external
fragmentation but after a compaction run completes, it is still possible
for an allocation to fail. There are two obvious reasons as to why
o Page migration cannot move all pages so fragmentation remains
o A suitable page may exist but watermarks are not met
In the event of compaction followed by an allocation failure, this patch
defers further compaction in the zone (1 << compact_defer_shift) times.
If the next compaction attempt also fails, compact_defer_shift is
increased up to a maximum of 6. If compaction succeeds, the defer
counters are reset again.
The zone that is deferred is the first zone in the zonelist - i.e. the
preferred zone. To defer compaction in the other zones, the information
would need to be stored in the zonelist or implemented similar to the
zonelist_cache. This would impact the fast-paths and is not justified at
this time.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Cc: Rik van Riel <riel@redhat.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
commit e815af95 ("change all_unreclaimable zone member to flags") changed
all_unreclaimable member to bit flag. But it had an undesireble side
effect. free_one_page() is one of most hot path in linux kernel and
increasing atomic ops in it can reduce kernel performance a bit.
Thus, this patch revert such commit partially. at least
all_unreclaimable shouldn't share memory word with other zone flags.
[akpm@linux-foundation.org: fix patch interaction]
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Huang Shijie <shijie8@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'x86-bootmem-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (30 commits)
early_res: Need to save the allocation name in drop_range_partial()
sparsemem: Fix compilation on PowerPC
early_res: Add free_early_partial()
x86: Fix non-bootmem compilation on PowerPC
core: Move early_res from arch/x86 to kernel/
x86: Add find_fw_memmap_area
Move round_up/down to kernel.h
x86: Make 32bit support NO_BOOTMEM
early_res: Enhance check_and_double_early_res
x86: Move back find_e820_area to e820.c
x86: Add find_early_area_size
x86: Separate early_res related code from e820.c
x86: Move bios page reserve early to head32/64.c
sparsemem: Put mem map for one node together.
sparsemem: Put usemap for one node together
x86: Make 64 bit use early_res instead of bootmem before slab
x86: Only call dma32_reserve_bootmem 64bit !CONFIG_NUMA
x86: Make early_node_mem get mem > 4 GB if possible
x86: Dynamically increase early_res array size
x86: Introduce max_early_res and early_res_count
...
Add __percpu sparse annotations to core subsystems.
These annotations are to make sparse consider percpu variables to be
in a different address space and warn if accessed without going
through percpu accessors. This patch doesn't affect normal builds.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Christoph Lameter <cl@linux-foundation.org>
Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: linux-mm@kvack.org
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Dipankar Sarma <dipankar@in.ibm.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Eric Biederman <ebiederm@xmission.com>
Finally we can use early_res to replace bootmem for x86_64 now.
Still can use CONFIG_NO_BOOTMEM to enable it or not.
-v2: fix 32bit compiling about MAX_DMA32_PFN
-v3: folded bug fix from LKML message below
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
LKML-Reference: <4B747239.4070907@kernel.org>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Some comments misspell "invocation"; this fixes them. No code
changes.
Signed-off-by: Adam Buchbinder <adam.buchbinder@gmail.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Use the per cpu allocator functionality to avoid per cpu arrays in struct zone.
This drastically reduces the size of struct zone for systems with large
amounts of processors and allows placement of critical variables of struct
zone in one cacheline even on very large systems.
Another effect is that the pagesets of one processor are placed near one
another. If multiple pagesets from different zones fit into one cacheline
then additional cacheline fetches can be avoided on the hot paths when
allocating memory from multiple zones.
Bootstrap becomes simpler if we use the same scheme for UP, SMP, NUMA. #ifdefs
are reduced and we can drop the zone_pcp macro.
Hotplug handling is also simplified since cpu alloc can bring up and
shut down cpu areas for a specific cpu as a whole. So there is no need to
allocate or free individual pagesets.
V7-V8:
- Explain chicken egg dilemmna with percpu allocator.
V4-V5:
- Fix up cases where per_cpu_ptr is called before irq disable
- Integrate the bootstrap logic that was separate before.
tj: Build failure in pageset_cpuup_callback() due to missing ret
variable fixed.
Reviewed-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: Tejun Heo <tj@kernel.org>
It's unused.
It isn't needed -- read or write flag is already passed and sysctl
shouldn't care about the rest.
It _was_ used in two places at arch/frv for some reason.
