xfs_trans.h has a dependency on xfs_log.h for a couple of
structures. Most code that does transactions doesn't need to know
anything about the log, but this dependency means that they have to
include xfs_log.h. Decouple the xfs_trans.h and xfs_log.h header
files and clean up the includes to be in dependency order.
In doing this, remove the direct include of xfs_trans_reserve.h from
xfs_trans.h so that we remove the dependency between xfs_trans.h and
xfs_mount.h. Hence the xfs_trans.h include can be moved to the
indicate the actual dependencies other header files have on it.
Note that these are kernel only header files, so this does not
translate to any userspace changes at all.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
We don't do callbacks at transaction commit time, no do we have any
infrastructure to set up or run such callbacks, so remove the
variables and typedefs for these operations. If we ever need to add
callbacks, we can reintroduce the variables at that time.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
In optimising the CIL operations, some of the IOP_* macros for
calling log item operations were removed. Remove the rest of them as
Christoph requested.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Geoffrey Wehrman <gwehrman@sgi.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Now that we have the size of the log vector that has been allocated,
we can determine if we need to allocate a new log vector for
formatting and insertion. We only need to allocate a new vector if
it won't fit into the existing buffer.
However, we need to hold the CIL context lock while we do this so
that we can't race with a push draining the currently queued log
vectors. It is safe to do this as long as we do GFP_NOFS allocation
to avoid avoid memory allocation recursing into the filesystem.
Hence we can safely overwrite the existing log vector on the CIL if
it is large enough to hold all the dirty regions of the current
item.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Now that we have the size of the object before the formatting pass
is called, we can allocation the log vector and it's buffer in a
single allocation rather than two separate allocations.
Store the size of the allocated buffer in the log vector so that
we potentially avoid allocation for future modifications of the
object.
While touching this code, remove the IOP_FORMAT definition.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
To begin optimising the CIL commit process, we need to have IOP_SIZE
return both the number of vectors and the size of the data pointed
to by the vectors. This enables us to calculate the size ofthe
memory allocation needed before the formatting step and reduces the
number of memory allocations per item by one.
While there, kill the IOP_SIZE macro.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
With the new xfs_trans_res structure has been introduced, the log
reservation size, log count as well as log flags are pre-initialized
at mount time. So it's time to refine xfs_trans_reserve() interface
to be more neat.
Also, introduce a new helper M_RES() to return a pointer to the
mp->m_resv structure to simplify the input.
Signed-off-by: Jie Liu <jeff.liu@oracle.com>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
The transaction reservation size calculations is used by both kernel
and userspace, but most of the transaction code in xfs_trans.c is
kernel specific. Split all the transaction reservation code out into
it's own files to make sharing with userspace simpler. This just
leaves kernel-only definitions in xfs_trans.h, so it doesn't need to
be shared with userspace anymore, either.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Little things like exported functions, __KERNEL__ protections, and
so on that ensure user and kernel shared headers are identical.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
There's a bunch of definitions in xfs_trans.h that define on-disk
formats - transaction headers that get written into the log, log
item type definitions, etc. Split out everything into a separate
file so that all which remains in xfs_trans.h are kernel only
definitions.
Also, remove the duplicate magic number definitions for
XFS_TRANS_MAGIC...
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Introduce the inode create log item type for logical inode create logging.
Instead of logging the changes in buffers, pass the range to be
initialised through the log by a new transaction type. This reduces
the amount of log space required to record initialisation during
allocation from about 128 bytes per inode to a small fixed amount
per inode extent to be initialised.
This requires a new log item type to track it through the log
and the AIL. This is a relatively simple item - most callbacks are
noops as this item has the same life cycle as the transaction.
Signed-off-by: Dave Chinner <david@fromorbit.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
If we have a buffer that we have modified but we do not wish to
physically log in a transaction (e.g. we've logged a logical
change), we still need to ensure that transactional integrity is
maintained. Hence we must not move the tail of the log past the
transaction that the buffer is associated with before the buffer is
written to disk.
