- Provide a virtual cache topology to the guest to avoid
inconsistencies with migration on heterogenous systems. Non secure
software has no practical need to traverse the caches by set/way in
the first place.
- Add support for taking stage-2 access faults in parallel. This was an
accidental omission in the original parallel faults implementation,
but should provide a marginal improvement to machines w/o FEAT_HAFDBS
(such as hardware from the fruit company).
- A preamble to adding support for nested virtualization to KVM,
including vEL2 register state, rudimentary nested exception handling
and masking unsupported features for nested guests.
- Fixes to the PSCI relay that avoid an unexpected host SVE trap when
resuming a CPU when running pKVM.
- VGIC maintenance interrupt support for the AIC
- Improvements to the arch timer emulation, primarily aimed at reducing
the trap overhead of running nested.
- Add CONFIG_USERFAULTFD to the KVM selftests config fragment in the
interest of CI systems.
- Avoid VM-wide stop-the-world operations when a vCPU accesses its own
redistributor.
- Serialize when toggling CPACR_EL1.SMEN to avoid unexpected exceptions
in the host.
- Aesthetic and comment/kerneldoc fixes
- Drop the vestiges of the old Columbia mailing list and add [Oliver]
as co-maintainer
This also drags in arm64's 'for-next/sme2' branch, because both it and
the PSCI relay changes touch the EL2 initialization code.
RISC-V:
- Fix wrong usage of PGDIR_SIZE instead of PUD_SIZE
- Correctly place the guest in S-mode after redirecting a trap to the guest
- Redirect illegal instruction traps to guest
- SBI PMU support for guest
s390:
- Two patches sorting out confusion between virtual and physical
addresses, which currently are the same on s390.
- A new ioctl that performs cmpxchg on guest memory
- A few fixes
x86:
- Change tdp_mmu to a read-only parameter
- Separate TDP and shadow MMU page fault paths
- Enable Hyper-V invariant TSC control
- Fix a variety of APICv and AVIC bugs, some of them real-world,
some of them affecting architecurally legal but unlikely to
happen in practice
- Mark APIC timer as expired if its in one-shot mode and the count
underflows while the vCPU task was being migrated
- Advertise support for Intel's new fast REP string features
- Fix a double-shootdown issue in the emergency reboot code
- Ensure GIF=1 and disable SVM during an emergency reboot, i.e. give SVM
similar treatment to VMX
- Update Xen's TSC info CPUID sub-leaves as appropriate
- Add support for Hyper-V's extended hypercalls, where "support" at this
point is just forwarding the hypercalls to userspace
- Clean up the kvm->lock vs. kvm->srcu sequences when updating the PMU and
MSR filters
- One-off fixes and cleanups
- Fix and cleanup the range-based TLB flushing code, used when KVM is
running on Hyper-V
- Add support for filtering PMU events using a mask. If userspace
wants to restrict heavily what events the guest can use, it can now
do so without needing an absurd number of filter entries
- Clean up KVM's handling of "PMU MSRs to save", especially when vPMU
support is disabled
- Add PEBS support for Intel Sapphire Rapids
- Fix a mostly benign overflow bug in SEV's send|receive_update_data()
- Move several SVM-specific flags into vcpu_svm
x86 Intel:
- Handle NMI VM-Exits before leaving the noinstr region
- A few trivial cleanups in the VM-Enter flows
- Stop enabling VMFUNC for L1 purely to document that KVM doesn't support
EPTP switching (or any other VM function) for L1
- Fix a crash when using eVMCS's enlighted MSR bitmaps
Generic:
- Clean up the hardware enable and initialization flow, which was
scattered around multiple arch-specific hooks. Instead, just
let the arch code call into generic code. Both x86 and ARM should
benefit from not having to fight common KVM code's notion of how
to do initialization.
- Account allocations in generic kvm_arch_alloc_vm()
- Fix a memory leak if coalesced MMIO unregistration fails
selftests:
- On x86, cache the CPU vendor (AMD vs. Intel) and use the info to emit
the correct hypercall instruction instead of relying on KVM to patch
in VMMCALL
- Use TAP interface for kvm_binary_stats_test and tsc_msrs_test
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmP2YA0UHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroPg/Qf+J6nT+TkIa+8Ei+fN1oMTDp4YuIOx
mXvJ9mRK9sQ+tAUVwvDz3qN/fK5mjsYbRHIDlVc5p2Q3bCrVGDDqXPFfCcLx1u+O
9U9xjkO4JxD2LS9pc70FYOyzVNeJ8VMGOBbC2b0lkdYZ4KnUc6e/WWFKJs96bK+H
duo+RIVyaMthnvbTwSv1K3qQb61n6lSJXplywS8KWFK6NZAmBiEFDAWGRYQE9lLs
VcVcG0iDJNL/BQJ5InKCcvXVGskcCm9erDszPo7w4Bypa4S9AMS42DHUaRZrBJwV
/WqdH7ckIz7+OSV0W1j+bKTHAFVTCjXYOM7wQykgjawjICzMSnnG9Gpskw==
=goe1
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini:
"ARM:
- Provide a virtual cache topology to the guest to avoid
inconsistencies with migration on heterogenous systems. Non secure
software has no practical need to traverse the caches by set/way in
the first place
- Add support for taking stage-2 access faults in parallel. This was
an accidental omission in the original parallel faults
implementation, but should provide a marginal improvement to
machines w/o FEAT_HAFDBS (such as hardware from the fruit company)
- A preamble to adding support for nested virtualization to KVM,
including vEL2 register state, rudimentary nested exception
handling and masking unsupported features for nested guests
- Fixes to the PSCI relay that avoid an unexpected host SVE trap when
resuming a CPU when running pKVM
- VGIC maintenance interrupt support for the AIC
- Improvements to the arch timer emulation, primarily aimed at
reducing the trap overhead of running nested
- Add CONFIG_USERFAULTFD to the KVM selftests config fragment in the
interest of CI systems
- Avoid VM-wide stop-the-world operations when a vCPU accesses its
own redistributor
- Serialize when toggling CPACR_EL1.SMEN to avoid unexpected
exceptions in the host
- Aesthetic and comment/kerneldoc fixes
- Drop the vestiges of the old Columbia mailing list and add [Oliver]
as co-maintainer
RISC-V:
- Fix wrong usage of PGDIR_SIZE instead of PUD_SIZE
- Correctly place the guest in S-mode after redirecting a trap to the
guest
- Redirect illegal instruction traps to guest
- SBI PMU support for guest
s390:
- Sort out confusion between virtual and physical addresses, which
currently are the same on s390
- A new ioctl that performs cmpxchg on guest memory
- A few fixes
x86:
- Change tdp_mmu to a read-only parameter
- Separate TDP and shadow MMU page fault paths
- Enable Hyper-V invariant TSC control
- Fix a variety of APICv and AVIC bugs, some of them real-world, some
of them affecting architecurally legal but unlikely to happen in
practice
- Mark APIC timer as expired if its in one-shot mode and the count
underflows while the vCPU task was being migrated
- Advertise support for Intel's new fast REP string features
- Fix a double-shootdown issue in the emergency reboot code
- Ensure GIF=1 and disable SVM during an emergency reboot, i.e. give
SVM similar treatment to VMX
- Update Xen's TSC info CPUID sub-leaves as appropriate
- Add support for Hyper-V's extended hypercalls, where "support" at
this point is just forwarding the hypercalls to userspace
- Clean up the kvm->lock vs. kvm->srcu sequences when updating the
PMU and MSR filters
- One-off fixes and cleanups
- Fix and cleanup the range-based TLB flushing code, used when KVM is
running on Hyper-V
- Add support for filtering PMU events using a mask. If userspace
wants to restrict heavily what events the guest can use, it can now
do so without needing an absurd number of filter entries
- Clean up KVM's handling of "PMU MSRs to save", especially when vPMU
support is disabled
- Add PEBS support for Intel Sapphire Rapids
- Fix a mostly benign overflow bug in SEV's
send|receive_update_data()
- Move several SVM-specific flags into vcpu_svm
x86 Intel:
- Handle NMI VM-Exits before leaving the noinstr region
- A few trivial cleanups in the VM-Enter flows
- Stop enabling VMFUNC for L1 purely to document that KVM doesn't
support EPTP switching (or any other VM function) for L1
- Fix a crash when using eVMCS's enlighted MSR bitmaps
Generic:
- Clean up the hardware enable and initialization flow, which was
scattered around multiple arch-specific hooks. Instead, just let
the arch code call into generic code. Both x86 and ARM should
benefit from not having to fight common KVM code's notion of how to
do initialization
- Account allocations in generic kvm_arch_alloc_vm()
- Fix a memory leak if coalesced MMIO unregistration fails
selftests:
- On x86, cache the CPU vendor (AMD vs. Intel) and use the info to
emit the correct hypercall instruction instead of relying on KVM to
patch in VMMCALL
- Use TAP interface for kvm_binary_stats_test and tsc_msrs_test"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (325 commits)
KVM: SVM: hyper-v: placate modpost section mismatch error
KVM: x86/mmu: Make tdp_mmu_allowed static
KVM: arm64: nv: Use reg_to_encoding() to get sysreg ID
KVM: arm64: nv: Only toggle cache for virtual EL2 when SCTLR_EL2 changes
KVM: arm64: nv: Filter out unsupported features from ID regs
KVM: arm64: nv: Emulate EL12 register accesses from the virtual EL2
KVM: arm64: nv: Allow a sysreg to be hidden from userspace only
KVM: arm64: nv: Emulate PSTATE.M for a guest hypervisor
KVM: arm64: nv: Add accessors for SPSR_EL1, ELR_EL1 and VBAR_EL1 from virtual EL2
KVM: arm64: nv: Handle SMCs taken from virtual EL2
KVM: arm64: nv: Handle trapped ERET from virtual EL2
KVM: arm64: nv: Inject HVC exceptions to the virtual EL2
KVM: arm64: nv: Support virtual EL2 exceptions
KVM: arm64: nv: Handle HCR_EL2.NV system register traps
KVM: arm64: nv: Add nested virt VCPU primitives for vEL2 VCPU state
KVM: arm64: nv: Add EL2 system registers to vcpu context
KVM: arm64: nv: Allow userspace to set PSR_MODE_EL2x
KVM: arm64: nv: Reset VCPU to EL2 registers if VCPU nested virt is set
KVM: arm64: nv: Introduce nested virtualization VCPU feature
KVM: arm64: Use the S2 MMU context to iterate over S2 table
...