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Cc: David Howells <dhowells@redhat.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: James Morris <jmorris@namei.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The following two patches remove searching in the page allocator fast-path
by maintaining multiple free-lists in the per-cpu structure. At the time
the search was introduced, increasing the per-cpu structures would waste a
lot of memory as per-cpu structures were statically allocated at
compile-time. This is no longer the case.
The patches are as follows. They are based on mmotm-2009-08-27.
Patch 1 adds multiple lists to struct per_cpu_pages, one per
migratetype that can be stored on the PCP lists.
Patch 2 notes that the pcpu drain path check empty lists multiple times. The
patch reduces the number of checks by maintaining a count of free
lists encountered. Lists containing pages will then free multiple
pages in batch
The patches were tested with kernbench, netperf udp/tcp, hackbench and
sysbench. The netperf tests were not bound to any CPU in particular and
were run such that the results should be 99% confidence that the reported
results are within 1% of the estimated mean. sysbench was run with a
postgres background and read-only tests. Similar to netperf, it was run
multiple times so that it's 99% confidence results are within 1%. The
patches were tested on x86, x86-64 and ppc64 as
x86: Intel Pentium D 3GHz with 8G RAM (no-brand machine)
kernbench - No significant difference, variance well within noise
netperf-udp - 1.34% to 2.28% gain
netperf-tcp - 0.45% to 1.22% gain
hackbench - Small variances, very close to noise
sysbench - Very small gains
x86-64: AMD Phenom 9950 1.3GHz with 8G RAM (no-brand machine)
kernbench - No significant difference, variance well within noise
netperf-udp - 1.83% to 10.42% gains
netperf-tcp - No conclusive until buffer >= PAGE_SIZE
4096 +15.83%
8192 + 0.34% (not significant)
16384 + 1%
hackbench - Small gains, very close to noise
sysbench - 0.79% to 1.6% gain
ppc64: PPC970MP 2.5GHz with 10GB RAM (it's a terrasoft powerstation)
kernbench - No significant difference, variance well within noise
netperf-udp - 2-3% gain for almost all buffer sizes tested
netperf-tcp - losses on small buffers, gains on larger buffers
possibly indicates some bad caching effect.
hackbench - No significant difference
sysbench - 2-4% gain
This patch:
Currently the per-cpu page allocator searches the PCP list for pages of
the correct migrate-type to reduce the possibility of pages being
inappropriate placed from a fragmentation perspective. This search is
potentially expensive in a fast-path and undesirable. Splitting the
per-cpu list into multiple lists increases the size of a per-cpu structure
and this was potentially a major problem at the time the search was
introduced. These problem has been mitigated as now only the necessary
number of structures is allocated for the running system.
This patch replaces a list search in the per-cpu allocator with one list
per migrate type. The potential snag with this approach is when bulk
freeing pages. We round-robin free pages based on migrate type which has
little bearing on the cache hotness of the page and potentially checks
empty lists repeatedly in the event the majority of PCP pages are of one
type.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Nick Piggin <npiggin@suse.de>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For mem_cgroup, shrink_zone() may call shrink_list() with nr_to_scan=1, in
which case shrink_list() _still_ calls isolate_pages() with the much
larger SWAP_CLUSTER_MAX. It effectively scales up the inactive list scan
rate by up to 32 times.
For example, with 16k inactive pages and DEF_PRIORITY=12, (16k >> 12)=4.
So when shrink_zone() expects to scan 4 pages in the active/inactive list,
the active list will be scanned 4 pages, while the inactive list will be
(over) scanned SWAP_CLUSTER_MAX=32 pages in effect. And that could break
the balance between the two lists.
It can further impact the scan of anon active list, due to the anon
active/inactive ratio rebalance logic in balance_pgdat()/shrink_zone():
inactive anon list over scanned => inactive_anon_is_low() == TRUE
=> shrink_active_list()
=> active anon list over scanned
So the end result may be
- anon inactive => over scanned
- anon active => over scanned (maybe not as much)
- file inactive => over scanned
- file active => under scanned (relatively)
The accesses to nr_saved_scan are not lock protected and so not 100%
accurate, however we can tolerate small errors and the resulted small
imbalanced scan rates between zones.
Cc: Rik van Riel <riel@redhat.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If the system is running a heavy load of processes then concurrent reclaim
can isolate a large number of pages from the LRU. /proc/vmstat and the
output generated for an OOM do not show how many pages were isolated.