This means these special buffers still need to be included in the
transaction and added to the AIL just like a normal buffer, but we
do not want the modifications to the buffer written into the
transaction. IOWs, what we want is an "ordered buffer" that
maintains the same transactional life cycle as a physically logged
buffer, just without the transcribing of the modifications to the
log.
Hence we need to flag the buffer as an "ordered buffer" to avoid
including it in vector size calculations or formatting during the
transaction. Once the transaction is committed, the buffer appears
for all intents to be the same as a physically logged buffer as it
transitions through the log and AIL.
Relogging will also work just fine for such an ordered buffer - the
logical transaction will be replayed before the subsequent
modifications that relog the buffer, so everything will be
reconstructed correctly by recovery.
Signed-off-by: Dave Chinner <david@fromorbit.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Upstream commit 5b292ae3a9
xfs: make use of xfs_calc_buf_res() in xfs_trans.c
Beginning from above commit, neither XFS_ALLOCFREE_LOG_RES() nor
XFS_DIROP_LOG_RES() is used by those routines for calculating
transaction space reservations, so it's safe to remove them now.
Also, with a slightly update for the relevant comments to reflect
the ideas of why those log count numbers should be.
Signed-off-by: Jie Liu <jeff.liu@oracle.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Running a CONFIG_XFS_DEBUG kernel in production environments is not
the best idea as it introduces significant overhead, can change
the behaviour of algorithms (such as allocation) to improve test
coverage, and (most importantly) panic the machine on non-fatal
errors.
There are many cases where all we want to do is run a
kernel with more bounds checking enabled, such as is provided by the
ASSERT() statements throughout the code, but without all the
potential overhead and drawbacks.
This patch converts all the ASSERT statements to evaluate as
WARN_ON(1) statements and hence if they fail dump a warning and a
stack trace to the log. This has minimal overhead and does not
change any algorithms, and will allow us to find strange "out of
bounds" problems more easily on production machines.
There are a few places where assert statements contain debug only
code. These are converted to be debug-or-warn only code so that we
still get all the assert checks in the code.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
The buffer type passed to log recvoery in the buffer log item
overruns the blf_flags field. I had assumed that flags field was a
32 bit value, and it turns out it is a unisgned short. Therefore
having 19 flags doesn't really work.
Convert the buffer type field to numeric value, and use the top 5
bits of the flags field for it. We currently have 17 types of
buffers, so using 5 bits gives us plenty of room for expansion in
future....
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Add buffer types to the buffer log items so that log recovery can
validate the buffers and calculate CRCs correctly after the buffers
are recovered.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Add support for larger btree blocks that contains a CRC32C checksum,
a filesystem uuid and block number for detecting filesystem
consistency and out of place writes.
[dchinner@redhat.com] Also include an owner field to allow reverse
mappings to be implemented for improved repairability and a LSN
field to so that log recovery can easily determine the last
modification that made it to disk for each buffer.
[dchinner@redhat.com] Add buffer log format flags to indicate the
type of buffer to recovery so that we don't have to do blind magic
number tests to determine what the buffer is.
[dchinner@redhat.com] Modified to fit into the verifier structure.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Currently, we calculate the attribute set transaction
log space reservation at runtime in two parts:
1) XFS_ATTRSET_LOG_RES() which is calcuated out at mount time.
2) ((ext * (mp)->m_sb.sb_sectsize) + \
(ext * XFS_FSB_TO_B((mp), XFS_BM_MAXLEVELS(mp, XFS_ATTR_FORK))) + \
(128 * (ext + (ext * XFS_BM_MAXLEVELS(mp, XFS_ATTR_FORK))))))
which is calculated out at runtime since it depend on the given extent length in blocks.
This patch renamed XFS_ATTRSET_LOG_RES(mp) to XFS_ATTRSETM_LOG_RES(mp) to indicate
that it is figured out at mount time. Introduce XFS_ATTRSETRT_LOG_RES(mp) which would
be used to calculate out the unit of the log space reservation for one block.
