Commit Graph

929 Commits

Author SHA1 Message Date
Kirill Tkhai a222f34158 mm: generalize putback scan functions
This combines two similar functions move_active_pages_to_lru() and
putback_inactive_pages() into single move_pages_to_lru().  This remove
duplicate code and makes object file size smaller.

Before:
   text	   data	    bss	    dec	    hex	filename
  57082	   4732	    128	  61942	   f1f6	mm/vmscan.o
After:
   text	   data	    bss	    dec	    hex	filename
  55112	   4600	    128	  59840	   e9c0	mm/vmscan.o

Note, that now we are checking for !page_evictable() coming from
shrink_active_list(), which shouldn't change any behavior since that path
works with evictable pages only.

Link: http://lkml.kernel.org/r/155290129627.31489.8321971028677203248.stgit@localhost.localdomain
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 09:47:45 -07:00
Kirill Tkhai f372d89e5d mm: remove pages_to_free argument of move_active_pages_to_lru()
We may use input argument list as output argument too.  This makes the
function more similar to putback_inactive_pages().

Link: http://lkml.kernel.org/r/155290129079.31489.16180612694090502942.stgit@localhost.localdomain
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 09:47:45 -07:00
Kirill Tkhai 9851ac1359 mm: move nr_deactivate accounting to shrink_active_list()
We know which LRU is not active.

[chris@chrisdown.name: fix build on !CONFIG_MEMCG]
  Link: http://lkml.kernel.org/r/20190322150513.GA22021@chrisdown.name
Link: http://lkml.kernel.org/r/155290128498.31489.18250485448913338607.stgit@localhost.localdomain
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Signed-off-by: Chris Down <chris@chrisdown.name>
Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 09:47:45 -07:00
Kirill Tkhai 886cf1901d mm: move recent_rotated pages calculation to shrink_inactive_list()
Patch series "mm: Generalize putback functions"]

putback_inactive_pages() and move_active_pages_to_lru() are almost
similar, so this patchset merges them ina single function.

This patch (of 4):

The patch moves the calculation from putback_inactive_pages() to
shrink_inactive_list().  This makes putback_inactive_pages() looking more
similar to move_active_pages_to_lru().

To do that, we account activated pages in reclaim_stat::nr_activate.
Since a page may change its LRU type from anon to file cache inside
shrink_page_list() (see ClearPageSwapBacked()), we have to account pages
for the both types.  So, nr_activate becomes an array.

Previously we used nr_activate to account PGACTIVATE events, but now we
account them into pgactivate variable (since they are about number of
pages in general, not about sum of hpage_nr_pages).

Link: http://lkml.kernel.org/r/155290127956.31489.3393586616054413298.stgit@localhost.localdomain
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14 09:47:45 -07:00
Linus Torvalds 0968621917 Printk changes for 5.2
-----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCAAdFiEESH4wyp42V4tXvYsjUqAMR0iAlPIFAlzP8nQACgkQUqAMR0iA
 lPK79A/+NkRouqA9ihAZhUbgW0DHzOAFvUJSBgX11HQAZbGjngakuoyYFvwUx0T0
 m80SUTCysxQrWl+xLdccPZ9ZrhP2KFQrEBEdeYHZ6ymcYcl83+3bOIBS7VwdZAbO
 EzB8u/58uU/sI6ABL4lF7ZF/+R+U4CXveEUoVUF04bxdPOxZkRX4PT8u3DzCc+RK
 r4yhwQUXGcKrHa2GrRL3GXKsDxcnRdFef/nzq4RFSZsi0bpskzEj34WrvctV6j+k
 FH/R3kEcZrtKIMPOCoDMMWq07yNqK/QKj0MJlGoAlwfK4INgcrSXLOx+pAmr6BNq
 uMKpkxCFhnkZVKgA/GbKEGzFf+ZGz9+2trSFka9LD2Ig6DIstwXqpAgiUK8JFQYj
 lq1mTaJZD3DfF2vnGHGeAfBFG3XETv+mIT/ow6BcZi3NyNSVIaqa5GAR+lMc6xkR
 waNkcMDkzLFuP1r0p7ZizXOksk9dFkMP3M6KqJomRtApwbSNmtt+O2jvyLPvB3+w
 wRyN9WT7IJZYo4v0rrD5Bl6BjV15ZeCPRSFZRYofX+vhcqJQsFX1M9DeoNqokh55
 Cri8f6MxGzBVjE1G70y2/cAFFvKEKJud0NUIMEuIbcy+xNrEAWPF8JhiwpKKnU10
 c0u674iqHJ2HeVsYWZF0zqzqQ6E1Idhg/PrXfuVuhAaL5jIOnYY=
 =WZfC
 -----END PGP SIGNATURE-----

Merge tag 'printk-for-5.2' of git://git.kernel.org/pub/scm/linux/kernel/git/pmladek/printk

Pull printk updates from Petr Mladek:

 - Allow state reset of printk_once() calls.

 - Prevent crashes when dereferencing invalid pointers in vsprintf().
   Only the first byte is checked for simplicity.

 - Make vsprintf warnings consistent and inlined.

 - Treewide conversion of obsolete %pf, %pF to %ps, %pF printf
   modifiers.

 - Some clean up of vsprintf and test_printf code.

* tag 'printk-for-5.2' of git://git.kernel.org/pub/scm/linux/kernel/git/pmladek/printk:
  lib/vsprintf: Make function pointer_string static
  vsprintf: Limit the length of inlined error messages
  vsprintf: Avoid confusion between invalid address and value
  vsprintf: Prevent crash when dereferencing invalid pointers
  vsprintf: Consolidate handling of unknown pointer specifiers
  vsprintf: Factor out %pO handler as kobject_string()
  vsprintf: Factor out %pV handler as va_format()
  vsprintf: Factor out %p[iI] handler as ip_addr_string()
  vsprintf: Do not check address of well-known strings
  vsprintf: Consistent %pK handling for kptr_restrict == 0
  vsprintf: Shuffle restricted_pointer()
  printk: Tie printk_once / printk_deferred_once into .data.once for reset
  treewide: Switch printk users from %pf and %pF to %ps and %pS, respectively
  lib/test_printf: Switch to bitmap_zalloc()
2019-05-07 09:18:12 -07:00
Johannes Weiner 3b991208b8 mm: fix inactive list balancing between NUMA nodes and cgroups
During !CONFIG_CGROUP reclaim, we expand the inactive list size if it's
thrashing on the node that is about to be reclaimed.  But when cgroups
are enabled, we suddenly ignore the node scope and use the cgroup scope
only.  The result is that pressure bleeds between NUMA nodes depending
on whether cgroups are merely compiled into Linux.  This behavioral
difference is unexpected and undesirable.

When the refault adaptivity of the inactive list was first introduced,
there were no statistics at the lruvec level - the intersection of node
and memcg - so it was better than nothing.

But now that we have that infrastructure, use lruvec_page_state() to
make the list balancing decision always NUMA aware.

[hannes@cmpxchg.org: fix bisection hole]
  Link: http://lkml.kernel.org/r/20190417155241.GB23013@cmpxchg.org
Link: http://lkml.kernel.org/r/20190412144438.2645-1-hannes@cmpxchg.org
Fixes: 2a2e48854d ("mm: vmscan: fix IO/refault regression in cache workingset transition")
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-04-19 09:46:05 -07:00
Sakari Ailus d75f773c86 treewide: Switch printk users from %pf and %pF to %ps and %pS, respectively
%pF and %pf are functionally equivalent to %pS and %ps conversion
specifiers. The former are deprecated, therefore switch the current users
to use the preferred variant.

The changes have been produced by the following command:

	git grep -l '%p[fF]' | grep -v '^\(tools\|Documentation\)/' | \
	while read i; do perl -i -pe 's/%pf/%ps/g; s/%pF/%pS/g;' $i; done

And verifying the result.

Link: http://lkml.kernel.org/r/20190325193229.23390-1-sakari.ailus@linux.intel.com
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: linux-arm-kernel@lists.infradead.org
Cc: sparclinux@vger.kernel.org
Cc: linux-um@lists.infradead.org
Cc: xen-devel@lists.xenproject.org
Cc: linux-acpi@vger.kernel.org
Cc: linux-pm@vger.kernel.org
Cc: drbd-dev@lists.linbit.com
Cc: linux-block@vger.kernel.org
Cc: linux-mmc@vger.kernel.org
Cc: linux-nvdimm@lists.01.org
Cc: linux-pci@vger.kernel.org
Cc: linux-scsi@vger.kernel.org
Cc: linux-btrfs@vger.kernel.org
Cc: linux-f2fs-devel@lists.sourceforge.net
Cc: linux-mm@kvack.org
Cc: ceph-devel@vger.kernel.org
Cc: netdev@vger.kernel.org
Signed-off-by: Sakari Ailus <sakari.ailus@linux.intel.com>
Acked-by: David Sterba <dsterba@suse.com> (for btrfs)
Acked-by: Mike Rapoport <rppt@linux.ibm.com> (for mm/memblock.c)
Acked-by: Bjorn Helgaas <bhelgaas@google.com> (for drivers/pci)
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Petr Mladek <pmladek@suse.com>
2019-04-09 14:19:06 +02:00
Andrey Ryabinin f4b7e272b5 mm: remove zone_lru_lock() function, access ->lru_lock directly
We have common pattern to access lru_lock from a page pointer:
	zone_lru_lock(page_zone(page))

Which is silly, because it unfolds to this:
	&NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]->zone_pgdat->lru_lock
while we can simply do
	&NODE_DATA(page_to_nid(page))->lru_lock

Remove zone_lru_lock() function, since it's only complicate things.  Use
'page_pgdat(page)->lru_lock' pattern instead.

[aryabinin@virtuozzo.com: a slightly better version of __split_huge_page()]
  Link: http://lkml.kernel.org/r/20190301121651.7741-1-aryabinin@virtuozzo.com
Link: http://lkml.kernel.org/r/20190228083329.31892-2-aryabinin@virtuozzo.com
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: William Kucharski <william.kucharski@oracle.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-05 21:07:21 -08:00
Andrey Ryabinin a7ca12f9d9 mm/workingset: remove unused @mapping argument in workingset_eviction()
workingset_eviction() doesn't use and never did use the @mapping
argument.  Remove it.

Link: http://lkml.kernel.org/r/20190228083329.31892-1-aryabinin@virtuozzo.com
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Rik van Riel <riel@surriel.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: William Kucharski <william.kucharski@oracle.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-05 21:07:21 -08:00
Alexey Dobriyan b9726c26dc numa: make "nr_node_ids" unsigned int
Number of NUMA nodes can't be negative.

This saves a few bytes on x86_64:

	add/remove: 0/0 grow/shrink: 4/21 up/down: 27/-265 (-238)
	Function                                     old     new   delta
	hv_synic_alloc.cold                           88     110     +22
	prealloc_shrinker                            260     262      +2
	bootstrap                                    249     251      +2
	sched_init_numa                             1566    1567      +1
	show_slab_objects                            778     777      -1
	s_show                                      1201    1200      -1
	kmem_cache_init                              346     345      -1
	__alloc_workqueue_key                       1146    1145      -1
	mem_cgroup_css_alloc                        1614    1612      -2
	__do_sys_swapon                             4702    4699      -3
	__list_lru_init                              655     651      -4
	nic_probe                                   2379    2374      -5
	store_user_store                             118     111      -7
	red_zone_store                               106      99      -7
	poison_store                                 106      99      -7
	wq_numa_init                                 348     338     -10
	__kmem_cache_empty                            75      65     -10
	task_numa_free                               186     173     -13
	merge_across_nodes_store                     351     336     -15
	irq_create_affinity_masks                   1261    1246     -15
	do_numa_crng_init                            343     321     -22
	task_numa_fault                             4760    4737     -23
	swapfile_init                                179     156     -23
	hv_synic_alloc                               536     492     -44
	apply_wqattrs_prepare                        746     695     -51

Link: http://lkml.kernel.org/r/20190201223029.GA15820@avx2
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-05 21:07:19 -08:00
Kirill Tkhai 060f005f07 mm/vmscan.c: do not allocate duplicate stack variables in shrink_page_list()
On path shrink_inactive_list() ---> shrink_page_list() we allocate stack
variables for the statistics twice.  This is completely useless, and
this just consumes stack much more, then we really need.

The patch kills duplicate stack variables from shrink_page_list(), and
this reduce stack usage and object file size significantly:

Stack usage:
  Before: vmscan.c:1122:22:shrink_page_list	648	static
  After:  vmscan.c:1122:22:shrink_page_list	616	static

Size of vmscan.o:
           text	   data	    bss	    dec	    hex	filename
  Before: 56866	   4720	    128	  61714	   f112	mm/vmscan.o
  After:  56770	   4720	    128	  61618	   f0b2	mm/vmscan.o

Link: http://lkml.kernel.org/r/154894900030.5211.12104993874109647641.stgit@localhost.localdomain
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-05 21:07:19 -08:00
Yang Shi 2bb0f34fe3 mm: vmscan: do not iterate all mem cgroups for global direct reclaim
In current implementation, both kswapd and direct reclaim has to iterate
all mem cgroups.  It is not a problem before offline mem cgroups could
be iterated.  But, currently with iterating offline mem cgroups, it
could be very time consuming.  In our workloads, we saw over 400K mem
cgroups accumulated in some cases, only a few hundred are online memcgs.
Although kswapd could help out to reduce the number of memcgs, direct
reclaim still get hit with iterating a number of offline memcgs in some
cases.  We experienced the responsiveness problems due to this
occassionally.

A simple test with pref shows it may take around 220ms to iterate 8K
memcgs in direct reclaim:
             dd 13873 [011]   578.542919: vmscan:mm_vmscan_direct_reclaim_begin
             dd 13873 [011]   578.758689: vmscan:mm_vmscan_direct_reclaim_end
So for 400K, it may take around 11 seconds to iterate all memcgs.

Here just break the iteration once it reclaims enough pages as what
memcg direct reclaim does.  This may hurt the fairness among memcgs.
But the cached iterator cookie could help to achieve the fairness more
or less.

Link: http://lkml.kernel.org/r/1548799877-10949-1-git-send-email-yang.shi@linux.alibaba.com
Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-05 21:07:19 -08:00
Kirill Tkhai a9e7c39fa9 mm/vmscan.c: remove 7th argument of isolate_lru_pages()
We may simply check for sc->may_unmap in isolate_lru_pages() instead of
doing that in both of its callers.

Link: http://lkml.kernel.org/r/154748280735.29962.15867846875217618569.stgit@localhost.localdomain
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-05 21:07:18 -08:00
Wei Yang 8bb4e7a2ee mm: fix some typos in mm directory
No functional change.

Link: http://lkml.kernel.org/r/20190118235123.27843-1-richard.weiyang@gmail.com
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Reviewed-by: Pekka Enberg <penberg@kernel.org>
Acked-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-05 21:07:18 -08:00
Dave Chinner a9a238e83f Revert "mm: slowly shrink slabs with a relatively small number of objects"
This reverts commit 172b06c32b ("mm: slowly shrink slabs with a
relatively small number of objects").

This change changes the agressiveness of shrinker reclaim, causing small
cache and low priority reclaim to greatly increase scanning pressure on
small caches.  As a result, light memory pressure has a disproportionate
affect on small caches, and causes large caches to be reclaimed much
faster than previously.

As a result, it greatly perturbs the delicate balance of the VFS caches
(dentry/inode vs file page cache) such that the inode/dentry caches are
reclaimed much, much faster than the page cache and this drives us into
several other caching imbalance related problems.

As such, this is a bad change and needs to be reverted.

[ Needs some massaging to retain the later seekless shrinker
  modifications.]

Link: http://lkml.kernel.org/r/20190130041707.27750-3-david@fromorbit.com
Fixes: 172b06c32b ("mm: slowly shrink slabs with a relatively small number of objects")
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Cc: Wolfgang Walter <linux@stwm.de>
Cc: Roman Gushchin <guro@fb.com>
Cc: Spock <dairinin@gmail.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-02-12 16:33:18 -08:00
Hugh Dickins 9a1ea439b1 mm: put_and_wait_on_page_locked() while page is migrated
Waiting on a page migration entry has used wait_on_page_locked() all along
since 2006: but you cannot safely wait_on_page_locked() without holding a
reference to the page, and that extra reference is enough to make
migrate_page_move_mapping() fail with -EAGAIN, when a racing task faults
on the entry before migrate_page_move_mapping() gets there.

And that failure is retried nine times, amplifying the pain when trying to
migrate a popular page.  With a single persistent faulter, migration
sometimes succeeds; with two or three concurrent faulters, success becomes
much less likely (and the more the page was mapped, the worse the overhead
of unmapping and remapping it on each try).

This is especially a problem for memory offlining, where the outer level
retries forever (or until terminated from userspace), because a heavy
refault workload can trigger an endless loop of migration failures.
wait_on_page_locked() is the wrong tool for the job.

David Herrmann (but was he the first?) noticed this issue in 2014:
https://marc.info/?l=linux-mm&m=140110465608116&w=2

Tim Chen started a thread in August 2017 which appears relevant:
https://marc.info/?l=linux-mm&m=150275941014915&w=2 where Kan Liang went
on to implicate __migration_entry_wait():
https://marc.info/?l=linux-mm&m=150300268411980&w=2 and the thread ended
up with the v4.14 commits: 2554db9165 ("sched/wait: Break up long wake
list walk") 11a19c7b09 ("sched/wait: Introduce wakeup boomark in
wake_up_page_bit")

Baoquan He reported "Memory hotplug softlock issue" 14 November 2018:
https://marc.info/?l=linux-mm&m=154217936431300&w=2

We have all assumed that it is essential to hold a page reference while
waiting on a page lock: partly to guarantee that there is still a struct
page when MEMORY_HOTREMOVE is configured, but also to protect against
reuse of the struct page going to someone who then holds the page locked
indefinitely, when the waiter can reasonably expect timely unlocking.

But in fact, so long as wait_on_page_bit_common() does the put_page(), and
is careful not to rely on struct page contents thereafter, there is no
need to hold a reference to the page while waiting on it.  That does mean
that this case cannot go back through the loop: but that's fine for the
page migration case, and even if used more widely, is limited by the "Stop
walking if it's locked" optimization in wake_page_function().

Add interface put_and_wait_on_page_locked() to do this, using "behavior"
enum in place of "lock" arg to wait_on_page_bit_common() to implement it.
No interruptible or killable variant needed yet, but they might follow: I
have a vague notion that reporting -EINTR should take precedence over
return from wait_on_page_bit_common() without knowing the page state, so
arrange it accordingly - but that may be nothing but pedantic.

__migration_entry_wait() still has to take a brief reference to the page,
prior to calling put_and_wait_on_page_locked(): but now that it is dropped
before waiting, the chance of impeding page migration is very much
reduced.  Should we perhaps disable preemption across this?

shrink_page_list()'s __ClearPageLocked(): that was a surprise!  This
survived a lot of testing before that showed up.  PageWaiters may have
been set by wait_on_page_bit_common(), and the reference dropped, just
before shrink_page_list() succeeds in freezing its last page reference: in
such a case, unlock_page() must be used.  Follow the suggestion from
Michal Hocko, just revert a978d6f521 ("mm: unlockless reclaim") now:
that optimization predates PageWaiters, and won't buy much these days; but
we can reinstate it for the !PageWaiters case if anyone notices.

It does raise the question: should vmscan.c's is_page_cache_freeable() and
__remove_mapping() now treat a PageWaiters page as if an extra reference
were held?  Perhaps, but I don't think it matters much, since
shrink_page_list() already had to win its trylock_page(), so waiters are
not very common there: I noticed no difference when trying the bigger
change, and it's surely not needed while put_and_wait_on_page_locked() is
only used for page migration.