This has been observed during process fork bomb testing (mstctl11 in LTP).
This patch shows the information about isolated pages.
Reproduced via:
-----------------------
% ./hackbench 140 process 1000
=> OOM occur
active_anon:146 inactive_anon:0 isolated_anon:49245
active_file:79 inactive_file:18 isolated_file:113
unevictable:0 dirty:0 writeback:0 unstable:0 buffer:39
free:370 slab_reclaimable:309 slab_unreclaimable:5492
mapped:53 shmem:15 pagetables:28140 bounce:0
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Wu Fengguang <fengguang.wu@intel.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Recently we encountered OOM problems due to memory use of the GEM cache.
Generally a large amuont of Shmem/Tmpfs pages tend to create a memory
shortage problem.
We often use the following calculation to determine the amount of shmem
pages:
shmem = NR_ACTIVE_ANON + NR_INACTIVE_ANON - NR_ANON_PAGES
however the expression does not consider isolated and mlocked pages.
This patch adds explicit accounting for pages used by shmem and tmpfs.
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Christoph Lameter <cl@linux-foundation.org>
Acked-by: Wu Fengguang <fengguang.wu@intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The amount of memory allocated to kernel stacks can become significant and
cause OOM conditions. However, we do not display the amount of memory
consumed by stacks.
Add code to display the amount of memory used for stacks in /proc/meminfo.
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Christoph Lameter <cl@linux-foundation.org>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The vmscan batching logic is twisting. Move it into a standalone function
nr_scan_try_batch() and document it. No behavior change.
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Christoph Lameter <cl@linux-foundation.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
ALLOC_WMARK_MIN, ALLOC_WMARK_LOW and ALLOC_WMARK_HIGH determin whether
pages_min, pages_low or pages_high is used as the zone watermark when
allocating the pages. Two branches in the allocator hotpath determine
which watermark to use.
This patch uses the flags as an array index into a watermark array that is
indexed with WMARK_* defines accessed via helpers. All call sites that
use zone->pages_* are updated to use the helpers for accessing the values
and the array offsets for setting.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Christoph Lameter <cl@linux-foundation.org>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
On low-memory systems, anti-fragmentation gets disabled as there is
nothing it can do and it would just incur overhead shuffling pages between
lists constantly. Currently the check is made in the free page fast path
for every page. This patch moves it to a slow path. On machines with low
memory, there will be small amount of additional overhead as pages get
shuffled between lists but it should quickly settle.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Christoph Lameter <cl@linux-foundation.org>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
pfn_valid() is meant to be able to tell if a given PFN has valid memmap
associated with it or not. In FLATMEM, it is expected that holes always
have valid memmap as long as there is valid PFNs either side of the hole.
In SPARSEMEM, it is assumed that a valid section has a memmap for the
entire section.
However, ARM and maybe other embedded architectures in the future free
memmap backing holes to save memory on the assumption the memmap is never
used. The page_zone linkages are then broken even though pfn_valid()
returns true. A walker of the full memmap must then do this additional
check to ensure the memmap they are looking at is sane by making sure the
zone and PFN linkages are still valid. This is expensive, but walkers of
the full memmap are extremely rare.
This was caught before for FLATMEM and hacked around but it hits again for
SPARSEMEM because the page_zone linkages can look ok where the PFN linkages
are totally screwed. This looks like a hatchet job but the reality is that
any clean solution would end up consumning all the memory saved by punching
these unexpected holes in the memmap. For example, we tried marking the
memmap within the section invalid but the section size exceeds the size of
the hole in most cases so pfn_valid() starts returning false where valid
memmap exists. Shrinking the size of the section would increase memory
consumption offsetting the gains.