changes include:
- Some significant additions to the memory-management documentation
- Some improvements to navigation in the HTML-rendered docs
- More Spanish and Chinese translations
...and the usual set of typo fixes and such.
-----BEGIN PGP SIGNATURE-----
iQFDBAABCAAtFiEEIw+MvkEiF49krdp9F0NaE2wMflgFAmPzkQUPHGNvcmJldEBs
d24ubmV0AAoJEBdDWhNsDH5YC0QH/09u10xV3N+RuveNE/tArVxKcQi7JZd/xugQ
toSXygh64WY10lzwi7Ms1bHZzpPYB0fOrqTGNqNQuhrVTjQzaZB0BBJqm8lwt2w/
S/Z5wj+IicJTmQ7+0C2Hc/dcK5SCPfY3CgwqOUVdr3dEm1oU+4QaBy31fuIJJ0Hx
NdbXBco8BZqJX9P67jwp9vbrFrSGBjPI0U4HNHVjrWlcBy8JT0aAnf0fyWFy3orA
T86EzmEw8drA1mXsHa5pmVwuHDx2X+D+eRurG9llCBrlIG9EDSmnalY4BeGqR4LS
oDrEH6M91I5+9iWoJ0rBheD8rPclXO2HpjXLApXzTjrORgEYZsM=
=MCdX
-----END PGP SIGNATURE-----
Merge tag 'docs-6.3' of git://git.lwn.net/linux
Pull documentation updates from Jonathan Corbet:
"It has been a moderately calm cycle for documentation; the significant
changes include:
- Some significant additions to the memory-management documentation
- Some improvements to navigation in the HTML-rendered docs
- More Spanish and Chinese translations
... and the usual set of typo fixes and such"
* tag 'docs-6.3' of git://git.lwn.net/linux: (68 commits)
Documentation/watchdog/hpwdt: Fix Format
Documentation/watchdog/hpwdt: Fix Reference
Documentation: core-api: padata: correct spelling
docs/mm: Physical Memory: correct spelling in reference to CONFIG_PAGE_EXTENSION
docs: Use HTML comments for the kernel-toc SPDX line
docs: Add more information to the HTML sidebar
Documentation: KVM: Update AMD memory encryption link
printk: Document that CONFIG_BOOT_PRINTK_DELAY required for boot_delay=
Documentation: userspace-api: correct spelling
Documentation: sparc: correct spelling
Documentation: driver-api: correct spelling
Documentation: admin-guide: correct spelling
docs: add workload-tracing document to admin-guide
docs/admin-guide/mm: remove useless markup
docs/mm: remove useless markup
docs/mm: Physical Memory: remove useless markup
docs/sp_SP: Add process magic-number translation
docs: ftrace: always use canonical ftrace path
Doc/damon: fix the data path error
dma-buf: Add "dma-buf" to title of documentation
...
* The last part of the cmpxchg patches
* A few fixes
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEEwGNS88vfc9+v45Yq41TmuOI4ufgFAmPkwH0ACgkQ41TmuOI4
ufhrshAAmv9OlCNVsGTmQLpEnGdnxGM2vBPDEygdi+oVHtpMBFn27R3fu295aUR0
v0o3xsSImhaOU03OxWrsLqPanEL5BqnicLwkL4xou3NXXD4Wo0Zrstd3ykfaODhq
bTDx7zC2zMQ5J+LPuwDaYUat5R0bHv7cULv1CKLdyISnPGafy0kpUPvC30nymJZi
nV7/DjvDYbuOFfhdTEOklGRXvMSEBPLGhIJk/cYZzJECNeNJFUeSs+00uNJ8P6WO
BQD/FLWie+Fn6lTGIUhulZCPf65KI4bHHLB6WFXA5Jy+O08urdtLiZwlBC4iNsFV
NFIwangpJ/RnupJoOMwQfw31op5SZuiOYn91njaGIiLpHgvA9+iaERsqXtjp8NW7
/ne1TZqtrGbYY71XvZ/yPQU5VGc/MG1CyCGX1CPNSQO7v4yl27BNChxdkBHzzm2u
C0IuLZuXl25XwAt8xbdi65fb84pJOeWRU4Zoe4cUZ3drBy5cZsmFXe3lhEAqs7nf
MB9XekTLpZ6pCqTE1u/BOrobVg5es/lDQiDeLCvDe1I3I5inSD6ehjJz7qjK0w8o
3pn0rb+Kb4Ijzfi4RNbgJXmBNzkwwSSPPwYt4THHOZtr8p0fZMBeGHqq1wTJmKcq
M/+9w4cZqgFpdyNqitj8NyTayX1Lj4LWayexCBYaGkLuHTD6cCk=
=HOly
-----END PGP SIGNATURE-----
Merge tag 'kvm-s390-next-6.3-1' of https://git.kernel.org/pub/scm/linux/kernel/git/kvms390/linux into HEAD
* Two more V!=R patches
* The last part of the cmpxchg patches
* A few fixes
Describe the semantics of the new KVM_S390_MEMOP_F_CMPXCHG flag for
absolute vm write memops which allows user space to perform (storage key
checked) cmpxchg operations on guest memory.
Signed-off-by: Janis Schoetterl-Glausch <scgl@linux.ibm.com>
Reviewed-by: Janosch Frank <frankja@linux.ibm.com>
Link: https://lore.kernel.org/r/20230206164602.138068-14-scgl@linux.ibm.com
Message-Id: <20230206164602.138068-14-scgl@linux.ibm.com>
[frankja@de.ibm.com: Removed a line from an earlier version]
Signed-off-by: Janosch Frank <frankja@linux.ibm.com>
Migration mode is a VM attribute which enables tracking of changes in
storage attributes (PGSTE). It assumes dirty tracking is enabled on all
memslots to keep a dirty bitmap of pages with changed storage attributes.
When enabling migration mode, we currently check that dirty tracking is
enabled for all memslots. However, userspace can disable dirty tracking
without disabling migration mode.
Since migration mode is pointless with dirty tracking disabled, disable
migration mode whenever userspace disables dirty tracking on any slot.
Also update the documentation to clarify that dirty tracking must be
enabled when enabling migration mode, which is already enforced by the
code in kvm_s390_vm_start_migration().
Also highlight in the documentation for KVM_S390_GET_CMMA_BITS that it
can now fail with -EINVAL when dirty tracking is disabled while
migration mode is on. Move all the error codes to a table so this stays
readable.
To disable migration mode, slots_lock should be held, which is taken
in kvm_set_memory_region() and thus held in
kvm_arch_prepare_memory_region().
Restructure the prepare code a bit so all the sanity checking is done
before disabling migration mode. This ensures migration mode isn't
disabled when some sanity check fails.