In this way, the total runtime space for the given extent length can be figured out by:
XFS_ATTRSETM_LOG_RES(mp) + XFS_ATTRSETRT_LOG_RES(mp) * ext
Signed-off-by: Jie Liu <jeff.liu@oracle.com>
CC: Dave Chinner <david@fromorbit.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Introduce a new transaction space reservation XFS_SB_LOG_RES() for
those transactions that need to modify the superblock on disk.
Signed-off-by: Jie Liu <jeff.liu@oracle.com>
CC: Dave Chinner <david@fromorbit.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Convert the calculation for end of quotaoff log space reservation
from runtime to mount time.
Signed-off-by: Jie Liu <jeff.liu@oracle.com>
CC: Dave Chinner <david@fromorbit.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Convert the calculation of quota off transaction log space reservation
from runtime to mount time.
Signed-off-by: Jie Liu <jeff.liu@oracle.com>
CC: Dave Chinner <david@fromorbit.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
The disk quota allocation log space reservation is calcuated at runtime,
this patch does it at mount time.
Signed-off-by: Jie Liu <jeff.liu@oracle.com>
CC: Dave Chinner <david@fromorbit.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
For adjusting quota limits transactions, we calculate out the log space
reservation at runtime, this patch does it at mount time.
Signed-off-by: Jie Liu <jeff.liu@oracle.com>
CC: Dave Chinner <david@fromorbit.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
The transaction log space for clearing/reseting the quota flags
is calculated out at runtime, this patch can figure it out at
mount time.
Signed-off-by: Jie Liu <jeff.liu@oracle.com>
CC: Dave Chinner <david@fromorbit.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
To separate the verifiers from iodone functions and associate read
and write verifiers at the same time, introduce a buffer verifier
operations structure to the xfs_buf.
This avoids the need for assigning the write verifier, clearing the
iodone function and re-running ioend processing in the read
verifier, and gets rid of the nasty "b_pre_io" name for the write
verifier function pointer. If we ever need to, it will also be
easier to add further content specific callbacks to a buffer with an
ops structure in place.
We also avoid needing to export verifier functions, instead we
can simply export the ops structures for those that are needed
outside the function they are defined in.
This patch also fixes a directory block readahead verifier issue
it exposed.
This patch also adds ops callbacks to the inode/alloc btree blocks
initialised by growfs. These will need more work before they will
work with CRCs.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Phil White <pwhite@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Add a verifier function callback capability to the buffer read
interfaces. This will be used by the callers to supply a function
that verifies the contents of the buffer when it is read from disk.
This patch does not provide callback functions, but simply modifies
the interfaces to allow them to be called.
The reason for adding this to the read interfaces is that it is very
difficult to tell fom the outside is a buffer was just read from
disk or whether we just pulled it out of cache. Supplying a callbck
allows the buffer cache to use it's internal knowledge of the buffer
to execute it only when the buffer is read from disk.
It is intended that the verifier functions will mark the buffer with
an EFSCORRUPTED error when verification fails. This allows the
reading context to distinguish a verification error from an IO
error, and potentially take further actions on the buffer (e.g.
attempt repair) based on the error reported.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Phil White <pwhite@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Pull second vfs pile from Al Viro:
"The stuff in there: fsfreeze deadlock fixes by Jan (essentially, the
deadlock reproduced by xfstests 068), symlink and hardlink restriction
patches, plus assorted cleanups and fixes.
Note that another fsfreeze deadlock (emergency thaw one) is *not*
dealt with - the series by Fernando conflicts a lot with Jan's, breaks
userland ABI (FIFREEZE semantics gets changed) and trades the deadlock
for massive vfsmount leak; this is going to be handled next cycle.
There probably will be another pull request, but that stuff won't be
in it."