[willy@infradead.org: add put_and_wait_on_page_locked() kerneldoc]
Link: http://lkml.kernel.org/r/alpine.LSU.2.11.1811261121330.1116@eggly.anvils
Signed-off-by: Hugh Dickins <hughd@google.com>
Reported-by: Baoquan He <bhe@redhat.com>
Tested-by: Baoquan He <bhe@redhat.com>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: David Herrmann <dh.herrmann@gmail.com>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Kan Liang <kan.liang@intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Nick Piggin <npiggin@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 12:11:48 -08:00
Mel Gorman 1c30844d2d mm: reclaim small amounts of memory when an external fragmentation event occurs
An external fragmentation event was previously described as

    When the page allocator fragments memory, it records the event using
    the mm_page_alloc_extfrag event. If the fallback_order is smaller
    than a pageblock order (order-9 on 64-bit x86) then it's considered
    an event that will cause external fragmentation issues in the future.

The kernel reduces the probability of such events by increasing the
watermark sizes by calling set_recommended_min_free_kbytes early in the
lifetime of the system.  This works reasonably well in general but if
there are enough sparsely populated pageblocks then the problem can still
occur as enough memory is free overall and kswapd stays asleep.

This patch introduces a watermark_boost_factor sysctl that allows a zone
watermark to be temporarily boosted when an external fragmentation causing
events occurs.  The boosting will stall allocations that would decrease
free memory below the boosted low watermark and kswapd is woken if the
calling context allows to reclaim an amount of memory relative to the size
of the high watermark and the watermark_boost_factor until the boost is
cleared.  When kswapd finishes, it wakes kcompactd at the pageblock order
to clean some of the pageblocks that may have been affected by the
fragmentation event.  kswapd avoids any writeback, slab shrinkage and swap
from reclaim context during this operation to avoid excessive system
disruption in the name of fragmentation avoidance.  Care is taken so that
kswapd will do normal reclaim work if the system is really low on memory.

This was evaluated using the same workloads as "mm, page_alloc: Spread
allocations across zones before introducing fragmentation".

1-socket Skylake machine
config-global-dhp__workload_thpfioscale XFS (no special madvise)
4 fio threads, 1 THP allocating thread
--------------------------------------

4.20-rc3 extfrag events < order 9:   804694
4.20-rc3+patch:                      408912 (49% reduction)
4.20-rc3+patch1-4:                    18421 (98% reduction)

                                   4.20.0-rc3             4.20.0-rc3
                                 lowzone-v5r8             boost-v5r8
Amean     fault-base-1      653.58 (   0.00%)      652.71 (   0.13%)
Amean     fault-huge-1        0.00 (   0.00%)      178.93 * -99.00%*

                              4.20.0-rc3             4.20.0-rc3
                            lowzone-v5r8             boost-v5r8
Percentage huge-1        0.00 (   0.00%)        5.12 ( 100.00%)

Note that external fragmentation causing events are massively reduced by
this path whether in comparison to the previous kernel or the vanilla
kernel.  The fault latency for huge pages appears to be increased but that
is only because THP allocations were successful with the patch applied.

1-socket Skylake machine
global-dhp__workload_thpfioscale-madvhugepage-xfs (MADV_HUGEPAGE)
-----------------------------------------------------------------

4.20-rc3 extfrag events < order 9:  291392
4.20-rc3+patch:                     191187 (34% reduction)
4.20-rc3+patch1-4:                   13464 (95% reduction)

thpfioscale Fault Latencies
                                   4.20.0-rc3             4.20.0-rc3
                                 lowzone-v5r8             boost-v5r8
Min       fault-base-1      912.00 (   0.00%)      905.00 (   0.77%)
Min       fault-huge-1      127.00 (   0.00%)      135.00 (  -6.30%)
Amean     fault-base-1     1467.55 (   0.00%)     1481.67 (  -0.96%)
Amean     fault-huge-1     1127.11 (   0.00%)     1063.88 *   5.61%*

                              4.20.0-rc3             4.20.0-rc3
                            lowzone-v5r8             boost-v5r8
Percentage huge-1       77.64 (   0.00%)       83.46 (   7.49%)

As before, massive reduction in external fragmentation events, some jitter
on latencies and an increase in THP allocation success rates.

2-socket Haswell machine
config-global-dhp__workload_thpfioscale XFS (no special madvise)
4 fio threads, 5 THP allocating threads
----------------------------------------------------------------

4.20-rc3 extfrag events < order 9:  215698
4.20-rc3+patch:                     200210 (7% reduction)
4.20-rc3+patch1-4:                   14263 (93% reduction)

                                   4.20.0-rc3             4.20.0-rc3
                                 lowzone-v5r8             boost-v5r8
Amean     fault-base-5     1346.45 (   0.00%)     1306.87 (   2.94%)
Amean     fault-huge-5     3418.60 (   0.00%)     1348.94 (  60.54%)

                              4.20.0-rc3             4.20.0-rc3
                            lowzone-v5r8             boost-v5r8
Percentage huge-5        0.78 (   0.00%)        7.91 ( 910.64%)

There is a 93% reduction in fragmentation causing events, there is a big
reduction in the huge page fault latency and allocation success rate is
higher.

2-socket Haswell machine
global-dhp__workload_thpfioscale-madvhugepage-xfs (MADV_HUGEPAGE)
-----------------------------------------------------------------

4.20-rc3 extfrag events < order 9: 166352
4.20-rc3+patch:                    147463 (11% reduction)
4.20-rc3+patch1-4:                  11095 (93% reduction)

thpfioscale Fault Latencies
                                   4.20.0-rc3             4.20.0-rc3
                                 lowzone-v5r8             boost-v5r8
Amean     fault-base-5     6217.43 (   0.00%)     7419.67 * -19.34%*
Amean     fault-huge-5     3163.33 (   0.00%)     3263.80 (  -3.18%)

                              4.20.0-rc3             4.20.0-rc3
                            lowzone-v5r8             boost-v5r8
Percentage huge-5       95.14 (   0.00%)       87.98 (  -7.53%)

There is a large reduction in fragmentation events with some jitter around
the latencies and success rates.  As before, the high THP allocation
success rate does mean the system is under a lot of pressure.  However, as
the fragmentation events are reduced, it would be expected that the
long-term allocation success rate would be higher.

Link: http://lkml.kernel.org/r/20181123114528.28802-5-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Zi Yan <zi.yan@cs.rutgers.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-12-28 12:11:48 -08:00
Jani Nikula 2ac5e38ea4 Merge drm/drm-next into drm-intel-next-queued
Pull in v4.20-rc3 via drm-next.

Signed-off-by: Jani Nikula <jani.nikula@intel.com>
2018-11-20 13:14:08 +02:00
Kuo-Hsin Yang 64e3d12f76 mm, drm/i915: mark pinned shmemfs pages as unevictable
The i915 driver uses shmemfs to allocate backing storage for gem
objects. These shmemfs pages can be pinned (increased ref count) by
shmem_read_mapping_page_gfp(). When a lot of pages are pinned, vmscan
wastes a lot of time scanning these pinned pages. In some extreme case,
all pages in the inactive anon lru are pinned, and only the inactive
anon lru is scanned due to inactive_ratio, the system cannot swap and
invokes the oom-killer. Mark these pinned pages as unevictable to speed
up vmscan.

Export pagevec API check_move_unevictable_pages().

This patch was inspired by Chris Wilson's change [1].

[1]: https://patchwork.kernel.org/patch/9768741/

Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Kuo-Hsin Yang <vovoy@chromium.org>
Acked-by: Michal Hocko <mhocko@suse.com> # mm part
Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk>
Acked-by: Dave Hansen <dave.hansen@intel.com>
Acked-by: Andrew Morton <akpm@linux-foundation.org>
Link: https://patchwork.freedesktop.org/patch/msgid/20181106132324.17390-1-chris@chris-wilson.co.uk
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
2018-11-07 15:28:32 +00:00
Linus Torvalds dad4f140ed Merge branch 'xarray' of git://git.infradead.org/users/willy/linux-dax
Pull XArray conversion from Matthew Wilcox:
 "The XArray provides an improved interface to the radix tree data
  structure, providing locking as part of the API, specifying GFP flags
  at allocation time, eliminating preloading, less re-walking the tree,
  more efficient iterations and not exposing RCU-protected pointers to
  its users.

  This patch set

   1. Introduces the XArray implementation

   2. Converts the pagecache to use it

   3. Converts memremap to use it

  The page cache is the most complex and important user of the radix
  tree, so converting it was most important. Converting the memremap
  code removes the only other user of the multiorder code, which allows
  us to remove the radix tree code that supported it.

  I have 40+ followup patches to convert many other users of the radix
  tree over to the XArray, but I'd like to get this part in first. The
  other conversions haven't been in linux-next and aren't suitable for
  applying yet, but you can see them in the xarray-conv branch if you're
  interested"

* 'xarray' of git://git.infradead.org/users/willy/linux-dax: (90 commits)
  radix tree: Remove multiorder support
  radix tree test: Convert multiorder tests to XArray
  radix tree tests: Convert item_delete_rcu to XArray
  radix tree tests: Convert item_kill_tree to XArray
  radix tree tests: Move item_insert_order
  radix tree test suite: Remove multiorder benchmarking
  radix tree test suite: Remove __item_insert
  memremap: Convert to XArray
  xarray: Add range store functionality
  xarray: Move multiorder_check to in-kernel tests
  xarray: Move multiorder_shrink to kernel tests
  xarray: Move multiorder account test in-kernel
  radix tree test suite: Convert iteration test to XArray
  radix tree test suite: Convert tag_tagged_items to XArray
  radix tree: Remove radix_tree_clear_tags
  radix tree: Remove radix_tree_maybe_preload_order
  radix tree: Remove split/join code
  radix tree: Remove radix_tree_update_node_t
  page cache: Finish XArray conversion
  dax: Convert page fault handlers to XArray
  ...
2018-10-28 11:35:40 -07:00
Johannes Weiner 4b85afbdac mm: zero-seek shrinkers
The page cache and most shrinkable slab caches hold data that has been
read from disk, but there are some caches that only cache CPU work, such
as the dentry and inode caches of procfs and sysfs, as well as the subset
of radix tree nodes that track non-resident page cache.

Currently, all these are shrunk at the same rate: using DEFAULT_SEEKS for
the shrinker's seeks setting tells the reclaim algorithm that for every
two page cache pages scanned it should scan one slab object.

This is a bogus setting.  A virtual inode that required no IO to create is
not twice as valuable as a page cache page; shadow cache entries with
eviction distances beyond the size of memory aren't either.

In most cases, the behavior in practice is still fine.  Such virtual
caches don't tend to grow and assert themselves aggressively, and usually
get picked up before they cause problems.  But there are scenarios where
that's not true.

Our database workloads suffer from two of those.  For one, their file
workingset is several times bigger than available memory, which has the
kernel aggressively create shadow page cache entries for the non-resident
parts of it.  The workingset code does tell the VM that most of these are
expendable, but the VM ends up balancing them 2:1 to cache pages as per
the seeks setting.  This is a huge waste of memory.

These workloads also deal with tens of thousands of open files and use
/proc for introspection, which ends up growing the proc_inode_cache to
absurdly large sizes - again at the cost of valuable cache space, which
isn't a reasonable trade-off, given that proc inodes can be re-created
without involving the disk.

This patch implements a "zero-seek" setting for shrinkers that results in
a target ratio of 0:1 between their objects and IO-backed caches.  This
allows such virtual caches to grow when memory is available (they do
cache/avoid CPU work after all), but effectively disables them as soon as
IO-backed objects are under pressure.

It then switches the shrinkers for procfs and sysfs metadata, as well as
excess page cache shadow nodes, to the new zero-seek setting.

Link: http://lkml.kernel.org/r/20181009184732.762-5-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reported-by: Domas Mituzas <dmituzas@fb.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Rik van Riel <riel@surriel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 16:26:33 -07:00
Johannes Weiner eb414681d5 psi: pressure stall information for CPU, memory, and IO
When systems are overcommitted and resources become contended, it's hard
to tell exactly the impact this has on workload productivity, or how close
the system is to lockups and OOM kills.  In particular, when machines work
multiple jobs concurrently, the impact of overcommit in terms of latency
and throughput on the individual job can be enormous.

In order to maximize hardware utilization without sacrificing individual
job health or risk complete machine lockups, this patch implements a way
to quantify resource pressure in the system.

A kernel built with CONFIG_PSI=y creates files in /proc/pressure/ that
expose the percentage of time the system is stalled on CPU, memory, or IO,
respectively.  Stall states are aggregate versions of the per-task delay
accounting delays:

       cpu: some tasks are runnable but not executing on a CPU
       memory: tasks are reclaiming, or waiting for swapin or thrashing cache
       io: tasks are waiting for io completions

These percentages of walltime can be thought of as pressure percentages,
and they give a general sense of system health and productivity loss
incurred by resource overcommit.  They can also indicate when the system
is approaching lockup scenarios and OOMs.

To do this, psi keeps track of the task states associated with each CPU
and samples the time they spend in stall states.  Every 2 seconds, the
samples are averaged across CPUs - weighted by the CPUs' non-idle time to
eliminate artifacts from unused CPUs - and translated into percentages of
walltime.  A running average of those percentages is maintained over 10s,
1m, and 5m periods (similar to the loadaverage).

[hannes@cmpxchg.org: doc fixlet, per Randy]
  Link: http://lkml.kernel.org/r/20180828205625.GA14030@cmpxchg.org
[hannes@cmpxchg.org: code optimization]
  Link: http://lkml.kernel.org/r/20180907175015.GA8479@cmpxchg.org
[hannes@cmpxchg.org: rename psi_clock() to psi_update_work(), per Peter]
  Link: http://lkml.kernel.org/r/20180907145404.GB11088@cmpxchg.org
[hannes@cmpxchg.org: fix build]
  Link: http://lkml.kernel.org/r/20180913014222.GA2370@cmpxchg.org
Link: http://lkml.kernel.org/r/20180828172258.3185-9-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Drake <drake@endlessm.com>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 16:26:32 -07:00
Johannes Weiner 1899ad18c6 mm: workingset: tell cache transitions from workingset thrashing
Refaults happen during transitions between workingsets as well as in-place
thrashing.  Knowing the difference between the two has a range of
applications, including measuring the impact of memory shortage on the
system performance, as well as the ability to smarter balance pressure
between the filesystem cache and the swap-backed workingset.

During workingset transitions, inactive cache refaults and pushes out
established active cache.  When that active cache isn't stale, however,
and also ends up refaulting, that's bonafide thrashing.

Introduce a new page flag that tells on eviction whether the page has been
active or not in its lifetime.  This bit is then stored in the shadow
entry, to classify refaults as transitioning or thrashing.

How many page->flags does this leave us with on 32-bit?

	20 bits are always page flags

	21 if you have an MMU

	23 with the zone bits for DMA, Normal, HighMem, Movable

	29 with the sparsemem section bits

	30 if PAE is enabled

	31 with this patch.

So on 32-bit PAE, that leaves 1 bit for distinguishing two NUMA nodes.  If
that's not enough, the system can switch to discontigmem and re-gain the 6
or 7 sparsemem section bits.

Link: http://lkml.kernel.org/r/20180828172258.3185-3-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Daniel Drake <drake@endlessm.com>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Johannes Weiner <jweiner@fb.com>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Enderborg <peter.enderborg@sony.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 16:26:32 -07:00
Roman Gushchin 68600f623d mm: don't miss the last page because of round-off error
I've noticed, that dying memory cgroups are often pinned in memory by a
single pagecache page.  Even under moderate memory pressure they sometimes
stayed in such state for a long time.  That looked strange.

My investigation showed that the problem is caused by applying the LRU
pressure balancing math:

  scan = div64_u64(scan * fraction[lru], denominator),

where

  denominator = fraction[anon] + fraction[file] + 1.

Because fraction[lru] is always less than denominator, if the initial scan
size is 1, the result is always 0.

This means the last page is not scanned and has
no chances to be reclaimed.

Fix this by rounding up the result of the division.

In practice this change significantly improves the speed of dying cgroups
reclaim.

[guro@fb.com: prevent double calculation of DIV64_U64_ROUND_UP() arguments]
  Link: http://lkml.kernel.org/r/20180829213311.GA13501@castle
Link: http://lkml.kernel.org/r/20180827162621.30187-3-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-10-26 16:25:19 -07:00
Matthew Wilcox 67891ffff2 mm: Convert is_page_cache_freeable to XArray
This is just a variable rename and comment change.

Signed-off-by: Matthew Wilcox <willy@infradead.org>
2018-10-21 10:46:38 -04:00
Matthew Wilcox 4e17ec250f mm: Convert delete_from_swap_cache to XArray
Both callers of __delete_from_swap_cache have the swp_entry_t already,
so pass that in to make constructing the XA_STATE easier.

Signed-off-by: Matthew Wilcox <willy@infradead.org>
2018-10-21 10:46:37 -04:00
Kirill Tkhai b8e57efa2c mm/vmscan.c: fix int overflow in callers of do_shrink_slab()
do_shrink_slab() returns unsigned long value, and the placing into int
variable cuts high bytes off.  Then we compare ret and 0xfffffffe (since
SHRINK_EMPTY is converted to ret type).

Thus a large number of objects returned by do_shrink_slab() may be
interpreted as SHRINK_EMPTY, if low bytes of their value are equal to
0xfffffffe.  Fix that by declaration ret as unsigned long in these
functions.

Link: http://lkml.kernel.org/r/153813407177.17544.14888305435570723973.stgit@localhost.localdomain
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Reported-by: Cyrill Gorcunov <gorcunov@openvz.org>
Acked-by: Cyrill Gorcunov <gorcunov@openvz.org>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-10-05 16:32:05 -07:00
Roman Gushchin 172b06c32b mm: slowly shrink slabs with a relatively small number of objects
9092c71bb7 ("mm: use sc->priority for slab shrink targets") changed the
way that the target slab pressure is calculated and made it
priority-based:

    delta = freeable >> priority;
    delta *= 4;
    do_div(delta, shrinker->seeks);

The problem is that on a default priority (which is 12) no pressure is
applied at all, if the number of potentially reclaimable objects is less
than 4096 (1<<12).

This causes the last objects on slab caches of no longer used cgroups to
(almost) never get reclaimed.  It's obviously a waste of memory.

It can be especially painful, if these stale objects are holding a
reference to a dying cgroup.  Slab LRU lists are reparented on memcg
offlining, but corresponding objects are still holding a reference to the
dying cgroup.  If we don't scan these objects, the dying cgroup can't go
away.  Most likely, the parent cgroup hasn't any directly charged objects,
only remaining objects from dying children cgroups.  So it can easily hold
a reference to hundreds of dying cgroups.

If there are no big spikes in memory pressure, and new memory cgroups are
created and destroyed periodically, this causes the number of dying
cgroups grow steadily, causing a slow-ish and hard-to-detect memory
"leak".  It's not a real leak, as the memory can be eventually reclaimed,
but it could not happen in a real life at all.  I've seen hosts with a
steadily climbing number of dying cgroups, which doesn't show any signs of
a decline in months, despite the host is loaded with a production
workload.

It is an obvious waste of memory, and to prevent it, let's apply a minimal
pressure even on small shrinker lists.  E.g.  if there are freeable
objects, let's scan at least min(freeable, scan_batch) objects.

This fix significantly improves a chance of a dying cgroup to be
reclaimed, and together with some previous patches stops the steady growth
of the dying cgroups number on some of our hosts.

Link: http://lkml.kernel.org/r/20180905230759.12236-1-guro@fb.com
Fixes: 9092c71bb7 ("mm: use sc->priority for slab shrink targets")
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Rik van Riel <riel@surriel.com>
Cc: Josef Bacik <jbacik@fb.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-09-20 22:01:11 +02:00
Jiang Biao 1c4c3b99c0 mm: fix page_freeze_refs and page_unfreeze_refs in comments
page_freeze_refs/page_unfreeze_refs have already been relplaced by
page_ref_freeze/page_ref_unfreeze , but they are not modified in the
comments.