This patch identifies when an architecture is punching unexpected holes
in the memmap that the memory model cannot automatically detect and sets
ARCH_HAS_HOLES_MEMORYMODEL. At the moment, this is restricted to EP93xx
which is the model sub-architecture this has been reported on but may expand
later. When set, walkers of the full memmap must call memmap_valid_within()
for each PFN and passing in what it expects the page and zone to be for
that PFN. If it finds the linkages to be broken, it assumes the memmap is
invalid for that PFN.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
* git://git.kernel.org/pub/scm/linux/kernel/git/rusty/linux-2.6-cpumask: (36 commits)
cpumask: remove cpumask allocation from idle_balance, fix
numa, cpumask: move numa_node_id default implementation to topology.h, fix
cpumask: remove cpumask allocation from idle_balance
x86: cpumask: x86 mmio-mod.c use cpumask_var_t for downed_cpus
x86: cpumask: update 32-bit APM not to mug current->cpus_allowed
x86: microcode: cleanup
x86: cpumask: use work_on_cpu in arch/x86/kernel/microcode_core.c
cpumask: fix CONFIG_CPUMASK_OFFSTACK=y cpu hotunplug crash
numa, cpumask: move numa_node_id default implementation to topology.h
cpumask: convert node_to_cpumask_map[] to cpumask_var_t
cpumask: remove x86 cpumask_t uses.
cpumask: use cpumask_var_t in uv_flush_tlb_others.
cpumask: remove cpumask_t assignment from vector_allocation_domain()
cpumask: make Xen use the new operators.
cpumask: clean up summit's send_IPI functions
cpumask: use new cpumask functions throughout x86
x86: unify cpu_callin_mask/cpu_callout_mask/cpu_initialized_mask/cpu_sibling_setup_mask
cpumask: convert struct cpuinfo_x86's llc_shared_map to cpumask_var_t
cpumask: convert node_to_cpumask_map[] to cpumask_var_t
x86: unify 32 and 64-bit node_to_cpumask_map
...
Impact: cleanup
In almost cases, for_each_zone() is used with populated_zone(). It's
because almost function doesn't need memoryless node information.
Therefore, for_each_populated_zone() can help to make code simplify.
This patch has no functional change.
[akpm@linux-foundation.org: small cleanup]
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Impact: cleanup, potential bugfix
Not sure what changed to expose this, but clearly that numa_node_id()
doesn't belong in mmzone.h (the inline in gfp.h is probably overkill, too).
In file included from include/linux/topology.h:34,
from arch/x86/mm/numa.c:2:
/home/rusty/patches-cpumask/linux-2.6/arch/x86/include/asm/topology.h:64:1: warning: "numa_node_id" redefined
In file included from include/linux/topology.h:32,
from arch/x86/mm/numa.c:2:
include/linux/mmzone.h:770:1: warning: this is the location of the previous definition
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Cc: Mike Travis <travis@sgi.com>
LKML-Reference: <200903132343.37661.rusty@rustcorp.com.au>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Now, early_pfn_in_nid(PFN, NID) may returns false if PFN is a hole.
and memmap initialization was not done. This was a trouble for
sparc boot.
To fix this, the PFN should be initialized and marked as PG_reserved.
This patch changes early_pfn_in_nid() return true if PFN is a hole.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reported-by: David Miller <davem@davemlloft.net>
Tested-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: <stable@kernel.org> [2.6.25.x, 2.6.26.x, 2.6.27.x, 2.6.28.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Allocate all page_cgroup at boot and remove page_cgroup poitner from
struct page. This patch adds an interface as
struct page_cgroup *lookup_page_cgroup(struct page*)
All FLATMEM/DISCONTIGMEM/SPARSEMEM and MEMORY_HOTPLUG is supported.
Remove page_cgroup pointer reduces the amount of memory by
- 4 bytes per PAGE_SIZE.
- 8 bytes per PAGE_SIZE
if memory controller is disabled. (even if configured.)
On usual 8GB x86-32 server, this saves 8MB of NORMAL_ZONE memory.
On my x86-64 server with 48GB of memory, this saves 96MB of memory.
I think this reduction makes sense.
By pre-allocation, kmalloc/kfree in charge/uncharge are removed.
This means
- we're not necessary to be afraid of kmalloc faiulre.
(this can happen because of gfp_mask type.)
- we can avoid calling kmalloc/kfree.
- we can avoid allocating tons of small objects which can be fragmented.
- we can know what amount of memory will be used for this extra-lru handling.
I added printk message as
"allocated %ld bytes of page_cgroup"
"please try cgroup_disable=memory option if you don't want"
maybe enough informative for users.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Balbir Singh <balbir@linux.vnet.ibm.com>
Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add NR_MLOCK zone page state, which provides a (conservative) count of
mlocked pages (actually, the number of mlocked pages moved off the LRU).
Reworked by lts to fit in with the modified mlock page support in the
Reclaim Scalability series.