Fix up trivial conflicts due to unrelated changes next to each other in
drivers/{staging/gdm72xx/usb_boot.c, usb/gadget/storage_common.c}
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (54 commits)
delousing target_core_file a bit
Documentation: Correct s_umount state for freeze_fs/unfreeze_fs
fs: Remove old freezing mechanism
ext2: Implement freezing
btrfs: Convert to new freezing mechanism
nilfs2: Convert to new freezing mechanism
ntfs: Convert to new freezing mechanism
fuse: Convert to new freezing mechanism
gfs2: Convert to new freezing mechanism
ocfs2: Convert to new freezing mechanism
xfs: Convert to new freezing code
ext4: Convert to new freezing mechanism
fs: Protect write paths by sb_start_write - sb_end_write
fs: Skip atime update on frozen filesystem
fs: Add freezing handling to mnt_want_write() / mnt_drop_write()
fs: Improve filesystem freezing handling
switch the protection of percpu_counter list to spinlock
nfsd: Push mnt_want_write() outside of i_mutex
btrfs: Push mnt_want_write() outside of i_mutex
fat: Push mnt_want_write() outside of i_mutex
...
Generic code now blocks all writers from standard write paths. So we add
blocking of all writers coming from ioctl (we get a protection of ioctl against
racing remount read-only as a bonus) and convert xfs_file_aio_write() to a
non-racy freeze protection. We also keep freeze protection on transaction
start to block internal filesystem writes such as removal of preallocated
blocks.
CC: Ben Myers <bpm@sgi.com>
CC: Alex Elder <elder@kernel.org>
CC: xfs@oss.sgi.com
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Now that the buffer cache supports discontiguous buffers, add
support to the transaction buffer interface for getting and reading
buffers.
Note that this patch does not convert the buffer item logging to
support discontiguous buffers. That will be done as a separate
commit.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
Queue delwri buffers on a local on-stack list instead of a per-buftarg one,
and write back the buffers per-process instead of by waking up xfsbufd.
This is now easily doable given that we have very few places left that write
delwri buffers:
- log recovery:
Only done at mount time, and already forcing out the buffers
synchronously using xfs_flush_buftarg
- quotacheck:
Same story.
- dquot reclaim:
Writes out dirty dquots on the LRU under memory pressure. We might
want to look into doing more of this via xfsaild, but it's already
more optimal than the synchronous inode reclaim that writes each
buffer synchronously.
- xfsaild:
This is the main beneficiary of the change. By keeping a local list
of buffers to write we reduce latency of writing out buffers, and
more importably we can remove all the delwri list promotions which
were hitting the buffer cache hard under sustained metadata loads.
The implementation is very straight forward - xfs_buf_delwri_queue now gets
a new list_head pointer that it adds the delwri buffers to, and all callers
need to eventually submit the list using xfs_buf_delwi_submit or
xfs_buf_delwi_submit_nowait. Buffers that already are on a delwri list are
skipped in xfs_buf_delwri_queue, assuming they already are on another delwri
list. The biggest change to pass down the buffer list was done to the AIL
pushing. Now that we operate on buffers the trylock, push and pushbuf log
item methods are merged into a single push routine, which tries to lock the
item, and if possible add the buffer that needs writeback to the buffer list.
This leads to much simpler code than the previous split but requires the
individual IOP_PUSH instances to unlock and reacquire the AIL around calls
to blocking routines.
Given that xfsailds now also handle writing out buffers, the conditions for
log forcing and the sleep times needed some small changes. The most
important one is that we consider an AIL busy as long we still have buffers
to push, and the other one is that we do increment the pushed LSN for
buffers that are under flushing at this moment, but still count them towards
the stuck items for restart purposes. Without this we could hammer on stuck
items without ever forcing the log and not make progress under heavy random
delete workloads on fast flash storage devices.
[ Dave Chinner:
- rebase on previous patches.
- improved comments for XBF_DELWRI_Q handling
- fix XBF_ASYNC handling in queue submission (test 106 failure)
- rename delwri submit function buffer list parameters for clarity
- xfs_efd_item_push() should return XFS_ITEM_PINNED ]
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Outside the now removed nodelaylog code this field is only used for
asserts and can be safely removed now.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
The log item ops aren't nessecarily the biggest exploit vector, but marking
them const is easy enough. Also remove the unused xfs_item_ops_t typedef
while we're at it.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Alex Elder <aelder@sgi.com>
Resolved conflicts:
fs/xfs/xfs_trans_priv.h:
- deleted struct xfs_ail field xa_flags
- kept field xa_log_flush in struct xfs_ail
fs/xfs/xfs_trans_ail.c:
- in xfsaild_push(), in XFS_ITEM_PUSHBUF case, replaced
"flush_log = 1" with "ailp->xa_log_flush++"
Signed-off-by: Alex Elder <aelder@sgi.com>
There is no reason to keep a reference to the inode even if we unlock
it during transaction commit because we never drop a reference between
the ijoin and commit. Also use this fact to merge xfs_trans_ijoin_ref
back into xfs_trans_ijoin - the third argument decides if an unlock
is needed now.