Link: http://lkml.kernel.org/r/1532590226-106038-1-git-send-email-jiang.biao2@zte.com.cn
Signed-off-by: Jiang Biao <jiang.biao2@zte.com.cn>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-22 10:52:44 -07:00
Kirill Tkhai 8df4a44cc4 mm: check shrinker is memcg-aware in register_shrinker_prepared()
There is a sad BUG introduced in patch adding SHRINKER_REGISTERING.
shrinker_idr business is only for memcg-aware shrinkers.  Only such type
of shrinkers have id and they must be finaly installed via idr_replace()
in this function.  For !memcg-aware shrinkers we never initialize
shrinker->id field.

But there are all types of shrinkers passed to idr_replace(), and every
!memcg-aware shrinker with random ID (most probably, its id is 0)
replaces memcg-aware shrinker pointed by the ID in IDR.

This patch fixes the problem.

Link: http://lkml.kernel.org/r/8ff8a793-8211-713a-4ed9-d6e52390c2fc@virtuozzo.com
Fixes: 7e010df53c "mm: use special value SHRINKER_REGISTERING instead of list_empty() check"
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Reported-by: <syzbot+d5f648a1bfe15678786b@syzkaller.appspotmail.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Josef Bacik <jbacik@fb.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: <syzkaller-bugs@googlegroups.com>
Cc: Huang Ying <ying.huang@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-22 10:52:43 -07:00
Kirill Tkhai 7e010df53c mm: use special value SHRINKER_REGISTERING instead of list_empty() check
The patch introduces a special value SHRINKER_REGISTERING to use instead
of list_empty() to differ a registering shrinker from unregistered
shrinker.  Why we need that at all?

Shrinker registration is split in two parts.  The first one is
prealloc_shrinker(), which allocates shrinker memory and reserves ID in
shrinker_idr.  This function can fail.  The second is
register_shrinker_prepared(), and it finalizes the registration.  This
function actually makes shrinker available to be used from
shrink_slab(), and it can't fail.

One shrinker may be based on more then one LRU lists.  So, we never
clear the bit in memcg shrinker maps, when (one of) corresponding LRU
list becomes empty, since other LRU lists may be not empty.  See
superblock shrinker for example: it is based on two LRU lists:
s_inode_lru and s_dentry_lru.  We do not want to clear shrinker bit,
when there are no inodes in s_inode_lru, as s_dentry_lru may contain
dentries.

Instead of that, we use special algorithm to detect shrinkers having no
elements at all its LRU lists, and this is made in shrink_slab_memcg().
See the comment in this function for the details.

Also, in shrink_slab_memcg() we clear shrinker bit in the map, when we
meet unregistered shrinker (bit is set, while there is no a shrinker in
IDR).  Otherwise, we would have done that at the moment of shrinker
unregistration for all memcgs (and this looks worse, since iteration
over all memcg may take much time).  Also this would have imposed
restrictions on shrinker unregistration order for its users: they would
have had to guarantee, there are no new elements after
unregister_shrinker() (otherwise, a new added element would have set a
bit).

So, if we meet a set bit in map and no shrinker in IDR when we're
iterating over the map in shrink_slab_memcg(), this means the
corresponding shrinker is unregistered, and we must clear the bit.

Another case is shrinker registration.  We want two things there:

1) do_shrink_slab() can be called only for completely registered
   shrinkers;

2) shrinker internal lists may be populated in any order with
   register_shrinker_prepared() (let's talk on the example with sb).  Both
   of:

  a)list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru); [cpu0]
    memcg_set_shrinker_bit();                               [cpu0]
    ...
    register_shrinker_prepared();                           [cpu1]

  and

  b)register_shrinker_prepared();                           [cpu0]
    ...
    list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru); [cpu1]
    memcg_set_shrinker_bit();                               [cpu1]

   are legitimate.  We don't want to impose restriction here and to
   force people to use only (b) variant.  We don't want to force people to
   care, there is no elements in LRU lists before the shrinker is
   completely registered.  Internal users of LRU lists and shrinker code
   are two different subsystems, and they have to be closed in themselves
   each other.

In (a) case we have the bit set before shrinker is completely
registered.  We don't want do_shrink_slab() is called at this moment, so
we have to detect such the registering shrinkers.

Before this patch list_empty() (shrinker is not linked to the list)
check was used for that.  So, in (a) there could be a bit set, but we
don't call do_shrink_slab() unless shrinker is linked to the list.  It's
just an indicator, I just overloaded linking to the list.

This was not the best solution, since it's better not to touch the
shrinker memory from shrink_slab_memcg() before it's completely
registered (this also will be useful in the future to make shrink_slab()
completely lockless).

So, this patch introduces better way to detect registering shrinker,
which allows not to dereference shrinker memory.  It's just a ~0UL
value, which we insert into the IDR during ID allocation.  After
shrinker is ready to be used, we insert actual shrinker pointer in the
IDR, and it becomes available to shrink_slab_memcg().

We can't use NULL instead of this new value for this purpose as:
shrink_slab_memcg() already uses NULL to detect unregistered shrinkers,
and we don't want the function sees NULL and clears the bit, otherwise
(a) won't work.

This is the only thing the patch makes: the better way to detect
registering shrinker.  Nothing else this patch makes.

Also this gives a better assembler, but it's minor side of the patch:

Before:
  callq  <idr_find>
  mov    %rax,%r15
  test   %rax,%rax
  je     <shrink_slab_memcg+0x1d5>
  mov    0x20(%rax),%rax
  lea    0x20(%r15),%rdx
  cmp    %rax,%rdx
  je     <shrink_slab_memcg+0xbd>
  mov    0x8(%rsp),%edx
  mov    %r15,%rsi
  lea    0x10(%rsp),%rdi
  callq  <do_shrink_slab>

After:
  callq  <idr_find>
  mov    %rax,%r15
  lea    -0x1(%rax),%rax
  cmp    $0xfffffffffffffffd,%rax
  ja     <shrink_slab_memcg+0x1cd>
  mov    0x8(%rsp),%edx
  mov    %r15,%rsi
  lea    0x10(%rsp),%rdi
  callq  ffffffff810cefd0 <do_shrink_slab>

[ktkhai@virtuozzo.com: add #ifdef CONFIG_MEMCG_KMEM around idr_replace()]
  Link: http://lkml.kernel.org/r/758b8fec-7573-47eb-b26a-7b2847ae7b8c@virtuozzo.com
Link: http://lkml.kernel.org/r/153355467546.11522.4518015068123480218.stgit@localhost.localdomain
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Josef Bacik <jbacik@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-17 16:20:31 -07:00
Kirill Tkhai ac7fb3ad27 mm/vmscan.c: move check for SHRINKER_NUMA_AWARE to do_shrink_slab()
In case of shrink_slab_memcg() we do not zero nid, when shrinker is not
numa-aware.  This is not a real problem, since currently all memcg-aware
shrinkers are numa-aware too (we have two: super_block shrinker and
workingset shrinker), but something may change in the future.

Link: http://lkml.kernel.org/r/153320759911.18959.8842396230157677671.stgit@localhost.localdomain
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Josef Bacik <jbacik@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-17 16:20:31 -07:00
Kirill Tkhai f90280d6b7 mm/vmscan.c: clear shrinker bit if there are no objects related to memcg
To avoid further unneed calls of do_shrink_slab() for shrinkers, which
already do not have any charged objects in a memcg, their bits have to
be cleared.

This patch introduces a lockless mechanism to do that without races
without parallel list lru add.  After do_shrink_slab() returns
SHRINK_EMPTY the first time, we clear the bit and call it once again.
Then we restore the bit, if the new return value is different.

Note, that single smp_mb__after_atomic() in shrink_slab_memcg() covers
two situations:

1)list_lru_add()     shrink_slab_memcg
    list_add_tail()    for_each_set_bit() <--- read bit
                         do_shrink_slab() <--- missed list update (no barrier)
    <MB>                 <MB>
    set_bit()            do_shrink_slab() <--- seen list update

This situation, when the first do_shrink_slab() sees set bit, but it
doesn't see list update (i.e., race with the first element queueing), is
rare.  So we don't add <MB> before the first call of do_shrink_slab()
instead of this to do not slow down generic case.  Also, it's need the
second call as seen in below in (2).

2)list_lru_add()      shrink_slab_memcg()
    list_add_tail()     ...
    set_bit()           ...
  ...                   for_each_set_bit()
  do_shrink_slab()        do_shrink_slab()
    clear_bit()           ...
  ...                     ...
  list_lru_add()          ...
    list_add_tail()       clear_bit()
    <MB>                  <MB>
    set_bit()             do_shrink_slab()

The barriers guarantee that the second do_shrink_slab() in the right
side task sees list update if really cleared the bit.  This case is
drawn in the code comment.

[Results/performance of the patchset]

After the whole patchset applied the below test shows signify increase
of performance:

  $echo 1 > /sys/fs/cgroup/memory/memory.use_hierarchy
  $mkdir /sys/fs/cgroup/memory/ct
  $echo 4000M > /sys/fs/cgroup/memory/ct/memory.kmem.limit_in_bytes
      $for i in `seq 0 4000`; do mkdir /sys/fs/cgroup/memory/ct/$i;
			    echo $$ > /sys/fs/cgroup/memory/ct/$i/cgroup.procs;
			    mkdir -p s/$i; mount -t tmpfs $i s/$i;
			    touch s/$i/file; done

Then, 5 sequential calls of drop caches:

  $time echo 3 > /proc/sys/vm/drop_caches

1)Before:
  0.00user 13.78system 0:13.78elapsed 99%CPU
  0.00user 5.59system 0:05.60elapsed 99%CPU
  0.00user 5.48system 0:05.48elapsed 99%CPU
  0.00user 8.35system 0:08.35elapsed 99%CPU
  0.00user 8.34system 0:08.35elapsed 99%CPU

2)After
  0.00user 1.10system 0:01.10elapsed 99%CPU
  0.00user 0.00system 0:00.01elapsed 64%CPU
  0.00user 0.01system 0:00.01elapsed 82%CPU
  0.00user 0.00system 0:00.01elapsed 64%CPU
  0.00user 0.01system 0:00.01elapsed 82%CPU

The results show the performance increases at least in 548 times.

Shakeel Butt tested this patchset with fork-bomb on his configuration:

 > I created 255 memcgs, 255 ext4 mounts and made each memcg create a
 > file containing few KiBs on corresponding mount. Then in a separate
 > memcg of 200 MiB limit ran a fork-bomb.
 >
 > I ran the "perf record -ag -- sleep 60" and below are the results:
 >
 > Without the patch series:
 > Samples: 4M of event 'cycles', Event count (approx.): 3279403076005
 > +  36.40%            fb.sh  [kernel.kallsyms]    [k] shrink_slab
 > +  18.97%            fb.sh  [kernel.kallsyms]    [k] list_lru_count_one
 > +   6.75%            fb.sh  [kernel.kallsyms]    [k] super_cache_count
 > +   0.49%            fb.sh  [kernel.kallsyms]    [k] down_read_trylock
 > +   0.44%            fb.sh  [kernel.kallsyms]    [k] mem_cgroup_iter
 > +   0.27%            fb.sh  [kernel.kallsyms]    [k] up_read
 > +   0.21%            fb.sh  [kernel.kallsyms]    [k] osq_lock
 > +   0.13%            fb.sh  [kernel.kallsyms]    [k] shmem_unused_huge_count
 > +   0.08%            fb.sh  [kernel.kallsyms]    [k] shrink_node_memcg
 > +   0.08%            fb.sh  [kernel.kallsyms]    [k] shrink_node
 >
 > With the patch series:
 > Samples: 4M of event 'cycles', Event count (approx.): 2756866824946
 > +  47.49%            fb.sh  [kernel.kallsyms]    [k] down_read_trylock
 > +  30.72%            fb.sh  [kernel.kallsyms]    [k] up_read
 > +   9.51%            fb.sh  [kernel.kallsyms]    [k] mem_cgroup_iter
 > +   1.69%            fb.sh  [kernel.kallsyms]    [k] shrink_node_memcg
 > +   1.35%            fb.sh  [kernel.kallsyms]    [k] mem_cgroup_protected
 > +   1.05%            fb.sh  [kernel.kallsyms]    [k] queued_spin_lock_slowpath
 > +   0.85%            fb.sh  [kernel.kallsyms]    [k] _raw_spin_lock
 > +   0.78%            fb.sh  [kernel.kallsyms]    [k] lruvec_lru_size
 > +   0.57%            fb.sh  [kernel.kallsyms]    [k] shrink_node
 > +   0.54%            fb.sh  [kernel.kallsyms]    [k] queue_work_on
 > +   0.46%            fb.sh  [kernel.kallsyms]    [k] shrink_slab_memcg

[ktkhai@virtuozzo.com: v9]
  Link: http://lkml.kernel.org/r/153112561772.4097.11011071937553113003.stgit@localhost.localdomain
Link: http://lkml.kernel.org/r/153063070859.1818.11870882950920963480.stgit@localhost.localdomain
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Tested-by: Shakeel Butt <shakeelb@google.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Josef Bacik <jbacik@fb.com>
Cc: Li RongQing <lirongqing@baidu.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Matthias Kaehlcke <mka@chromium.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Philippe Ombredanne <pombredanne@nexb.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Sahitya Tummala <stummala@codeaurora.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Waiman Long <longman@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-17 16:20:31 -07:00
Kirill Tkhai 9b996468cf mm: add SHRINK_EMPTY shrinker methods return value
We need to distinguish the situations when shrinker has very small
amount of objects (see vfs_pressure_ratio() called from
super_cache_count()), and when it has no objects at all.  Currently, in
the both of these cases, shrinker::count_objects() returns 0.

The patch introduces new SHRINK_EMPTY return value, which will be used
for "no objects at all" case.  It's is a refactoring mostly, as
SHRINK_EMPTY is replaced by 0 by all callers of do_shrink_slab() in this
patch, and all the magic will happen in further.

Link: http://lkml.kernel.org/r/153063069574.1818.11037751256699341813.stgit@localhost.localdomain
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Tested-by: Shakeel Butt <shakeelb@google.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Josef Bacik <jbacik@fb.com>
Cc: Li RongQing <lirongqing@baidu.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Matthias Kaehlcke <mka@chromium.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Philippe Ombredanne <pombredanne@nexb.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Sahitya Tummala <stummala@codeaurora.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Waiman Long <longman@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-17 16:20:31 -07:00
Vladimir Davydov aeed1d325d mm/vmscan.c: generalize shrink_slab() calls in shrink_node()
The patch makes shrink_slab() be called for root_mem_cgroup in the same
way as it's called for the rest of cgroups.  This simplifies the logic
and improves the readability.

[ktkhai@virtuozzo.com: wrote changelog]
Link: http://lkml.kernel.org/r/153063068338.1818.11496084754797453962.stgit@localhost.localdomain
Signed-off-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Tested-by: Shakeel Butt <shakeelb@google.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Josef Bacik <jbacik@fb.com>
Cc: Li RongQing <lirongqing@baidu.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Matthias Kaehlcke <mka@chromium.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Philippe Ombredanne <pombredanne@nexb.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Sahitya Tummala <stummala@codeaurora.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Waiman Long <longman@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-17 16:20:31 -07:00
Kirill Tkhai b0dedc49a2 mm/vmscan.c: iterate only over charged shrinkers during memcg shrink_slab()
Using the preparations made in previous patches, in case of memcg
shrink, we may avoid shrinkers, which are not set in memcg's shrinkers
bitmap.  To do that, we separate iterations over memcg-aware and
!memcg-aware shrinkers, and memcg-aware shrinkers are chosen via
for_each_set_bit() from the bitmap.  In case of big nodes, having many
isolated environments, this gives significant performance growth.  See
next patches for the details.

Note that the patch does not respect to empty memcg shrinkers, since we
never clear the bitmap bits after we set it once.  Their shrinkers will
be called again, with no shrinked objects as result.  This functionality
is provided by next patches.

[ktkhai@virtuozzo.com: v9]
  Link: http://lkml.kernel.org/r/153112558507.4097.12713813335683345488.stgit@localhost.localdomain
Link: http://lkml.kernel.org/r/153063066653.1818.976035462801487910.stgit@localhost.localdomain
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Tested-by: Shakeel Butt <shakeelb@google.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Josef Bacik <jbacik@fb.com>
Cc: Li RongQing <lirongqing@baidu.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Matthias Kaehlcke <mka@chromium.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Philippe Ombredanne <pombredanne@nexb.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Sahitya Tummala <stummala@codeaurora.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Waiman Long <longman@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-17 16:20:31 -07:00
Kirill Tkhai 0a4465d340 mm, memcg: assign memcg-aware shrinkers bitmap to memcg
Imagine a big node with many cpus, memory cgroups and containers.  Let
we have 200 containers, every container has 10 mounts, and 10 cgroups.
All container tasks don't touch foreign containers mounts.  If there is
intensive pages write, and global reclaim happens, a writing task has to
iterate over all memcgs to shrink slab, before it's able to go to
shrink_page_list().

Iteration over all the memcg slabs is very expensive: the task has to
visit 200 * 10 = 2000 shrinkers for every memcg, and since there are
2000 memcgs, the total calls are 2000 * 2000 = 4000000.

So, the shrinker makes 4 million do_shrink_slab() calls just to try to
isolate SWAP_CLUSTER_MAX pages in one of the actively writing memcg via
shrink_page_list().  I've observed a node spending almost 100% in
kernel, making useless iteration over already shrinked slab.

This patch adds bitmap of memcg-aware shrinkers to memcg.  The size of
the bitmap depends on bitmap_nr_ids, and during memcg life it's
maintained to be enough to fit bitmap_nr_ids shrinkers.  Every bit in
the map is related to corresponding shrinker id.

Next patches will maintain set bit only for really charged memcg.  This
will allow shrink_slab() to increase its performance in significant way.
See the last patch for the numbers.

[ktkhai@virtuozzo.com: v9]
  Link: http://lkml.kernel.org/r/153112549031.4097.3576147070498769979.stgit@localhost.localdomain
[ktkhai@virtuozzo.com: add comment to mem_cgroup_css_online()]
  Link: http://lkml.kernel.org/r/521f9e5f-c436-b388-fe83-4dc870bfb489@virtuozzo.com
Link: http://lkml.kernel.org/r/153063056619.1818.12550500883688681076.stgit@localhost.localdomain
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Tested-by: Shakeel Butt <shakeelb@google.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Josef Bacik <jbacik@fb.com>
Cc: Li RongQing <lirongqing@baidu.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Matthias Kaehlcke <mka@chromium.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Philippe Ombredanne <pombredanne@nexb.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Sahitya Tummala <stummala@codeaurora.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Waiman Long <longman@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-17 16:20:30 -07:00
Kirill Tkhai b4c2b231c3 mm: assign id to every memcg-aware shrinker
Introduce shrinker::id number, which is used to enumerate memcg-aware
shrinkers.  The number start from 0, and the code tries to maintain it
as small as possible.

This will be used to represent a memcg-aware shrinkers in memcg
shrinkers map.

Since all memcg-aware shrinkers are based on list_lru, which is
per-memcg in case of !CONFIG_MEMCG_KMEM only, the new functionality will
be under this config option.

[ktkhai@virtuozzo.com: v9]
  Link: http://lkml.kernel.org/r/153112546435.4097.10607140323811756557.stgit@localhost.localdomain
Link: http://lkml.kernel.org/r/153063054586.1818.6041047871606697364.stgit@localhost.localdomain
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Tested-by: Shakeel Butt <shakeelb@google.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Josef Bacik <jbacik@fb.com>
Cc: Li RongQing <lirongqing@baidu.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Matthias Kaehlcke <mka@chromium.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Philippe Ombredanne <pombredanne@nexb.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Sahitya Tummala <stummala@codeaurora.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Waiman Long <longman@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-17 16:20:30 -07:00
Greg Thelen bb451fdf3d mm/vmscan.c: condense scan_control
Use smaller scan_control fields for order, priority, and reclaim_idx.
Convert fields from int => s8.  All easily fit within a byte:

 - allocation order range: 0..MAX_ORDER(64?)
 - priority range:         0..12(DEF_PRIORITY)
 - reclaim_idx range:      0..6(__MAX_NR_ZONES)

Since 6538b8ea88 ("x86_64: expand kernel stack to 16K") x86_64 stack
overflows are not an issue.  But it's inefficient to use ints.