[kosaki.motohiro@jp.fujitsu.com: fix incorrect Mlocked field of /proc/meminfo]
[lee.schermerhorn@hp.com: mlocked-pages: add event counting with statistics]
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When the system contains lots of mlocked or otherwise unevictable pages,
the pageout code (kswapd) can spend lots of time scanning over these
pages. Worse still, the presence of lots of unevictable pages can confuse
kswapd into thinking that more aggressive pageout modes are required,
resulting in all kinds of bad behaviour.
Infrastructure to manage pages excluded from reclaim--i.e., hidden from
vmscan. Based on a patch by Larry Woodman of Red Hat. Reworked to
maintain "unevictable" pages on a separate per-zone LRU list, to "hide"
them from vmscan.
Kosaki Motohiro added the support for the memory controller unevictable
lru list.
Pages on the unevictable list have both PG_unevictable and PG_lru set.
Thus, PG_unevictable is analogous to and mutually exclusive with
PG_active--it specifies which LRU list the page is on.
The unevictable infrastructure is enabled by a new mm Kconfig option
[CONFIG_]UNEVICTABLE_LRU.
A new function 'page_evictable(page, vma)' in vmscan.c tests whether or
not a page may be evictable. Subsequent patches will add the various
!evictable tests. We'll want to keep these tests light-weight for use in
shrink_active_list() and, possibly, the fault path.
To avoid races between tasks putting pages [back] onto an LRU list and
tasks that might be moving the page from non-evictable to evictable state,
the new function 'putback_lru_page()' -- inverse to 'isolate_lru_page()'
-- tests the "evictability" of a page after placing it on the LRU, before
dropping the reference. If the page has become unevictable,
putback_lru_page() will redo the 'putback', thus moving the page to the
unevictable list. This way, we avoid "stranding" evictable pages on the
unevictable list.
[akpm@linux-foundation.org: fix fallout from out-of-order merge]
[riel@redhat.com: fix UNEVICTABLE_LRU and !PROC_PAGE_MONITOR build]
[nishimura@mxp.nes.nec.co.jp: remove redundant mapping check]
[kosaki.motohiro@jp.fujitsu.com: unevictable-lru-infrastructure: putback_lru_page()/unevictable page handling rework]
[kosaki.motohiro@jp.fujitsu.com: kill unnecessary lock_page() in vmscan.c]
[kosaki.motohiro@jp.fujitsu.com: revert migration change of unevictable lru infrastructure]
[kosaki.motohiro@jp.fujitsu.com: revert to unevictable-lru-infrastructure-kconfig-fix.patch]
[kosaki.motohiro@jp.fujitsu.com: restore patch failure of vmstat-unevictable-and-mlocked-pages-vm-events.patch]
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Debugged-by: Benjamin Kidwell <benjkidwell@yahoo.com>
Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We avoid evicting and scanning anonymous pages for the most part, but
under some workloads we can end up with most of memory filled with
anonymous pages. At that point, we suddenly need to clear the referenced
bits on all of memory, which can take ages on very large memory systems.
We can reduce the maximum number of pages that need to be scanned by not
taking the referenced state into account when deactivating an anonymous
page. After all, every anonymous page starts out referenced, so why
check?
If an anonymous page gets referenced again before it reaches the end of
the inactive list, we move it back to the active list.
To keep the maximum amount of necessary work reasonable, we scale the
active to inactive ratio with the size of memory, using the formula
active:inactive ratio = sqrt(memory in GB * 10).
Kswapd CPU use now seems to scale by the amount of pageout bandwidth,
instead of by the amount of memory present in the system.
[kamezawa.hiroyu@jp.fujitsu.com: fix OOM with memcg]
[kamezawa.hiroyu@jp.fujitsu.com: memcg: lru scan fix]
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Split the LRU lists in two, one set for pages that are backed by real file
systems ("file") and one for pages that are backed by memory and swap
("anon"). The latter includes tmpfs.
The advantage of doing this is that the VM will not have to scan over lots
of anonymous pages (which we generally do not want to swap out), just to
find the page cache pages that it should evict.
This patch has the infrastructure and a basic policy to balance how much
we scan the anon lists and how much we scan the file lists. The big
policy changes are in separate patches.
