Commit Graph

154 Commits

Author SHA1 Message Date
Linus Torvalds da9803dfd3 This feature enhances the current guest memory encryption support
called SEV by also encrypting the guest register state, making the
 registers inaccessible to the hypervisor by en-/decrypting them on world
 switches. Thus, it adds additional protection to Linux guests against
 exfiltration, control flow and rollback attacks.
 
 With SEV-ES, the guest is in full control of what registers the
 hypervisor can access. This is provided by a guest-host exchange
 mechanism based on a new exception vector called VMM Communication
 Exception (#VC), a new instruction called VMGEXIT and a shared
 Guest-Host Communication Block which is a decrypted page shared between
 the guest and the hypervisor.
 
 Intercepts to the hypervisor become #VC exceptions in an SEV-ES guest so
 in order for that exception mechanism to work, the early x86 init code
 needed to be made able to handle exceptions, which, in itself, brings
 a bunch of very nice cleanups and improvements to the early boot code
 like an early page fault handler, allowing for on-demand building of the
 identity mapping. With that, !KASLR configurations do not use the EFI
 page table anymore but switch to a kernel-controlled one.
 
 The main part of this series adds the support for that new exchange
 mechanism. The goal has been to keep this as much as possibly
 separate from the core x86 code by concentrating the machinery in two
 SEV-ES-specific files:
 
  arch/x86/kernel/sev-es-shared.c
  arch/x86/kernel/sev-es.c
 
 Other interaction with core x86 code has been kept at minimum and behind
 static keys to minimize the performance impact on !SEV-ES setups.
 
 Work by Joerg Roedel and Thomas Lendacky and others.
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAl+FiKYACgkQEsHwGGHe
 VUqS5BAAlh5mKwtxXMyFyAIHa5tpsgDjbecFzy1UVmZyxN0JHLlM3NLmb+K52drY
 PiWjNNMi/cFMFazkuLFHuY0poBWrZml8zRS/mExKgUJC6EtguS9FQnRE9xjDBoWQ
 gOTSGJWEzT5wnFqo8qHwlC2CDCSF1hfL8ks3cUFW2tCWus4F9pyaMSGfFqD224rg
 Lh/8+arDMSIKE4uH0cm7iSuyNpbobId0l5JNDfCEFDYRigQZ6pZsQ9pbmbEpncs4
 rmjDvBA5eHDlNMXq0ukqyrjxWTX4ZLBOBvuLhpyssSXnnu2T+Tcxg09+ZSTyJAe0
 LyC9Wfo0v78JASXMAdeH9b1d1mRYNMqjvnBItNQoqweoqUXWz7kvgxCOp6b/G4xp
 cX5YhB6BprBW2DXL45frMRT/zX77UkEKYc5+0IBegV2xfnhRsjqQAQaWLIksyEaX
 nz9/C6+1Sr2IAv271yykeJtY6gtlRjg/usTlYpev+K0ghvGvTmuilEiTltjHrso1
 XAMbfWHQGSd61LNXofvx/GLNfGBisS6dHVHwtkayinSjXNdWxI6w9fhbWVjQ+y2V
 hOF05lmzaJSG5kPLrsFHFqm2YcxOmsWkYYDBHvtmBkMZSf5B+9xxDv97Uy9NETcr
 eSYk//TEkKQqVazfCQS/9LSm0MllqKbwNO25sl0Tw2k6PnheO2g=
 =toqi
 -----END PGP SIGNATURE-----

Merge tag 'x86_seves_for_v5.10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull x86 SEV-ES support from Borislav Petkov:
 "SEV-ES enhances the current guest memory encryption support called SEV
  by also encrypting the guest register state, making the registers
  inaccessible to the hypervisor by en-/decrypting them on world
  switches. Thus, it adds additional protection to Linux guests against
  exfiltration, control flow and rollback attacks.

  With SEV-ES, the guest is in full control of what registers the
  hypervisor can access. This is provided by a guest-host exchange
  mechanism based on a new exception vector called VMM Communication
  Exception (#VC), a new instruction called VMGEXIT and a shared
  Guest-Host Communication Block which is a decrypted page shared
  between the guest and the hypervisor.

  Intercepts to the hypervisor become #VC exceptions in an SEV-ES guest
  so in order for that exception mechanism to work, the early x86 init
  code needed to be made able to handle exceptions, which, in itself,
  brings a bunch of very nice cleanups and improvements to the early
  boot code like an early page fault handler, allowing for on-demand
  building of the identity mapping. With that, !KASLR configurations do
  not use the EFI page table anymore but switch to a kernel-controlled
  one.

  The main part of this series adds the support for that new exchange
  mechanism. The goal has been to keep this as much as possibly separate
  from the core x86 code by concentrating the machinery in two
  SEV-ES-specific files:

    arch/x86/kernel/sev-es-shared.c
    arch/x86/kernel/sev-es.c

  Other interaction with core x86 code has been kept at minimum and
  behind static keys to minimize the performance impact on !SEV-ES
  setups.

  Work by Joerg Roedel and Thomas Lendacky and others"

* tag 'x86_seves_for_v5.10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (73 commits)
  x86/sev-es: Use GHCB accessor for setting the MMIO scratch buffer
  x86/sev-es: Check required CPU features for SEV-ES
  x86/efi: Add GHCB mappings when SEV-ES is active
  x86/sev-es: Handle NMI State
  x86/sev-es: Support CPU offline/online
  x86/head/64: Don't call verify_cpu() on starting APs
  x86/smpboot: Load TSS and getcpu GDT entry before loading IDT
  x86/realmode: Setup AP jump table
  x86/realmode: Add SEV-ES specific trampoline entry point
  x86/vmware: Add VMware-specific handling for VMMCALL under SEV-ES
  x86/kvm: Add KVM-specific VMMCALL handling under SEV-ES
  x86/paravirt: Allow hypervisor-specific VMMCALL handling under SEV-ES
  x86/sev-es: Handle #DB Events
  x86/sev-es: Handle #AC Events
  x86/sev-es: Handle VMMCALL Events
  x86/sev-es: Handle MWAIT/MWAITX Events
  x86/sev-es: Handle MONITOR/MONITORX Events
  x86/sev-es: Handle INVD Events
  x86/sev-es: Handle RDPMC Events
  x86/sev-es: Handle RDTSC(P) Events
  ...
2020-10-14 10:21:34 -07:00
Linus Torvalds 64743e652c * Misc cleanups to the resctrl code in preparation for the ARM side, by
James Morse.
 
 * Add support for controlling per-thread memory bandwidth throttling
 delay values on hw which supports it, by Fenghua Yu.
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAl+ENo0ACgkQEsHwGGHe
 VUpIAw/+JtO9mP/OxLUUQEkYGMlYWxiJKGxHdI0cnw6gN02TGakVPZS3RAhdrDPP
 Oahfl8g2EiC2sXSo0QEMFfZyEc/eOWo17wL1B+wgPfIIxy6KfGe6WtkHMNlOkWOS
 zKxUvR93PjSs7e1vS+AMGbqQVFcL4RTSZN5H/QDaBnkxd3O5uLEvUm4pOxPs9FtX
 etnK3eM4Uk6qfH9Pa0XZowp2RU0okRsatu+VREkEBplEplA1tusw3u//SlGgi266
 Jsy2Pa2S7D0PGaP2D2+eziNmff319AT1mLtZ/0PKjkeZtqq/Sz0MJ9TxkesyEQPH
 iv7IWzp+Dfc8Ui5rDNDvOIY+uJxQPMC0qwpU6sZdAgpsCcI5/xiSqTbBz6mxZeql
 vTINIs7Lg/FBfkUn52LxbWkl8QA6aLXYr3PwdcFJzyTYmQitYzdEKxn1i+teWKr2
 16QHR2GnXIEfc87JuHJpwiToUYZg+5UlVPkFTLNk/2n0gSiJzWMGecuHdS9spToR
 vtpt5vmcAJKUptJLwKId+oEHbMLrvDGjXLApD4x3ROeiKGY7Cf1OwNhAmn8QZ8K5
 S7wv9hbPZvkByQSsaNgDzzFUuYTP7cR9ILbwkHDixlpLyESnPzAsip5H4rq8gxLn
 OwRKFGRvGid72EaapEY3yMA++EfzPfnebUmiLakSfWLHquh+0XQ=
 =u3qb
 -----END PGP SIGNATURE-----

Merge tag 'x86_cache_for_v5.10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull x86 cache resource control updates from Borislav Petkov:

 - Misc cleanups to the resctrl code in preparation for the ARM side
   (James Morse)

 - Add support for controlling per-thread memory bandwidth throttling
   delay values on hw which supports it (Fenghua Yu)

* tag 'x86_cache_for_v5.10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/resctrl: Enable user to view thread or core throttling mode
  x86/resctrl: Enumerate per-thread MBA controls
  cacheinfo: Move resctrl's get_cache_id() to the cacheinfo header file
  x86/resctrl: Add struct rdt_cache::arch_has_{sparse, empty}_bitmaps
  x86/resctrl: Merge AMD/Intel parse_bw() calls
  x86/resctrl: Add struct rdt_membw::arch_needs_linear to explain AMD/Intel MBA difference
  x86/resctrl: Use is_closid_match() in more places
  x86/resctrl: Include pid.h
  x86/resctrl: Use container_of() in delayed_work handlers
  x86/resctrl: Fix stale comment
  x86/resctrl: Remove struct rdt_membw::max_delay
  x86/resctrl: Remove unused struct mbm_state::chunks_bw
2020-10-12 10:53:32 -07:00
Linus Torvalds ac74075e5d Initial support for sharing virtual addresses between the CPU and
devices which doesn't need pinning of pages for DMA anymore. Add support
 for the command submission to devices using new x86 instructions like
 ENQCMD{,S} and MOVDIR64B. In addition, add support for process address
 space identifiers (PASIDs) which are referenced by those command
 submission instructions along with the handling of the PASID state on
 context switch as another extended state. Work by Fenghua Yu, Ashok Raj,
 Yu-cheng Yu and Dave Jiang.
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAl996DIACgkQEsHwGGHe
 VUqM4A/+JDI3GxNyMyBpJR0nQ2vs23ru1o3OxvxhYtcacZ0cNwkaO7g3TLQxH+LZ
 k1QtvEd4jqI6BXV4de+HdZFDcqzikJf0KHnUflLTx956/Eop5rtxzMWVo69ZmYs8
 QrW0mLhyh8eq19cOHbQBb4M/HFc1DXBw+l7Ft3MeA1divOVESRB/uNxjA25K4PvV
 y+pipyUxqKSNhmBFf2bV8OVZloJiEtg3H6XudP0g/rZgjYe3qWxa+2iv6D08yBNe
 g7NpMDMql2uo1bcFON7se2oF34poAi49BfiIQb5G4m9pnPyvVEMOCijxCx2FHYyF
 nukyxt8g3Uq+UJYoolLNoWijL1jgBWeTBg1uuwsQOqWSARJx8nr859z0GfGyk2RP
 GNoYE4rrWBUMEqWk4xeiPPgRDzY0cgcGh0AeuWqNhgBfbbZeGL0t0m5kfytk5i1s
 W0YfRbz+T8+iYbgVfE/Zpthc7rH7iLL7/m34JC13+pzhPVTT32ECLJov2Ac8Tt15
 X+fOe6kmlDZa4GIhKRzUoR2aEyLpjufZ+ug50hznBQjGrQfcx7zFqRAU4sJx0Yyz
 rxUOJNZZlyJpkyXzc12xUvShaZvTcYenHGpxXl8TU3iMbY2otxk1Xdza8pc1LGQ/
 qneYgILgKa+hSBzKhXCPAAgSYtPlvQrRizArS8Y0k/9rYaKCfBU=
 =K9X4
 -----END PGP SIGNATURE-----

Merge tag 'x86_pasid_for_5.10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull x86 PASID updates from Borislav Petkov:
 "Initial support for sharing virtual addresses between the CPU and
  devices which doesn't need pinning of pages for DMA anymore.