Use s8 (signed byte) rather than u8 to allow for loops like:
	do {
		...
	} while (--sc.priority >= 0);

Add BUILD_BUG_ON to verify that s8 is capable of storing max values.

This reduces sizeof(struct scan_control):
 - 96 => 80 bytes (x86_64)
 - 68 => 56 bytes (i386)

scan_control structure field order is changed to utilize padding.  After
this patch there is 1 bit of scan_control padding.

akpm: makes my vmscan.o's .text 572 bytes smaller as well.

Link: http://lkml.kernel.org/r/20180530061212.84915-1-gthelen@google.com
Signed-off-by: Greg Thelen <gthelen@google.com>
Suggested-by: Matthew Wilcox <willy@infradead.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-17 16:20:28 -07:00
Roman Gushchin bf8d5d52ff memcg: introduce memory.min
Memory controller implements the memory.low best-effort memory
protection mechanism, which works perfectly in many cases and allows
protecting working sets of important workloads from sudden reclaim.

But its semantics has a significant limitation: it works only as long as
there is a supply of reclaimable memory.  This makes it pretty useless
against any sort of slow memory leaks or memory usage increases.  This
is especially true for swapless systems.  If swap is enabled, memory
soft protection effectively postpones problems, allowing a leaking
application to fill all swap area, which makes no sense.  The only
effective way to guarantee the memory protection in this case is to
invoke the OOM killer.

It's possible to handle this case in userspace by reacting on MEMCG_LOW
events; but there is still a place for a fail-safe in-kernel mechanism
to provide stronger guarantees.

This patch introduces the memory.min interface for cgroup v2 memory
controller.  It works very similarly to memory.low (sharing the same
hierarchical behavior), except that it's not disabled if there is no
more reclaimable memory in the system.

If cgroup is not populated, its memory.min is ignored, because otherwise
even the OOM killer wouldn't be able to reclaim the protected memory,
and the system can stall.

[guro@fb.com: s/low/min/ in docs]
Link: http://lkml.kernel.org/r/20180510130758.GA9129@castle.DHCP.thefacebook.com
Link: http://lkml.kernel.org/r/20180509180734.GA4856@castle.DHCP.thefacebook.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Reviewed-by: Randy Dunlap <rdunlap@infradead.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-06-07 17:34:36 -07:00
Omar Sandoval 93781325da lockdep: fix fs_reclaim annotation
While revisiting my Btrfs swapfile series [1], I introduced a situation
in which reclaim would lock i_rwsem, and even though the swapon() path
clearly made GFP_KERNEL allocations while holding i_rwsem, I got no
complaints from lockdep.  It turns out that the rework of the fs_reclaim
annotation was broken: if the current task has PF_MEMALLOC set, we don't
acquire the dummy fs_reclaim lock, but when reclaiming we always check
this _after_ we've just set the PF_MEMALLOC flag.  In most cases, we can
fix this by moving the fs_reclaim_{acquire,release}() outside of the
memalloc_noreclaim_{save,restore}(), althought kswapd is slightly
different.  After applying this, I got the expected lockdep splats.

1: https://lwn.net/Articles/625412/

Link: http://lkml.kernel.org/r/9f8aa70652a98e98d7c4de0fc96a4addcee13efe.1523778026.git.osandov@fb.com
Fixes: d92a8cfcb3 ("locking/lockdep: Rework FS_RECLAIM annotation")
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-06-07 17:34:35 -07:00
Hugh Dickins 145e1a71e0 mm: fix the NULL mapping case in __isolate_lru_page()
George Boole would have noticed a slight error in 4.16 commit
69d763fc6d ("mm: pin address_space before dereferencing it while
isolating an LRU page").  Fix it, to match both the comment above it,
and the original behaviour.

Although anonymous pages are not marked PageDirty at first, we have an
old habit of calling SetPageDirty when a page is removed from swap
cache: so there's a category of ex-swap pages that are easily
migratable, but were inadvertently excluded from compaction's async
migration in 4.16.

Link: http://lkml.kernel.org/r/alpine.LSU.2.11.1805302014001.12558@eggly.anvils
Fixes: 69d763fc6d ("mm: pin address_space before dereferencing it while isolating an LRU page")
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Reported-by:  Ivan Kalvachev <ikalvachev@gmail.com>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Jan Kara <jack@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-06-02 09:33:47 -07:00
Tetsuo Handa 8e04944f0e mm,vmscan: Allow preallocating memory for register_shrinker().
syzbot is catching so many bugs triggered by commit 9ee332d99e
("sget(): handle failures of register_shrinker()"). That commit expected
that calling kill_sb() from deactivate_locked_super() without successful
fill_super() is safe, but the reality was different; some callers assign
attributes which are needed for kill_sb() after sget() succeeds.

For example, [1] is a report where sb->s_mode (which seems to be either
FMODE_READ | FMODE_EXCL | FMODE_WRITE or FMODE_READ | FMODE_EXCL) is not
assigned unless sget() succeeds. But it does not worth complicate sget()
so that register_shrinker() failure path can safely call
kill_block_super() via kill_sb(). Making alloc_super() fail if memory
allocation for register_shrinker() failed is much simpler. Let's avoid
calling deactivate_locked_super() from sget_userns() by preallocating
memory for the shrinker and making register_shrinker() in sget_userns()
never fail.

[1] https://syzkaller.appspot.com/bug?id=588996a25a2587be2e3a54e8646728fb9cae44e7

Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Reported-by: syzbot <syzbot+5a170e19c963a2e0df79@syzkaller.appspotmail.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2018-04-16 02:06:47 -04:00
Matthew Wilcox b93b016313 page cache: use xa_lock
Remove the address_space ->tree_lock and use the xa_lock newly added to
the radix_tree_root.  Rename the address_space ->page_tree to ->i_pages,
since we don't really care that it's a tree.

[willy@infradead.org: fix nds32, fs/dax.c]
  Link: http://lkml.kernel.org/r/20180406145415.GB20605@bombadil.infradead.orgLink: http://lkml.kernel.org/r/20180313132639.17387-9-willy@infradead.org
Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com>
Acked-by: Jeff Layton <jlayton@redhat.com>
Cc: Darrick J. Wong <darrick.wong@oracle.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11 10:28:39 -07:00
Johannes Weiner e27be240df mm: memcg: make sure memory.events is uptodate when waking pollers
Commit a983b5ebee ("mm: memcontrol: fix excessive complexity in
memory.stat reporting") added per-cpu drift to all memory cgroup stats
and events shown in memory.stat and memory.events.

For memory.stat this is acceptable.  But memory.events issues file
notifications, and somebody polling the file for changes will be
confused when the counters in it are unchanged after a wakeup.

Luckily, the events in memory.events - MEMCG_LOW, MEMCG_HIGH, MEMCG_MAX,
MEMCG_OOM - are sufficiently rare and high-level that we don't need
per-cpu buffering for them: MEMCG_HIGH and MEMCG_MAX would be the most
frequent, but they're counting invocations of reclaim, which is a
complex operation that touches many shared cachelines.

This splits memory.events from the generic VM events and tracks them in
their own, unbuffered atomic counters.  That's also cleaner, as it
eliminates the ugly enum nesting of VM and cgroup events.

[hannes@cmpxchg.org: "array subscript is above array bounds"]
  Link: http://lkml.kernel.org/r/20180406155441.GA20806@cmpxchg.org
Link: http://lkml.kernel.org/r/20180405175507.GA24817@cmpxchg.org
Fixes: a983b5ebee ("mm: memcontrol: fix excessive complexity in memory.stat reporting")
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reported-by: Tejun Heo <tj@kernel.org>
Acked-by: Tejun Heo <tj@kernel.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11 10:28:31 -07:00
Steven Rostedt d51d1e6450 mm, vmscan, tracing: use pointer to reclaim_stat struct in trace event
The trace event trace_mm_vmscan_lru_shrink_inactive() currently has 12
parameters! Seven of them are from the reclaim_stat structure.  This
structure is currently local to mm/vmscan.c.  By moving it to the global
vmstat.h header, we can also reference it from the vmscan tracepoints.
In moving it, it brings down the overhead of passing so many arguments
to the trace event.  In the future, we may limit the number of arguments
that a trace event may pass (ideally just 6, but more realistically it
may be 8).

Before this patch, the code to call the trace event is this:

 0f 83 aa fe ff ff       jae    ffffffff811e6261 <shrink_inactive_list+0x1e1>
 48 8b 45 a0             mov    -0x60(%rbp),%rax
 45 8b 64 24 20          mov    0x20(%r12),%r12d
 44 8b 6d d4             mov    -0x2c(%rbp),%r13d
 8b 4d d0                mov    -0x30(%rbp),%ecx
 44 8b 75 cc             mov    -0x34(%rbp),%r14d
 44 8b 7d c8             mov    -0x38(%rbp),%r15d
 48 89 45 90             mov    %rax,-0x70(%rbp)
 8b 83 b8 fe ff ff       mov    -0x148(%rbx),%eax
 8b 55 c0                mov    -0x40(%rbp),%edx
 8b 7d c4                mov    -0x3c(%rbp),%edi
 8b 75 b8                mov    -0x48(%rbp),%esi
 89 45 80                mov    %eax,-0x80(%rbp)
 65 ff 05 e4 f7 e2 7e    incl   %gs:0x7ee2f7e4(%rip)        # 15bd0 <__preempt_count>
 48 8b 05 75 5b 13 01    mov    0x1135b75(%rip),%rax        # ffffffff8231bf68 <__tracepoint_mm_vmscan_lru_shrink_inactive+0x28>
 48 85 c0                test   %rax,%rax
 74 72                   je     ffffffff811e646a <shrink_inactive_list+0x3ea>
 48 89 c3                mov    %rax,%rbx
 4c 8b 10                mov    (%rax),%r10
 89 f8                   mov    %edi,%eax
 48 89 85 68 ff ff ff    mov    %rax,-0x98(%rbp)
 89 f0                   mov    %esi,%eax
 48 89 85 60 ff ff ff    mov    %rax,-0xa0(%rbp)
 89 c8                   mov    %ecx,%eax
 48 89 85 78 ff ff ff    mov    %rax,-0x88(%rbp)
 89 d0                   mov    %edx,%eax
 48 89 85 70 ff ff ff    mov    %rax,-0x90(%rbp)
 8b 45 8c                mov    -0x74(%rbp),%eax
 48 8b 7b 08             mov    0x8(%rbx),%rdi
 48 83 c3 18             add    $0x18,%rbx
 50                      push   %rax
 41 54                   push   %r12
 41 55                   push   %r13
 ff b5 78 ff ff ff       pushq  -0x88(%rbp)
 41 56                   push   %r14
 41 57                   push   %r15
 ff b5 70 ff ff ff       pushq  -0x90(%rbp)
 4c 8b 8d 68 ff ff ff    mov    -0x98(%rbp),%r9
 4c 8b 85 60 ff ff ff    mov    -0xa0(%rbp),%r8
 48 8b 4d 98             mov    -0x68(%rbp),%rcx
 48 8b 55 90             mov    -0x70(%rbp),%rdx
 8b 75 80                mov    -0x80(%rbp),%esi
 41 ff d2                callq  *%r10

After the patch:

 0f 83 a8 fe ff ff       jae    ffffffff811e626d <shrink_inactive_list+0x1cd>
 8b 9b b8 fe ff ff       mov    -0x148(%rbx),%ebx
 45 8b 64 24 20          mov    0x20(%r12),%r12d
 4c 8b 6d a0             mov    -0x60(%rbp),%r13
 65 ff 05 f5 f7 e2 7e    incl   %gs:0x7ee2f7f5(%rip)        # 15bd0 <__preempt_count>
 4c 8b 35 86 5b 13 01    mov    0x1135b86(%rip),%r14        # ffffffff8231bf68 <__tracepoint_mm_vmscan_lru_shrink_inactive+0x28>
 4d 85 f6                test   %r14,%r14
 74 2a                   je     ffffffff811e6411 <shrink_inactive_list+0x371>
 49 8b 06                mov    (%r14),%rax
 8b 4d 8c                mov    -0x74(%rbp),%ecx
 49 8b 7e 08             mov    0x8(%r14),%rdi
 49 83 c6 18             add    $0x18,%r14
 4c 89 ea                mov    %r13,%rdx
 45 89 e1                mov    %r12d,%r9d
 4c 8d 45 b8             lea    -0x48(%rbp),%r8
 89 de                   mov    %ebx,%esi
 51                      push   %rcx
 48 8b 4d 98             mov    -0x68(%rbp),%rcx
 ff d0                   callq  *%rax

Link: http://lkml.kernel.org/r/2559d7cb-ec60-1200-2362-04fa34fd02bb@fb.com
Link: http://lkml.kernel.org/r/20180322121003.4177af15@gandalf.local.home
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Reported-by: Alexei Starovoitov <ast@fb.com>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Alexei Starovoitov <ast@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11 10:28:30 -07:00
Andrey Ryabinin e3c1ac586c mm/vmscan: don't mess with pgdat->flags in memcg reclaim
memcg reclaim may alter pgdat->flags based on the state of LRU lists in
cgroup and its children.  PGDAT_WRITEBACK may force kswapd to sleep
congested_wait(), PGDAT_DIRTY may force kswapd to writeback filesystem
pages.  But the worst here is PGDAT_CONGESTED, since it may force all
direct reclaims to stall in wait_iff_congested().  Note that only kswapd
have powers to clear any of these bits.  This might just never happen if
cgroup limits configured that way.  So all direct reclaims will stall as
long as we have some congested bdi in the system.

Leave all pgdat->flags manipulations to kswapd.  kswapd scans the whole
pgdat, only kswapd can clear pgdat->flags once node is balanced, thus
it's reasonable to leave all decisions about node state to kswapd.

Why only kswapd? Why not allow to global direct reclaim change these
flags? It is because currently only kswapd can clear these flags.  I'm
less worried about the case when PGDAT_CONGESTED falsely not set, and
more worried about the case when it falsely set.  If direct reclaimer
sets PGDAT_CONGESTED, do we have guarantee that after the congestion
problem is sorted out, kswapd will be woken up and clear the flag? It
seems like there is no such guarantee.  E.g.  direct reclaimers may
eventually balance pgdat and kswapd simply won't wake up (see
wakeup_kswapd()).

Moving pgdat->flags manipulation to kswapd, means that cgroup2 recalim
now loses its congestion throttling mechanism.  Add per-cgroup
congestion state and throttle cgroup2 reclaimers if memcg is in
congestion state.

Currently there is no need in per-cgroup PGDAT_WRITEBACK and PGDAT_DIRTY
bits since they alter only kswapd behavior.

The problem could be easily demonstrated by creating heavy congestion in
one cgroup:

    echo "+memory" > /sys/fs/cgroup/cgroup.subtree_control
    mkdir -p /sys/fs/cgroup/congester
    echo 512M > /sys/fs/cgroup/congester/memory.max
    echo $$ > /sys/fs/cgroup/congester/cgroup.procs
    /* generate a lot of diry data on slow HDD */
    while true; do dd if=/dev/zero of=/mnt/sdb/zeroes bs=1M count=1024; done &
    ....
    while true; do dd if=/dev/zero of=/mnt/sdb/zeroes bs=1M count=1024; done &

and some job in another cgroup:

    mkdir /sys/fs/cgroup/victim
    echo 128M > /sys/fs/cgroup/victim/memory.max

    # time cat /dev/sda > /dev/null
    real    10m15.054s
    user    0m0.487s
    sys     1m8.505s

According to the tracepoint in wait_iff_congested(), the 'cat' spent 50%
of the time sleeping there.

With the patch, cat don't waste time anymore:

    # time cat /dev/sda > /dev/null
    real    5m32.911s
    user    0m0.411s
    sys     0m56.664s

[aryabinin@virtuozzo.com: congestion state should be per-node]
  Link: http://lkml.kernel.org/r/20180406135215.10057-1-aryabinin@virtuozzo.com
[ayabinin@virtuozzo.com: make congestion state per-cgroup-per-node instead of just per-cgroup[
  Link: http://lkml.kernel.org/r/20180406180254.8970-2-aryabinin@virtuozzo.com
Link: http://lkml.kernel.org/r/20180323152029.11084-5-aryabinin@virtuozzo.com
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Tejun Heo <tj@kernel.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11 10:28:30 -07:00
Andrey Ryabinin d108c7721f mm/vmscan: don't change pgdat state on base of a single LRU list state
We have separate LRU list for each memory cgroup.  Memory reclaim
iterates over cgroups and calls shrink_inactive_list() every inactive
LRU list.  Based on the state of a single LRU shrink_inactive_list() may
flag the whole node as dirty,congested or under writeback.  This is
obviously wrong and hurtful.  It's especially hurtful when we have
possibly small congested cgroup in system.  Than *all* direct reclaims
waste time by sleeping in wait_iff_congested().  And the more memcgs in
the system we have the longer memory allocation stall is, because
wait_iff_congested() called on each lru-list scan.

Sum reclaim stats across all visited LRUs on node and flag node as
dirty, congested or under writeback based on that sum.  Also call
congestion_wait(), wait_iff_congested() once per pgdat scan, instead of
once per lru-list scan.

This only fixes the problem for global reclaim case.  Per-cgroup reclaim
may alter global pgdat flags too, which is wrong.  But that is separate
issue and will be addressed in the next patch.

This change will not have any effect on a systems with all workload
concentrated in a single cgroup.

[aryabinin@virtuozzo.com: check nr_writeback against all nr_taken, not just file]
  Link: http://lkml.kernel.org/r/20180406180254.8970-1-aryabinin@virtuozzo.com
Link: http://lkml.kernel.org/r/20180323152029.11084-4-aryabinin@virtuozzo.com
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Tejun Heo <tj@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11 10:28:30 -07:00
Andrey Ryabinin c4fd4fa580 mm/vmscan: remove redundant current_may_throttle() check
Only kswapd can have non-zero nr_immediate, and current_may_throttle()
is always true for kswapd (PF_LESS_THROTTLE bit is never set) thus it's
enough to check stat.nr_immediate only.

Link: http://lkml.kernel.org/r/20180315164553.17856-4-aryabinin@virtuozzo.com
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Tejun Heo <tj@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11 10:28:29 -07:00
Andrey Ryabinin 894befec4d mm/vmscan: update stale comments
Update some comments that became stale since transiton from per-zone to
per-node reclaim.

Link: http://lkml.kernel.org/r/20180315164553.17856-2-aryabinin@virtuozzo.com
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Tejun Heo <tj@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11 10:28:29 -07:00
David Rientjes 5ecd9d403a mm, page_alloc: wakeup kcompactd even if kswapd cannot free more memory
Kswapd will not wakeup if per-zone watermarks are not failing or if too
many previous attempts at background reclaim have failed.

This can be true if there is a lot of free memory available.  For high-
order allocations, kswapd is responsible for waking up kcompactd for
background compaction.  If the zone is not below its watermarks or
reclaim has recently failed (lots of free memory, nothing left to
reclaim), kcompactd does not get woken up.

When __GFP_DIRECT_RECLAIM is not allowed, allow kcompactd to still be
woken up even if kswapd will not reclaim.  This allows high-order
allocations, such as thp, to still trigger background compaction even
when the zone has an abundance of free memory.

Link: http://lkml.kernel.org/r/alpine.DEB.2.20.1803111659420.209721@chino.kir.corp.google.com
Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-05 21:36:27 -07:00
Tetsuo Handa e830c63a62 mm,vmscan: don't pretend forward progress upon shrinker_rwsem contention
Since we no longer use return value of shrink_slab() for normal reclaim,
the comment is no longer true.  If some do_shrink_slab() call takes
unexpectedly long (root cause of stall is currently unknown) when
register_shrinker()/unregister_shrinker() is pending, trying to drop
caches via /proc/sys/vm/drop_caches could become infinite cond_resched()
loop if many mem_cgroup are defined.  For safety, let's not pretend
forward progress.