Cc: stable@vger.kernel.org
Fixes: 190df4a212 ("KVM: s390: CMMA tracking, ESSA emulation, migration mode")
Signed-off-by: Nico Boehr <nrb@linux.ibm.com>
Reviewed-by: Janosch Frank <frankja@linux.ibm.com>
Reviewed-by: Claudio Imbrenda <imbrenda@linux.ibm.com>
Link: https://lore.kernel.org/r/20230127140532.230651-2-nrb@linux.ibm.com
Message-Id: <20230127140532.230651-2-nrb@linux.ibm.com>
[frankja@linux.ibm.com: fixed commit message typo, moved api.rst error table upwards]
Signed-off-by: Janosch Frank <frankja@linux.ibm.com>
- Yet another fix for non-CPU accesses to the memory backing
the VGICv3 subsystem
- A set of fixes for the setlftest checking for the S1PTW
behaviour after the fix that went in ealier in the cycle
-----BEGIN PGP SIGNATURE-----
iQJDBAABCgAtFiEEn9UcU+C1Yxj9lZw9I9DQutE9ekMFAmPWwGEPHG1hekBrZXJu
ZWwub3JnAAoJECPQ0LrRPXpDi/wP/3kbZrZ+y/YNcYioQwqibRS5DKuACKXM1dbh
sMX0e8t3frmkrfkHZ1FsBNjSWtDLmRbjANNDWi8ypAXaPVm7/0whFqkJgyPWDO+v
/1VXYMwMjy2zpWfPGPu+/fQL0Ninp+EfLP3Y2/Lr8VW5rH21bfuQ1rm41ucK/jB5
IsMiQ+YObZUTrSq22fHfNJKc8fysSqeMHW96bl0QnJxf6aDDieZFGF9rlRQf/faq
lPux0faasgQC0VgXlokWGdU1x5kXIf3Ta4VtiKARKNwxziuG8B484+5hHXvoBR1h
bXFJJUQjQs2qBuH75BJftini9fvWvQPgbk4NvkD1tlyMhlZ5w2MTTKB4QmuW/WDT
OGuGXAcuP2stm0dUaSn1aCwzfYgtihssp+RCAB5DOoL64i/CtHl+FJgz8wZfDPRk
UNXdK2JccDfD6bGv/kQqPJoozjI5e8Ha2ks1O4IPHIDpIsVMIWRRGULgIRvLaHaS
iaR7Vx+XgzW50Knj++S85eak/aTSkVaykYZIiiB4DTai1/XuAZfMA79X6IvQLxHq
419FHmXwhJmYdWZ/JFBXWnbR6wRJiv4TR23A5u8X6o/YgBn6fmwAt6o8Avk1quZQ
mslRPHG45hM/7Z7uSEsIQnbVVnHPhbaKr3GmHlJJ4zXRI8GaSMe23wpnJdUj1q9a
w1Oe0rpq
=2l/n
-----END PGP SIGNATURE-----
Merge tag 'kvmarm-fixes-6.2-3' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
KVM/arm64 fixes for 6.2, take #3
- Yet another fix for non-CPU accesses to the memory backing
the VGICv3 subsystem
- A set of fixes for the setlftest checking for the S1PTW
behaviour after the fix that went in ealier in the cycle
Update AMD memory encryption white-paper document link.
Previous link is not available. Update new available link.
Signed-off-by: Wyes Karny <wyes.karny@amd.com>
Reviewed-by: Carlos Bilbao <carlos.bilbao@amd.com>
Link: https://lore.kernel.org/r/20230125175948.21100-1-wyes.karny@amd.com
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
We don't have a running VCPU context to save vgic3 pending table due
to KVM_DEV_ARM_VGIC_{GRP_CTRL, SAVE_PENDING_TABLES} command on KVM
device "kvm-arm-vgic-v3". The unknown case is caught by kvm-unit-tests.
# ./kvm-unit-tests/tests/its-pending-migration
WARNING: CPU: 120 PID: 7973 at arch/arm64/kvm/../../../virt/kvm/kvm_main.c:3325 \
mark_page_dirty_in_slot+0x60/0xe0
:
mark_page_dirty_in_slot+0x60/0xe0
__kvm_write_guest_page+0xcc/0x100
kvm_write_guest+0x7c/0xb0
vgic_v3_save_pending_tables+0x148/0x2a0
vgic_set_common_attr+0x158/0x240
vgic_v3_set_attr+0x4c/0x5c
kvm_device_ioctl+0x100/0x160
__arm64_sys_ioctl+0xa8/0xf0
invoke_syscall.constprop.0+0x7c/0xd0
el0_svc_common.constprop.0+0x144/0x160
do_el0_svc+0x34/0x60
el0_svc+0x3c/0x1a0
el0t_64_sync_handler+0xb4/0x130
el0t_64_sync+0x178/0x17c
Use vgic_write_guest_lock() to save vgic3 pending table.
Reported-by: Zenghui Yu <yuzenghui@huawei.com>
Signed-off-by: Gavin Shan <gshan@redhat.com>
Reviewed-by: Oliver Upton <oliver.upton@linux.dev>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230126235451.469087-5-gshan@redhat.com
We don't have a running VCPU context to restore vgic3 LPI pending status
due to command KVM_DEV_ARM_{VGIC_GRP_CTRL, ITS_RESTORE_TABLES} on KVM
device "kvm-arm-vgic-its".
Use vgic_write_guest_lock() to restore vgic3 LPI pending status.
Signed-off-by: Gavin Shan <gshan@redhat.com>
Reviewed-by: Oliver Upton <oliver.upton@linux.dev>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230126235451.469087-4-gshan@redhat.com
Some documents that listed on subsystem-apis have 'Linux' or 'The Linux'
title prefixes. It's duplicated information, and makes finding the
document of interest with human eyes not easy. Remove the prefixes from
the titles.
Signed-off-by: SeongJae Park <sj@kernel.org>
Acked-by: Iwona Winiarska <iwona.winiarska@intel.com>
Acked-by: Bjorn Helgaas <bhelgaas@google.com>
Link: https://lore.kernel.org/r/20230122184834.181977-1-sj@kernel.org
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
When building a list of filter events, it can sometimes be a challenge
to fit all the events needed to adequately restrict the guest into the
limited space available in the pmu event filter. This stems from the
fact that the pmu event filter requires each event (i.e. event select +
unit mask) be listed, when the intention might be to restrict the
event select all together, regardless of it's unit mask. Instead of
increasing the number of filter events in the pmu event filter, add a
new encoding that is able to do a more generalized match on the unit mask.
Introduce masked events as another encoding the pmu event filter
understands. Masked events has the fields: mask, match, and exclude.
When filtering based on these events, the mask is applied to the guest's
unit mask to see if it matches the match value (i.e. umask & mask ==
match). The exclude bit can then be used to exclude events from that
match. E.g. for a given event select, if it's easier to say which unit
mask values shouldn't be filtered, a masked event can be set up to match
all possible unit mask values, then another masked event can be set up to
match the unit mask values that shouldn't be filtered.
Userspace can query to see if this feature exists by looking for the
capability, KVM_CAP_PMU_EVENT_MASKED_EVENTS.
This feature is enabled by setting the flags field in the pmu event
filter to KVM_PMU_EVENT_FLAG_MASKED_EVENTS.
Events can be encoded by using KVM_PMU_ENCODE_MASKED_ENTRY().
It is an error to have a bit set outside the valid bits for a masked
event, and calls to KVM_SET_PMU_EVENT_FILTER will return -EINVAL in
such cases, including the high bits of the event select (35:32) if
called on Intel.
With these updates the filter matching code has been updated to match on
a common event. Masked events were flexible enough to handle both event
types, so they were used as the common event. This changes how guest
events get filtered because regardless of the type of event used in the
uAPI, they will be converted to masked events. Because of this there
could be a slight performance hit because instead of matching the filter
event with a lookup on event select + unit mask, it does a lookup on event
select then walks the unit masks to find the match. This shouldn't be a
big problem because I would expect the set of common event selects to be
small, and if they aren't the set can likely be reduced by using masked
events to generalize the unit mask. Using one type of event when
filtering guest events allows for a common code path to be used.
Signed-off-by: Aaron Lewis <aaronlewis@google.com>
Link: https://lore.kernel.org/r/20221220161236.555143-5-aaronlewis@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
The first half or so patches fix semi-urgent, real-world relevant APICv
and AVIC bugs.
The second half fixes a variety of AVIC and optimized APIC map bugs
where KVM doesn't play nice with various edge cases that are
architecturally legal(ish), but are unlikely to occur in most real world
scenarios
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
ARM:
* Fix the PMCR_EL0 reset value after the PMU rework
* Correctly handle S2 fault triggered by a S1 page table walk
by not always classifying it as a write, as this breaks on
R/O memslots
* Document why we cannot exit with KVM_EXIT_MMIO when taking
a write fault from a S1 PTW on a R/O memslot
* Put the Apple M2 on the naughty list for not being able to
correctly implement the vgic SEIS feature, just like the M1
before it
* Reviewer updates: Alex is stepping down, replaced by Zenghui
x86:
* Fix various rare locking issues in Xen emulation and teach lockdep
to detect them
* Documentation improvements
* Do not return host topology information from KVM_GET_SUPPORTED_CPUID
Apply KVM's hotplug hack if and only if userspace has enabled 32-bit IDs
for x2APIC. If 32-bit IDs are not enabled, disable the optimized map to
honor x86 architectural behavior if multiple vCPUs shared a physical APIC
ID. As called out in the changelog that added the hack, all CPUs whose
(possibly truncated) APIC ID matches the target are supposed to receive
the IPI.