  Add support for the command submission to devices using new x86
  instructions like ENQCMD{,S} and MOVDIR64B. In addition, add support
  for process address space identifiers (PASIDs) which are referenced by
  those command submission instructions along with the handling of the
  PASID state on context switch as another extended state.

  Work by Fenghua Yu, Ashok Raj, Yu-cheng Yu and Dave Jiang"

* tag 'x86_pasid_for_5.10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/asm: Add an enqcmds() wrapper for the ENQCMDS instruction
  x86/asm: Carve out a generic movdir64b() helper for general usage
  x86/mmu: Allocate/free a PASID
  x86/cpufeatures: Mark ENQCMD as disabled when configured out
  mm: Add a pasid member to struct mm_struct
  x86/msr-index: Define an IA32_PASID MSR
  x86/fpu/xstate: Add supervisor PASID state for ENQCMD
  x86/cpufeatures: Enumerate ENQCMD and ENQCMDS instructions
  Documentation/x86: Add documentation for SVA (Shared Virtual Addressing)
  iommu/vt-d: Change flags type to unsigned int in binding mm
  drm, iommu: Change type of pasid to u32
2020-10-12 10:40:34 -07:00
Krish Sadhukhan 5866e9205b x86/cpu: Add hardware-enforced cache coherency as a CPUID feature
In some hardware implementations, coherency between the encrypted and
unencrypted mappings of the same physical page is enforced. In such a system,
it is not required for software to flush the page from all CPU caches in the
system prior to changing the value of the C-bit for a page. This hardware-
enforced cache coherency is indicated by EAX[10] in CPUID leaf 0x8000001f.

 [ bp: Use one of the free slots in word 3. ]

Suggested-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20200917212038.5090-2-krish.sadhukhan@oracle.com
2020-09-18 10:46:41 +02:00
Fenghua Yu ff4f82816d x86/cpufeatures: Enumerate ENQCMD and ENQCMDS instructions
Work submission instruction comes in two flavors. ENQCMD can be called
both in ring 3 and ring 0 and always uses the contents of a PASID MSR
when shipping the command to the device. ENQCMDS allows a kernel driver
to submit commands on behalf of a user process. The driver supplies the
PASID value in ENQCMDS. There isn't any usage of ENQCMD in the kernel as
of now.

The CPU feature flag is shown as "enqcmd" in /proc/cpuinfo.

Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Link: https://lkml.kernel.org/r/1600187413-163670-5-git-send-email-fenghua.yu@intel.com
2020-09-17 20:03:54 +02:00
Tom Lendacky 360e7c5c4c x86/cpufeatures: Add SEV-ES CPU feature
Add CPU feature detection for Secure Encrypted Virtualization with
Encrypted State. This feature enhances SEV by also encrypting the
guest register state, making it in-accessible to the hypervisor.

Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20200907131613.12703-6-joro@8bytes.org
2020-09-07 19:45:24 +02:00
Kyung Min Park 18ec63faef x86/cpufeatures: Enumerate TSX suspend load address tracking instructions
Intel TSX suspend load tracking instructions aim to give a way to choose
which memory accesses do not need to be tracked in the TSX read set. Add
TSX suspend load tracking CPUID feature flag TSXLDTRK for enumeration.

A processor supports Intel TSX suspend load address tracking if
CPUID.0x07.0x0:EDX[16] is present. Two instructions XSUSLDTRK, XRESLDTRK
are available when this feature is present.

The CPU feature flag is shown as "tsxldtrk" in /proc/cpuinfo.

Signed-off-by: Kyung Min Park <kyung.min.park@intel.com>
Signed-off-by: Cathy Zhang <cathy.zhang@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Link: https://lkml.kernel.org/r/1598316478-23337-2-git-send-email-cathy.zhang@intel.com
2020-08-30 17:43:40 +02:00
Fenghua Yu e48cb1a3fb x86/resctrl: Enumerate per-thread MBA controls
Some systems support per-thread Memory Bandwidth Allocation (MBA) which
applies a throttling delay value to each hardware thread instead of to
a core. Per-thread MBA is enumerated by CPUID.

No feature flag is shown in /proc/cpuinfo. User applications need to
check a resctrl throttling mode info file to know if the feature is
supported.

Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Babu Moger <babu.moger@amd.com>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Link: https://lkml.kernel.org/r/1598296281-127595-2-git-send-email-fenghua.yu@intel.com
2020-08-26 17:46:12 +02:00
Linus Torvalds 335ad94c21 Misc changes:
- Prepare for Intel's new SERIALIZE instruction
  - Enable split-lock debugging on more CPUs
  - Add more Intel CPU models
  - Optimize stack canary initialization a bit
  - Simplify the Spectre logic a bit
 
 Signed-off-by: Ingo Molnar <mingo@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAl8oTsQRHG1pbmdvQGtl
 cm5lbC5vcmcACgkQEnMQ0APhK1gueQ//Vh9sTi8+q5ZCxXnJQOi59SZsFy1quC2Q
 6bFoSQ46npMBoYyC2eDQ4exBncWLqorT8Vq/evlW3XPldUzHKOk7b4Omonwyrrj5
 dg5fqcRjpjU8ni6egmy4ElMjab53gDuv0yNazjONeBGeWuBGu4vI2bP2eY3Addfm
 2eo2d5ZIMRCdShrUNwToJWWt6q4DzL/lcrVZAlX0LwlWVLqUCdIARALRM7V1XDsC
 udxS8KnvhTaJ7l63BSJREe3AGksLQd9P4UkJS4IE4t0zINBIrME043BYBMTh2Vvk
 y3jykKegIbmhPquGXG8grJbPDUF2/3FxmGKTIhpoo++agb2fxt921y5kqMJwniNS
 H/Gk032iGzjjwWnOoWE56UeuDTOlweSIrm4EG22HyEDK7kOMJusjYAV5fB4Sv7vj
 TBy5q0PCIutjXDTL1hIWf0WDiQt6eGNQS/yt3FlapLBGVRQwMU/pKYVVIOIaFtNs
 szx1ZeiT358Ww8a2fQlb8pqv50Upmr2wqFkAsMbm+NN3N92cqK6gJlo1p7fnxIuG
 +YVASobjsqbn0S62v/9SB/KRJz07adlZ6Tl/O/ILRvWyqik7COCCHDVJ62Zzaz5z
 LqR2daVM5H+Lp6jGZuIoq/JiUkxUe2K990eWHb3PUpOC4Rh73PvtMc7WFhbAjbye
 XV3eOEDi65c=
 =sL2Q
 -----END PGP SIGNATURE-----

Merge tag 'x86-cpu-2020-08-03' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull x86 cpu updates from Ingo Molar:

 - prepare for Intel's new SERIALIZE instruction

 - enable split-lock debugging on more CPUs

 - add more Intel CPU models

 - optimize stack canary initialization a bit

 - simplify the Spectre logic a bit

* tag 'x86-cpu-2020-08-03' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/cpu: Refactor sync_core() for readability
  x86/cpu: Relocate sync_core() to sync_core.h
  x86/cpufeatures: Add enumeration for SERIALIZE instruction
  x86/split_lock: Enable the split lock feature on Sapphire Rapids and Alder Lake CPUs
  x86/cpu: Add Lakefield, Alder Lake and Rocket Lake models to the to Intel CPU family
  x86/stackprotector: Pre-initialize canary for secondary CPUs
  x86/speculation: Merge one test in spectre_v2_user_select_mitigation()
2020-08-03 17:08:02 -07:00
Linus Torvalds 37e88224c0 Misc cleanups all around the place.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAl8oRTgRHG1pbmdvQGtl
 cm5lbC5vcmcACgkQEnMQ0APhK1huHQ//T2hZk5zlpOtojxvdAzsPgtV4tHawseK8
 +ZZEbrH5qo5/ZMF18qyEJCm9p1yg8uIu71InULRCSgjU3v82GVCcuLXuE36U904G
 gHUqkYPnqxCqx+Li125aye9tKWahXe1DxX+uWbV0Ju7fiCO0rwYIzpWn1bnR6ilp
 fmLGSbgPlTVJwZ9mBvyi3VUlH5tDYidFN74TREUOwx2g5uhg+8uEo44Eb/bx8ESF
 dGt1Z/fnfDHkUZtmhzJk5Uz8nbw7rPHU/EZ4iZAxEzxTutY5PhsvbIfLO4t4HhGn
 utZCk/pIdiLLQ1GaTvFxqi3iolDqpOuXpnDlfEAJD8UlMCnwyh1Certq5LaRbtHS
 8SW3/CeJgzqzrrsYhkxVu2PMFWriSMxgKTLiN0KnzJN0Hu7A5lHbBY/6G7zpsF/A
 2KJ4e8lZiPCcNF7LteSRroUe4hNOYxZ2FlYTXm3AgycSL189UMfWlHFb5c+b4m1a
 cNJpz+jAom8foXN4KhRkl5PFKXVXDGTVln3NRJCh1Mqd1Ef4hsTo9H6FgHX/EfHg
 slJDwwPac80v0dzlMTSsMkyseaKRAqIObWOiknPt1wv/qja7ibVZ5mUbZ+/mfJX/
 YWybcPi1omgUSNt7TNx6jtma67rUjmJW0x9g7UJ/ttEkf6yG2lemrdusydBYuIni
 0Z2+hWzI9MM=
 =X7o0
 -----END PGP SIGNATURE-----