[lee.schermerhorn@hp.com: collect lru meminfo statistics from correct offset]
[kosaki.motohiro@jp.fujitsu.com: prevent incorrect oom under split_lru]
[kosaki.motohiro@jp.fujitsu.com: fix pagevec_move_tail() doesn't treat unevictable page]
[hugh@veritas.com: memcg swapbacked pages active]
[hugh@veritas.com: splitlru: BDI_CAP_SWAP_BACKED]
[akpm@linux-foundation.org: fix /proc/vmstat units]
[nishimura@mxp.nes.nec.co.jp: memcg: fix handling of shmem migration]
[kosaki.motohiro@jp.fujitsu.com: adjust Quicklists field of /proc/meminfo]
[kosaki.motohiro@jp.fujitsu.com: fix style issue of get_scan_ratio()]
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently we are defining explicit variables for the inactive and active
list. An indexed array can be more generic and avoid repeating similar
code in several places in the reclaim code.
We are saving a few bytes in terms of code size:
Before:
text data bss dec hex filename
4097753 573120 4092484 8763357 85b7dd vmlinux
After:
text data bss dec hex filename
4097729 573120 4092484 8763333 85b7c5 vmlinux
Having an easy way to add new lru lists may ease future work on the
reclaim code.
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Signed-off-by: Christoph Lameter <cl@linux-foundation.org>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The iterator for_each_zone_zonelist() uses a struct zoneref *z cursor when
scanning zonelists to keep track of where in the zonelist it is. The
zoneref that is returned corresponds to the the next zone that is to be
scanned, not the current one. It was intended to be treated as an opaque
list.
When the page allocator is scanning a zonelist, it marks elements in the
zonelist corresponding to zones that are temporarily full. As the
zonelist is being updated, it uses the cursor here;
if (NUMA_BUILD)
zlc_mark_zone_full(zonelist, z);
This is intended to prevent rescanning in the near future but the zoneref
cursor does not correspond to the zone that has been found to be full.
This is an easy misunderstanding to make so this patch corrects the
problem by changing zoneref cursor to be the current zone being scanned
instead of the next one.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: <stable@kernel.org> [2.6.26.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
for_each_pgdat() was renamed to for_each_online_pgdat() and kerneldoc
comments should be updated accordingly.
Signed-off-by: Fernando Luis Vazquez Cao <fernando@oss.ntt.co.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Remove the "#ifdef __KERNEL__" tests from unexported header files in
linux/include whose entire contents are wrapped in that preprocessor
test.
Signed-off-by: Robert P. J. Day <rpjday@crashcourse.ca>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Sam Ravnborg <sam@ravnborg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fuse will use temporary buffers to write back dirty data from memory mappings
(normal writes are done synchronously). This is needed, because there cannot
be any guarantee about the time in which a write will complete.
By using temporary buffers, from the MM's point if view the page is written
back immediately. If the writeout was due to memory pressure, this
effectively migrates data from a full zone to a less full zone.
This patch adds a new counter (NR_WRITEBACK_TEMP) for the number of pages used
as temporary buffers.
[Lee.Schermerhorn@hp.com: add vmstat_text for NR_WRITEBACK_TEMP]
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Cc: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch set is to free pages which is allocated by bootmem for
memory-hotremove. Some structures of memory management are allocated by
bootmem. ex) memmap, etc.
To remove memory physically, some of them must be freed according to
circumstance. This patch set makes basis to free those pages, and free
memmaps.
Basic my idea is using remain members of struct page to remember information
of users of bootmem (section number or node id). When the section is
removing, kernel can confirm it. By this information, some issues can be
solved.
1) When the memmap of removing section is allocated on other
section by bootmem, it should/can be free.
2) When the memmap of removing section is allocated on the
same section, it shouldn't be freed. Because the section has to be
logical memory offlined already and all pages must be isolated against
page allocater. If it is freed, page allocator may use it which will
be removed physically soon.
3) When removing section has other section's memmap,
kernel will be able to show easily which section should be removed
before it for user. (Not implemented yet)
4) When the above case 2), the page isolation will be able to check and skip
memmap's page when logical memory offline (offline_pages()).
Current page isolation code fails in this case because this page is
just reserved page and it can't distinguish this pages can be
removed or not. But, it will be able to do by this patch.
(Not implemented yet.)
5) The node information like pgdat has similar issues. But, this
will be able to be solved too by this.
(Not implemented yet, but, remembering node id in the pages.)
Fortunately, current bootmem allocator just keeps PageReserved flags,
and doesn't use any other members of page struct. The users of
bootmem doesn't use them too.