KVM intentionally differs from real hardware, because real hardware
(Knights Landing) does just "x2apic_id & 0xff" to decide whether to
accept the interrupt in xAPIC mode and it can deliver one interrupt to
more than one physical destination, e.g. 0x123 to 0x123 and 0x23.
Applying the hack even when x2APIC is not fully enabled means KVM doesn't
correctly handle scenarios where the guest has aliased xAPIC IDs across
multiple vCPUs, as only the vCPU with the lowest vCPU ID will receive any
interrupts. It's extremely unlikely any real world guest aliases APIC
IDs, or even modifies APIC IDs, but KVM's behavior is arbitrary, e.g. the
lowest vCPU ID "wins" regardless of which vCPU is "aliasing" and which
vCPU is "normal".
Furthermore, the hack is _not_ guaranteed to work! The hack works if and
only if the optimized APIC map is successfully allocated. If the map
allocation fails (unlikely), KVM will fall back to its unoptimized
behavior, which _does_ honor the architectural behavior.
Pivot on 32-bit x2APIC IDs being enabled as that is required to take
advantage of the hotplug hack (see kvm_apic_state_fixup()), i.e. won't
break existing setups unless they are way, way off in the weeds.
And an entry in KVM's errata to document the hack. Alternatively, KVM
could provide an actual x2APIC quirk and document the hack that way, but
there's unlikely to ever be a use case for disabling the quirk. Go the
errata route to avoid having to validate a quirk no one cares about.
Fixes: 5bd5db385b ("KVM: x86: allow hotplug of VCPU with APIC ID over 0xff")
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230106011306.85230-23-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In commit 14243b3871 ("KVM: x86/xen: Add KVM_IRQ_ROUTING_XEN_EVTCHN
and event channel delivery") the clever version of me left some helpful
notes for those who would come after him:
/*
* For the irqfd workqueue, using the main kvm->lock mutex is
* fine since this function is invoked from kvm_set_irq() with
* no other lock held, no srcu. In future if it will be called
* directly from a vCPU thread (e.g. on hypercall for an IPI)
* then it may need to switch to using a leaf-node mutex for
* serializing the shared_info mapping.
*/
mutex_lock(&kvm->lock);
In commit 2fd6df2f2b ("KVM: x86/xen: intercept EVTCHNOP_send from guests")
the other version of me ran straight past that comment without reading it,
and introduced a potential deadlock by taking vcpu->mutex and kvm->lock
in the wrong order.
Solve this as originally suggested, by adding a leaf-node lock in the Xen
state rather than using kvm->lock for it.
Fixes: 2fd6df2f2b ("KVM: x86/xen: intercept EVTCHNOP_send from guests")
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <20230111180651.14394-4-dwmw2@infradead.org>
[Rebase, add docs. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
- Fix the PMCR_EL0 reset value after the PMU rework
- Correctly handle S2 fault triggered by a S1 page table walk
by not always classifying it as a write, as this breaks on
R/O memslots
- Document why we cannot exit with KVM_EXIT_MMIO when taking
a write fault from a S1 PTW on a R/O memslot
- Put the Apple M2 on the naughty step for not being able to
correctly implement the vgic SEIS feature, just liek the M1
before it
- Reviewer updates: Alex is stepping down, replaced by Zenghui
-----BEGIN PGP SIGNATURE-----
iQJDBAABCgAtFiEEn9UcU+C1Yxj9lZw9I9DQutE9ekMFAmO27gQPHG1hekBrZXJu
ZWwub3JnAAoJECPQ0LrRPXpDwioP/A0UE7ujSxv3dlBstBhmtzOoX64pRufX01Kr
1oF24M1VuTVLwl3pp1nWH10SVWv5kukYZJAJ/3tDJOaMt/Q9c0exPCPc95i2p/r7
OC9j8rZVZnjGN6sAP5zazIT67tSanyLDeCC+j4J1pw20r2tB67LKSOoozEb5How7
CX+Oa2OiEiI34jp33v3mFQ3VxY3714QUMBUK7n+L29IFXGmQp6dfbhn2iY3uNpoU
YYrkPzBLUC1H//oCx0qoDDCXXeOKMGuWP1At5GIDz6ZSCBVpKdVbftCC59Dk7dDz
7BdQ5JoEc15RTZajdopOog4RV4YHP8VszaClhCA1ML0Pd2Mf4UVLlPnn7F+3yR3r
pMgjlOAlLJwHiwggJZ0EQ0wFdx9LuGeu3OwckGE/JxeEwaMdzGAEfcFoAGZV0ExZ
7riiKS+NmtrkuE9wJfWOrpDiseymmUbuhHq+F/HDq/SP6UdezAylkcxZRuN/ZCRc
9XVhTcWu/UPxoaSSd/sB4l9X8Ey/cZe28+kV7eE/m2g79bZKxHd4UUOUymb/aJxj
og10A6i0B1DOWMtKJ9hEsB6wI6Hllrqcbo8ewX1znKoKbfHZDeU/N5D4ZvTz85sf
zyqbsSZPDxMOwBPYTqZqG65tEWWw68HIJ9cqQzKDehN1Xm1coNIWSPrUnBMpSsWJ
qDQNmIzf
=XBtQ
-----END PGP SIGNATURE-----
Merge tag 'kvmarm-fixes-6.2-1' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into kvm-master
KVM/arm64 fixes for 6.2, take #1
- Fix the PMCR_EL0 reset value after the PMU rework
- Correctly handle S2 fault triggered by a S1 page table walk
by not always classifying it as a write, as this breaks on
R/O memslots
- Document why we cannot exit with KVM_EXIT_MMIO when taking
a write fault from a S1 PTW on a R/O memslot
- Put the Apple M2 on the naughty step for not being able to
correctly implement the vgic SEIS feature, just liek the M1
before it
- Reviewer updates: Alex is stepping down, replaced by Zenghui
kvm->srcu is taken in KVM_RUN and several other vCPU ioctls, therefore
vcpu->mutex is susceptible to the same deadlock that is documented
for kvm->slots_lock. The same holds for kvm->lock, since kvm->lock
is held outside vcpu->mutex. Fix the documentation and rearrange it
to highlight the difference between these locks and kvm->slots_arch_lock,
and how kvm->slots_arch_lock can be useful while processing a vmexit.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Passing the host topology to the guest is almost certainly wrong
and will confuse the scheduler. In addition, several fields of
these CPUID leaves vary on each processor; it is simply impossible to
return the right values from KVM_GET_SUPPORTED_CPUID in such a way that
they can be passed to KVM_SET_CPUID2.
The values that will most likely prevent confusion are all zeroes.
Userspace will have to override it anyway if it wishes to present a
specific topology to the guest.
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* kvm-arm64/s1ptw-write-fault:
: .
: Fix S1PTW fault handling that was until then always taken
: as a write. From the cover letter:
:
: `Recent developments on the EFI front have resulted in guests that
: simply won't boot if the page tables are in a read-only memslot and
: that you're a bit unlucky in the way S2 gets paged in... The core
: issue is related to the fact that we treat a S1PTW as a write, which
: is close enough to what needs to be done. Until to get to RO memslots.
:
: The first patch fixes this and is definitely a stable candidate. It
: splits the faulting of page tables in two steps (RO translation fault,
: followed by a writable permission fault -- should it even happen).
: The second one documents the slightly odd behaviour of PTW writes to
: RO memslot, which do not result in a KVM_MMIO exit. The last patch is
: totally optional, only tangentially related, and randomly repainting
: stuff (maybe that's contagious, who knows)."
:
: .
KVM: arm64: Convert FSC_* over to ESR_ELx_FSC_*
KVM: arm64: Document the behaviour of S1PTW faults on RO memslots
KVM: arm64: Fix S1PTW handling on RO memslots
Signed-off-by: Marc Zyngier <maz@kernel.org>
Although the KVM API says that a write to a RO memslot must result
in a KVM_EXIT_MMIO describing the write, the arm64 architecture
doesn't provide the *data* written by a Stage-1 page table walk
(we only get the address).
Since there isn't much userspace can do with so little information
anyway, document the fact that such an access results in a guest
exception, not an exit. This is consistent with the guest being
terminally broken anyway.
Reviewed-by: Oliver Upton <oliver.upton@linux.dev>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Drop kvm_count_lock and instead protect kvm_usage_count with kvm_lock now
that KVM hooks CPU hotplug during the ONLINE phase, which can sleep.