Merge tag 'x86-cleanups-2020-08-03' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull x86 cleanups from Ingo Molnar:
 "Misc cleanups all around the place"

* tag 'x86-cleanups-2020-08-03' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/ioperm: Initialize pointer bitmap with NULL rather than 0
  x86: uv: uv_hub.h: Delete duplicated word
  x86: cmpxchg_32.h: Delete duplicated word
  x86: bootparam.h: Delete duplicated word
  x86/mm: Remove the unused mk_kernel_pgd() #define
  x86/tsc: Remove unused "US_SCALE" and "NS_SCALE" leftover macros
  x86/ioapic: Remove unused "IOAPIC_AUTO" define
  x86/mm: Drop unused MAX_PHYSADDR_BITS
  x86/msr: Move the F15h MSRs where they belong
  x86/idt: Make idt_descr static
  initrd: Remove erroneous comment
  x86/mm/32: Fix -Wmissing prototypes warnings for init.c
  cpu/speculation: Add prototype for cpu_show_srbds()
  x86/mm: Fix -Wmissing-prototypes warnings for arch/x86/mm/init.c
  x86/asm: Unify __ASSEMBLY__ blocks
  x86/cpufeatures: Mark two free bits in word 3
  x86/msr: Lift AMD family 0x15 power-specific MSRs
2020-08-03 16:53:28 -07:00
Ricardo Neri 85b23fbc7d x86/cpufeatures: Add enumeration for SERIALIZE instruction
The Intel architecture defines a set of Serializing Instructions (a
detailed definition can be found in Vol.3 Section 8.3 of the Intel "main"
manual, SDM). However, these instructions do more than what is required,
have side effects and/or may be rather invasive. Furthermore, some of
these instructions are only available in kernel mode or may cause VMExits.
Thus, software using these instructions only to serialize execution (as
defined in the manual) must handle the undesired side effects.

As indicated in the name, SERIALIZE is a new Intel architecture
Serializing Instruction. Crucially, it does not have any of the mentioned
side effects. Also, it does not cause VMExit and can be used in user mode.

This new instruction is currently documented in the latest "extensions"
manual (ISE). It will appear in the "main" manual in the future.

Signed-off-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Link: https://lore.kernel.org/r/20200727043132.15082-2-ricardo.neri-calderon@linux.intel.com
2020-07-27 12:42:06 +02:00
Kan Liang bd657aa3dd x86/cpufeatures: Add Architectural LBRs feature bit
CPUID.(EAX=07H, ECX=0):EDX[19] indicates whether an Intel CPU supports
Architectural LBRs.

The "X86_FEATURE_..., word 18" is already mirrored from CPUID
"0x00000007:0 (EDX)". Add X86_FEATURE_ARCH_LBR under the "word 18"
section.

The feature will appear as "arch_lbr" in /proc/cpuinfo.

The Architectural Last Branch Records (LBR) feature enables recording
of software path history by logging taken branches and other control
flows. The feature will be supported in the perf_events subsystem.

Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Link: https://lkml.kernel.org/r/1593780569-62993-2-git-send-email-kan.liang@linux.intel.com
2020-07-08 11:38:51 +02:00
Borislav Petkov fbd5969d1f x86/cpufeatures: Mark two free bits in word 3
... so that they get reused when needed.

No functional changes.

Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20200604104150.2056-1-bp@alien8.de
2020-06-15 19:26:23 +02:00
Mark Gross 7e5b3c267d x86/speculation: Add Special Register Buffer Data Sampling (SRBDS) mitigation
SRBDS is an MDS-like speculative side channel that can leak bits from the
random number generator (RNG) across cores and threads. New microcode
serializes the processor access during the execution of RDRAND and
RDSEED. This ensures that the shared buffer is overwritten before it is
released for reuse.

While it is present on all affected CPU models, the microcode mitigation
is not needed on models that enumerate ARCH_CAPABILITIES[MDS_NO] in the
cases where TSX is not supported or has been disabled with TSX_CTRL.

The mitigation is activated by default on affected processors and it
increases latency for RDRAND and RDSEED instructions. Among other
effects this will reduce throughput from /dev/urandom.

* Enable administrator to configure the mitigation off when desired using
  either mitigations=off or srbds=off.

* Export vulnerability status via sysfs

* Rename file-scoped macros to apply for non-whitelist table initializations.

 [ bp: Massage,
   - s/VULNBL_INTEL_STEPPING/VULNBL_INTEL_STEPPINGS/g,
   - do not read arch cap MSR a second time in tsx_fused_off() - just pass it in,
   - flip check in cpu_set_bug_bits() to save an indentation level,
   - reflow comments.
   jpoimboe: s/Mitigated/Mitigation/ in user-visible strings
   tglx: Dropped the fused off magic for now
 ]

Signed-off-by: Mark Gross <mgross@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Reviewed-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Tested-by: Neelima Krishnan <neelima.krishnan@intel.com>
2020-04-20 12:19:22 +02:00
Linus Torvalds 2853d5fafb Support for "split lock" detection:
- Atomic operations (lock prefixed instructions) which span two cache
     lines have to acquire the global bus lock. This is at least 1k cycles
     slower than an atomic operation within a cache line and disrupts
     performance on other cores. Aside of performance disruption this is
     a unpriviledged form of DoS.
 
     Some newer CPUs have the capability to raise an #AC trap when such an
     operation is attempted. The detection is by default enabled in warning
     mode which will warn once when a user space application is caught. A
     command line option allows to disable the detection or to select fatal
     mode which will terminate offending applications with SIGBUS.
 -----BEGIN PGP SIGNATURE-----
 
 iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl6B/uMTHHRnbHhAbGlu
 dXRyb25peC5kZQAKCRCmGPVMDXSYocsAD/9yqpw+XlPKNPsfbm9sbirBDfTrENcL
 F44iwn4WnrjoW/gnnZCYmPxJFsTtGVPqxHdUf4eyGemg9r9ZEO0DQftmUHC5Z6KX
 aa/b5JoeM61wp9HlpVlD4D1jVt4pWyQODQeZnUXE4DEzmRc3cD/5lSU+/VeaIwwz
 lxwUemqmXK7ucH2KA7smOGsl2nU6ED84q3mdOB1b4Cw+gWYMUnPJnuS/ipriBRx4
 BYbMItcxsFvtdO9Hx8PvGd5LUK0wW8JOWrYQICD2kLpZtHtGeaHpBzFzL0+nMU7d
 1epyDqJQDmX+PAzvj+EYyn3HTfobZlckn+tbxMQkkS+oDk1ywOZd+BancClvn5/5
 jMfPIQJF5bGASVnzGMWhzVdwthTZiMG4d1iKsUWOA/hN0ch0+rm1BqraToabsEFg
 Sv7/rvl9KtSOtMJTeAmMhlZUMBj9m8BtPFjniDwp6nw/upGgJdST5mrKFNYZvqOj
 JnXsEMr/nJVW6bnUvT6LF66xbHlzHdxtodkQWqF+IEsyRaOz1zAGpQamP98KxNLc
 dq/XYoEe1KqIFbg4BkNP+GeDL3FQDxjFNwPQnnjQEzWRbjkHlfmq1uKCsR2r8mBO
 fYNJ1X8lTyGV0kx/ERpWGazzabpzh+8Lr1yMhnoA3EWvlzUjmpN2PFI4oTpTrtzT
 c/q16SCxim3NWA==
 =D9x8
 -----END PGP SIGNATURE-----

Merge tag 'x86-splitlock-2020-03-30' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull x86 splitlock updates from Thomas Gleixner:
 "Support for 'split lock' detection:

  Atomic operations (lock prefixed instructions) which span two cache
  lines have to acquire the global bus lock. This is at least 1k cycles
  slower than an atomic operation within a cache line and disrupts
  performance on other cores. Aside of performance disruption this is a
  unpriviledged form of DoS.

  Some newer CPUs have the capability to raise an #AC trap when such an
  operation is attempted. The detection is by default enabled in warning
  mode which will warn once when a user space application is caught. A
  command line option allows to disable the detection or to select fatal
  mode which will terminate offending applications with SIGBUS"

* tag 'x86-splitlock-2020-03-30' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/split_lock: Avoid runtime reads of the TEST_CTRL MSR
  x86/split_lock: Rework the initialization flow of split lock detection
  x86/split_lock: Enable split lock detection by kernel
2020-03-30 19:35:52 -07:00
Linus Torvalds 9b82f05f86 Merge branch 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull perf updates from Ingo Molnar:
 "The main changes in this cycle were:

  Kernel side changes:

   - A couple of x86/cpu cleanups and changes were grandfathered in due
     to patch dependencies. These clean up the set of CPU model/family
     matching macros with a consistent namespace and C99 initializer
     style.

   - A bunch of updates to various low level PMU drivers:
       * AMD Family 19h L3 uncore PMU
       * Intel Tiger Lake uncore support
       * misc fixes to LBR TOS sampling

   - optprobe fixes

   - perf/cgroup: optimize cgroup event sched-in processing

   - misc cleanups and fixes

  Tooling side changes are to:

   - perf {annotate,expr,record,report,stat,test}

   - perl scripting

   - libapi, libperf and libtraceevent

   - vendor events on Intel and S390, ARM cs-etm

   - Intel PT updates

   - Documentation changes and updates to core facilities

   - misc cleanups, fixes and other enhancements"

* 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (89 commits)
  cpufreq/intel_pstate: Fix wrong macro conversion
  x86/cpu: Cleanup the now unused CPU match macros
  hwrng: via_rng: Convert to new X86 CPU match macros
  crypto: Convert to new CPU match macros
  ASoC: Intel: Convert to new X86 CPU match macros
  powercap/intel_rapl: Convert to new X86 CPU match macros
  PCI: intel-mid: Convert to new X86 CPU match macros
  mmc: sdhci-acpi: Convert to new X86 CPU match macros
  intel_idle: Convert to new X86 CPU match macros
  extcon: axp288: Convert to new X86 CPU match macros
  thermal: Convert to new X86 CPU match macros
  hwmon: Convert to new X86 CPU match macros
  platform/x86: Convert to new CPU match macros
  EDAC: Convert to new X86 CPU match macros
  cpufreq: Convert to new X86 CPU match macros
  ACPI: Convert to new X86 CPU match macros
  x86/platform: Convert to new CPU match macros
  x86/kernel: Convert to new CPU match macros
  x86/kvm: Convert to new CPU match macros
  x86/perf/events: Convert to new CPU match macros
  ...
2020-03-30 16:40:08 -07:00
Wei Huang 077168e241 x86/mce/amd: Add PPIN support for AMD MCE
Newer AMD CPUs support a feature called protected processor
identification number (PPIN). This feature can be detected via
CPUID_Fn80000008_EBX[23].