I'm actually starting to wonder if allowing inodes to be unlocked
at transaction commit really is worth the effort. The only real
benefit is that they can be unlocked earlier when commiting a
synchronous transactions, but that could be solved by doing the
log force manually after the unlock, too.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
Only read the LSN we need to push to with the ilock held, and then release
it before we do the log force to improve concurrency.
This also removes the only direct caller of _xfs_trans_commit, thus
allowing it to be merged into the plain xfs_trans_commit again.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
We need to check for pinned buffers even in .iop_pushbuf given that inode
items flush into the same buffers that may be pinned directly due operations
on the unlinked inode list operating directly on buffers. To do this add a
return value to .iop_pushbuf that tells the AIL push about this and use
the existing log force mechanisms to unpin it.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reported-by: Stefan Priebe <s.priebe@profihost.ag>
Tested-by: Stefan Priebe <s.priebe@profihost.ag>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Alex Elder <aelder@sgi.com>
Currently we return iodes from xfs_ialloc with just a single reference held.
But we need two references, as one is dropped during transaction commit and
the second needs to be transfered to the VFS. Change xfs_ialloc to use
xfs_iget plus xfs_trans_ijoin_ref to grab two references to the inode,
and remove the now superflous IHOLD calls from all callers. This also
greatly simplifies the error handling in xfs_create and also allow to remove
xfs_trans_iget as no other callers are left.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Alex Elder <aelder@sgi.com>
Now that the buffer reclaim infrastructure can handle different reclaim
priorities for different types of buffers, reconnect the hooks in the
XFS code that has been sitting dormant since it was ported to Linux. This
should finally give use reclaim prioritisation that is on a par with the
functionality that Irix provided XFS 15 years ago.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Under heavy multi-way parallel create workloads, the VFS struggles
to write back all the inodes that have been changed in age order.
The bdi flusher thread becomes CPU bound, spending 85% of it's time
in the VFS code, mostly traversing the superblock dirty inode list
to separate dirty inodes old enough to flush.
We already keep an index of all metadata changes in age order - in
the AIL - and continued log pressure will do age ordered writeback
without any extra overhead at all. If there is no pressure on the
log, the xfssyncd will periodically write back metadata in ascending
disk address offset order so will be very efficient.
Hence we can stop marking VFS inodes dirty during transaction commit
or when changing timestamps during transactions. This will keep the
inodes in the superblock dirty list to those containing data or
unlogged metadata changes.
However, the timstamp changes are slightly more complex than this -
there are a couple of places that do unlogged updates of the
timestamps, and the VFS need to be informed of these. Hence add a
new function xfs_trans_ichgtime() for transactional changes,
and leave xfs_ichgtime() for the non-transactional changes.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Alex Elder <aelder@sgi.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Currently we need to either call IHOLD or xfs_trans_ihold on an inode when
joining it to a transaction via xfs_trans_ijoin.
This patches instead makes xfs_trans_ijoin usable on it's own by doing
an implicity xfs_trans_ihold, which also allows us to drop the third
argument. For the case where we want to hold a reference on the inode
a xfs_trans_ijoin_ref wrapper is added which does the IHOLD and marks
the inode for needing an xfs_iput. In addition to the cleaner interface
to the caller this also simplifies the implementation.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
The unpin_remove item operation instances always share most of the
implementation with the respective unpin implementation. So instead
of keeping two different entry points add a remove flag to the unpin
operation and share the code more easily.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Currently we track log item descriptor belonging to a transaction using a
complex opencoded chunk allocator. This code has been there since day one
and seems to work around the lack of an efficient slab allocator.