Previously, KVM hooked the STARTING phase, which is not allowed to sleep
and thus could not take kvm_lock (a mutex). This effectively allows the
task that's initiating hardware enabling/disabling to preempted and/or
migrated.
Note, the Documentation/virt/kvm/locking.rst statement that kvm_count_lock
is "raw" because hardware enabling/disabling needs to be atomic with
respect to migration is wrong on multiple fronts. First, while regular
spinlocks can be preempted, the task holding the lock cannot be migrated.
Second, preventing migration is not required. on_each_cpu() disables
preemption, which ensures that cpus_hardware_enabled correctly reflects
hardware state. The task may be preempted/migrated between bumping
kvm_usage_count and invoking on_each_cpu(), but that's perfectly ok as
kvm_usage_count is still protected, e.g. other tasks that call
hardware_enable_all() will be blocked until the preempted/migrated owner
exits its critical section.
KVM does have lockless accesses to kvm_usage_count in the suspend/resume
flows, but those are safe because all tasks must be frozen prior to
suspending CPUs, and a task cannot be frozen while it holds one or more
locks (userspace tasks are frozen via a fake signal).
Preemption doesn't need to be explicitly disabled in the hotplug path.
The hotplug thread is pinned to the CPU that's being hotplugged, and KVM
only cares about having a stable CPU, i.e. to ensure hardware is enabled
on the correct CPU. Lockep, i.e. check_preemption_disabled(), plays nice
with this state too, as is_percpu_thread() is true for the hotplug thread.
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Co-developed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20221130230934.1014142-45-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Acquire a new mutex, vendor_module_lock, in kvm_x86_vendor_init() while
doing hardware setup to ensure that concurrent calls are fully serialized.
KVM rejects attempts to load vendor modules if a different module has
already been loaded, but doesn't handle the case where multiple vendor
modules are loaded at the same time, and module_init() doesn't run under
the global module_mutex.
Note, in practice, this is likely a benign bug as no platform exists that
supports both SVM and VMX, i.e. barring a weird VM setup, one of the
vendor modules is guaranteed to fail a support check before modifying
common KVM state.
Alternatively, KVM could perform an atomic CMPXCHG on .hardware_enable,
but that comes with its own ugliness as it would require setting
.hardware_enable before success is guaranteed, e.g. attempting to load
the "wrong" could result in spurious failure to load the "right" module.
Introduce a new mutex as using kvm_lock is extremely deadlock prone due
to kvm_lock being taken under cpus_write_lock(), and in the future, under
under cpus_read_lock(). Any operation that takes cpus_read_lock() while
holding kvm_lock would potentially deadlock, e.g. kvm_timer_init() takes
cpus_read_lock() to register a callback. In theory, KVM could avoid
such problematic paths, i.e. do less setup under kvm_lock, but avoiding
all calls to cpus_read_lock() is subtly difficult and thus fragile. E.g.
updating static calls also acquires cpus_read_lock().
Inverting the lock ordering, i.e. always taking kvm_lock outside
cpus_read_lock(), is not a viable option as kvm_lock is taken in various
callbacks that may be invoked under cpus_read_lock(), e.g. x86's
kvmclock_cpufreq_notifier().
The lockdep splat below is dependent on future patches to take
cpus_read_lock() in hardware_enable_all(), but as above, deadlock is
already is already possible.
======================================================
WARNING: possible circular locking dependency detected
6.0.0-smp--7ec93244f194-init2 #27 Tainted: G O
------------------------------------------------------
stable/251833 is trying to acquire lock:
ffffffffc097ea28 (kvm_lock){+.+.}-{3:3}, at: hardware_enable_all+0x1f/0xc0 [kvm]
but task is already holding lock:
ffffffffa2456828 (cpu_hotplug_lock){++++}-{0:0}, at: hardware_enable_all+0xf/0xc0 [kvm]
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #1 (cpu_hotplug_lock){++++}-{0:0}:
cpus_read_lock+0x2a/0xa0
__cpuhp_setup_state+0x2b/0x60
__kvm_x86_vendor_init+0x16a/0x1870 [kvm]
kvm_x86_vendor_init+0x23/0x40 [kvm]
0xffffffffc0a4d02b
do_one_initcall+0x110/0x200
do_init_module+0x4f/0x250
load_module+0x1730/0x18f0
__se_sys_finit_module+0xca/0x100
__x64_sys_finit_module+0x1d/0x20
do_syscall_64+0x3d/0x80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
-> #0 (kvm_lock){+.+.}-{3:3}:
__lock_acquire+0x16f4/0x30d0
lock_acquire+0xb2/0x190
__mutex_lock+0x98/0x6f0
mutex_lock_nested+0x1b/0x20
hardware_enable_all+0x1f/0xc0 [kvm]
kvm_dev_ioctl+0x45e/0x930 [kvm]
__se_sys_ioctl+0x77/0xc0
__x64_sys_ioctl+0x1d/0x20
do_syscall_64+0x3d/0x80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
other info that might help us debug this:
Possible unsafe locking scenario:
CPU0 CPU1
---- ----
lock(cpu_hotplug_lock);
lock(kvm_lock);
lock(cpu_hotplug_lock);
lock(kvm_lock);
*** DEADLOCK ***
1 lock held by stable/251833:
#0: ffffffffa2456828 (cpu_hotplug_lock){++++}-{0:0}, at: hardware_enable_all+0xf/0xc0 [kvm]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20221130230934.1014142-16-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
x86:
* Change tdp_mmu to a read-only parameter
* Separate TDP and shadow MMU page fault paths
* Enable Hyper-V invariant TSC control
selftests:
* Use TAP interface for kvm_binary_stats_test and tsc_msrs_test
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
x86:
* several fixes to nested VMX execution controls
* fixes and clarification to the documentation for Xen emulation
* do not unnecessarily release a pmu event with zero period
* MMU fixes
* fix Coverity warning in kvm_hv_flush_tlb()
selftests:
* fixes for the ucall mechanism in selftests
* other fixes mostly related to compilation with clang
Currently only the locking order of SRCU vs kvm->slots_arch_lock
and kvm->slots_lock is documented. Extend this to kvm->lock
since Xen emulation got it terribly wrong.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Most notably, the KVM_XEN_EVTCHN_RESET feature had escaped documentation
entirely. Along with how to turn most stuff off on SHUTDOWN_soft_reset.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <20221226120320.1125390-6-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Delete an extra block of code/documentation that snuck in when KVM's
documentation was converted to ReST format.
Fixes: 106ee47dc6 ("docs: kvm: Convert api.txt to ReST format")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20221207003637.2041211-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* Enable the per-vcpu dirty-ring tracking mechanism, together with an
option to keep the good old dirty log around for pages that are
dirtied by something other than a vcpu.
* Switch to the relaxed parallel fault handling, using RCU to delay
page table reclaim and giving better performance under load.
* Relax the MTE ABI, allowing a VMM to use the MAP_SHARED mapping option,
which multi-process VMMs such as crosvm rely on (see merge commit 382b5b87a97d:
"Fix a number of issues with MTE, such as races on the tags being
initialised vs the PG_mte_tagged flag as well as the lack of support
for VM_SHARED when KVM is involved. Patches from Catalin Marinas and
Peter Collingbourne").
* Merge the pKVM shadow vcpu state tracking that allows the hypervisor
to have its own view of a vcpu, keeping that state private.
* Add support for the PMUv3p5 architecture revision, bringing support
for 64bit counters on systems that support it, and fix the
no-quite-compliant CHAIN-ed counter support for the machines that
actually exist out there.
* Fix a handful of minor issues around 52bit VA/PA support (64kB pages
only) as a prefix of the oncoming support for 4kB and 16kB pages.
* Pick a small set of documentation and spelling fixes, because no
good merge window would be complete without those.
s390:
* Second batch of the lazy destroy patches
* First batch of KVM changes for kernel virtual != physical address support
* Removal of a unused function
x86:
* Allow compiling out SMM support
* Cleanup and documentation of SMM state save area format
* Preserve interrupt shadow in SMM state save area
* Respond to generic signals during slow page faults
* Fixes and optimizations for the non-executable huge page errata fix.
* Reprogram all performance counters on PMU filter change
* Cleanups to Hyper-V emulation and tests
* Process Hyper-V TLB flushes from a nested guest (i.e. from a L2 guest
running on top of a L1 Hyper-V hypervisor)
* Advertise several new Intel features
* x86 Xen-for-KVM:
** Allow the Xen runstate information to cross a page boundary
** Allow XEN_RUNSTATE_UPDATE flag behaviour to be configured
** Add support for 32-bit guests in SCHEDOP_poll
* Notable x86 fixes and cleanups:
** One-off fixes for various emulation flows (SGX, VMXON, NRIPS=0).
** Reinstate IBPB on emulated VM-Exit that was incorrectly dropped a few
years back when eliminating unnecessary barriers when switching between
vmcs01 and vmcs02.