Link: http://lkml.kernel.org/r/201802202229.GGF26507.LVFtMSOOHFJOQF@I-love.SAKURA.ne.jp
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Dave Chinner <dchinner@redhat.com>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-05 21:36:25 -07:00
Huang Ying e92bb4dd96 mm: fix races between address_space dereference and free in page_evicatable
When page_mapping() is called and the mapping is dereferenced in
page_evicatable() through shrink_active_list(), it is possible for the
inode to be truncated and the embedded address space to be freed at the
same time.  This may lead to the following race.

CPU1                                                CPU2

truncate(inode)                                     shrink_active_list()
  ...                                                 page_evictable(page)
  truncate_inode_page(mapping, page);
    delete_from_page_cache(page)
      spin_lock_irqsave(&mapping->tree_lock, flags);
        __delete_from_page_cache(page, NULL)
          page_cache_tree_delete(..)
            ...                                         mapping = page_mapping(page);
            page->mapping = NULL;
            ...
      spin_unlock_irqrestore(&mapping->tree_lock, flags);
      page_cache_free_page(mapping, page)
        put_page(page)
          if (put_page_testzero(page)) -> false
- inode now has no pages and can be freed including embedded address_space

                                                        mapping_unevictable(mapping)
							  test_bit(AS_UNEVICTABLE, &mapping->flags);
- we've dereferenced mapping which is potentially already free.

Similar race exists between swap cache freeing and page_evicatable()
too.

The address_space in inode and swap cache will be freed after a RCU
grace period.  So the races are fixed via enclosing the page_mapping()
and address_space usage in rcu_read_lock/unlock().  Some comments are
added in code to make it clear what is protected by the RCU read lock.

Link: http://lkml.kernel.org/r/20180212081227.1940-1-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Minchan Kim <minchan@kernel.org>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-05 21:36:25 -07:00
Andrey Ryabinin 1c610d5f93 mm/vmscan: wake up flushers for legacy cgroups too
Commit 726d061fbd ("mm: vmscan: kick flushers when we encounter dirty
pages on the LRU") added flusher invocation to shrink_inactive_list()
when many dirty pages on the LRU are encountered.

However, shrink_inactive_list() doesn't wake up flushers for legacy
cgroup reclaim, so the next commit bbef938429 ("mm: vmscan: remove old
flusher wakeup from direct reclaim path") removed the only source of
flusher's wake up in legacy mem cgroup reclaim path.

This leads to premature OOM if there is too many dirty pages in cgroup:
    # mkdir /sys/fs/cgroup/memory/test
    # echo $$ > /sys/fs/cgroup/memory/test/tasks
    # echo 50M > /sys/fs/cgroup/memory/test/memory.limit_in_bytes
    # dd if=/dev/zero of=tmp_file bs=1M count=100
    Killed

    dd invoked oom-killer: gfp_mask=0x14000c0(GFP_KERNEL), nodemask=(null), order=0, oom_score_adj=0

    Call Trace:
     dump_stack+0x46/0x65
     dump_header+0x6b/0x2ac
     oom_kill_process+0x21c/0x4a0
     out_of_memory+0x2a5/0x4b0
     mem_cgroup_out_of_memory+0x3b/0x60
     mem_cgroup_oom_synchronize+0x2ed/0x330
     pagefault_out_of_memory+0x24/0x54
     __do_page_fault+0x521/0x540
     page_fault+0x45/0x50

    Task in /test killed as a result of limit of /test
    memory: usage 51200kB, limit 51200kB, failcnt 73
    memory+swap: usage 51200kB, limit 9007199254740988kB, failcnt 0
    kmem: usage 296kB, limit 9007199254740988kB, failcnt 0
    Memory cgroup stats for /test: cache:49632KB rss:1056KB rss_huge:0KB shmem:0KB
            mapped_file:0KB dirty:49500KB writeback:0KB swap:0KB inactive_anon:0KB
	    active_anon:1168KB inactive_file:24760KB active_file:24960KB unevictable:0KB
    Memory cgroup out of memory: Kill process 3861 (bash) score 88 or sacrifice child
    Killed process 3876 (dd) total-vm:8484kB, anon-rss:1052kB, file-rss:1720kB, shmem-rss:0kB
    oom_reaper: reaped process 3876 (dd), now anon-rss:0kB, file-rss:0kB, shmem-rss:0kB

Wake up flushers in legacy cgroup reclaim too.

Link: http://lkml.kernel.org/r/20180315164553.17856-1-aryabinin@virtuozzo.com
Fixes: bbef938429 ("mm: vmscan: remove old flusher wakeup from direct reclaim path")
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Tested-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Tejun Heo <tj@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-03-22 17:07:01 -07:00
Shakeel Butt 9c4e6b1a70 mm, mlock, vmscan: no more skipping pagevecs
When a thread mlocks an address space backed either by file pages which
are currently not present in memory or swapped out anon pages (not in
swapcache), a new page is allocated and added to the local pagevec
(lru_add_pvec), I/O is triggered and the thread then sleeps on the page.
On I/O completion, the thread can wake on a different CPU, the mlock
syscall will then sets the PageMlocked() bit of the page but will not be
able to put that page in unevictable LRU as the page is on the pagevec
of a different CPU.  Even on drain, that page will go to evictable LRU
because the PageMlocked() bit is not checked on pagevec drain.

The page will eventually go to right LRU on reclaim but the LRU stats
will remain skewed for a long time.

This patch puts all the pages, even unevictable, to the pagevecs and on
the drain, the pages will be added on their LRUs correctly by checking
their evictability.  This resolves the mlocked pages on pagevec of other
CPUs issue because when those pagevecs will be drained, the mlocked file
pages will go to unevictable LRU.  Also this makes the race with munlock
easier to resolve because the pagevec drains happen in LRU lock.

However there is still one place which makes a page evictable and does
PageLRU check on that page without LRU lock and needs special attention.
TestClearPageMlocked() and isolate_lru_page() in clear_page_mlock().

	#0: __pagevec_lru_add_fn	#1: clear_page_mlock

	SetPageLRU()			if (!TestClearPageMlocked())
					  return
	smp_mb() // <--required
					// inside does PageLRU
	if (!PageMlocked())		if (isolate_lru_page())
	  move to evictable LRU		  putback_lru_page()
	else
	  move to unevictable LRU

In '#1', TestClearPageMlocked() provides full memory barrier semantics
and thus the PageLRU check (inside isolate_lru_page) can not be
reordered before it.

In '#0', without explicit memory barrier, the PageMlocked() check can be
reordered before SetPageLRU().  If that happens, '#0' can put a page in
unevictable LRU and '#1' might have just cleared the Mlocked bit of that
page but fails to isolate as PageLRU fails as '#0' still hasn't set
PageLRU bit of that page.  That page will be stranded on the unevictable
LRU.

There is one (good) side effect though.  Without this patch, the pages
allocated for System V shared memory segment are added to evictable LRUs
even after shmctl(SHM_LOCK) on that segment.  This patch will correctly
put such pages to unevictable LRU.

Link: http://lkml.kernel.org/r/20171121211241.18877-1-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jérôme Glisse <jglisse@redhat.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Greg Thelen <gthelen@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Shaohua Li <shli@fb.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-02-21 15:35:42 -08:00
Mike Rapoport a5d09bed7f mm: docs: add blank lines to silence sphinx "Unexpected indentation" errors
Link: http://lkml.kernel.org/r/1516700871-22279-4-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-02-06 18:32:48 -08:00
Mel Gorman 69d763fc6d mm: pin address_space before dereferencing it while isolating an LRU page
Minchan Kim asked the following question -- what locks protects
address_space destroying when race happens between inode trauncation and
__isolate_lru_page? Jan Kara clarified by describing the race as follows

CPU1                                            CPU2

truncate(inode)                                 __isolate_lru_page()
  ...
  truncate_inode_page(mapping, page);
    delete_from_page_cache(page)
      spin_lock_irqsave(&mapping->tree_lock, flags);
        __delete_from_page_cache(page, NULL)
          page_cache_tree_delete(..)
            ...                                   mapping = page_mapping(page);
            page->mapping = NULL;
            ...
      spin_unlock_irqrestore(&mapping->tree_lock, flags);
      page_cache_free_page(mapping, page)
        put_page(page)
          if (put_page_testzero(page)) -> false
- inode now has no pages and can be freed including embedded address_space

                                                  if (mapping && !mapping->a_ops->migratepage)
- we've dereferenced mapping which is potentially already free.

The race is theoretically possible but unlikely.  Before the
delete_from_page_cache, truncate_cleanup_page is called so the page is
likely to be !PageDirty or PageWriteback which gets skipped by the only
caller that checks the mappping in __isolate_lru_page.  Even if the race
occurs, a substantial amount of work has to happen during a tiny window
with no preemption but it could potentially be done using a virtual
machine to artifically slow one CPU or halt it during the critical
window.

This patch should eliminate the race with truncation by try-locking the
page before derefencing mapping and aborting if the lock was not
acquired.  There was a suggestion from Huang Ying to use RCU as a
side-effect to prevent mapping being freed.  However, I do not like the
solution as it's an unconventional means of preserving a mapping and
it's not a context where rcu_read_lock is obviously protecting rcu data.

Link: http://lkml.kernel.org/r/20180104102512.2qos3h5vqzeisrek@techsingularity.net
Fixes: c824493528 ("mm: compaction: make isolate_lru_page() filter-aware again")
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Jan Kara <jack@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-01-31 17:18:39 -08:00
Jan Kara a4ef876841 mm: remove unused pgdat_reclaimable_pages()
Remove unused function pgdat_reclaimable_pages() and
node_page_state_snapshot() which becomes unused as well.

Link: http://lkml.kernel.org/r/20171122094416.26019-1-jack@suse.cz
Signed-off-by: Jan Kara <jack@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-01-31 17:18:37 -08:00
Minchan Kim e496612c51 mm: do not stall register_shrinker()
Shakeel Butt reported he has observed in production systems that the job
loader gets stuck for 10s of seconds while doing a mount operation.  It
turns out that it was stuck in register_shrinker() because some
unrelated job was under memory pressure and was spending time in
shrink_slab().  Machines have a lot of shrinkers registered and jobs
under memory pressure have to traverse all of those memcg-aware
shrinkers and affect unrelated jobs which want to register their own
shrinkers.

To solve the issue, this patch simply bails out slab shrinking if it is
found that someone wants to register a shrinker in parallel.  A downside
is it could cause unfair shrinking between shrinkers.  However, it
should be rare and we can add compilcated logic if we find it's not
enough.

[akpm@linux-foundation.org: tweak code comment]
Link: http://lkml.kernel.org/r/20171115005602.GB23810@bbox
Link: http://lkml.kernel.org/r/1511481899-20335-1-git-send-email-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Reported-by: Shakeel Butt <shakeelb@google.com>
Tested-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-01-31 17:18:37 -08:00
Josef Bacik 9092c71bb7 mm: use sc->priority for slab shrink targets
Previously we were using the ratio of the number of lru pages scanned to
the number of eligible lru pages to determine the number of slab objects
to scan.  The problem with this is that these two things have nothing to
do with each other, so in slab heavy work loads where there is little to
no page cache we can end up with the pages scanned being a very low
number.  This means that we reclaim next to no slab pages and waste a
lot of time reclaiming small amounts of space.

Consider the following scenario, where we have the following values and
the rest of the memory usage is in slab

  Active:            58840 kB
  Inactive:          46860 kB

Every time we do a get_scan_count() we do this

  scan = size >> sc->priority

where sc->priority starts at DEF_PRIORITY, which is 12.  The first loop
through reclaim would result in a scan target of 2 pages to 11715 total
inactive pages, and 3 pages to 14710 total active pages.  This is a
really really small target for a system that is entirely slab pages.
And this is super optimistic, this assumes we even get to scan these
pages.  We don't increment sc->nr_scanned unless we 1) isolate the page,
which assumes it's not in use, and 2) can lock the page.  Under pressure
these numbers could probably go down, I'm sure there's some random pages
from daemons that aren't actually in use, so the targets get even
smaller.

Instead use sc->priority in the same way we use it to determine scan
amounts for the lru's.  This generally equates to pages.  Consider the
following

  slab_pages = (nr_objects * object_size) / PAGE_SIZE

What we would like to do is

  scan = slab_pages >> sc->priority

but we don't know the number of slab pages each shrinker controls, only
the objects.  However say that theoretically we knew how many pages a
shrinker controlled, we'd still have to convert this to objects, which
would look like the following

  scan = shrinker_pages >> sc->priority
  scan_objects = (PAGE_SIZE / object_size) * scan

or written another way

  scan_objects = (shrinker_pages >> sc->priority) *
		 (PAGE_SIZE / object_size)

which can thus be written

  scan_objects = ((shrinker_pages * PAGE_SIZE) / object_size) >>
		 sc->priority

which is just

  scan_objects = nr_objects >> sc->priority

We don't need to know exactly how many pages each shrinker represents,
it's objects are all the information we need.  Making this change allows
us to place an appropriate amount of pressure on the shrinker pools for
their relative size.

Link: http://lkml.kernel.org/r/1510780549-6812-1-git-send-email-josef@toxicpanda.com
Signed-off-by: Josef Bacik <jbacik@fb.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Dave Chinner <david@fromorbit.com>
Acked-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-01-31 17:18:36 -08:00
Tetsuo Handa bb422a738f mm,vmscan: Make unregister_shrinker() no-op if register_shrinker() failed.
Syzbot caught an oops at unregister_shrinker() because combination of
commit 1d3d4437ea ("vmscan: per-node deferred work") and fault
injection made register_shrinker() fail and the caller of
register_shrinker() did not check for failure.

----------
[  554.881422] FAULT_INJECTION: forcing a failure.
[  554.881422] name failslab, interval 1, probability 0, space 0, times 0
[  554.881438] CPU: 1 PID: 13231 Comm: syz-executor1 Not tainted 4.14.0-rc8+ #82
[  554.881443] Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
[  554.881445] Call Trace:
[  554.881459]  dump_stack+0x194/0x257
[  554.881474]  ? arch_local_irq_restore+0x53/0x53
[  554.881486]  ? find_held_lock+0x35/0x1d0
[  554.881507]  should_fail+0x8c0/0xa40
[  554.881522]  ? fault_create_debugfs_attr+0x1f0/0x1f0
[  554.881537]  ? check_noncircular+0x20/0x20
[  554.881546]  ? find_next_zero_bit+0x2c/0x40
[  554.881560]  ? ida_get_new_above+0x421/0x9d0
[  554.881577]  ? find_held_lock+0x35/0x1d0
[  554.881594]  ? __lock_is_held+0xb6/0x140
[  554.881628]  ? check_same_owner+0x320/0x320
[  554.881634]  ? lock_downgrade+0x990/0x990
[  554.881649]  ? find_held_lock+0x35/0x1d0
[  554.881672]  should_failslab+0xec/0x120
[  554.881684]  __kmalloc+0x63/0x760
[  554.881692]  ? lock_downgrade+0x990/0x990
[  554.881712]  ? register_shrinker+0x10e/0x2d0
[  554.881721]  ? trace_event_raw_event_module_request+0x320/0x320
[  554.881737]  register_shrinker+0x10e/0x2d0
[  554.881747]  ? prepare_kswapd_sleep+0x1f0/0x1f0
[  554.881755]  ? _down_write_nest_lock+0x120/0x120
[  554.881765]  ? memcpy+0x45/0x50
[  554.881785]  sget_userns+0xbcd/0xe20
(...snipped...)
[  554.898693] kasan: CONFIG_KASAN_INLINE enabled
[  554.898724] kasan: GPF could be caused by NULL-ptr deref or user memory access
[  554.898732] general protection fault: 0000 [#1] SMP KASAN
[  554.898737] Dumping ftrace buffer:
[  554.898741]    (ftrace buffer empty)
[  554.898743] Modules linked in:
[  554.898752] CPU: 1 PID: 13231 Comm: syz-executor1 Not tainted 4.14.0-rc8+ #82
[  554.898755] Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
[  554.898760] task: ffff8801d1dbe5c0 task.stack: ffff8801c9e38000
[  554.898772] RIP: 0010:__list_del_entry_valid+0x7e/0x150
[  554.898775] RSP: 0018:ffff8801c9e3f108 EFLAGS: 00010246
[  554.898780] RAX: dffffc0000000000 RBX: 0000000000000000 RCX: 0000000000000000
[  554.898784] RDX: 0000000000000000 RSI: ffff8801c53c6f98 RDI: ffff8801c53c6fa0
[  554.898788] RBP: ffff8801c9e3f120 R08: 1ffff100393c7d55 R09: 0000000000000004
[  554.898791] R10: ffff8801c9e3ef70 R11: 0000000000000000 R12: 0000000000000000
[  554.898795] R13: dffffc0000000000 R14: 1ffff100393c7e45 R15: ffff8801c53c6f98
[  554.898800] FS:  0000000000000000(0000) GS:ffff8801db300000(0000) knlGS:0000000000000000
[  554.898804] CS:  0010 DS: 002b ES: 002b CR0: 0000000080050033
[  554.898807] CR2: 00000000dbc23000 CR3: 00000001c7269000 CR4: 00000000001406e0
[  554.898813] DR0: 0000000020000000 DR1: 0000000020000000 DR2: 0000000000000000
[  554.898816] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000600
[  554.898818] Call Trace:
[  554.898828]  unregister_shrinker+0x79/0x300
[  554.898837]  ? perf_trace_mm_vmscan_writepage+0x750/0x750
[  554.898844]  ? down_write+0x87/0x120
[  554.898851]  ? deactivate_super+0x139/0x1b0
[  554.898857]  ? down_read+0x150/0x150
[  554.898864]  ? check_same_owner+0x320/0x320
[  554.898875]  deactivate_locked_super+0x64/0xd0
[  554.898883]  deactivate_super+0x141/0x1b0
----------

Since allowing register_shrinker() callers to call unregister_shrinker()
when register_shrinker() failed can simplify error recovery path, this
patch makes unregister_shrinker() no-op when register_shrinker() failed.
Also, reset shrinker->nr_deferred in case unregister_shrinker() was
by error called twice.

Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Signed-off-by: Aliaksei Karaliou <akaraliou.dev@gmail.com>
Reported-by: syzbot <syzkaller@googlegroups.com>
Cc: Glauber Costa <glauber@scylladb.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2017-12-18 15:03:09 -05:00
Mel Gorman 2d4894b5d2 mm: remove cold parameter from free_hot_cold_page*
Most callers users of free_hot_cold_page claim the pages being released
are cache hot.  The exception is the page reclaim paths where it is
likely that enough pages will be freed in the near future that the
per-cpu lists are going to be recycled and the cache hotness information
is lost.  As no one really cares about the hotness of pages being
released to the allocator, just ditch the parameter.

The APIs are renamed to indicate that it's no longer about hot/cold
pages.  It should also be less confusing as there are subtle differences
between them.  __free_pages drops a reference and frees a page when the
refcount reaches zero.  free_hot_cold_page handled pages whose refcount
was already zero which is non-obvious from the name.  free_unref_page
should be more obvious.

No performance impact is expected as the overhead is marginal.  The
parameter is removed simply because it is a bit stupid to have a useless
parameter copied everywhere.

[mgorman@techsingularity.net: add pages to head, not tail]
  Link: http://lkml.kernel.org/r/20171019154321.qtpzaeftoyyw4iey@techsingularity.net
Link: http://lkml.kernel.org/r/20171018075952.10627-8-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-15 18:21:06 -08:00
Andrey Ryabinin 3a50d14d0d mm: remove unused pgdat->inactive_ratio
Since commit 59dc76b0d4 ("mm: vmscan: reduce size of inactive file
list") 'pgdat->inactive_ratio' is not used, except for printing
"node_inactive_ratio: 0" in /proc/zoneinfo output.

Remove it.