However, CPUID alone is not enough to read the processor identification
number - MSR_AMD_PPIN_CTL also needs to be configured properly. If, for
any reason, MSR_AMD_PPIN_CTL[PPIN_EN] can not be turned on, such as
disabled in BIOS, the CPU capability bit X86_FEATURE_AMD_PPIN needs to
be cleared.

When the X86_FEATURE_AMD_PPIN capability is available, the
identification number is issued together with the MCE error info in
order to keep track of the source of MCE errors.

 [ bp: Massage. ]

Co-developed-by: Smita Koralahalli Channabasappa <smita.koralahallichannabasappa@amd.com>
Signed-off-by: Smita Koralahalli Channabasappa <smita.koralahallichannabasappa@amd.com>
Signed-off-by: Wei Huang <wei.huang2@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Tony Luck <tony.luck@intel.com>
Link: https://lkml.kernel.org/r/20200321193800.3666964-1-wei.huang2@amd.com
2020-03-22 11:03:47 +01:00
Kim Phillips 753039ef8b x86/cpu/amd: Call init_amd_zn() om Family 19h processors too
Family 19h CPUs are Zen-based and still share most architectural
features with Family 17h CPUs, and therefore still need to call
init_amd_zn() e.g., to set the RECLAIM_DISTANCE override.

init_amd_zn() also sets X86_FEATURE_ZEN, which today is only used
in amd_set_core_ssb_state(), which isn't called on some late
model Family 17h CPUs, nor on any Family 19h CPUs:
X86_FEATURE_AMD_SSBD replaces X86_FEATURE_LS_CFG_SSBD on those
later model CPUs, where the SSBD mitigation is done via the
SPEC_CTRL MSR instead of the LS_CFG MSR.

Family 19h CPUs also don't have the erratum where the CPB feature
bit isn't set, but that code can stay unchanged and run safely
on Family 19h.

Signed-off-by: Kim Phillips <kim.phillips@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20200311191451.13221-1-kim.phillips@amd.com
2020-03-12 12:13:44 +01:00
Peter Zijlstra (Intel) 6650cdd9a8 x86/split_lock: Enable split lock detection by kernel
A split-lock occurs when an atomic instruction operates on data that spans
two cache lines. In order to maintain atomicity the core takes a global bus
lock.

This is typically >1000 cycles slower than an atomic operation within a
cache line. It also disrupts performance on other cores (which must wait
for the bus lock to be released before their memory operations can
complete). For real-time systems this may mean missing deadlines. For other
systems it may just be very annoying.

Some CPUs have the capability to raise an #AC trap when a split lock is
attempted.

Provide a command line option to give the user choices on how to handle
this:

split_lock_detect=
	off	- not enabled (no traps for split locks)
	warn	- warn once when an application does a
		  split lock, but allow it to continue
		  running.
	fatal	- Send SIGBUS to applications that cause split lock

On systems that support split lock detection the default is "warn". Note
that if the kernel hits a split lock in any mode other than "off" it will
OOPs.

One implementation wrinkle is that the MSR to control the split lock
detection is per-core, not per thread. This might result in some short
lived races on HT systems in "warn" mode if Linux tries to enable on one
thread while disabling on the other. Race analysis by Sean Christopherson:

  - Toggling of split-lock is only done in "warn" mode.  Worst case
    scenario of a race is that a misbehaving task will generate multiple
    #AC exceptions on the same instruction.  And this race will only occur
    if both siblings are running tasks that generate split-lock #ACs, e.g.
    a race where sibling threads are writing different values will only
    occur if CPUx is disabling split-lock after an #AC and CPUy is
    re-enabling split-lock after *its* previous task generated an #AC.
  - Transitioning between off/warn/fatal modes at runtime isn't supported
    and disabling is tracked per task, so hardware will always reach a steady
    state that matches the configured mode.  I.e. split-lock is guaranteed to
    be enabled in hardware once all _TIF_SLD threads have been scheduled out.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Co-developed-by: Fenghua Yu <fenghua.yu@intel.com>
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Co-developed-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20200126200535.GB30377@agluck-desk2.amr.corp.intel.com
2020-02-20 21:17:53 +01:00
Linus Torvalds c0275ae758 Merge branch 'x86-cpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 cpu-features updates from Ingo Molnar:
 "The biggest change in this cycle was a large series from Sean
  Christopherson to clean up the handling of VMX features. This both
  fixes bugs/inconsistencies and makes the code more coherent and
  future-proof.

  There are also two cleanups and a minor TSX syslog messages
  enhancement"

* 'x86-cpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (23 commits)
  x86/cpu: Remove redundant cpu_detect_cache_sizes() call
  x86/cpu: Print "VMX disabled" error message iff KVM is enabled
  KVM: VMX: Allow KVM_INTEL when building for Centaur and/or Zhaoxin CPUs
  perf/x86: Provide stubs of KVM helpers for non-Intel CPUs
  KVM: VMX: Use VMX_FEATURE_* flags to define VMCS control bits
  KVM: VMX: Check for full VMX support when verifying CPU compatibility
  KVM: VMX: Use VMX feature flag to query BIOS enabling
  KVM: VMX: Drop initialization of IA32_FEAT_CTL MSR
  x86/cpufeatures: Add flag to track whether MSR IA32_FEAT_CTL is configured
  x86/cpu: Set synthetic VMX cpufeatures during init_ia32_feat_ctl()
  x86/cpu: Print VMX flags in /proc/cpuinfo using VMX_FEATURES_*
  x86/cpu: Detect VMX features on Intel, Centaur and Zhaoxin CPUs
  x86/vmx: Introduce VMX_FEATURES_*
  x86/cpu: Clear VMX feature flag if VMX is not fully enabled
  x86/zhaoxin: Use common IA32_FEAT_CTL MSR initialization
  x86/centaur: Use common IA32_FEAT_CTL MSR initialization
  x86/mce: WARN once if IA32_FEAT_CTL MSR is left unlocked
  x86/intel: Initialize IA32_FEAT_CTL MSR at boot
  tools/x86: Sync msr-index.h from kernel sources
  selftests, kvm: Replace manual MSR defs with common msr-index.h
  ...
2020-01-28 12:46:42 -08:00
Sean Christopherson 85c17291e2 x86/cpufeatures: Add flag to track whether MSR IA32_FEAT_CTL is configured
Add a new feature flag, X86_FEATURE_MSR_IA32_FEAT_CTL, to track whether
IA32_FEAT_CTL has been initialized.  This will allow KVM, and any future
subsystems that depend on IA32_FEAT_CTL, to rely purely on cpufeatures
to query platform support, e.g. allows a future patch to remove KVM's
manual IA32_FEAT_CTL MSR checks.

Various features (on platforms that support IA32_FEAT_CTL) are dependent
on IA32_FEAT_CTL being configured and locked, e.g. VMX and LMCE.  The
MSR is always configured during boot, but only if the CPU vendor is
recognized by the kernel.  Because CPUID doesn't incorporate the current
IA32_FEAT_CTL value in its reporting of relevant features, it's possible
for a feature to be reported as supported in cpufeatures but not truly
enabled, e.g. if the CPU supports VMX but the kernel doesn't recognize
the CPU.

As a result, without the flag, KVM would see VMX as supported even if
IA32_FEAT_CTL hasn't been initialized, and so would need to manually
read the MSR and check the various enabling bits to avoid taking an
unexpected #GP on VMXON.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20191221044513.21680-14-sean.j.christopherson@intel.com
2020-01-13 18:49:00 +01:00
Tony Luck f444a5ff95 x86/cpufeatures: Add support for fast short REP; MOVSB
>From the Intel Optimization Reference Manual:

3.7.6.1 Fast Short REP MOVSB
Beginning with processors based on Ice Lake Client microarchitecture,
REP MOVSB performance of short operations is enhanced. The enhancement
applies to string lengths between 1 and 128 bytes long.  Support for
fast-short REP MOVSB is enumerated by the CPUID feature flag: CPUID
[EAX=7H, ECX=0H).EDX.FAST_SHORT_REP_MOVSB[bit 4] = 1. There is no change
in the REP STOS performance.

Add an X86_FEATURE_FSRM flag for this.

memmove() avoids REP MOVSB for short (< 32 byte) copies. Check FSRM and
use REP MOVSB for short copies on systems that support it.

 [ bp: Massage and add comment. ]

Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20191216214254.26492-1-tony.luck@intel.com
2020-01-08 11:29:25 +01:00
Linus Torvalds a25bbc2644 Merge branches 'x86-cpu-for-linus' and 'x86-fpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 cpu and fpu updates from Ingo Molnar:

 - math-emu fixes

 - CPUID updates

 - sanity-check RDRAND output to see whether the CPU at least pretends
   to produce random data

 - various unaligned-access across cachelines fixes in preparation of
   hardware level split-lock detection

 - fix MAXSMP constraints to not allow !CPUMASK_OFFSTACK kernels with
   larger than 512 NR_CPUS

 - misc FPU related cleanups

* 'x86-cpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/cpu: Align the x86_capability array to size of unsigned long
  x86/cpu: Align cpu_caps_cleared and cpu_caps_set to unsigned long
  x86/umip: Make the comments vendor-agnostic
  x86/Kconfig: Rename UMIP config parameter
  x86/Kconfig: Enforce limit of 512 CPUs with MAXSMP and no CPUMASK_OFFSTACK
  x86/cpufeatures: Add feature bit RDPRU on AMD
  x86/math-emu: Limit MATH_EMULATION to 486SX compatibles
  x86/math-emu: Check __copy_from_user() result
  x86/rdrand: Sanity-check RDRAND output

* 'x86-fpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/fpu: Use XFEATURE_FP/SSE enum values instead of hardcoded numbers
  x86/fpu: Shrink space allocated for xstate_comp_offsets
  x86/fpu: Update stale variable name in comment
2019-11-26 08:58:08 -08:00
Vineela Tummalapalli db4d30fbb7 x86/bugs: Add ITLB_MULTIHIT bug infrastructure
Some processors may incur a machine check error possibly resulting in an
unrecoverable CPU lockup when an instruction fetch encounters a TLB
multi-hit in the instruction TLB. This can occur when the page size is
changed along with either the physical address or cache type. The relevant
erratum can be found here:

   https://bugzilla.kernel.org/show_bug.cgi?id=205195

There are other processors affected for which the erratum does not fully
disclose the impact.

This issue affects both bare-metal x86 page tables and EPT.

It can be mitigated by either eliminating the use of large pages or by
using careful TLB invalidations when changing the page size in the page
tables.

Just like Spectre, Meltdown, L1TF and MDS, a new bit has been allocated in
MSR_IA32_ARCH_CAPABILITIES (PSCHANGE_MC_NO) and will be set on CPUs which
are mitigated against this issue.