** Clean up vmread_error_trampoline() to make it more obvious that params
must be passed on the stack, even for x86-64.
** Let userspace set all supported bits in MSR_IA32_FEAT_CTL irrespective
of the current guest CPUID.
** Fudge around a race with TSC refinement that results in KVM incorrectly
thinking a guest needs TSC scaling when running on a CPU with a
constant TSC, but no hardware-enumerated TSC frequency.
** Advertise (on AMD) that the SMM_CTL MSR is not supported
** Remove unnecessary exports
Generic:
* Support for responding to signals during page faults; introduces
new FOLL_INTERRUPTIBLE flag that was reviewed by mm folks
Selftests:
* Fix an inverted check in the access tracking perf test, and restore
support for asserting that there aren't too many idle pages when
running on bare metal.
* Fix build errors that occur in certain setups (unsure exactly what is
unique about the problematic setup) due to glibc overriding
static_assert() to a variant that requires a custom message.
* Introduce actual atomics for clear/set_bit() in selftests
* Add support for pinning vCPUs in dirty_log_perf_test.
* Rename the so called "perf_util" framework to "memstress".
* Add a lightweight psuedo RNG for guest use, and use it to randomize
the access pattern and write vs. read percentage in the memstress tests.
* Add a common ucall implementation; code dedup and pre-work for running
SEV (and beyond) guests in selftests.
* Provide a common constructor and arch hook, which will eventually be
used by x86 to automatically select the right hypercall (AMD vs. Intel).
* A bunch of added/enabled/fixed selftests for ARM64, covering memslots,
breakpoints, stage-2 faults and access tracking.
* x86-specific selftest changes:
** Clean up x86's page table management.
** Clean up and enhance the "smaller maxphyaddr" test, and add a related
test to cover generic emulation failure.
** Clean up the nEPT support checks.
** Add X86_PROPERTY_* framework to retrieve multi-bit CPUID values.
** Fix an ordering issue in the AMX test introduced by recent conversions
to use kvm_cpu_has(), and harden the code to guard against similar bugs
in the future. Anything that tiggers caching of KVM's supported CPUID,
kvm_cpu_has() in this case, effectively hides opt-in XSAVE features if
the caching occurs before the test opts in via prctl().
Documentation:
* Remove deleted ioctls from documentation
* Clean up the docs for the x86 MSR filter.
* Various fixes
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmOaFrcUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroPemQgAq49excg2Cc+EsHnZw3vu/QWdA0Rt
KhL3OgKxuHNjCbD2O9n2t5di7eJOTQ7F7T0eDm3xPTr4FS8LQ2327/mQePU/H2CF
mWOpq9RBWLzFsSTeVA2Mz9TUTkYSnDHYuRsBvHyw/n9cL76BWVzjImldFtjYjjex
yAwl8c5itKH6bc7KO+5ydswbvBzODkeYKUSBNdbn6m0JGQST7XppNwIAJvpiHsii
Qgpk0e4Xx9q4PXG/r5DedI6BlufBsLhv0aE9SHPzyKH3JbbUFhJYI8ZD5OhBQuYW
MwxK2KlM5Jm5ud2NZDDlsMmmvd1lnYCFDyqNozaKEWC1Y5rq1AbMa51fXA==
=QAYX
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini:
"ARM64:
- Enable the per-vcpu dirty-ring tracking mechanism, together with an
option to keep the good old dirty log around for pages that are
dirtied by something other than a vcpu.
- Switch to the relaxed parallel fault handling, using RCU to delay
page table reclaim and giving better performance under load.
- Relax the MTE ABI, allowing a VMM to use the MAP_SHARED mapping
option, which multi-process VMMs such as crosvm rely on (see merge
commit 382b5b87a97d: "Fix a number of issues with MTE, such as
races on the tags being initialised vs the PG_mte_tagged flag as
well as the lack of support for VM_SHARED when KVM is involved.
Patches from Catalin Marinas and Peter Collingbourne").
- Merge the pKVM shadow vcpu state tracking that allows the
hypervisor to have its own view of a vcpu, keeping that state
private.
- Add support for the PMUv3p5 architecture revision, bringing support
for 64bit counters on systems that support it, and fix the
no-quite-compliant CHAIN-ed counter support for the machines that
actually exist out there.
- Fix a handful of minor issues around 52bit VA/PA support (64kB
pages only) as a prefix of the oncoming support for 4kB and 16kB
pages.
- Pick a small set of documentation and spelling fixes, because no
good merge window would be complete without those.
s390:
- Second batch of the lazy destroy patches
- First batch of KVM changes for kernel virtual != physical address
support
- Removal of a unused function
x86:
- Allow compiling out SMM support
- Cleanup and documentation of SMM state save area format
- Preserve interrupt shadow in SMM state save area
- Respond to generic signals during slow page faults
- Fixes and optimizations for the non-executable huge page errata
fix.
- Reprogram all performance counters on PMU filter change
- Cleanups to Hyper-V emulation and tests
- Process Hyper-V TLB flushes from a nested guest (i.e. from a L2
guest running on top of a L1 Hyper-V hypervisor)
- Advertise several new Intel features
- x86 Xen-for-KVM:
- Allow the Xen runstate information to cross a page boundary
- Allow XEN_RUNSTATE_UPDATE flag behaviour to be configured
- Add support for 32-bit guests in SCHEDOP_poll
- Notable x86 fixes and cleanups:
- One-off fixes for various emulation flows (SGX, VMXON, NRIPS=0).
- Reinstate IBPB on emulated VM-Exit that was incorrectly dropped
a few years back when eliminating unnecessary barriers when
switching between vmcs01 and vmcs02.
- Clean up vmread_error_trampoline() to make it more obvious that
params must be passed on the stack, even for x86-64.
- Let userspace set all supported bits in MSR_IA32_FEAT_CTL
irrespective of the current guest CPUID.
- Fudge around a race with TSC refinement that results in KVM
incorrectly thinking a guest needs TSC scaling when running on a
CPU with a constant TSC, but no hardware-enumerated TSC
frequency.
- Advertise (on AMD) that the SMM_CTL MSR is not supported
- Remove unnecessary exports
Generic:
- Support for responding to signals during page faults; introduces
new FOLL_INTERRUPTIBLE flag that was reviewed by mm folks
Selftests:
- Fix an inverted check in the access tracking perf test, and restore
support for asserting that there aren't too many idle pages when
running on bare metal.
- Fix build errors that occur in certain setups (unsure exactly what
is unique about the problematic setup) due to glibc overriding
static_assert() to a variant that requires a custom message.
- Introduce actual atomics for clear/set_bit() in selftests
- Add support for pinning vCPUs in dirty_log_perf_test.
- Rename the so called "perf_util" framework to "memstress".
- Add a lightweight psuedo RNG for guest use, and use it to randomize
the access pattern and write vs. read percentage in the memstress
tests.
- Add a common ucall implementation; code dedup and pre-work for
running SEV (and beyond) guests in selftests.
- Provide a common constructor and arch hook, which will eventually
be used by x86 to automatically select the right hypercall (AMD vs.
Intel).
- A bunch of added/enabled/fixed selftests for ARM64, covering
memslots, breakpoints, stage-2 faults and access tracking.
- x86-specific selftest changes:
- Clean up x86's page table management.
- Clean up and enhance the "smaller maxphyaddr" test, and add a
related test to cover generic emulation failure.
- Clean up the nEPT support checks.
- Add X86_PROPERTY_* framework to retrieve multi-bit CPUID values.
- Fix an ordering issue in the AMX test introduced by recent
conversions to use kvm_cpu_has(), and harden the code to guard
against similar bugs in the future. Anything that tiggers
caching of KVM's supported CPUID, kvm_cpu_has() in this case,
effectively hides opt-in XSAVE features if the caching occurs
before the test opts in via prctl().
Documentation:
- Remove deleted ioctls from documentation
- Clean up the docs for the x86 MSR filter.
- Various fixes"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (361 commits)
KVM: x86: Add proper ReST tables for userspace MSR exits/flags
KVM: selftests: Allocate ucall pool from MEM_REGION_DATA
KVM: arm64: selftests: Align VA space allocator with TTBR0
KVM: arm64: Fix benign bug with incorrect use of VA_BITS
KVM: arm64: PMU: Fix period computation for 64bit counters with 32bit overflow
KVM: x86: Advertise that the SMM_CTL MSR is not supported
KVM: x86: remove unnecessary exports
KVM: selftests: Fix spelling mistake "probabalistic" -> "probabilistic"
tools: KVM: selftests: Convert clear/set_bit() to actual atomics
tools: Drop "atomic_" prefix from atomic test_and_set_bit()
tools: Drop conflicting non-atomic test_and_{clear,set}_bit() helpers
KVM: selftests: Use non-atomic clear/set bit helpers in KVM tests
perf tools: Use dedicated non-atomic clear/set bit helpers
tools: Take @bit as an "unsigned long" in {clear,set}_bit() helpers
KVM: arm64: selftests: Enable single-step without a "full" ucall()
KVM: x86: fix APICv/x2AVIC disabled when vm reboot by itself
KVM: Remove stale comment about KVM_REQ_UNHALT
KVM: Add missing arch for KVM_CREATE_DEVICE and KVM_{SET,GET}_DEVICE_ATTR
KVM: Reference to kvm_userspace_memory_region in doc and comments
KVM: Delete all references to removed KVM_SET_MEMORY_ALIAS ioctl
...