Link: http://lkml.kernel.org/r/20171003152611.27483-1-aryabinin@virtuozzo.com
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-15 18:21:03 -08:00
Linus Torvalds e2c5923c34 Merge branch 'for-4.15/block' of git://git.kernel.dk/linux-block
Pull core block layer updates from Jens Axboe:
 "This is the main pull request for block storage for 4.15-rc1.

  Nothing out of the ordinary in here, and no API changes or anything
  like that. Just various new features for drivers, core changes, etc.
  In particular, this pull request contains:

   - A patch series from Bart, closing the whole on blk/scsi-mq queue
     quescing.

   - A series from Christoph, building towards hidden gendisks (for
     multipath) and ability to move bio chains around.

   - NVMe
        - Support for native multipath for NVMe (Christoph).
        - Userspace notifications for AENs (Keith).
        - Command side-effects support (Keith).
        - SGL support (Chaitanya Kulkarni)
        - FC fixes and improvements (James Smart)
        - Lots of fixes and tweaks (Various)

   - bcache
        - New maintainer (Michael Lyle)
        - Writeback control improvements (Michael)
        - Various fixes (Coly, Elena, Eric, Liang, et al)

   - lightnvm updates, mostly centered around the pblk interface
     (Javier, Hans, and Rakesh).

   - Removal of unused bio/bvec kmap atomic interfaces (me, Christoph)

   - Writeback series that fix the much discussed hundreds of millions
     of sync-all units. This goes all the way, as discussed previously
     (me).

   - Fix for missing wakeup on writeback timer adjustments (Yafang
     Shao).

   - Fix laptop mode on blk-mq (me).

   - {mq,name} tupple lookup for IO schedulers, allowing us to have
     alias names. This means you can use 'deadline' on both !mq and on
     mq (where it's called mq-deadline). (me).

   - blktrace race fix, oopsing on sg load (me).

   - blk-mq optimizations (me).

   - Obscure waitqueue race fix for kyber (Omar).

   - NBD fixes (Josef).

   - Disable writeback throttling by default on bfq, like we do on cfq
     (Luca Miccio).

   - Series from Ming that enable us to treat flush requests on blk-mq
     like any other request. This is a really nice cleanup.

   - Series from Ming that improves merging on blk-mq with schedulers,
     getting us closer to flipping the switch on scsi-mq again.

   - BFQ updates (Paolo).

   - blk-mq atomic flags memory ordering fixes (Peter Z).

   - Loop cgroup support (Shaohua).

   - Lots of minor fixes from lots of different folks, both for core and
     driver code"

* 'for-4.15/block' of git://git.kernel.dk/linux-block: (294 commits)
  nvme: fix visibility of "uuid" ns attribute
  blk-mq: fixup some comment typos and lengths
  ide: ide-atapi: fix compile error with defining macro DEBUG
  blk-mq: improve tag waiting setup for non-shared tags
  brd: remove unused brd_mutex
  blk-mq: only run the hardware queue if IO is pending
  block: avoid null pointer dereference on null disk
  fs: guard_bio_eod() needs to consider partitions
  xtensa/simdisk: fix compile error
  nvme: expose subsys attribute to sysfs
  nvme: create 'slaves' and 'holders' entries for hidden controllers
  block: create 'slaves' and 'holders' entries for hidden gendisks
  nvme: also expose the namespace identification sysfs files for mpath nodes
  nvme: implement multipath access to nvme subsystems
  nvme: track shared namespaces
  nvme: introduce a nvme_ns_ids structure
  nvme: track subsystems
  block, nvme: Introduce blk_mq_req_flags_t
  block, scsi: Make SCSI quiesce and resume work reliably
  block: Add the QUEUE_FLAG_PREEMPT_ONLY request queue flag
  ...
2017-11-14 15:32:19 -08:00
Greg Kroah-Hartman b24413180f License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.

By default all files without license information are under the default
license of the kernel, which is GPL version 2.

Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier.  The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.

This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.

How this work was done:

Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
 - file had no licensing information it it.
 - file was a */uapi/* one with no licensing information in it,
 - file was a */uapi/* one with existing licensing information,

Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.

The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne.  Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.

The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed.  Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.

Criteria used to select files for SPDX license identifier tagging was:
 - Files considered eligible had to be source code files.
 - Make and config files were included as candidates if they contained >5
   lines of source
 - File already had some variant of a license header in it (even if <5
   lines).

All documentation files were explicitly excluded.

The following heuristics were used to determine which SPDX license
identifiers to apply.

 - when both scanners couldn't find any license traces, file was
   considered to have no license information in it, and the top level
   COPYING file license applied.

   For non */uapi/* files that summary was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0                                              11139

   and resulted in the first patch in this series.

   If that file was a */uapi/* path one, it was "GPL-2.0 WITH
   Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0 WITH Linux-syscall-note                        930

   and resulted in the second patch in this series.

 - if a file had some form of licensing information in it, and was one
   of the */uapi/* ones, it was denoted with the Linux-syscall-note if
   any GPL family license was found in the file or had no licensing in
   it (per prior point).  Results summary:

   SPDX license identifier                            # files
   ---------------------------------------------------|------
   GPL-2.0 WITH Linux-syscall-note                       270
   GPL-2.0+ WITH Linux-syscall-note                      169
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
   LGPL-2.1+ WITH Linux-syscall-note                      15
   GPL-1.0+ WITH Linux-syscall-note                       14
   ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
   LGPL-2.0+ WITH Linux-syscall-note                       4
   LGPL-2.1 WITH Linux-syscall-note                        3
   ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
   ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1

   and that resulted in the third patch in this series.

 - when the two scanners agreed on the detected license(s), that became
   the concluded license(s).

 - when there was disagreement between the two scanners (one detected a
   license but the other didn't, or they both detected different
   licenses) a manual inspection of the file occurred.

 - In most cases a manual inspection of the information in the file
   resulted in a clear resolution of the license that should apply (and
   which scanner probably needed to revisit its heuristics).

 - When it was not immediately clear, the license identifier was
   confirmed with lawyers working with the Linux Foundation.

 - If there was any question as to the appropriate license identifier,
   the file was flagged for further research and to be revisited later
   in time.

In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.

Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights.  The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.

Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.

In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.

Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
 - a full scancode scan run, collecting the matched texts, detected
   license ids and scores
 - reviewing anything where there was a license detected (about 500+
   files) to ensure that the applied SPDX license was correct
 - reviewing anything where there was no detection but the patch license
   was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
   SPDX license was correct

This produced a worksheet with 20 files needing minor correction.  This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.

These .csv files were then reviewed by Greg.  Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected.  This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.)  Finally Greg ran the script using the .csv files to
generate the patches.

Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-02 11:10:55 +01:00
Jens Axboe 9ba4b2dfaf fs: kill 'nr_pages' argument from wakeup_flusher_threads()
Everybody is passing in 0 now, let's get rid of the argument.

Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2017-10-03 08:38:17 -06:00
Huang Ying fe490cc0fe mm, THP, swap: add THP swapping out fallback counting
When swapping out THP (Transparent Huge Page), instead of swapping out
the THP as a whole, sometimes we have to fallback to split the THP into
normal pages before swapping, because no free swap clusters are
available, or cgroup limit is exceeded, etc.  To count the number of the
fallback, a new VM event THP_SWPOUT_FALLBACK is added, and counted when
we fallback to split the THP.

Link: http://lkml.kernel.org/r/20170724051840.2309-13-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Ross Zwisler <ross.zwisler@intel.com> [for brd.c, zram_drv.c, pmem.c]
Cc: Vishal L Verma <vishal.l.verma@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 17:27:28 -07:00
Huang Ying bd4c82c22c mm, THP, swap: delay splitting THP after swapped out
In this patch, splitting transparent huge page (THP) during swapping out
is delayed from after adding the THP into the swap cache to after
swapping out finishes.  After the patch, more operations for the
anonymous THP reclaiming, such as writing the THP to the swap device,
removing the THP from the swap cache could be batched.  So that the
performance of anonymous THP swapping out could be improved.

This is the second step for the THP swap support.  The plan is to delay
splitting the THP step by step and avoid splitting the THP finally.

With the patchset, the swap out throughput improves 42% (from about
5.81GB/s to about 8.25GB/s) in the vm-scalability swap-w-seq test case
with 16 processes.  At the same time, the IPI (reflect TLB flushing)
reduced about 78.9%.  The test is done on a Xeon E5 v3 system.  The swap
device used is a RAM simulated PMEM (persistent memory) device.  To test
the sequential swapping out, the test case creates 8 processes, which
sequentially allocate and write to the anonymous pages until the RAM and
part of the swap device is used up.

Link: http://lkml.kernel.org/r/20170724051840.2309-12-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Ross Zwisler <ross.zwisler@intel.com> [for brd.c, zram_drv.c, pmem.c]
Cc: Vishal L Verma <vishal.l.verma@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 17:27:28 -07:00
Michal Hocko db73ee0d46 mm, vmscan: do not loop on too_many_isolated for ever
Tetsuo Handa has reported[1][2][3] that direct reclaimers might get
stuck in too_many_isolated loop basically for ever because the last few
pages on the LRU lists are isolated by the kswapd which is stuck on fs
locks when doing the pageout or slab reclaim.  This in turn means that
there is nobody to actually trigger the oom killer and the system is
basically unusable.

too_many_isolated has been introduced by commit 35cd78156c ("vmscan:
throttle direct reclaim when too many pages are isolated already") to
prevent from pre-mature oom killer invocations because back then no
reclaim progress could indeed trigger the OOM killer too early.

But since the oom detection rework in commit 0a0337e0d1 ("mm, oom:
rework oom detection") the allocation/reclaim retry loop considers all
the reclaimable pages and throttles the allocation at that layer so we
can loosen the direct reclaim throttling.

Make shrink_inactive_list loop over too_many_isolated bounded and
returns immediately when the situation hasn't resolved after the first
sleep.

Replace congestion_wait by a simple schedule_timeout_interruptible
because we are not really waiting on the IO congestion in this path.

Please note that this patch can theoretically cause the OOM killer to
trigger earlier while there are many pages isolated for the reclaim
which makes progress only very slowly.  This would be obvious from the
oom report as the number of isolated pages are printed there.  If we
ever hit this should_reclaim_retry should consider those numbers in the
evaluation in one way or another.

[1] http://lkml.kernel.org/r/201602092349.ACG81273.OSVtMJQHLOFOFF@I-love.SAKURA.ne.jp
[2] http://lkml.kernel.org/r/201702212335.DJB30777.JOFMHSFtVLQOOF@I-love.SAKURA.ne.jp
[3] http://lkml.kernel.org/r/201706300914.CEH95859.FMQOLVFHJFtOOS@I-love.SAKURA.ne.jp

[mhocko@suse.com: switch to uninterruptible sleep]
  Link: http://lkml.kernel.org/r/20170724065048.GB25221@dhcp22.suse.cz
Link: http://lkml.kernel.org/r/20170710074842.23175-1-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Tested-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 17:27:26 -07:00
Chris Wilson d460acb5bd mm: track actual nr_scanned during shrink_slab()
Some shrinkers may only be able to free a bunch of objects at a time,
and so free more than the requested nr_to_scan in one pass.

Whilst other shrinkers may find themselves even unable to scan as many
objects as they counted, and so underreport.  Account for the extra
freed/scanned objects against the total number of objects we intend to
scan, otherwise we may end up penalising the slab far more than
intended.  Similarly, we want to add the underperforming scan to the
deferred pass so that we try harder and harder in future passes.

Link: http://lkml.kernel.org/r/20170822135325.9191-1-chris@chris-wilson.co.uk
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Shaohua Li <shli@fb.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-06 17:27:24 -07:00
Peter Zijlstra d92a8cfcb3 locking/lockdep: Rework FS_RECLAIM annotation
A while ago someone, and I cannot find the email just now, asked if we
could not implement the RECLAIM_FS inversion stuff with a 'fake' lock
like we use for other things like workqueues etc. I think this should
be possible which allows reducing the 'irq' states and will reduce the
amount of __bfs() lookups we do.

Removing the 1 IRQ state results in 4 less __bfs() walks per
dependency, improving lockdep performance. And by moving this
annotation out of the lockdep code it becomes easier for the mm people
to extend.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Byungchul Park <byungchul.park@lge.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Nikolay Borisov <nborisov@suse.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: akpm@linux-foundation.org
Cc: boqun.feng@gmail.com
Cc: iamjoonsoo.kim@lge.com
Cc: kernel-team@lge.com
Cc: kirill@shutemov.name
Cc: npiggin@gmail.com
Cc: walken@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-08-10 12:29:03 +02:00
Michal Hocko dcda9b0471 mm, tree wide: replace __GFP_REPEAT by __GFP_RETRY_MAYFAIL with more useful semantic
__GFP_REPEAT was designed to allow retry-but-eventually-fail semantic to
the page allocator.  This has been true but only for allocations
requests larger than PAGE_ALLOC_COSTLY_ORDER.  It has been always
ignored for smaller sizes.  This is a bit unfortunate because there is
no way to express the same semantic for those requests and they are
considered too important to fail so they might end up looping in the
page allocator for ever, similarly to GFP_NOFAIL requests.

Now that the whole tree has been cleaned up and accidental or misled
usage of __GFP_REPEAT flag has been removed for !costly requests we can
give the original flag a better name and more importantly a more useful
semantic.  Let's rename it to __GFP_RETRY_MAYFAIL which tells the user
that the allocator would try really hard but there is no promise of a
success.  This will work independent of the order and overrides the
default allocator behavior.  Page allocator users have several levels of
guarantee vs.  cost options (take GFP_KERNEL as an example)

 - GFP_KERNEL & ~__GFP_RECLAIM - optimistic allocation without _any_
   attempt to free memory at all. The most light weight mode which even
   doesn't kick the background reclaim. Should be used carefully because
   it might deplete the memory and the next user might hit the more
   aggressive reclaim

 - GFP_KERNEL & ~__GFP_DIRECT_RECLAIM (or GFP_NOWAIT)- optimistic
   allocation without any attempt to free memory from the current
   context but can wake kswapd to reclaim memory if the zone is below
   the low watermark. Can be used from either atomic contexts or when
   the request is a performance optimization and there is another
   fallback for a slow path.

 - (GFP_KERNEL|__GFP_HIGH) & ~__GFP_DIRECT_RECLAIM (aka GFP_ATOMIC) -
   non sleeping allocation with an expensive fallback so it can access
   some portion of memory reserves. Usually used from interrupt/bh
   context with an expensive slow path fallback.

 - GFP_KERNEL - both background and direct reclaim are allowed and the
   _default_ page allocator behavior is used. That means that !costly
   allocation requests are basically nofail but there is no guarantee of
   that behavior so failures have to be checked properly by callers
   (e.g. OOM killer victim is allowed to fail currently).

 - GFP_KERNEL | __GFP_NORETRY - overrides the default allocator behavior
   and all allocation requests fail early rather than cause disruptive
   reclaim (one round of reclaim in this implementation). The OOM killer
   is not invoked.

 - GFP_KERNEL | __GFP_RETRY_MAYFAIL - overrides the default allocator
   behavior and all allocation requests try really hard. The request
   will fail if the reclaim cannot make any progress. The OOM killer
   won't be triggered.

 - GFP_KERNEL | __GFP_NOFAIL - overrides the default allocator behavior
   and all allocation requests will loop endlessly until they succeed.
   This might be really dangerous especially for larger orders.

Existing users of __GFP_REPEAT are changed to __GFP_RETRY_MAYFAIL
because they already had their semantic.  No new users are added.
__alloc_pages_slowpath is changed to bail out for __GFP_RETRY_MAYFAIL if
there is no progress and we have already passed the OOM point.

This means that all the reclaim opportunities have been exhausted except
the most disruptive one (the OOM killer) and a user defined fallback
behavior is more sensible than keep retrying in the page allocator.

[akpm@linux-foundation.org: fix arch/sparc/kernel/mdesc.c]
[mhocko@suse.com: semantic fix]
  Link: http://lkml.kernel.org/r/20170626123847.GM11534@dhcp22.suse.cz
[mhocko@kernel.org: address other thing spotted by Vlastimil]
  Link: http://lkml.kernel.org/r/20170626124233.GN11534@dhcp22.suse.cz
Link: http://lkml.kernel.org/r/20170623085345.11304-3-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Alex Belits <alex.belits@cavium.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Darrick J. Wong <darrick.wong@oracle.com>
Cc: David Daney <david.daney@cavium.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: NeilBrown <neilb@suse.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-12 16:26:03 -07:00
David Rientjes 0622622677 mm, vmscan: avoid thrashing anon lru when free + file is low
The purpose of the code that commit 623762517e ("revert 'mm: vmscan:
do not swap anon pages just because free+file is low'") reintroduces is
to prefer swapping anonymous memory rather than trashing the file lru.

If the anonymous inactive lru for the set of eligible zones is
considered low, however, or the length of the list for the given reclaim
priority does not allow for effective anonymous-only reclaiming, then
avoid forcing SCAN_ANON.  Forcing SCAN_ANON will end up thrashing the
small list and leave unreclaimed memory on the file lrus.

If the inactive list is insufficient, fallback to balanced reclaim so
the file lru doesn't remain untouched.

[akpm@linux-foundation.org: fix build]
Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1705011432220.137835@chino.kir.corp.google.com
Signed-off-by: David Rientjes <rientjes@google.com>
Suggested-by: Minchan Kim <minchan@kernel.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-10 16:32:30 -07:00
Johannes Weiner 385386cff4 mm: vmstat: move slab statistics from zone to node counters
Patch series "mm: per-lruvec slab stats"

Josef is working on a new approach to balancing slab caches and the page
cache.  For this to work, he needs slab cache statistics on the lruvec
level.  These patches implement that by adding infrastructure that
allows updating and reading generic VM stat items per lruvec, then
switches some existing VM accounting sites, including the slab
accounting ones, to this new cgroup-aware API.

I'll follow up with more patches on this, because there is actually
substantial simplification that can be done to the memory controller
when we replace private memcg accounting with making the existing VM
accounting sites cgroup-aware.  But this is enough for Josef to base his
slab reclaim work on, so here goes.

This patch (of 5):

To re-implement slab cache vs.  page cache balancing, we'll need the
slab counters at the lruvec level, which, ever since lru reclaim was
moved from the zone to the node, is the intersection of the node, not
the zone, and the memcg.

We could retain the per-zone counters for when the page allocator dumps
its memory information on failures, and have counters on both levels -
which on all but NUMA node 0 is usually redundant.  But let's keep it
simple for now and just move them.  If anybody complains we can restore
the per-zone counters.

[hannes@cmpxchg.org: fix oops]
  Link: http://lkml.kernel.org/r/20170605183511.GA8915@cmpxchg.org
Link: http://lkml.kernel.org/r/20170530181724.27197-3-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Josef Bacik <josef@toxicpanda.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-06 16:24:35 -07:00
Roman Gushchin 2262185c5b mm: per-cgroup memory reclaim stats
Track the following reclaim counters for every memory cgroup: PGREFILL,
PGSCAN, PGSTEAL, PGACTIVATE, PGDEACTIVATE, PGLAZYFREE and PGLAZYFREED.

These values are exposed using the memory.stats interface of cgroup v2.

The meaning of each value is the same as for global counters, available
using /proc/vmstat.

Also, for consistency, rename mem_cgroup_count_vm_event() to
count_memcg_event_mm().

Link: http://lkml.kernel.org/r/1494530183-30808-1-git-send-email-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Suggested-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Li Zefan <lizefan@huawei.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-06 16:24:35 -07:00
Huang Ying 747552b1e7 mm, THP, swap: enable THP swap optimization only if has compound map
If there is no compound map for a THP (Transparent Huge Page), it is
possible that the map count of some sub-pages of the THP is 0.  So it is
better to split the THP before swapping out.  In this way, the sub-pages
not mapped will be freed, and we can avoid the unnecessary swap out
operations for these sub-pages.