Signed-off-by: Vineela Tummalapalli <vineela.tummalapalli@intel.com>
Co-developed-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2019-11-04 12:22:01 +01:00
Pawan Gupta 1b42f01741 x86/speculation/taa: Add mitigation for TSX Async Abort
TSX Async Abort (TAA) is a side channel vulnerability to the internal
buffers in some Intel processors similar to Microachitectural Data
Sampling (MDS). In this case, certain loads may speculatively pass
invalid data to dependent operations when an asynchronous abort
condition is pending in a TSX transaction.

This includes loads with no fault or assist condition. Such loads may
speculatively expose stale data from the uarch data structures as in
MDS. Scope of exposure is within the same-thread and cross-thread. This
issue affects all current processors that support TSX, but do not have
ARCH_CAP_TAA_NO (bit 8) set in MSR_IA32_ARCH_CAPABILITIES.

On CPUs which have their IA32_ARCH_CAPABILITIES MSR bit MDS_NO=0,
CPUID.MD_CLEAR=1 and the MDS mitigation is clearing the CPU buffers
using VERW or L1D_FLUSH, there is no additional mitigation needed for
TAA. On affected CPUs with MDS_NO=1 this issue can be mitigated by
disabling the Transactional Synchronization Extensions (TSX) feature.

A new MSR IA32_TSX_CTRL in future and current processors after a
microcode update can be used to control the TSX feature. There are two
bits in that MSR:

* TSX_CTRL_RTM_DISABLE disables the TSX sub-feature Restricted
Transactional Memory (RTM).

* TSX_CTRL_CPUID_CLEAR clears the RTM enumeration in CPUID. The other
TSX sub-feature, Hardware Lock Elision (HLE), is unconditionally
disabled with updated microcode but still enumerated as present by
CPUID(EAX=7).EBX{bit4}.

The second mitigation approach is similar to MDS which is clearing the
affected CPU buffers on return to user space and when entering a guest.
Relevant microcode update is required for the mitigation to work.  More
details on this approach can be found here:

  https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/mds.html

The TSX feature can be controlled by the "tsx" command line parameter.
If it is force-enabled then "Clear CPU buffers" (MDS mitigation) is
deployed. The effective mitigation state can be read from sysfs.

 [ bp:
   - massage + comments cleanup
   - s/TAA_MITIGATION_TSX_DISABLE/TAA_MITIGATION_TSX_DISABLED/g - Josh.
   - remove partial TAA mitigation in update_mds_branch_idle() - Josh.
   - s/tsx_async_abort_cmdline/tsx_async_abort_parse_cmdline/g
 ]

Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
2019-10-28 08:36:58 +01:00
Babu Moger 9d40b85bb4 x86/cpufeatures: Add feature bit RDPRU on AMD
AMD Zen 2 introduces a new RDPRU instruction which is used to give
access to some processor registers that are typically only accessible
when the privilege level is zero.

ECX is used as the implicit register to specify which register to read.
RDPRU places the specified register’s value into EDX:EAX.

For example, the RDPRU instruction can be used to read MPERF and APERF
at CPL > 0.

Add the feature bit so it is visible in /proc/cpuinfo.

Details are available in the AMD64 Architecture Programmer’s Manual:
https://www.amd.com/system/files/TechDocs/24594.pdf

Signed-off-by: Babu Moger <babu.moger@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Aaron Lewis <aaronlewis@google.com>
Cc: ak@linux.intel.com
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: "Peter Zijlstra (Intel)" <peterz@infradead.org>
Cc: robert.hu@linux.intel.com
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Thomas Hellstrom <thellstrom@vmware.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20191007204839.5727.10803.stgit@localhost.localdomain
2019-10-08 09:28:37 +02:00
Linus Torvalds 7ac63f6ba5 Merge branch 'x86-vmware-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 vmware updates from Ingo Molnar:
 "This updates the VMWARE guest driver with support for VMCALL/VMMCALL
  based hypercalls"

* 'x86-vmware-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  input/vmmouse: Update the backdoor call with support for new instructions
  drm/vmwgfx: Update the backdoor call with support for new instructions
  x86/vmware: Add a header file for hypercall definitions
  x86/vmware: Update platform detection code for VMCALL/VMMCALL hypercalls
2019-09-16 19:40:24 -07:00
Thomas Hellstrom b4dd4f6e36 x86/vmware: Add a header file for hypercall definitions
The new header is intended to be used by drivers using the backdoor.
Follow the KVM example using alternatives self-patching to choose
between vmcall, vmmcall and io instructions.

Also define two new CPU feature flags to indicate hypervisor support
for vmcall- and vmmcall instructions. The new XF86_FEATURE_VMW_VMMCALL
flag is needed because using XF86_FEATURE_VMMCALL might break QEMU/KVM
setups using the vmmouse driver. They rely on XF86_FEATURE_VMMCALL
on AMD to get the kvm_hypercall() right. But they do not yet implement
vmmcall for the VMware hypercall used by the vmmouse driver.

 [ bp: reflow hypercall %edx usage explanation comment. ]

Signed-off-by: Thomas Hellstrom <thellstrom@vmware.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Doug Covelli <dcovelli@vmware.com>
Cc: Aaron Lewis <aaronlewis@google.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: linux-graphics-maintainer@vmware.com
Cc: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Cc: Nicolas Ferre <nicolas.ferre@microchip.com>
Cc: Robert Hoo <robert.hu@linux.intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: virtualization@lists.linux-foundation.org
Cc: <pv-drivers@vmware.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190828080353.12658-3-thomas_os@shipmail.org
2019-08-28 13:32:06 +02:00
Ingo Molnar b3e30c9884 Linux 5.3-rc6
-----BEGIN PGP SIGNATURE-----
 
 iQFSBAABCAA8FiEEq68RxlopcLEwq+PEeb4+QwBBGIYFAl1i2wkeHHRvcnZhbGRz
 QGxpbnV4LWZvdW5kYXRpb24ub3JnAAoJEHm+PkMAQRiGcDQIAJINYON5WdDSFDpp
 htva213hSIxYLix8Dc4cTMk8qT/P2MAj9pPYERuLwIxWZlfbduW6Fxy8bJANZ7k3
 4cJ/IbmA5M5ZIaOJTTL45w8H0CMR/4mdPl5rb5k/Wkh449Cj101gZLlh0FEtR5zG
 uDJecKSuHjH1ikySk6+zmRG5X+lq6wNY8NkuBtfwAwLffFc0ljQHwPUMJ8ojgqt/
 p3ChNgtb/I6U6ExITlyktKdP59bAoHAoBiKKFZWw5yJWgXE2q4Sv9nT4Btkr5KdJ
 9mnWnSaSLwptNCOtU4tKLwFIZP2WoVXGPNxxq4XLoTEuieXCqmikhc9tSSTwk+Tp
 CKHN6wU=
 =JkJ4
 -----END PGP SIGNATURE-----

Merge tag 'v5.3-rc6' into x86/cpu, to pick up fixes

Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-08-26 11:20:55 +02:00
Thomas Gleixner f36cf386e3 x86/speculation/swapgs: Exclude ATOMs from speculation through SWAPGS
Intel provided the following information:

 On all current Atom processors, instructions that use a segment register
 value (e.g. a load or store) will not speculatively execute before the
 last writer of that segment retires. Thus they will not use a
 speculatively written segment value.

That means on ATOMs there is no speculation through SWAPGS, so the SWAPGS
entry paths can be excluded from the extra LFENCE if PTI is disabled.

Create a separate bug flag for the through SWAPGS speculation and mark all
out-of-order ATOMs and AMD/HYGON CPUs as not affected. The in-order ATOMs
are excluded from the whole mitigation mess anyway.

Reported-by: Andrew Cooper <andrew.cooper3@citrix.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Tyler Hicks <tyhicks@canonical.com>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
2019-07-28 21:39:55 +02:00
Josh Poimboeuf be261ffce6 x86: Remove X86_FEATURE_MFENCE_RDTSC
AMD and Intel both have serializing lfence (X86_FEATURE_LFENCE_RDTSC).
They've both had it for a long time, and AMD has had it enabled in Linux
since Spectre v1 was announced.

Back then, there was a proposal to remove the serializing mfence feature
bit (X86_FEATURE_MFENCE_RDTSC), since both AMD and Intel have
serializing lfence.  At the time, it was (ahem) speculated that some
hypervisors might not yet support its removal, so it remained for the
time being.

Now a year-and-a-half later, it should be safe to remove.

I asked Andrew Cooper about whether it's still needed:

  So if you're virtualised, you've got no choice in the matter.  lfence
  is either dispatch-serialising or not on AMD, and you won't be able to
  change it.

  Furthermore, you can't accurately tell what state the bit is in, because
  the MSR might not be virtualised at all, or may not reflect the true
  state in hardware.  Worse still, attempting to set the bit may not be
  successful even if there isn't a fault for doing so.

  Xen sets the DE_CFG bit unconditionally, as does Linux by the looks of
  things (see MSR_F10H_DECFG_LFENCE_SERIALIZE_BIT).  ISTR other hypervisor
  vendors saying the same, but I don't have any information to hand.

  If you are running under a hypervisor which has been updated, then
  lfence will almost certainly be dispatch-serialising in practice, and
  you'll almost certainly see the bit already set in DE_CFG.  If you're
  running under a hypervisor which hasn't been patched since Spectre,
  you've already lost in many more ways.

  I'd argue that X86_FEATURE_MFENCE_RDTSC is not worth keeping.

So remove it.  This will reduce some code rot, and also make it easier
to hook barrier_nospec() up to a cmdline disable for performance
raisins, without having to need an alternative_3() macro.

Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/d990aa51e40063acb9888e8c1b688e41355a9588.1562255067.git.jpoimboe@redhat.com
2019-07-22 12:00:51 +02:00
Gayatri Kammela 018ebca8bd x86/cpufeatures: Enable a new AVX512 CPU feature
Add a new AVX512 instruction group/feature for enumeration in
/proc/cpuinfo: AVX512_VP2INTERSECT.

CPUID.(EAX=7,ECX=0):EDX[bit 8]  AVX512_VP2INTERSECT

Detailed information of CPUID bits for this feature can be found in
the Intel Architecture Intsruction Set Extensions Programming Reference
document (refer to Table 1-2). A copy of this document is available at
https://bugzilla.kernel.org/show_bug.cgi?id=204215.

Signed-off-by: Gayatri Kammela <gayatri.kammela@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190717234632.32673-3-gayatri.kammela@intel.com
2019-07-22 10:38:25 +02:00
Josh Poimboeuf 18ec54fdd6 x86/speculation: Prepare entry code for Spectre v1 swapgs mitigations
Spectre v1 isn't only about array bounds checks.  It can affect any
conditional checks.  The kernel entry code interrupt, exception, and NMI
handlers all have conditional swapgs checks.  Those may be problematic in
the context of Spectre v1, as kernel code can speculatively run with a user
GS.