Add ReST formatting to the set of userspace MSR exits/flags so that the
resulting HTML docs generate a table instead of malformed gunk. This
also fixes a warning that was introduced by a recent cleanup of the
relevant documentation (yay copy+paste).
>> Documentation/virt/kvm/api.rst:7287: WARNING: Block quote ends
without a blank line; unexpected unindent.
Fixes: 1ae099540e ("KVM: x86: Allow deflecting unknown MSR accesses to user space")
Fixes: 1f15814718 ("KVM: x86: Clean up KVM_CAP_X86_USER_SPACE_MSR documentation")
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20221207000959.2035098-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEV76QKkVc4xCGURexaDWVMHDJkrAFAmOXYmwACgkQaDWVMHDJ
krD8hg/+J0hUTfljmlCctwGZyqVR3Y2E722wL9oTvbgYiUAtFrARzfPF0WNwvHi5
Ywvod5hQ4unPoluthdVAD/uJqcPVhjIZ7CvNTGrS8J7ED5x5ydGLNWAL3Rn+9s6O
xkz/DsV4zl+cPQ60XLsO+3Mc6RhwVs9DUthpUovl22epmgmRPCovkHWkvQsZajJq
ceF/78ThfrkG4dDouaIXi1gsmKLLzU4KdHeBATMg0bgPQXFJZSGBCLaeJXWmLapq
7N3SznUqDMn4Plr/IuP4XuMA6VTVojrakCcBmw5SGVqhkVWGM1/FMg7jHSQS7Z5V
5uG7CkhTBqh17v9xKwDMPh34D51TLtNifA7jbecyL5155czFkj7BoSwEFINU/wCz
agUO9NvK9j1chUnA2UGqGQigM3nWGZHMwaQjfgBWyq5gqF8HURUUrjx6XuunOfmB
1byyrDu0g48u/zaQ/RpNfewz1ZY+WylDPcqOhYaVWF1PYThStML/VMBKpdsl1Ovw
nytUdQsaBIjFHQdB+snizaF93+/0FG+FTGAlDnHYmey/8plL2LYuzrcDnDYnGEXa
tN3HFd2lAi4JBLmvmgF39gH+BLXuKTLweIhwTXZTn91cfire3yxiXAnLd0tuptMP
aXFddxKMdMpxTqzy2X+8gJjqCr2lZ9gZkxaPsWwrBM+xrJf0p2w=
=JGnq
-----END PGP SIGNATURE-----
Merge tag 'x86_tdx_for_6.2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 tdx updates from Dave Hansen:
"This includes a single chunk of new functionality for TDX guests which
allows them to talk to the trusted TDX module software and obtain an
attestation report.
This report can then be used to prove the trustworthiness of the guest
to a third party and get access to things like storage encryption
keys"
* tag 'x86_tdx_for_6.2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
selftests/tdx: Test TDX attestation GetReport support
virt: Add TDX guest driver
x86/tdx: Add a wrapper to get TDREPORT0 from the TDX Module
x86 Xen-for-KVM:
* Allow the Xen runstate information to cross a page boundary
* Allow XEN_RUNSTATE_UPDATE flag behaviour to be configured
* add support for 32-bit guests in SCHEDOP_poll
x86 fixes:
* One-off fixes for various emulation flows (SGX, VMXON, NRIPS=0).
* Reinstate IBPB on emulated VM-Exit that was incorrectly dropped a few
years back when eliminating unnecessary barriers when switching between
vmcs01 and vmcs02.
* Clean up the MSR filter docs.
* Clean up vmread_error_trampoline() to make it more obvious that params
must be passed on the stack, even for x86-64.
* Let userspace set all supported bits in MSR_IA32_FEAT_CTL irrespective
of the current guest CPUID.
* Fudge around a race with TSC refinement that results in KVM incorrectly
thinking a guest needs TSC scaling when running on a CPU with a
constant TSC, but no hardware-enumerated TSC frequency.
* Advertise (on AMD) that the SMM_CTL MSR is not supported
* Remove unnecessary exports
Selftests:
* Fix an inverted check in the access tracking perf test, and restore
support for asserting that there aren't too many idle pages when
running on bare metal.
* Fix an ordering issue in the AMX test introduced by recent conversions
to use kvm_cpu_has(), and harden the code to guard against similar bugs
in the future. Anything that tiggers caching of KVM's supported CPUID,
kvm_cpu_has() in this case, effectively hides opt-in XSAVE features if
the caching occurs before the test opts in via prctl().
* Fix build errors that occur in certain setups (unsure exactly what is
unique about the problematic setup) due to glibc overriding
static_assert() to a variant that requires a custom message.
* Introduce actual atomics for clear/set_bit() in selftests
Documentation:
* Remove deleted ioctls from documentation
* Various fixes
- Enable the per-vcpu dirty-ring tracking mechanism, together with an
option to keep the good old dirty log around for pages that are
dirtied by something other than a vcpu.
- Switch to the relaxed parallel fault handling, using RCU to delay
page table reclaim and giving better performance under load.
- Relax the MTE ABI, allowing a VMM to use the MAP_SHARED mapping
option, which multi-process VMMs such as crosvm rely on.
- Merge the pKVM shadow vcpu state tracking that allows the hypervisor
to have its own view of a vcpu, keeping that state private.
- Add support for the PMUv3p5 architecture revision, bringing support
for 64bit counters on systems that support it, and fix the
no-quite-compliant CHAIN-ed counter support for the machines that
actually exist out there.
- Fix a handful of minor issues around 52bit VA/PA support (64kB pages
only) as a prefix of the oncoming support for 4kB and 16kB pages.
- Add/Enable/Fix a bunch of selftests covering memslots, breakpoints,
stage-2 faults and access tracking. You name it, we got it, we
probably broke it.
- Pick a small set of documentation and spelling fixes, because no
good merge window would be complete without those.
As a side effect, this tag also drags:
- The 'kvmarm-fixes-6.1-3' tag as a dependency to the dirty-ring
series
- A shared branch with the arm64 tree that repaints all the system
registers to match the ARM ARM's naming, and resulting in
interesting conflicts
-----BEGIN PGP SIGNATURE-----
iQJDBAABCgAtFiEEn9UcU+C1Yxj9lZw9I9DQutE9ekMFAmOODb0PHG1hekBrZXJu
ZWwub3JnAAoJECPQ0LrRPXpDztsQAInRnsgLl57/SpqhZzExNCllN6AT/bdeB3uz
rnw3ScJOV174uNKp8lnPWoTvu2YUGiVtBp6tFHhDI8le7zHX438ZT8KE5mcs8p5i
KfFKnb8SHV2DDpqkcy24c0Xl/6vsg1qkKrdfJb49yl5ZakRITDpynW/7tn6dXsxX
wASeGFdCYeW4g2xMQzsCbtx6LgeQ8uomBmzRfPrOtZHYYxAn6+4Mj4595EC1sWxM
AQnbp8tW3Vw46saEZAQvUEOGOW9q0Nls7G21YqQ52IA+ZVDK1LmAF2b1XY3edjkk
pX8EsXOURfqdasBxfSfF3SgnUazoz9GHpSzp1cTVTktrPp40rrT7Ldtml0ktq69d
1malPj47KVMDsIq0kNJGnMxciXFgAHw+VaCQX+k4zhIatNwviMbSop2fEoxj22jc
4YGgGOxaGrnvmAJhreCIbr4CkZk5CJ8Zvmtfg+QM6npIp8BY8896nvORx/d4i6tT
H4caadd8AAR56ANUyd3+KqF3x0WrkaU0PLHJLy1tKwOXJUUTjcpvIfahBAAeUlSR
qEFrtb+EEMPgAwLfNOICcNkPZR/yyuYvM+FiUQNVy5cNiwFkpztpIctfOFaHySGF
K07O2/a1F6xKL0OKRUg7hGKknF9ecmux4vHhiUMuIk9VOgNTWobHozBDorLKXMzC
aWa6oGVC
=iIPT
-----END PGP SIGNATURE-----
Merge tag 'kvmarm-6.2' of https://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
KVM/arm64 updates for 6.2
- Enable the per-vcpu dirty-ring tracking mechanism, together with an
option to keep the good old dirty log around for pages that are
dirtied by something other than a vcpu.