This patch:
This is to register information which is node or section's id. Kernel can
distinguish which node/section uses the pages allcated by bootmem. This is
basis for hot-remove sections or nodes.
Signed-off-by: Yasunori Goto <y-goto@jp.fujitsu.com>
Cc: Badari Pulavarty <pbadari@us.ibm.com>
Cc: Yinghai Lu <yhlu.kernel@gmail.com>
Cc: Yasunori Goto <y-goto@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It was used to compensate because MAX_NR_ZONES was not available to the
#ifdefs. Export MAX_NR_ZONES via the new mechanism and get rid of
__ZONE_COUNT.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
NR_PAGEFLAGS specifies the number of page flags we are using. From that we
can calculate the number of bits leftover that can be used for zone, node (and
maybe the sections id). There is no need anymore for FLAGS_RESERVED if we use
NR_PAGEFLAGS.
Use the new methods to make NR_PAGEFLAGS available via the preprocessor.
NR_PAGEFLAGS is used to calculate field boundaries in the page flags fields.
These field widths have to be available to the preprocessor.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Cc: David Miller <davem@davemloft.net>
Cc: Andy Whitcroft <apw@shadowen.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Jeremy Fitzhardinge <jeremy@goop.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix this (sparc64)
mm/sparse-vmemmap.c: In function `vmemmap_verify':
mm/sparse-vmemmap.c:64: warning: unused variable `pfn'
by switching to a C function which touches its arg.
(reason 3,555 why macros are bad)
Also, the `nid' arg was misnamed.
Reviewed-by: Christoph Lameter <clameter@sgi.com>
Acked-by: Andy Whitcroft <apw@shadowen.org>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Andi Kleen <ak@suse.de>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The MPOL_BIND policy creates a zonelist that is used for allocations
controlled by that mempolicy. As the per-node zonelist is already being
filtered based on a zone id, this patch adds a version of __alloc_pages() that
takes a nodemask for further filtering. This eliminates the need for
MPOL_BIND to create a custom zonelist.
A positive benefit of this is that allocations using MPOL_BIND now use the
local node's distance-ordered zonelist instead of a custom node-id-ordered
zonelist. I.e., pages will be allocated from the closest allowed node with
available memory.
[Lee.Schermerhorn@hp.com: Mempolicy: update stale documentation and comments]
[Lee.Schermerhorn@hp.com: Mempolicy: make dequeue_huge_page_vma() obey MPOL_BIND nodemask]
[Lee.Schermerhorn@hp.com: Mempolicy: make dequeue_huge_page_vma() obey MPOL_BIND nodemask rework]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Filtering zonelists requires very frequent use of zone_idx(). This is costly
as it involves a lookup of another structure and a substraction operation. As
the zone_idx is often required, it should be quickly accessible. The node idx
could also be stored here if it was found that accessing zone->node is
significant which may be the case on workloads where nodemasks are heavily
used.
This patch introduces a struct zoneref to store a zone pointer and a zone
index. The zonelist then consists of an array of these struct zonerefs which
are looked up as necessary. Helpers are given for accessing the zone index as
well as the node index.
[kamezawa.hiroyu@jp.fujitsu.com: Suggested struct zoneref instead of embedding information in pointers]
[hugh@veritas.com: mm-have-zonelist: fix memcg ooms]
[hugh@veritas.com: just return do_try_to_free_pages]
[hugh@veritas.com: do_try_to_free_pages gfp_mask redundant]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Christoph Lameter <clameter@sgi.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Christoph Lameter <clameter@sgi.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently a node has two sets of zonelists, one for each zone type in the
system and a second set for GFP_THISNODE allocations. Based on the zones
allowed by a gfp mask, one of these zonelists is selected. All of these
zonelists consume memory and occupy cache lines.
This patch replaces the multiple zonelists per-node with two zonelists. The
first contains all populated zones in the system, ordered by distance, for
fallback allocations when the target/preferred node has no free pages. The
second contains all populated zones in the node suitable for GFP_THISNODE
allocations.
An iterator macro is introduced called for_each_zone_zonelist() that interates
through each zone allowed by the GFP flags in the selected zonelist.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Christoph Lameter <clameter@sgi.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
MAX_NODES_SHIFT is not referenced anywhere in the tree, so dump it.
Signed-off-by: Johannes Weiner <hannes@saeurebad.de>
Signed-off-by: Jesper Juhl <jesper.juhl@gmail.com>