For example:

	if (coming from user space)
		swapgs
	mov %gs:<percpu_offset>, %reg
	mov (%reg), %reg1

When coming from user space, the CPU can speculatively skip the swapgs, and
then do a speculative percpu load using the user GS value.  So the user can
speculatively force a read of any kernel value.  If a gadget exists which
uses the percpu value as an address in another load/store, then the
contents of the kernel value may become visible via an L1 side channel
attack.

A similar attack exists when coming from kernel space.  The CPU can
speculatively do the swapgs, causing the user GS to get used for the rest
of the speculative window.

The mitigation is similar to a traditional Spectre v1 mitigation, except:

  a) index masking isn't possible; because the index (percpu offset)
     isn't user-controlled; and

  b) an lfence is needed in both the "from user" swapgs path and the
     "from kernel" non-swapgs path (because of the two attacks described
     above).

The user entry swapgs paths already have SWITCH_TO_KERNEL_CR3, which has a
CR3 write when PTI is enabled.  Since CR3 writes are serializing, the
lfences can be skipped in those cases.

On the other hand, the kernel entry swapgs paths don't depend on PTI.

To avoid unnecessary lfences for the user entry case, create two separate
features for alternative patching:

  X86_FEATURE_FENCE_SWAPGS_USER
  X86_FEATURE_FENCE_SWAPGS_KERNEL

Use these features in entry code to patch in lfences where needed.

The features aren't enabled yet, so there's no functional change.

Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
2019-07-09 14:11:45 +02:00
Fenghua Yu 6dbbf5ec9e x86/cpufeatures: Enumerate user wait instructions
umonitor, umwait, and tpause are a set of user wait instructions.

umonitor arms address monitoring hardware using an address. The
address range is determined by using CPUID.0x5. A store to
an address within the specified address range triggers the
monitoring hardware to wake up the processor waiting in umwait.

umwait instructs the processor to enter an implementation-dependent
optimized state while monitoring a range of addresses. The optimized
state may be either a light-weight power/performance optimized state
(C0.1 state) or an improved power/performance optimized state
(C0.2 state).

tpause instructs the processor to enter an implementation-dependent
optimized state C0.1 or C0.2 state and wake up when time-stamp counter
reaches specified timeout.

The three instructions may be executed at any privilege level.

The instructions provide power saving method while waiting in
user space. Additionally, they can allow a sibling hyperthread to
make faster progress while this thread is waiting. One example of an
application usage of umwait is when waiting for input data from another
application, such as a user level multi-threaded packet processing
engine.

Availability of the user wait instructions is indicated by the presence
of the CPUID feature flag WAITPKG CPUID.0x07.0x0:ECX[5].

Detailed information on the instructions and CPUID feature WAITPKG flag
can be found in the latest Intel Architecture Instruction Set Extensions
and Future Features Programming Reference and Intel 64 and IA-32
Architectures Software Developer's Manual.

Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ashok Raj <ashok.raj@intel.com>
Reviewed-by: Andy Lutomirski <luto@kernel.org>
Cc: "Borislav Petkov" <bp@alien8.de>
Cc: "H Peter Anvin" <hpa@zytor.com>
Cc: "Peter Zijlstra" <peterz@infradead.org>
Cc: "Tony Luck" <tony.luck@intel.com>
Cc: "Ravi V Shankar" <ravi.v.shankar@intel.com>
Link: https://lkml.kernel.org/r/1560994438-235698-2-git-send-email-fenghua.yu@intel.com
2019-06-24 01:44:19 +02:00
Fenghua Yu b302e4b176 x86/cpufeatures: Enumerate the new AVX512 BFLOAT16 instructions
AVX512 BFLOAT16 instructions support 16-bit BFLOAT16 floating-point
format (BF16) for deep learning optimization.

BF16 is a short version of 32-bit single-precision floating-point
format (FP32) and has several advantages over 16-bit half-precision
floating-point format (FP16). BF16 keeps FP32 accumulation after
multiplication without loss of precision, offers more than enough
range for deep learning training tasks, and doesn't need to handle
hardware exception.

AVX512 BFLOAT16 instructions are enumerated in CPUID.7.1:EAX[bit 5]
AVX512_BF16.

CPUID.7.1:EAX contains only feature bits. Reuse the currently empty
word 12 as a pure features word to hold the feature bits including
AVX512_BF16.

Detailed information of the CPUID bit and AVX512 BFLOAT16 instructions
can be found in the latest Intel Architecture Instruction Set Extensions
and Future Features Programming Reference.

 [ bp: Check CPUID(7) subleaf validity before accessing subleaf 1. ]

Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: "Chang S. Bae" <chang.seok.bae@intel.com>
Cc: Frederic Weisbecker <frederic@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nadav Amit <namit@vmware.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Pavel Tatashin <pasha.tatashin@oracle.com>
Cc: Peter Feiner <pfeiner@google.com>
Cc: Radim Krcmar <rkrcmar@redhat.com>
Cc: "Rafael J. Wysocki" <rafael.j.wysocki@intel.com>
Cc: "Ravi V Shankar" <ravi.v.shankar@intel.com>
Cc: Robert Hoo <robert.hu@linux.intel.com>
Cc: "Sean J Christopherson" <sean.j.christopherson@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Thomas Lendacky <Thomas.Lendacky@amd.com>
Cc: x86 <x86@kernel.org>
Link: https://lkml.kernel.org/r/1560794416-217638-3-git-send-email-fenghua.yu@intel.com
2019-06-20 12:38:49 +02:00
Fenghua Yu acec0ce081 x86/cpufeatures: Combine word 11 and 12 into a new scattered features word
It's a waste for the four X86_FEATURE_CQM_* feature bits to occupy two
whole feature bits words. To better utilize feature words, re-define
word 11 to host scattered features and move the four X86_FEATURE_CQM_*
features into Linux defined word 11. More scattered features can be
added in word 11 in the future.

Rename leaf 11 in cpuid_leafs to CPUID_LNX_4 to reflect it's a
Linux-defined leaf.

Rename leaf 12 as CPUID_DUMMY which will be replaced by a meaningful
name in the next patch when CPUID.7.1:EAX occupies world 12.

Maximum number of RMID and cache occupancy scale are retrieved from
CPUID.0xf.1 after scattered CQM features are enumerated. Carve out the
code into a separate function.

KVM doesn't support resctrl now. So it's safe to move the
X86_FEATURE_CQM_* features to scattered features word 11 for KVM.

Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Aaron Lewis <aaronlewis@google.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Babu Moger <babu.moger@amd.com>
Cc: "Chang S. Bae" <chang.seok.bae@intel.com>
Cc: "Sean J Christopherson" <sean.j.christopherson@intel.com>
Cc: Frederic Weisbecker <frederic@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: kvm ML <kvm@vger.kernel.org>
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Nadav Amit <namit@vmware.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Pavel Tatashin <pasha.tatashin@oracle.com>
Cc: Peter Feiner <pfeiner@google.com>
Cc: "Peter Zijlstra (Intel)" <peterz@infradead.org>
Cc: "Radim Krčmář" <rkrcmar@redhat.com>
Cc: "Rafael J. Wysocki" <rafael.j.wysocki@intel.com>
Cc: Ravi V Shankar <ravi.v.shankar@intel.com>
Cc: Sherry Hurwitz <sherry.hurwitz@amd.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Thomas Lendacky <Thomas.Lendacky@amd.com>
Cc: x86 <x86@kernel.org>
Link: https://lkml.kernel.org/r/1560794416-217638-2-git-send-email-fenghua.yu@intel.com
2019-06-20 12:38:44 +02:00
Aaron Lewis cbb99c0f58 x86/cpufeatures: Add FDP_EXCPTN_ONLY and ZERO_FCS_FDS
Add the CPUID enumeration for Intel's de-feature bits to accommodate
passing these de-features through to kvm guests.

These de-features are (from SDM vol 1, section 8.1.8):
 - X86_FEATURE_FDP_EXCPTN_ONLY: If CPUID.(EAX=07H,ECX=0H):EBX[bit 6] = 1, the
   data pointer (FDP) is updated only for the x87 non-control instructions that
   incur unmasked x87 exceptions.
 - X86_FEATURE_ZERO_FCS_FDS: If CPUID.(EAX=07H,ECX=0H):EBX[bit 13] = 1, the
   processor deprecates FCS and FDS; it saves each as 0000H.

Signed-off-by: Aaron Lewis <aaronlewis@google.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Jim Mattson <jmattson@google.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Frederic Weisbecker <frederic@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: marcorr@google.com
Cc: Peter Feiner <pfeiner@google.com>
Cc: pshier@google.com
Cc: Robert Hoo <robert.hu@linux.intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Thomas Lendacky <Thomas.Lendacky@amd.com>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190605220252.103406-1-aaronlewis@google.com
2019-06-14 12:26:22 +02:00
Linus Torvalds fa4bff1650 Merge branch 'x86-mds-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 MDS mitigations from Thomas Gleixner:
 "Microarchitectural Data Sampling (MDS) is a hardware vulnerability
  which allows unprivileged speculative access to data which is
  available in various CPU internal buffers. This new set of misfeatures
  has the following CVEs assigned:

     CVE-2018-12126  MSBDS  Microarchitectural Store Buffer Data Sampling
     CVE-2018-12130  MFBDS  Microarchitectural Fill Buffer Data Sampling
     CVE-2018-12127  MLPDS  Microarchitectural Load Port Data Sampling
     CVE-2019-11091  MDSUM  Microarchitectural Data Sampling Uncacheable Memory

  MDS attacks target microarchitectural buffers which speculatively
  forward data under certain conditions. Disclosure gadgets can expose
  this data via cache side channels.

  Contrary to other speculation based vulnerabilities the MDS
  vulnerability does not allow the attacker to control the memory target
  address. As a consequence the attacks are purely sampling based, but
  as demonstrated with the TLBleed attack samples can be postprocessed
  successfully.

  The mitigation is to flush the microarchitectural buffers on return to
  user space and before entering a VM. It's bolted on the VERW
  instruction and requires a microcode update. As some of the attacks
  exploit data structures shared between hyperthreads, full protection
  requires to disable hyperthreading. The kernel does not do that by
  default to avoid breaking unattended updates.