This patch replaces it with dynamically allocated log item descriptors
from a dedicated slab pool, linked to the transaction by a linked list.
This allows to greatly simplify the log item descriptor tracking to the
point where it's just a couple hundred lines in xfs_trans.c instead of
a separate file. The external API has also been simplified while we're
at it - the xfs_trans_add_item and xfs_trans_del_item functions to add/
delete items from a transaction have been simplified to the bare minium,
and the xfs_trans_find_item function is replaced with a direct dereference
of the li_desc field. All debug code walking the list of log items in
a transaction is down to a simple list_for_each_entry.
Note that we could easily use a singly linked list here instead of the
double linked list from list.h as the fastpath only does deletion from
sequential traversal. But given that we don't have one available as
a library function yet I use the list.h functions for simplicity.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Instead of having small helper functions calling big macros do the
calculations for the log reservations directly in the functions.
These are mostly 1:1 from the macros execept that the macros kept
the quota calculations in their callers.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
With delayed logging, we can get inode allocation buffers in the
same transaction inode unlink buffers. We don't currently mark inode
allocation buffers in the log, so inode unlink buffers take
precedence over allocation buffers.
The result is that when they are combined into the same checkpoint,
only the unlinked inode chain fields are replayed, resulting in
uninitialised inode buffers being detected when the next inode
modification is replayed.
To fix this, we need to ensure that we do not set the inode buffer
flag in the buffer log item format flags if the inode allocation has
not already hit the log. To avoid requiring a change to log
recovery, we really need to make this a modification that relies
only on in-memory sate.
We can do this by checking during buffer log formatting (while the
CIL cannot be flushed) if we are still in the same sequence when we
commit the unlink transaction as the inode allocation transaction.
If we are, then we do not add the inode buffer flag to the buffer
log format item flags. This means the entire buffer will be
replayed, not just the unlinked fields. We do this while
CIL flusheѕ are locked out to ensure that we don't race with the
sequence numbers changing and hence fail to put the inode buffer
flag in the buffer format flags when we really need to.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
The delayed logging code only changes in-memory structures and as
such can be enabled and disabled with a mount option. Add the mount
option and emit a warning that this is an experimental feature that
should not be used in production yet.
We also need infrastructure to track committed items that have not
yet been written to the log. This is what the Committed Item List
(CIL) is for.
The log item also needs to be extended to track the current log
vector, the associated memory buffer and it's location in the Commit
Item List. Extend the log item and log vector structures to enable
this tracking.
To maintain the current log format for transactions with delayed
logging, we need to introduce a checkpoint transaction and a context
for tracking each checkpoint from initiation to transaction
completion. This includes adding a log ticket for tracking space
log required/used by the context checkpoint.
To track all the changes we need an io vector array per log item,
rather than a single array for the entire transaction. Using the new
log vector structure for this requires two passes - the first to
allocate the log vector structures and chain them together, and the
second to fill them out. This log vector chain can then be passed
to the CIL for formatting, pinning and insertion into the CIL.
Formatting of the log vector chain is relatively simple - it's just
a loop over the iovecs on each log vector, but it is made slightly
more complex because we re-write the iovec after the copy to point
back at the memory buffer we just copied into.
This code also needs to pin log items. If the log item is not
already tracked in this checkpoint context, then it needs to be
pinned. Otherwise it is already pinned and we don't need to pin it
again.
The only other complexity is calculating the amount of new log space
the formatting has consumed. This needs to be accounted to the
transaction in progress, and the accounting is made more complex
becase we need also to steal space from it for log metadata in the
checkpoint transaction. Calculate all this at insert time and update
all the tickets, counters, etc correctly.
Once we've formatted all the log items in the transaction, attach
the busy extents to the checkpoint context so the busy extents live
until checkpoint completion and can be processed at that point in
time. Transactions can then be freed at this point in time.
Now we need to issue checkpoints - we are tracking the amount of log space
used by the items in the CIL, so we can trigger background checkpoints when the
space usage gets to a certain threshold. Otherwise, checkpoints need ot be
triggered when a log synchronisation point is reached - a log force event.