Link: http://lkml.kernel.org/r/20170515112522.32457-6-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Ebru Akagunduz <ebru.akagunduz@gmail.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-06 16:24:31 -07:00
Huang Ying b8f593cd08 mm, THP, swap: check whether THP can be split firstly
To swap out THP (Transparent Huage Page), before splitting the THP, the
swap cluster will be allocated and the THP will be added into the swap
cache.  But it is possible that the THP cannot be split, so that we must
delete the THP from the swap cache and free the swap cluster.  To avoid
that, in this patch, whether the THP can be split is checked firstly.
The check can only be done racy, but it is good enough for most cases.

With the patch, the swap out throughput improves 3.6% (from about
4.16GB/s to about 4.31GB/s) in the vm-scalability swap-w-seq test case
with 8 processes.  The test is done on a Xeon E5 v3 system.  The swap
device used is a RAM simulated PMEM (persistent memory) device.  To test
the sequential swapping out, the test case creates 8 processes, which
sequentially allocate and write to the anonymous pages until the RAM and
part of the swap device is used up.

Link: http://lkml.kernel.org/r/20170515112522.32457-5-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> [for can_split_huge_page()]
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Ebru Akagunduz <ebru.akagunduz@gmail.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-06 16:24:31 -07:00
Minchan Kim 0f0746589e mm, THP, swap: move anonymous THP split logic to vmscan
The add_to_swap aims to allocate swap_space(ie, swap slot and swapcache)
so if it fails due to lack of space in case of THP or something(hdd swap
but tries THP swapout) *caller* rather than add_to_swap itself should
split the THP page and retry it with base page which is more natural.

Link: http://lkml.kernel.org/r/20170515112522.32457-4-ying.huang@intel.com
Signed-off-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Ebru Akagunduz <ebru.akagunduz@gmail.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-06 16:24:31 -07:00
Minchan Kim 75f6d6d29a mm, THP, swap: unify swap slot free functions to put_swap_page
Now, get_swap_page takes struct page and allocates swap space according
to page size(ie, normal or THP) so it would be more cleaner to introduce
put_swap_page which is a counter function of get_swap_page.  Then, it
calls right swap slot free function depending on page's size.

[ying.huang@intel.com: minor cleanup and fix]
Link: http://lkml.kernel.org/r/20170515112522.32457-3-ying.huang@intel.com
Signed-off-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Ebru Akagunduz <ebru.akagunduz@gmail.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-06 16:24:31 -07:00
Nick Desaulniers f2f43e566a mm/vmscan.c: fix unsequenced modification and access warning
Clang and its -Wunsequenced emits a warning

  mm/vmscan.c:2961:25: error: unsequenced modification and access to 'gfp_mask' [-Wunsequenced]
                  .gfp_mask = (gfp_mask = current_gfp_context(gfp_mask)),
                                        ^

While it is not clear to me whether the initialization code violates the
specification (6.7.8 par 19 (ISO/IEC 9899) looks like it disagrees) the
code is quite confusing and worth cleaning up anyway.  Fix this by
reusing sc.gfp_mask rather than the updated input gfp_mask parameter.

Link: http://lkml.kernel.org/r/20170510154030.10720-1-nick.desaulniers@gmail.com
Signed-off-by: Nick Desaulniers <nick.desaulniers@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-06 16:24:31 -07:00
Thomas Gleixner c6202adf3a mm/vmscan: Adjust system_state checks
To enable smp_processor_id() and might_sleep() debug checks earlier, it's
required to add system states between SYSTEM_BOOTING and SYSTEM_RUNNING.

Adjust the system_state check in kswapd_run() to handle the extra states.

Tested-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20170516184736.119158930@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-05-23 10:01:37 +02:00
Minchan Kim 791b48b642 mm: vmscan: scan until it finds eligible pages
Although there are a ton of free swap and anonymous LRU page in elgible
zones, OOM happened.

  balloon invoked oom-killer: gfp_mask=0x17080c0(GFP_KERNEL_ACCOUNT|__GFP_ZERO|__GFP_NOTRACK), nodemask=(null),  order=0, oom_score_adj=0
  CPU: 7 PID: 1138 Comm: balloon Not tainted 4.11.0-rc6-mm1-zram-00289-ge228d67e9677-dirty #17
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Ubuntu-1.8.2-1ubuntu1 04/01/2014
  Call Trace:
   oom_kill_process+0x21d/0x3f0
   out_of_memory+0xd8/0x390
   __alloc_pages_slowpath+0xbc1/0xc50
   __alloc_pages_nodemask+0x1a5/0x1c0
   pte_alloc_one+0x20/0x50
   __pte_alloc+0x1e/0x110
   __handle_mm_fault+0x919/0x960
   handle_mm_fault+0x77/0x120
   __do_page_fault+0x27a/0x550
   trace_do_page_fault+0x43/0x150
   do_async_page_fault+0x2c/0x90
   async_page_fault+0x28/0x30
  Mem-Info:
  active_anon:424716 inactive_anon:65314 isolated_anon:0
   active_file:52 inactive_file:46 isolated_file:0
   unevictable:0 dirty:27 writeback:0 unstable:0
   slab_reclaimable:3967 slab_unreclaimable:4125
   mapped:133 shmem:43 pagetables:1674 bounce:0
   free:4637 free_pcp:225 free_cma:0
  Node 0 active_anon:1698864kB inactive_anon:261256kB active_file:208kB inactive_file:184kB unevictable:0kB isolated(anon):0kB isolated(file):0kB mapped:532kB dirty:108kB writeback:0kB shmem:172kB writeback_tmp:0kB unstable:0kB all_unreclaimable? no
  DMA free:7316kB min:32kB low:44kB high:56kB active_anon:8064kB inactive_anon:0kB active_file:0kB inactive_file:0kB unevictable:0kB writepending:0kB present:15992kB managed:15908kB mlocked:0kB slab_reclaimable:464kB slab_unreclaimable:40kB kernel_stack:0kB pagetables:24kB bounce:0kB free_pcp:0kB local_pcp:0kB free_cma:0kB
  lowmem_reserve[]: 0 992 992 1952
  DMA32 free:9088kB min:2048kB low:3064kB high:4080kB active_anon:952176kB inactive_anon:0kB active_file:36kB inactive_file:0kB unevictable:0kB writepending:88kB present:1032192kB managed:1019388kB mlocked:0kB slab_reclaimable:13532kB slab_unreclaimable:16460kB kernel_stack:3552kB pagetables:6672kB bounce:0kB free_pcp:56kB local_pcp:24kB free_cma:0kB
  lowmem_reserve[]: 0 0 0 959
  Movable free:3644kB min:1980kB low:2960kB high:3940kB active_anon:738560kB inactive_anon:261340kB active_file:188kB inactive_file:640kB unevictable:0kB writepending:20kB present:1048444kB managed:1010816kB mlocked:0kB slab_reclaimable:0kB slab_unreclaimable:0kB kernel_stack:0kB pagetables:0kB bounce:0kB free_pcp:832kB local_pcp:60kB free_cma:0kB
  lowmem_reserve[]: 0 0 0 0
  DMA: 1*4kB (E) 0*8kB 18*16kB (E) 10*32kB (E) 10*64kB (E) 9*128kB (ME) 8*256kB (E) 2*512kB (E) 2*1024kB (E) 0*2048kB 0*4096kB = 7524kB
  DMA32: 417*4kB (UMEH) 181*8kB (UMEH) 68*16kB (UMEH) 48*32kB (UMEH) 14*64kB (MH) 3*128kB (M) 1*256kB (H) 1*512kB (M) 2*1024kB (M) 0*2048kB 0*4096kB = 9836kB
  Movable: 1*4kB (M) 1*8kB (M) 1*16kB (M) 1*32kB (M) 0*64kB 1*128kB (M) 2*256kB (M) 4*512kB (M) 1*1024kB (M) 0*2048kB 0*4096kB = 3772kB
  378 total pagecache pages
  17 pages in swap cache
  Swap cache stats: add 17325, delete 17302, find 0/27
  Free swap  = 978940kB
  Total swap = 1048572kB
  524157 pages RAM
  0 pages HighMem/MovableOnly
  12629 pages reserved
  0 pages cma reserved
  0 pages hwpoisoned
  [ pid ]   uid  tgid total_vm      rss nr_ptes nr_pmds swapents oom_score_adj name
  [  433]     0   433     4904        5      14       3       82             0 upstart-udev-br
  [  438]     0   438    12371        5      27       3      191         -1000 systemd-udevd

With investigation, skipping page of isolate_lru_pages makes reclaim
void because it returns zero nr_taken easily so LRU shrinking is
effectively nothing and just increases priority aggressively.  Finally,
OOM happens.

The problem is that get_scan_count determines nr_to_scan with eligible
zones so although priority drops to zero, it couldn't reclaim any pages
if the LRU contains mostly ineligible pages.

get_scan_count:

        size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
	size = size >> sc->priority;

Assumes sc->priority is 0 and LRU list is as follows.

	N-N-N-N-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H-H

(Ie, small eligible pages are in the head of LRU but others are
 almost ineligible pages)

In that case, size becomes 4 so VM want to scan 4 pages but 4 pages from
tail of the LRU are not eligible pages.  If get_scan_count counts
skipped pages, it doesn't reclaim any pages remained after scanning 4
pages so it ends up OOM happening.

This patch makes isolate_lru_pages try to scan pages until it encounters
eligible zones's pages.

[akpm@linux-foundation.org: clean up mind-bending `for' statement.  Tweak comment text]
Fixes: 3db65812d6 ("Revert "mm, vmscan: account for skipped pages as a partial scan"")
Link: http://lkml.kernel.org/r/1494457232-27401-1-git-send-email-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-12 15:57:16 -07:00
Vlastimil Babka 499118e966 mm: introduce memalloc_noreclaim_{save,restore}
The previous patch ("mm: prevent potential recursive reclaim due to
clearing PF_MEMALLOC") has shown that simply setting and clearing
PF_MEMALLOC in current->flags can result in wrongly clearing a
pre-existing PF_MEMALLOC flag and potentially lead to recursive reclaim.
Let's introduce helpers that support proper nesting by saving the
previous stat of the flag, similar to the existing memalloc_noio_* and
memalloc_nofs_* helpers.  Convert existing setting/clearing of
PF_MEMALLOC within mm to the new helpers.

There are no known issues with the converted code, but the change makes
it more robust.

Link: http://lkml.kernel.org/r/20170405074700.29871-3-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Suggested-by: Michal Hocko <mhocko@suse.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Boris Brezillon <boris.brezillon@free-electrons.com>
Cc: Chris Leech <cleech@redhat.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Josef Bacik <jbacik@fb.com>
Cc: Lee Duncan <lduncan@suse.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Richard Weinberger <richard@nod.at>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-08 17:15:15 -07:00
Johannes Weiner ccda7f4360 mm: memcontrol: use node page state naming scheme for memcg
The memory controllers stat function names are awkwardly long and
arbitrarily different from the zone and node stat functions.

The current interface is named:

  mem_cgroup_read_stat()
  mem_cgroup_update_stat()
  mem_cgroup_inc_stat()
  mem_cgroup_dec_stat()
  mem_cgroup_update_page_stat()
  mem_cgroup_inc_page_stat()
  mem_cgroup_dec_page_stat()

This patch renames it to match the corresponding node stat functions:

  memcg_page_state()		[node_page_state()]
  mod_memcg_state()		[mod_node_state()]
  inc_memcg_state()		[inc_node_state()]
  dec_memcg_state()		[dec_node_state()]
  mod_memcg_page_state()	[mod_node_page_state()]
  inc_memcg_page_state()	[inc_node_page_state()]
  dec_memcg_page_state()	[dec_node_page_state()]

Link: http://lkml.kernel.org/r/20170404220148.28338-4-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-03 15:52:11 -07:00
Johannes Weiner 71cd31135d mm: memcontrol: re-use node VM page state enum
The current duplication is a high-maintenance mess, and it's painful to
add new items or query memcg state from the rest of the VM.

This increases the size of the stat array marginally, but we should aim
to track all these stats on a per-cgroup level anyway.

Link: http://lkml.kernel.org/r/20170404220148.28338-3-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-03 15:52:11 -07:00
Johannes Weiner 31176c7815 mm: memcontrol: clean up memory.events counting function
We only ever count single events, drop the @nr parameter.  Rename the
function accordingly.  Remove low-information kerneldoc.

Link: http://lkml.kernel.org/r/20170404220148.28338-1-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-03 15:52:11 -07:00
Johannes Weiner 2a2e48854d mm: vmscan: fix IO/refault regression in cache workingset transition
Since commit 59dc76b0d4 ("mm: vmscan: reduce size of inactive file
list") we noticed bigger IO spikes during changes in cache access
patterns.

The patch in question shrunk the inactive list size to leave more room
for the current workingset in the presence of streaming IO.  However,
workingset transitions that previously happened on the inactive list are
now pushed out of memory and incur more refaults to complete.

This patch disables active list protection when refaults are being
observed.  This accelerates workingset transitions, and allows more of
the new set to establish itself from memory, without eating into the
ability to protect the established workingset during stable periods.

The workloads that were measurably affected for us were hit pretty bad
by it, with refault/majfault rates doubling and tripling during cache
transitions, and the machines sustaining half-hour periods of 100% IO
utilization, where they'd previously have sub-minute peaks at 60-90%.

Stateful services that handle user data tend to be more conservative
with kernel upgrades.  As a result we hit most page cache issues with
some delay, as was the case here.

The severity seemed to warrant a stable tag.

Fixes: 59dc76b0d4 ("mm: vmscan: reduce size of inactive file list")
Link: http://lkml.kernel.org/r/20170404220052.27593-1-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: <stable@vger.kernel.org>	[4.7+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-03 15:52:11 -07:00
Minchan Kim 666e5a406c mm: make ttu's return boolean
try_to_unmap() returns SWAP_SUCCESS or SWAP_FAIL so it's suitable for
boolean return.  This patch changes it.

Link: http://lkml.kernel.org/r/1489555493-14659-8-git-send-email-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-03 15:52:10 -07:00
Minchan Kim 33fc80e257 mm: remove SWAP_AGAIN in ttu
In 2002, [1] introduced SWAP_AGAIN.  At that time, try_to_unmap_one used
spin_trylock(&mm->page_table_lock) so it's really easy to contend and
fail to hold a lock so SWAP_AGAIN to keep LRU status makes sense.

However, now we changed it to mutex-based lock and be able to block
without skip pte so there is few of small window to return SWAP_AGAIN so
remove SWAP_AGAIN and just return SWAP_FAIL.

[1] c48c43e, minimal rmap

Link: http://lkml.kernel.org/r/1489555493-14659-7-git-send-email-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-03 15:52:10 -07:00
Minchan Kim ad6b67041a mm: remove SWAP_MLOCK in ttu
ttu doesn't need to return SWAP_MLOCK.  Instead, just return SWAP_FAIL
because it means the page is not-swappable so it should move to another
LRU list(active or unevictable).  putback friends will move it to right
list depending on the page's LRU flag.

Link: http://lkml.kernel.org/r/1489555493-14659-6-git-send-email-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-03 15:52:10 -07:00
Minchan Kim 18863d3a3f mm: remove SWAP_DIRTY in ttu
If we found lazyfree page is dirty, try_to_unmap_one can just
SetPageSwapBakced in there like PG_mlocked page and just return with
SWAP_FAIL which is very natural because the page is not swappable right
now so that vmscan can activate it.  There is no point to introduce new
return value SWAP_DIRTY in try_to_unmap at the moment.

Link: http://lkml.kernel.org/r/1489555493-14659-3-git-send-email-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-03 15:52:10 -07:00
Yisheng Xie d6622f6365 mm/vmscan: more restrictive condition for retry in do_try_to_free_pages
By reviewing code, I find that when enter do_try_to_free_pages, the
may_thrash is always clear, and it will retry shrink zones to tap
cgroup's reserves memory by setting may_thrash when the former
shrink_zones reclaim nothing.

However, when memcg is disabled or on legacy hierarchy, or there do not
have any memcg protected by low limit, it should not do this useless
retry at all, for we do not have any cgroup's reserves memory to tap,
and we have already done hard work but made no progress, which as Michal
pointed out in former version, we are trying hard to control the retry
logical of page alloctor, and the current additional round of reclaim is
just lame.

Therefore, to avoid this unneeded retrying and make code more readable,
we remove the may_thrash field in scan_control, instead, introduce
memcg_low_reclaim and memcg_low_skipped, and only retry when
memcg_low_skipped, by setting memcg_low_reclaim.

[xieyisheng1@huawei.com: remove may_thrash field, introduce mem_cgroup_reclaim]
  Link: http://lkml.kernel.org/r/1490191893-5923-1-git-send-email-ysxie@foxmail.com
Link: http://lkml.kernel.org/r/1490191893-5923-1-git-send-email-ysxie@foxmail.com
Signed-off-by: Yisheng Xie <xieyisheng1@huawei.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Suggested-by: Johannes Weiner <hannes@cmpxchg.org>
Suggested-by: Michal Hocko <mhocko@kernel.org>
Suggested-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-03 15:52:09 -07:00
Mel Gorman e716f2eb24 mm, vmscan: prevent kswapd sleeping prematurely due to mismatched classzone_idx
kswapd is woken to reclaim a node based on a failed allocation request
from any eligible zone.  Once reclaiming in balance_pgdat(), it will
continue reclaiming until there is an eligible zone available for the
zone it was woken for.  kswapd tracks what zone it was recently woken
for in pgdat->kswapd_classzone_idx.  If it has not been woken recently,
this zone will be 0.

However, the decision on whether to sleep is made on
kswapd_classzone_idx which is 0 without a recent wakeup request and that
classzone does not account for lowmem reserves.  This allows kswapd to
sleep when a low small zone such as ZONE_DMA is balanced for a GFP_DMA
request even if a stream of allocations cannot use that zone.  While
kswapd may be woken again shortly in the near future there are two
consequences -- the pgdat bits that control congestion are cleared
prematurely and direct reclaim is more likely as kswapd slept
prematurely.

This patch flips kswapd_classzone_idx to default to MAX_NR_ZONES (an
invalid index) when there has been no recent wakeups.  If there are no
wakeups, it'll decide whether to sleep based on the highest possible
zone available (MAX_NR_ZONES - 1).  It then becomes critical that the
"pgdat balanced" decisions during reclaim and when deciding to sleep are
the same.  If there is a mismatch, kswapd can stay awake continually
trying to balance tiny zones.

simoop was used to evaluate it again.  Two of the preparation patches
regressed the workload so they are included as the second set of
results.  Otherwise this patch looks artifically excellent

                                         4.11.0-rc1            4.11.0-rc1            4.11.0-rc1
                                            vanilla              clear-v2          keepawake-v2
Amean    p50-Read             21670074.18 (  0.00%) 19786774.76 (  8.69%) 22668332.52 ( -4.61%)
Amean    p95-Read             25456267.64 (  0.00%) 24101956.27 (  5.32%) 26738688.00 ( -5.04%)
Amean    p99-Read             29369064.73 (  0.00%) 27691872.71 (  5.71%) 30991404.52 ( -5.52%)
Amean    p50-Write                1390.30 (  0.00%)     1011.91 ( 27.22%)      924.91 ( 33.47%)
Amean    p95-Write              412901.57 (  0.00%)    34874.98 ( 91.55%)     1362.62 ( 99.67%)
Amean    p99-Write             6668722.09 (  0.00%)   575449.60 ( 91.37%)    16854.04 ( 99.75%)
Amean    p50-Allocation          78714.31 (  0.00%)    84246.26 ( -7.03%)    74729.74 (  5.06%)
Amean    p95-Allocation         175533.51 (  0.00%)   400058.43 (-127.91%)   101609.74 ( 42.11%)
Amean    p99-Allocation         247003.02 (  0.00%) 10905600.00 (-4315.17%)   125765.57 ( 49.08%)

With this patch on top, write and allocation latencies are massively
improved.  The read latencies are slightly impaired but it's worth
noting that this is mostly due to the IO scheduler and not directly
related to reclaim.  The vmstats are a bit of a mix but the relevant
ones are as follows;

                            4.10.0-rc7  4.10.0-rc7  4.10.0-rc7
                          mmots-20170209 clear-v1r25keepawake-v1r25
Swap Ins                             0           0           0
Swap Outs                            0         608           0
Direct pages scanned           6910672     3132699     6357298
Kswapd pages scanned          57036946    82488665    56986286
Kswapd pages reclaimed        55993488    63474329    55939113
Direct pages reclaimed         6905990     2964843     6352115
Kswapd efficiency                  98%         76%         98%
Kswapd velocity              12494.375   17597.507   12488.065
Direct efficiency                  99%         94%         99%
Direct velocity               1513.835     668.306    1393.148
Page writes by reclaim           0.000 4410243.000       0.000
Page writes file                     0     4409635           0
Page writes anon                     0         608           0
Page reclaim immediate         1036792    14175203     1042571

                            4.11.0-rc1  4.11.0-rc1  4.11.0-rc1
                               vanilla  clear-v2  keepawake-v2
Swap Ins                             0          12           0
Swap Outs                            0         838           0
Direct pages scanned           6579706     3237270     6256811
Kswapd pages scanned          61853702    79961486    54837791
Kswapd pages reclaimed        60768764    60755788    53849586
Direct pages reclaimed         6579055     2987453     6256151
Kswapd efficiency                  98%         75%         98%
Page writes by reclaim           0.000 4389496.000       0.000
Page writes file                     0     4388658           0
Page writes anon                     0         838           0
Page reclaim immediate         1073573    14473009      982507

Swap-outs are equivalent to baseline.