  The mitigation set comes with documentation for administrators and a
  deeper technical view"

* 'x86-mds-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (23 commits)
  x86/speculation/mds: Fix documentation typo
  Documentation: Correct the possible MDS sysfs values
  x86/mds: Add MDSUM variant to the MDS documentation
  x86/speculation/mds: Add 'mitigations=' support for MDS
  x86/speculation/mds: Print SMT vulnerable on MSBDS with mitigations off
  x86/speculation/mds: Fix comment
  x86/speculation/mds: Add SMT warning message
  x86/speculation: Move arch_smt_update() call to after mitigation decisions
  x86/speculation/mds: Add mds=full,nosmt cmdline option
  Documentation: Add MDS vulnerability documentation
  Documentation: Move L1TF to separate directory
  x86/speculation/mds: Add mitigation mode VMWERV
  x86/speculation/mds: Add sysfs reporting for MDS
  x86/speculation/mds: Add mitigation control for MDS
  x86/speculation/mds: Conditionally clear CPU buffers on idle entry
  x86/kvm/vmx: Add MDS protection when L1D Flush is not active
  x86/speculation/mds: Clear CPU buffers on exit to user
  x86/speculation/mds: Add mds_clear_cpu_buffers()
  x86/kvm: Expose X86_FEATURE_MD_CLEAR to guests
  x86/speculation/mds: Add BUG_MSBDS_ONLY
  ...
2019-05-14 07:57:29 -07:00
Thomas Gleixner e261f209c3 x86/speculation/mds: Add BUG_MSBDS_ONLY
This bug bit is set on CPUs which are only affected by Microarchitectural
Store Buffer Data Sampling (MSBDS) and not by any other MDS variant.

This is important because the Store Buffers are partitioned between
Hyper-Threads so cross thread forwarding is not possible. But if a thread
enters or exits a sleep state the store buffer is repartitioned which can
expose data from one thread to the other. This transition can be mitigated.

That means that for CPUs which are only affected by MSBDS SMT can be
enabled, if the CPU is not affected by other SMT sensitive vulnerabilities,
e.g. L1TF. The XEON PHI variants fall into that category. Also the
Silvermont/Airmont ATOMs, but for them it's not really relevant as they do
not support SMT, but mark them for completeness sake.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Reviewed-by: Jon Masters <jcm@redhat.com>
Tested-by: Jon Masters <jcm@redhat.com>
2019-03-06 21:52:11 +01:00
Andi Kleen ed5194c273 x86/speculation/mds: Add basic bug infrastructure for MDS
Microarchitectural Data Sampling (MDS), is a class of side channel attacks
on internal buffers in Intel CPUs. The variants are:

 - Microarchitectural Store Buffer Data Sampling (MSBDS) (CVE-2018-12126)
 - Microarchitectural Fill Buffer Data Sampling (MFBDS) (CVE-2018-12130)
 - Microarchitectural Load Port Data Sampling (MLPDS) (CVE-2018-12127)

MSBDS leaks Store Buffer Entries which can be speculatively forwarded to a
dependent load (store-to-load forwarding) as an optimization. The forward
can also happen to a faulting or assisting load operation for a different
memory address, which can be exploited under certain conditions. Store
buffers are partitioned between Hyper-Threads so cross thread forwarding is
not possible. But if a thread enters or exits a sleep state the store
buffer is repartitioned which can expose data from one thread to the other.

MFBDS leaks Fill Buffer Entries. Fill buffers are used internally to manage
L1 miss situations and to hold data which is returned or sent in response
to a memory or I/O operation. Fill buffers can forward data to a load
operation and also write data to the cache. When the fill buffer is
deallocated it can retain the stale data of the preceding operations which
can then be forwarded to a faulting or assisting load operation, which can
be exploited under certain conditions. Fill buffers are shared between
Hyper-Threads so cross thread leakage is possible.

MLDPS leaks Load Port Data. Load ports are used to perform load operations
from memory or I/O. The received data is then forwarded to the register
file or a subsequent operation. In some implementations the Load Port can
contain stale data from a previous operation which can be forwarded to
faulting or assisting loads under certain conditions, which again can be
exploited eventually. Load ports are shared between Hyper-Threads so cross
thread leakage is possible.

All variants have the same mitigation for single CPU thread case (SMT off),
so the kernel can treat them as one MDS issue.

Add the basic infrastructure to detect if the current CPU is affected by
MDS.

[ tglx: Rewrote changelog ]

Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Reviewed-by: Jon Masters <jcm@redhat.com>
Tested-by: Jon Masters <jcm@redhat.com>
2019-03-06 21:52:11 +01:00
Peter Zijlstra (Intel) 52f6490940 x86: Add TSX Force Abort CPUID/MSR
Skylake systems will receive a microcode update to address a TSX
errata. This microcode will (by default) clobber PMC3 when TSX
instructions are (speculatively or not) executed.

It also provides an MSR to cause all TSX transaction to abort and
preserve PMC3.

Add the CPUID enumeration and MSR definition.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2019-03-06 09:25:41 +01:00
Linus Torvalds 42b00f122c * ARM: selftests improvements, large PUD support for HugeTLB,
single-stepping fixes, improved tracing, various timer and vGIC
 fixes
 
 * x86: Processor Tracing virtualization, STIBP support, some correctness fixes,
 refactorings and splitting of vmx.c, use the Hyper-V range TLB flush hypercall,
 reduce order of vcpu struct, WBNOINVD support, do not use -ftrace for __noclone
 functions, nested guest support for PAUSE filtering on AMD, more Hyper-V
 enlightenments (direct mode for synthetic timers)
 
 * PPC: nested VFIO
 
 * s390: bugfixes only this time
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2.0.22 (GNU/Linux)
 
 iQEcBAABAgAGBQJcH0vFAAoJEL/70l94x66Dw/wH/2FZp1YOM5OgiJzgqnXyDbyf
 dNEfWo472MtNiLsuf+ZAfJojVIu9cv7wtBfXNzW+75XZDfh/J88geHWNSiZDm3Fe
 aM4MOnGG0yF3hQrRQyEHe4IFhGFNERax8Ccv+OL44md9CjYrIrsGkRD08qwb+gNh
 P8T/3wJEKwUcVHA/1VHEIM8MlirxNENc78p6JKd/C7zb0emjGavdIpWFUMr3SNfs
 CemabhJUuwOYtwjRInyx1y34FzYwW3Ejuc9a9UoZ+COahUfkuxHE8u+EQS7vLVF6
 2VGVu5SA0PqgmLlGhHthxLqVgQYo+dB22cRnsLtXlUChtVAq8q9uu5sKzvqEzuE=
 =b4Jx
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull KVM updates from Paolo Bonzini:
 "ARM:
   - selftests improvements
   - large PUD support for HugeTLB
   - single-stepping fixes
   - improved tracing
   - various timer and vGIC fixes

  x86:
   - Processor Tracing virtualization
   - STIBP support
   - some correctness fixes
   - refactorings and splitting of vmx.c
   - use the Hyper-V range TLB flush hypercall
   - reduce order of vcpu struct
   - WBNOINVD support
   - do not use -ftrace for __noclone functions
   - nested guest support for PAUSE filtering on AMD
   - more Hyper-V enlightenments (direct mode for synthetic timers)

  PPC:
   -  nested VFIO

  s390:
   - bugfixes only this time"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (171 commits)
  KVM: x86: Add CPUID support for new instruction WBNOINVD
  kvm: selftests: ucall: fix exit mmio address guessing
  Revert "compiler-gcc: disable -ftracer for __noclone functions"
  KVM: VMX: Move VM-Enter + VM-Exit handling to non-inline sub-routines
  KVM: VMX: Explicitly reference RCX as the vmx_vcpu pointer in asm blobs
  KVM: x86: Use jmp to invoke kvm_spurious_fault() from .fixup
  MAINTAINERS: Add arch/x86/kvm sub-directories to existing KVM/x86 entry
  KVM/x86: Use SVM assembly instruction mnemonics instead of .byte streams
  KVM/MMU: Flush tlb directly in the kvm_zap_gfn_range()
  KVM/MMU: Flush tlb directly in kvm_set_pte_rmapp()
  KVM/MMU: Move tlb flush in kvm_set_pte_rmapp() to kvm_mmu_notifier_change_pte()
  KVM: Make kvm_set_spte_hva() return int
  KVM: Replace old tlb flush function with new one to flush a specified range.
  KVM/MMU: Add tlb flush with range helper function
  KVM/VMX: Add hv tlb range flush support
  x86/hyper-v: Add HvFlushGuestAddressList hypercall support
  KVM: Add tlb_remote_flush_with_range callback in kvm_x86_ops
  KVM: x86: Disable Intel PT when VMXON in L1 guest
  KVM: x86: Set intercept for Intel PT MSRs read/write
  KVM: x86: Implement Intel PT MSRs read/write emulation
  ...
2018-12-26 11:46:28 -08:00
Robert Hoo a0aea130af KVM: x86: Add CPUID support for new instruction WBNOINVD
Signed-off-by: Robert Hoo <robert.hu@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-12-21 14:26:32 +01:00
Thomas Lendacky 20c3a2c33e x86/speculation: Add support for STIBP always-on preferred mode
Different AMD processors may have different implementations of STIBP.
When STIBP is conditionally enabled, some implementations would benefit
from having STIBP always on instead of toggling the STIBP bit through MSR
writes. This preference is advertised through a CPUID feature bit.

When conditional STIBP support is requested at boot and the CPU advertises
STIBP always-on mode as preferred, switch to STIBP "on" support. To show
that this transition has occurred, create a new spectre_v2_user_mitigation
value and a new spectre_v2_user_strings message. The new mitigation value
is used in spectre_v2_user_select_mitigation() to print the new mitigation
message as well as to return a new string from stibp_state().

Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: David Woodhouse <dwmw@amazon.co.uk>
Link: https://lkml.kernel.org/r/20181213230352.6937.74943.stgit@tlendack-t1.amdoffice.net
2018-12-18 14:13:33 +01:00
Fenghua Yu ace6485a03 x86/cpufeatures: Enumerate MOVDIR64B instruction
MOVDIR64B moves 64-bytes as direct-store with 64-bytes write atomicity.
Direct store is implemented by using write combining (WC) for writing
data directly into memory without caching the data.

In low latency offload (e.g. Non-Volatile Memory, etc), MOVDIR64B writes
work descriptors (and data in some cases) to device-hosted work-queues
atomically without cache pollution.

Availability of the MOVDIR64B instruction is indicated by the
presence of the CPUID feature flag MOVDIR64B (CPUID.0x07.0x0:ECX[bit 28]).

Please check the latest Intel Architecture Instruction Set Extensions
and Future Features Programming Reference for more details on the CPUID
feature MOVDIR64B flag.

Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Ashok Raj <ashok.raj@intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ravi V Shankar <ravi.v.shankar@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1540418237-125817-3-git-send-email-fenghua.yu@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-10-25 07:42:48 +02:00
Fenghua Yu 33823f4d63 x86/cpufeatures: Enumerate MOVDIRI instruction
MOVDIRI moves doubleword or quadword from register to memory through
direct store which is implemented by using write combining (WC) for
writing data directly into memory without caching the data.