Because the log write code already handles chained log vectors, writing the
transaction is trivial, too. Construct a transaction header, add it
to the head of the chain and write it into the log, then issue a
commit record write. Then we can release the checkpoint log ticket
and attach the context to the log buffer so it can be called during
Io completion to complete the checkpoint.
We also need to allow for synchronising multiple in-flight
checkpoints. This is needed for two things - the first is to ensure
that checkpoint commit records appear in the log in the correct
sequence order (so they are replayed in the correct order). The
second is so that xfs_log_force_lsn() operates correctly and only
flushes and/or waits for the specific sequence it was provided with.
To do this we need a wait variable and a list tracking the
checkpoint commits in progress. We can walk this list and wait for
the checkpoints to change state or complete easily, an this provides
the necessary synchronisation for correct operation in both cases.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
When we free a metadata extent, we record it in the per-AG busy
extent array so that it is not re-used before the freeing
transaction hits the disk. This array is fixed size, so when it
overflows we make further allocation transactions synchronous
because we cannot track more freed extents until those transactions
hit the disk and are completed. Under heavy mixed allocation and
freeing workloads with large log buffers, we can overflow this array
quite easily.
Further, the array is sparsely populated, which means that inserts
need to search for a free slot, and array searches often have to
search many more slots that are actually used to check all the
busy extents. Quite inefficient, really.
To enable this aspect of extent freeing to scale better, we need
a structure that can grow dynamically. While in other areas of
XFS we have used radix trees, the extents being freed are at random
locations on disk so are better suited to being indexed by an rbtree.
So, use a per-AG rbtree indexed by block number to track busy
extents. This incures a memory allocation when marking an extent
busy, but should not occur too often in low memory situations. This
should scale to an arbitrary number of extents so should not be a
limitation for features such as in-memory aggregation of
transactions.
However, there are still situations where we can't avoid allocating
busy extents (such as allocation from the AGFL). To minimise the
overhead of such occurences, we need to avoid doing a synchronous
log force while holding the AGF locked to ensure that the previous
transactions are safely on disk before we use the extent. We can do
this by marking the transaction doing the allocation as synchronous
rather issuing a log force.
Because of the locking involved and the ordering of transactions,
the synchronous transaction provides the same guarantees as a
synchronous log force because it ensures that all the prior
transactions are already on disk when the synchronous transaction
hits the disk. i.e. it preserves the free->allocate order of the
extent correctly in recovery.
By doing this, we avoid holding the AGF locked while log writes are
in progress, hence reducing the length of time the lock is held and
therefore we increase the rate at which we can allocate and free
from the allocation group, thereby increasing overall throughput.
The only problem with this approach is that when a metadata buffer is
marked stale (e.g. a directory block is removed), then buffer remains
pinned and locked until the log goes to disk. The issue here is that
if that stale buffer is reallocated in a subsequent transaction, the
attempt to lock that buffer in the transaction will hang waiting
the log to go to disk to unlock and unpin the buffer. Hence if
someone tries to lock a pinned, stale, locked buffer we need to
push on the log to get it unlocked ASAP. Effectively we are trading
off a guaranteed log force for a much less common trigger for log
force to occur.
Ideally we should not reallocate busy extents. That is a much more
complex fix to the problem as it involves direct intervention in the
allocation btree searches in many places. This is left to a future
set of modifications.
Finally, now that we track busy extents in allocated memory, we
don't need the descriptors in the transaction structure to point to
them. We can replace the complex busy chunk infrastructure with a
simple linked list of busy extents. This allows us to remove a large
chunk of code, making the overall change a net reduction in code
size.
Signed-off-by: Dave Chinner <david@fromorbit.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
Currently there is no tracing in log recovery, so it is difficult to
determine what is going on when something goes wrong.
Add tracing for log item recovery to provide visibility into the log
recovery process. The tracing added shows regions being extracted
from the log transactions and added to the transaction hash forming
recovery items, followed by the reordering, cancelling and finally
recovery of the items.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>