Direct reclaim is reduced but not eliminated.  It's worth noting that
there are two periods of direct reclaim for this workload.  The first is
when it switches from preparing the files for the actual test itself.
It's a lot of file IO followed by a lot of allocs that reclaims heavily
for a brief window.  While direct reclaim is lower with clear-v2, it is
due to kswapd scanning aggressively and trying to reclaim the world
which is not the right thing to do.  With the patches applied, there is
still direct reclaim but the phase change from "creating work files" to
starting multiple threads that allocate a lot of anonymous memory faster
than kswapd can reclaim.

Scanning/reclaim efficiency is restored by this patch.

Page writes from reclaim context are back at 0 which is ideal.

Pages immediately reclaimed after IO completes is slightly improved but
it is expected this will vary slightly.

On UMA, there is almost no change so this is not expected to be a
universal win.

[mgorman@suse.de: fix ->kswapd_classzone_idx initialization]
  Link: http://lkml.kernel.org/r/20170406174538.5msrznj6nt6qpbx5@suse.de
Link: http://lkml.kernel.org/r/20170309075657.25121-4-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Shantanu Goel <sgoel01@yahoo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-03 15:52:09 -07:00
Mel Gorman 631b6e083e mm, vmscan: only clear pgdat congested/dirty/writeback state when balanced
A pgdat tracks if recent reclaim encountered too many dirty, writeback
or congested pages.  The flags control whether kswapd writes pages back
from reclaim context, tags pages for immediate reclaim when IO
completes, whether processes block on wait_iff_congested and whether
kswapd blocks when too many pages marked for immediate reclaim are
encountered.

The state is cleared in a check function with side-effects.  With the
patch "mm, vmscan: fix zone balance check in prepare_kswapd_sleep", the
timing of when the bits get cleared changed.  Due to the way the check
works, it'll clear the bits if ZONE_DMA is balanced for a GFP_DMA
allocation because it does not account for lowmem reserves properly.

For the simoop workload, kswapd is not stalling when it should due to
the premature clearing, writing pages from reclaim context like crazy
and generally being unhelpful.

This patch resets the pgdat bits related to page reclaim only when
kswapd is going to sleep.  The comparison with simoop is then

                                         4.11.0-rc1            4.11.0-rc1            4.11.0-rc1
                                            vanilla           fixcheck-v2              clear-v2
Amean    p50-Read             21670074.18 (  0.00%) 20464344.18 (  5.56%) 19786774.76 (  8.69%)
Amean    p95-Read             25456267.64 (  0.00%) 25721423.64 ( -1.04%) 24101956.27 (  5.32%)
Amean    p99-Read             29369064.73 (  0.00%) 30174230.76 ( -2.74%) 27691872.71 (  5.71%)
Amean    p50-Write                1390.30 (  0.00%)     1395.28 ( -0.36%)     1011.91 ( 27.22%)
Amean    p95-Write              412901.57 (  0.00%)    37737.74 ( 90.86%)    34874.98 ( 91.55%)
Amean    p99-Write             6668722.09 (  0.00%)   666489.04 ( 90.01%)   575449.60 ( 91.37%)
Amean    p50-Allocation          78714.31 (  0.00%)    86286.22 ( -9.62%)    84246.26 ( -7.03%)
Amean    p95-Allocation         175533.51 (  0.00%)   351812.27 (-100.42%)   400058.43 (-127.91%)
Amean    p99-Allocation         247003.02 (  0.00%)  6291171.56 (-2447.00%) 10905600.00 (-4315.17%)

Read latency is improved, write latency is mostly improved but
allocation latency is regressed.  kswapd is still reclaiming
inefficiently, pages are being written back from writeback context and a
host of other issues.  However, given the change, it needed to be
spelled out why the side-effect was moved.

Link: http://lkml.kernel.org/r/20170309075657.25121-3-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Shantanu Goel <sgoel01@yahoo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-03 15:52:09 -07:00
Shantanu Goel 333b0a459c mm, vmscan: fix zone balance check in prepare_kswapd_sleep
Patch series "Reduce amount of time kswapd sleeps prematurely", v2.

The series is unusual in that the first patch fixes one problem and
introduces other issues that are noted in the changelog.  Patch 2 makes
a minor modification that is worth considering on its own but leaves the
kernel in a state where it behaves badly.  It's not until patch 3 that
there is an improvement against baseline.

This was mostly motivated by examining Chris Mason's "simoop" benchmark
which puts the VM under similar pressure to HADOOP.  It has been
reported that the benchmark has regressed severely during the last
number of releases.  While I cannot reproduce all the same problems
Chris experienced due to hardware limitations, there was a number of
problems on a 2-socket machine with a single disk.

simoop latencies
                                         4.11.0-rc1            4.11.0-rc1
                                            vanilla          keepawake-v2
Amean    p50-Read             21670074.18 (  0.00%) 22668332.52 ( -4.61%)
Amean    p95-Read             25456267.64 (  0.00%) 26738688.00 ( -5.04%)
Amean    p99-Read             29369064.73 (  0.00%) 30991404.52 ( -5.52%)
Amean    p50-Write                1390.30 (  0.00%)      924.91 ( 33.47%)
Amean    p95-Write              412901.57 (  0.00%)     1362.62 ( 99.67%)
Amean    p99-Write             6668722.09 (  0.00%)    16854.04 ( 99.75%)
Amean    p50-Allocation          78714.31 (  0.00%)    74729.74 (  5.06%)
Amean    p95-Allocation         175533.51 (  0.00%)   101609.74 ( 42.11%)
Amean    p99-Allocation         247003.02 (  0.00%)   125765.57 ( 49.08%)

These are latencies.  Read/write are threads reading fixed-size random
blocks from a simulated database.  The allocation latency is mmaping and
faulting regions of memory.  The p50, 95 and p99 reports the worst
latencies for 50% of the samples, 95% and 99% respectively.

For example, the report indicates that while the test was running 99% of
writes completed 99.75% faster.  It's worth noting that on a UMA machine
that no difference in performance with simoop was observed so milage
will vary.

It's noted that there is a slight impact to read latencies but it's
mostly due to IO scheduler decisions and offset by the large reduction
in other latencies.

This patch (of 3):

The check in prepare_kswapd_sleep needs to match the one in
balance_pgdat since the latter will return as soon as any one of the
zones in the classzone is above the watermark.  This is specially
important for higher order allocations since balance_pgdat will
typically reset the order to zero relying on compaction to create the
higher order pages.  Without this patch, prepare_kswapd_sleep fails to
wake up kcompactd since the zone balance check fails.

It was first reported against 4.9.7 that kswapd is failing to wake up
kcompactd due to a mismatch in the zone balance check between
balance_pgdat() and prepare_kswapd_sleep().

balance_pgdat() returns as soon as a single zone satisfies the
allocation but prepare_kswapd_sleep() requires all zones to do +the
same.  This causes prepare_kswapd_sleep() to never succeed except in the
order == 0 case and consequently, wakeup_kcompactd() is never called.
For the machine that originally motivated this patch, the state of
compaction from /proc/vmstat looked this way after a day and a half +of
uptime:

compact_migrate_scanned 240496
compact_free_scanned 76238632
compact_isolated 123472
compact_stall 1791
compact_fail 29
compact_success 1762
compact_daemon_wake 0

After applying the patch and about 10 hours of uptime the state looks
like this:

compact_migrate_scanned 59927299
compact_free_scanned 2021075136
compact_isolated 640926
compact_stall 4
compact_fail 2
compact_success 2
compact_daemon_wake 5160

Further notes from Mel that motivated him to pick this patch up and
resend it;

It was observed for the simoop workload (pressures the VM similar to
HADOOP) that kswapd was failing to keep ahead of direct reclaim.  The
investigation noted that there was a need to rationalise kswapd
decisions to reclaim with kswapd decisions to sleep.  With this patch on
a 2-socket box, there was a 49% reduction in direct reclaim scanning.

However, the impact otherwise is extremely negative.  Kswapd reclaim
efficiency dropped from 98% to 76%.  simoop has three latency-related
metrics for read, write and allocation (an anonymous mmap and fault).

                                         4.11.0-rc1            4.11.0-rc1
                                            vanilla           fixcheck-v2
Amean    p50-Read             21670074.18 (  0.00%) 20464344.18 (  5.56%)
Amean    p95-Read             25456267.64 (  0.00%) 25721423.64 ( -1.04%)
Amean    p99-Read             29369064.73 (  0.00%) 30174230.76 ( -2.74%)
Amean    p50-Write                1390.30 (  0.00%)     1395.28 ( -0.36%)
Amean    p95-Write              412901.57 (  0.00%)    37737.74 ( 90.86%)
Amean    p99-Write             6668722.09 (  0.00%)   666489.04 ( 90.01%)
Amean    p50-Allocation          78714.31 (  0.00%)    86286.22 ( -9.62%)
Amean    p95-Allocation         175533.51 (  0.00%)   351812.27 (-100.42%)
Amean    p99-Allocation         247003.02 (  0.00%)  6291171.56 (-2447.00%)

Of greater concern is that the patch causes swapping and page writes
from kswapd context rose from 0 pages to 4189753 pages during the hour
the workload ran for.  By and large, the patch has very bad behaviour
but easily missed as the impact on a UMA machine is negligible.

This patch is included with the data in case a bisection leads to this
area.  This patch is also a pre-requisite for the rest of the series.

Link: http://lkml.kernel.org/r/20170309075657.25121-2-mgorman@techsingularity.net
Signed-off-by: Shantanu Goel <sgoel01@yahoo.com>
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-03 15:52:09 -07:00
Michal Hocko 7dea19f9ee mm: introduce memalloc_nofs_{save,restore} API
GFP_NOFS context is used for the following 5 reasons currently:

 - to prevent from deadlocks when the lock held by the allocation
   context would be needed during the memory reclaim

 - to prevent from stack overflows during the reclaim because the
   allocation is performed from a deep context already

 - to prevent lockups when the allocation context depends on other
   reclaimers to make a forward progress indirectly

 - just in case because this would be safe from the fs POV

 - silence lockdep false positives

Unfortunately overuse of this allocation context brings some problems to
the MM.  Memory reclaim is much weaker (especially during heavy FS
metadata workloads), OOM killer cannot be invoked because the MM layer
doesn't have enough information about how much memory is freeable by the
FS layer.

In many cases it is far from clear why the weaker context is even used
and so it might be used unnecessarily.  We would like to get rid of
those as much as possible.  One way to do that is to use the flag in
scopes rather than isolated cases.  Such a scope is declared when really
necessary, tracked per task and all the allocation requests from within
the context will simply inherit the GFP_NOFS semantic.

Not only this is easier to understand and maintain because there are
much less problematic contexts than specific allocation requests, this
also helps code paths where FS layer interacts with other layers (e.g.
crypto, security modules, MM etc...) and there is no easy way to convey
the allocation context between the layers.

Introduce memalloc_nofs_{save,restore} API to control the scope of
GFP_NOFS allocation context.  This is basically copying
memalloc_noio_{save,restore} API we have for other restricted allocation
context GFP_NOIO.  The PF_MEMALLOC_NOFS flag already exists and it is
just an alias for PF_FSTRANS which has been xfs specific until recently.
There are no more PF_FSTRANS users anymore so let's just drop it.

PF_MEMALLOC_NOFS is now checked in the MM layer and drops __GFP_FS
implicitly same as PF_MEMALLOC_NOIO drops __GFP_IO.  memalloc_noio_flags
is renamed to current_gfp_context because it now cares about both
PF_MEMALLOC_NOFS and PF_MEMALLOC_NOIO contexts.  Xfs code paths preserve
their semantic.  kmem_flags_convert() doesn't need to evaluate the flag
anymore.

This patch shouldn't introduce any functional changes.

Let's hope that filesystems will drop direct GFP_NOFS (resp.  ~__GFP_FS)
usage as much as possible and only use a properly documented
memalloc_nofs_{save,restore} checkpoints where they are appropriate.

[akpm@linux-foundation.org: fix comment typo, reflow comment]
Link: http://lkml.kernel.org/r/20170306131408.9828-5-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Chris Mason <clm@fb.com>
Cc: David Sterba <dsterba@suse.cz>
Cc: Jan Kara <jack@suse.cz>
Cc: Brian Foster <bfoster@redhat.com>
Cc: Darrick J. Wong <darrick.wong@oracle.com>
Cc: Nikolay Borisov <nborisov@suse.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-03 15:52:09 -07:00
Shaohua Li 802a3a92ad mm: reclaim MADV_FREE pages
When memory pressure is high, we free MADV_FREE pages.  If the pages are
not dirty in pte, the pages could be freed immediately.  Otherwise we
can't reclaim them.  We put the pages back to anonumous LRU list (by
setting SwapBacked flag) and the pages will be reclaimed in normal
swapout way.

We use normal page reclaim policy.  Since MADV_FREE pages are put into
inactive file list, such pages and inactive file pages are reclaimed
according to their age.  This is expected, because we don't want to
reclaim too many MADV_FREE pages before used once pages.

Based on Minchan's original patch

[minchan@kernel.org: clean up lazyfree page handling]
  Link: http://lkml.kernel.org/r/20170303025237.GB3503@bbox
Link: http://lkml.kernel.org/r/14b8eb1d3f6bf6cc492833f183ac8c304e560484.1487965799.git.shli@fb.com
Signed-off-by: Shaohua Li <shli@fb.com>
Signed-off-by: Minchan Kim <minchan@kernel.org>
Acked-by: Minchan Kim <minchan@kernel.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-03 15:52:08 -07:00
Shaohua Li a128ca71fb mm: delete unnecessary TTU_* flags
Patch series "mm: fix some MADV_FREE issues", v5.

We are trying to use MADV_FREE in jemalloc.  Several issues are found.
Without solving the issues, jemalloc can't use the MADV_FREE feature.

 - Doesn't support system without swap enabled. Because if swap is off,
   we can't or can't efficiently age anonymous pages. And since
   MADV_FREE pages are mixed with other anonymous pages, we can't
   reclaim MADV_FREE pages. In current implementation, MADV_FREE will
   fallback to MADV_DONTNEED without swap enabled. But in our
   environment, a lot of machines don't enable swap. This will prevent
   our setup using MADV_FREE.

 - Increases memory pressure. page reclaim bias file pages reclaim
   against anonymous pages. This doesn't make sense for MADV_FREE pages,
   because those pages could be freed easily and refilled with very
   slight penality. Even page reclaim doesn't bias file pages, there is
   still an issue, because MADV_FREE pages and other anonymous pages are
   mixed together. To reclaim a MADV_FREE page, we probably must scan a
   lot of other anonymous pages, which is inefficient. In our test, we
   usually see oom with MADV_FREE enabled and nothing without it.

 - Accounting. There are two accounting problems. We don't have a global
   accounting. If the system is abnormal, we don't know if it's a
   problem from MADV_FREE side. The other problem is RSS accounting.
   MADV_FREE pages are accounted as normal anon pages and reclaimed
   lazily, so application's RSS becomes bigger. This confuses our
   workloads. We have monitoring daemon running and if it finds
   applications' RSS becomes abnormal, the daemon will kill the
   applications even kernel can reclaim the memory easily.

To address the first the two issues, we can either put MADV_FREE pages
into a separate LRU list (Minchan's previous patches and V1 patches), or
put them into LRU_INACTIVE_FILE list (suggested by Johannes).  The
patchset use the second idea.  The reason is LRU_INACTIVE_FILE list is
tiny nowadays and should be full of used once file pages.  So we can
still efficiently reclaim MADV_FREE pages there without interference
with other anon and active file pages.  Putting the pages into inactive
file list also has an advantage which allows page reclaim to prioritize
MADV_FREE pages and used once file pages.  MADV_FREE pages are put into
the lru list and clear SwapBacked flag, so PageAnon(page) &&
!PageSwapBacked(page) will indicate a MADV_FREE pages.  These pages will
directly freed without pageout if they are clean, otherwise normal swap
will reclaim them.

For the third issue, the previous post adds global accounting and a
separate RSS count for MADV_FREE pages.  The problem is we never get
accurate accounting for MADV_FREE pages.  The pages are mapped to
userspace, can be dirtied without notice from kernel side.  To get
accurate accounting, we could write protect the page, but then there is
extra page fault overhead, which people don't want to pay.  Jemalloc
guys have concerns about the inaccurate accounting, so this post drops
the accounting patches temporarily.  The info exported to
/proc/pid/smaps for MADV_FREE pages are kept, which is the only place we
can get accurate accounting right now.

This patch (of 6):

Johannes pointed out TTU_LZFREE is unnecessary.  It's true because we
always have the flag set if we want to do an unmap.  For cases we don't
do an unmap, the TTU_LZFREE part of code should never run.

Also the TTU_UNMAP is unnecessary.  If no other flags set (for example,
TTU_MIGRATION), an unmap is implied.

The patch includes Johannes's cleanup and dead TTU_ACTION macro removal
code

Link: http://lkml.kernel.org/r/4be3ea1bc56b26fd98a54d0a6f70bec63f6d8980.1487965799.git.shli@fb.com
Signed-off-by: Shaohua Li <shli@fb.com>
Suggested-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Minchan Kim <minchan@kernel.org>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-03 15:52:08 -07:00
Johannes Weiner 3db65812d6 Revert "mm, vmscan: account for skipped pages as a partial scan"
This reverts commit d7f05528ee.

Now that reclaimability of a node is no longer based on the ratio
between pages scanned and theoretically reclaimable pages, we can remove
accounting tricks for pages skipped due to zone constraints.

Link: http://lkml.kernel.org/r/20170228214007.5621-9-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Jia He <hejianet@gmail.com>
Cc: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-03 15:52:08 -07:00
Johannes Weiner c822f6223d mm: delete NR_PAGES_SCANNED and pgdat_reclaimable()
NR_PAGES_SCANNED counts number of pages scanned since the last page free
event in the allocator.  This was used primarily to measure the
reclaimability of zones and nodes, and determine when reclaim should
give up on them.  In that role, it has been replaced in the preceding
patches by a different mechanism.

Being implemented as an efficient vmstat counter, it was automatically
exported to userspace as well.  It's however unlikely that anyone
outside the kernel is using this counter in any meaningful way.

Remove the counter and the unused pgdat_reclaimable().

Link: http://lkml.kernel.org/r/20170228214007.5621-8-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Jia He <hejianet@gmail.com>
Cc: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-03 15:52:08 -07:00