Programmable agents can handle streaming offload (e.g. high speed packet
processing in network). Hardware implements a doorbell (tail pointer)
register that is updated by software when adding new work-elements to
the streaming offload work-queue.

MOVDIRI can be used as the doorbell write which is a 4-byte or 8-byte
uncachable write to MMIO. MOVDIRI has lower overhead than other ways
to write the doorbell.

Availability of the MOVDIRI instruction is indicated by the presence of
the CPUID feature flag MOVDIRI(CPUID.0x07.0x0:ECX[bit 27]).

Please check the latest Intel Architecture Instruction Set Extensions
and Future Features Programming Reference for more details on the CPUID
feature MOVDIRI flag.

Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Ashok Raj <ashok.raj@intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ravi V Shankar <ravi.v.shankar@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1540418237-125817-2-git-send-email-fenghua.yu@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-10-25 07:42:48 +02:00
Linus Torvalds 958f338e96 Merge branch 'l1tf-final' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Merge L1 Terminal Fault fixes from Thomas Gleixner:
 "L1TF, aka L1 Terminal Fault, is yet another speculative hardware
  engineering trainwreck. It's a hardware vulnerability which allows
  unprivileged speculative access to data which is available in the
  Level 1 Data Cache when the page table entry controlling the virtual
  address, which is used for the access, has the Present bit cleared or
  other reserved bits set.

  If an instruction accesses a virtual address for which the relevant
  page table entry (PTE) has the Present bit cleared or other reserved
  bits set, then speculative execution ignores the invalid PTE and loads
  the referenced data if it is present in the Level 1 Data Cache, as if
  the page referenced by the address bits in the PTE was still present
  and accessible.

  While this is a purely speculative mechanism and the instruction will
  raise a page fault when it is retired eventually, the pure act of
  loading the data and making it available to other speculative
  instructions opens up the opportunity for side channel attacks to
  unprivileged malicious code, similar to the Meltdown attack.

  While Meltdown breaks the user space to kernel space protection, L1TF
  allows to attack any physical memory address in the system and the
  attack works across all protection domains. It allows an attack of SGX
  and also works from inside virtual machines because the speculation
  bypasses the extended page table (EPT) protection mechanism.

  The assoicated CVEs are: CVE-2018-3615, CVE-2018-3620, CVE-2018-3646

  The mitigations provided by this pull request include:

   - Host side protection by inverting the upper address bits of a non
     present page table entry so the entry points to uncacheable memory.

   - Hypervisor protection by flushing L1 Data Cache on VMENTER.

   - SMT (HyperThreading) control knobs, which allow to 'turn off' SMT
     by offlining the sibling CPU threads. The knobs are available on
     the kernel command line and at runtime via sysfs

   - Control knobs for the hypervisor mitigation, related to L1D flush
     and SMT control. The knobs are available on the kernel command line
     and at runtime via sysfs

   - Extensive documentation about L1TF including various degrees of
     mitigations.

  Thanks to all people who have contributed to this in various ways -
  patches, review, testing, backporting - and the fruitful, sometimes
  heated, but at the end constructive discussions.

  There is work in progress to provide other forms of mitigations, which
  might be less horrible performance wise for a particular kind of
  workloads, but this is not yet ready for consumption due to their
  complexity and limitations"

* 'l1tf-final' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (75 commits)
  x86/microcode: Allow late microcode loading with SMT disabled
  tools headers: Synchronise x86 cpufeatures.h for L1TF additions
  x86/mm/kmmio: Make the tracer robust against L1TF
  x86/mm/pat: Make set_memory_np() L1TF safe
  x86/speculation/l1tf: Make pmd/pud_mknotpresent() invert
  x86/speculation/l1tf: Invert all not present mappings
  cpu/hotplug: Fix SMT supported evaluation
  KVM: VMX: Tell the nested hypervisor to skip L1D flush on vmentry
  x86/speculation: Use ARCH_CAPABILITIES to skip L1D flush on vmentry
  x86/speculation: Simplify sysfs report of VMX L1TF vulnerability
  Documentation/l1tf: Remove Yonah processors from not vulnerable list
  x86/KVM/VMX: Don't set l1tf_flush_l1d from vmx_handle_external_intr()
  x86/irq: Let interrupt handlers set kvm_cpu_l1tf_flush_l1d
  x86: Don't include linux/irq.h from asm/hardirq.h
  x86/KVM/VMX: Introduce per-host-cpu analogue of l1tf_flush_l1d
  x86/irq: Demote irq_cpustat_t::__softirq_pending to u16
  x86/KVM/VMX: Move the l1tf_flush_l1d test to vmx_l1d_flush()
  x86/KVM/VMX: Replace 'vmx_l1d_flush_always' with 'vmx_l1d_flush_cond'
  x86/KVM/VMX: Don't set l1tf_flush_l1d to true from vmx_l1d_flush()
  cpu/hotplug: detect SMT disabled by BIOS
  ...
2018-08-14 09:46:06 -07:00
Linus Torvalds eac3411944 Merge branch 'x86/pti' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 PTI updates from Thomas Gleixner:
 "The Speck brigade sadly provides yet another large set of patches
  destroying the perfomance which we carefully built and preserved

   - PTI support for 32bit PAE. The missing counter part to the 64bit
     PTI code implemented by Joerg.

   - A set of fixes for the Global Bit mechanics for non PCID CPUs which
     were setting the Global Bit too widely and therefore possibly
     exposing interesting memory needlessly.

   - Protection against userspace-userspace SpectreRSB

   - Support for the upcoming Enhanced IBRS mode, which is preferred
     over IBRS. Unfortunately we dont know the performance impact of
     this, but it's expected to be less horrible than the IBRS
     hammering.

   - Cleanups and simplifications"

* 'x86/pti' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (60 commits)
  x86/mm/pti: Move user W+X check into pti_finalize()
  x86/relocs: Add __end_rodata_aligned to S_REL
  x86/mm/pti: Clone kernel-image on PTE level for 32 bit
  x86/mm/pti: Don't clear permissions in pti_clone_pmd()
  x86/mm/pti: Fix 32 bit PCID check
  x86/mm/init: Remove freed kernel image areas from alias mapping
  x86/mm/init: Add helper for freeing kernel image pages
  x86/mm/init: Pass unconverted symbol addresses to free_init_pages()
  mm: Allow non-direct-map arguments to free_reserved_area()
  x86/mm/pti: Clear Global bit more aggressively
  x86/speculation: Support Enhanced IBRS on future CPUs
  x86/speculation: Protect against userspace-userspace spectreRSB
  x86/kexec: Allocate 8k PGDs for PTI
  Revert "perf/core: Make sure the ring-buffer is mapped in all page-tables"
  x86/mm: Remove in_nmi() warning from vmalloc_fault()
  x86/entry/32: Check for VM86 mode in slow-path check
  perf/core: Make sure the ring-buffer is mapped in all page-tables
  x86/pti: Check the return value of pti_user_pagetable_walk_pmd()
  x86/pti: Check the return value of pti_user_pagetable_walk_p4d()
  x86/entry/32: Add debug code to check entry/exit CR3
  ...
2018-08-13 17:54:17 -07:00
Sai Praneeth 706d51681d x86/speculation: Support Enhanced IBRS on future CPUs
Future Intel processors will support "Enhanced IBRS" which is an "always
on" mode i.e. IBRS bit in SPEC_CTRL MSR is enabled once and never
disabled.

From the specification [1]:

 "With enhanced IBRS, the predicted targets of indirect branches
  executed cannot be controlled by software that was executed in a less
  privileged predictor mode or on another logical processor. As a
  result, software operating on a processor with enhanced IBRS need not
  use WRMSR to set IA32_SPEC_CTRL.IBRS after every transition to a more
  privileged predictor mode. Software can isolate predictor modes
  effectively simply by setting the bit once. Software need not disable
  enhanced IBRS prior to entering a sleep state such as MWAIT or HLT."

If Enhanced IBRS is supported by the processor then use it as the
preferred spectre v2 mitigation mechanism instead of Retpoline. Intel's
Retpoline white paper [2] states:

 "Retpoline is known to be an effective branch target injection (Spectre
  variant 2) mitigation on Intel processors belonging to family 6
  (enumerated by the CPUID instruction) that do not have support for
  enhanced IBRS. On processors that support enhanced IBRS, it should be
  used for mitigation instead of retpoline."

The reason why Enhanced IBRS is the recommended mitigation on processors
which support it is that these processors also support CET which
provides a defense against ROP attacks. Retpoline is very similar to ROP
techniques and might trigger false positives in the CET defense.

If Enhanced IBRS is selected as the mitigation technique for spectre v2,
the IBRS bit in SPEC_CTRL MSR is set once at boot time and never
cleared. Kernel also has to make sure that IBRS bit remains set after
VMEXIT because the guest might have cleared the bit. This is already
covered by the existing x86_spec_ctrl_set_guest() and
x86_spec_ctrl_restore_host() speculation control functions.

Enhanced IBRS still requires IBPB for full mitigation.

[1] Speculative-Execution-Side-Channel-Mitigations.pdf
[2] Retpoline-A-Branch-Target-Injection-Mitigation.pdf
Both documents are available at:
https://bugzilla.kernel.org/show_bug.cgi?id=199511

Originally-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Sai Praneeth Prakhya <sai.praneeth.prakhya@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim C Chen <tim.c.chen@intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Ravi Shankar <ravi.v.shankar@intel.com>
Link: https://lkml.kernel.org/r/1533148945-24095-1-git-send-email-sai.praneeth.prakhya@intel.com
2018-08-03 12:50:34 +02:00
Peter Feiner 301d328a6f x86/cpufeatures: Add EPT_AD feature bit
Some Intel processors have an EPT feature whereby the accessed & dirty bits
in EPT entries can be updated by HW. MSR IA32_VMX_EPT_VPID_CAP exposes the
presence of this capability.

There is no point in trying to use that new feature bit in the VMX code as
VMX needs to read the MSR anyway to access other bits, but having the
feature bit for EPT_AD in place helps virtualization management as it
exposes "ept_ad" in /proc/cpuinfo/$proc/flags if the feature is present.

[ tglx: Amended changelog ]

Signed-off-by: Peter Feiner <pfeiner@google.com>
Signed-off-by: Peter Shier <pshier@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Jim Mattson <jmattson@google.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: David Woodhouse <dwmw@amazon.co.uk>
Link: https://lkml.kernel.org/r/20180801180657.138051-1-pshier@google.com
2018-08-03 12:36:23 +02:00