- Switch to the relaxed parallel fault handling, using RCU to delay
page table reclaim and giving better performance under load.
- Relax the MTE ABI, allowing a VMM to use the MAP_SHARED mapping
option, which multi-process VMMs such as crosvm rely on.
- Merge the pKVM shadow vcpu state tracking that allows the hypervisor
to have its own view of a vcpu, keeping that state private.
- Add support for the PMUv3p5 architecture revision, bringing support
for 64bit counters on systems that support it, and fix the
no-quite-compliant CHAIN-ed counter support for the machines that
actually exist out there.
- Fix a handful of minor issues around 52bit VA/PA support (64kB pages
only) as a prefix of the oncoming support for 4kB and 16kB pages.
- Add/Enable/Fix a bunch of selftests covering memslots, breakpoints,
stage-2 faults and access tracking. You name it, we got it, we
probably broke it.
- Pick a small set of documentation and spelling fixes, because no
good merge window would be complete without those.
As a side effect, this tag also drags:
- The 'kvmarm-fixes-6.1-3' tag as a dependency to the dirty-ring
series
- A shared branch with the arm64 tree that repaints all the system
registers to match the ARM ARM's naming, and resulting in
interesting conflicts
* kvm-arm64/mte-map-shared:
: .
: Update the MTE support to allow the VMM to use shared mappings
: to back the memslots exposed to MTE-enabled guests.
:
: Patches courtesy of Catalin Marinas and Peter Collingbourne.
: .
: Fix a number of issues with MTE, such as races on the tags
: being initialised vs the PG_mte_tagged flag as well as the
: lack of support for VM_SHARED when KVM is involved.
:
: Patches from Catalin Marinas and Peter Collingbourne.
: .
Documentation: document the ABI changes for KVM_CAP_ARM_MTE
KVM: arm64: permit all VM_MTE_ALLOWED mappings with MTE enabled
KVM: arm64: unify the tests for VMAs in memslots when MTE is enabled
arm64: mte: Lock a page for MTE tag initialisation
mm: Add PG_arch_3 page flag
KVM: arm64: Simplify the sanitise_mte_tags() logic
arm64: mte: Fix/clarify the PG_mte_tagged semantics
mm: Do not enable PG_arch_2 for all 64-bit architectures
Signed-off-by: Marc Zyngier <maz@kernel.org>
Clarify the existing documentation about how KVM_CAP_HALT_POLL and
halt_poll_ns interact to make it clear that VMs using KVM_CAP_HALT_POLL
ignore halt_poll_ns.
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20221201195249.3369720-3-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move halt-polling.rst into the common KVM documentation directory and
out of the x86-specific directory. Halt-polling is a common feature and
the existing documentation is already written as such.
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20221201195249.3369720-2-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
- One-off fixes for various emulation flows (SGX, VMXON, NRIPS=0).
- Reinstate IBPB on emulated VM-Exit that was incorrectly dropped a few
years back when eliminating unnecessary barriers when switching between
vmcs01 and vmcs02.
- Clean up the MSR filter docs.
- Clean up vmread_error_trampoline() to make it more obvious that params
must be passed on the stack, even for x86-64.
- Let userspace set all supported bits in MSR_IA32_FEAT_CTL irrespective
of the current guest CPUID.
- Fudge around a race with TSC refinement that results in KVM incorrectly
thinking a guest needs TSC scaling when running on a CPU with a
constant TSC, but no hardware-enumerated TSC frequency.
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAwFiEEMHr+pfEFOIzK+KY1YJEiAU0MEvkFAmOJQesSHHNlYW5qY0Bn
b29nbGUuY29tAAoJEGCRIgFNDBL5IR4QAKGPbLRykY/2FohV2HDu5fDPxA2Fe9nu
5W7ZIptQu+tQtCTWKFEjcQdwYoNrLbr0hr1eGubVbIvBqJbwPQfH7G0765eOIcvy
s6Zn2N24IisIoUxdkJGOL3Tt1UR7wCFbwC+ms0i4FQvMcw+TbM0BTHgJDdwR5laX
mGN7ubz5iImwDFFE3Bd8Qy5I+FGL9CI60l+RzK6b7J8HYi1wOBMLU9QueF/dB7gR
g+navZJAAnvN6YIkjP5j8yPBuvhDzni379ue5ATDq1ALvyyI7xlYALsxpUjCnLuo
CkbvgmfmC94Vdm7pzFgsbazUN2oIjwoimjFQHP1bf8Jmd+770R282JpnwiD/ydCV
Tl2ArwXA2zxVxNZm9g/XqPBwWBWWgWfYIQbuuxc065MnXCnHkY5UGGf0JNx41CDl
hdtm9DHkft8+6kyBBmgkdKxd328Znljq02v3nLePUipfpDVaNj4VAUj9IpV6Lpuj
GJjs4Wx7oqFwH1Im/LqZgnOGwgkSj3ObHtkYx2RSrQAQultbjuplFz2qZWP8PF6A
FrJbcddKOmLINrdNOlvTd5WKCAjtV8vycjFkk+/7H67rpZdM8AI1StrzMP6gmwg4
ARozZJ2UF8nTriRYFQbFQyNm9bBTZ7YQ/HajqfhvCuZLi7i1EaImhC0F1xn7IU5S
6XhvQPvjRTgS
=i6OA
-----END PGP SIGNATURE-----
Merge tag 'kvm-x86-fixes-6.2-1' of https://github.com/kvm-x86/linux into HEAD
Misc KVM x86 fixes and cleanups for 6.2:
- One-off fixes for various emulation flows (SGX, VMXON, NRIPS=0).
- Reinstate IBPB on emulated VM-Exit that was incorrectly dropped a few
years back when eliminating unnecessary barriers when switching between
vmcs01 and vmcs02.
- Clean up the MSR filter docs.
- Clean up vmread_error_trampoline() to make it more obvious that params
must be passed on the stack, even for x86-64.
- Let userspace set all supported bits in MSR_IA32_FEAT_CTL irrespective
of the current guest CPUID.
- Fudge around a race with TSC refinement that results in KVM incorrectly
thinking a guest needs TSC scaling when running on a CPU with a
constant TSC, but no hardware-enumerated TSC frequency.
The ioctls are missing an architecture property that is present in others.
Suggested-by: Sergio Lopez Pascual <slp@redhat.com>
Signed-off-by: Javier Martinez Canillas <javierm@redhat.com>
Message-Id: <20221202105011.185147-5-javierm@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
There are still references to the removed kvm_memory_region data structure
but the doc and comments should mention struct kvm_userspace_memory_region
instead, since that is what's used by the ioctl that replaced the old one
and this data structure support the same set of flags.
Signed-off-by: Javier Martinez Canillas <javierm@redhat.com>
Message-Id: <20221202105011.185147-4-javierm@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The documentation says that the ioctl has been deprecated, but it has been
actually removed and the remaining references are just left overs.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Javier Martinez Canillas <javierm@redhat.com>
Message-Id: <20221202105011.185147-3-javierm@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The documentation says that the ioctl has been deprecated, but it has been
actually removed and the remaining references are just left overs.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Javier Martinez Canillas <javierm@redhat.com>
Message-Id: <20221202105011.185147-2-javierm@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Clean up the KVM_CAP_X86_USER_SPACE_MSR documentation to eliminate
misleading and/or inconsistent verbiage, and to actually document what
accesses are intercepted by which flags.
- s/will/may since not all #GPs are guaranteed to be intercepted
- s/deflect/intercept to align with common KVM terminology
- s/user space/userspace to align with the majority of KVM docs
- Avoid using "trap" terminology, as KVM exits to userspace _before_
stepping, i.e. doesn't exhibit trap-like behavior
- Actually document the flags
Signed-off-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/20220831001706.4075399-4-seanjc@google.com
Reword the MSR filtering documentatiion to more precisely define the
behavior of filtering using common virtualization terminology.
- Explicitly document KVM's behavior when an MSR is denied
- s/handled/allowed as there is no guarantee KVM will "handle" the
MSR access
- Drop the "fall back" terminology, which incorrectly suggests that
there is existing KVM behavior to fall back to
- Fix an off-by-one error in the range (the end is exclusive)
- Call out the interaction between MSR filtering and
KVM_CAP_X86_USER_SPACE_MSR's KVM_MSR_EXIT_REASON_FILTER
- Delete the redundant paragraph on what '0' and '1' in the bitmap
means, it's covered by the sections on KVM_MSR_FILTER_{READ,WRITE}
- Delete the clause on x2APIC MSR behavior depending on APIC base, this
is covered by stating that KVM follows architectural behavior when
emulating/virtualizing MSR accesses
Reported-by: Aaron Lewis <aaronlewis@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/20220831001706.4075399-3-seanjc@google.com
Delete the paragraph that describes the behavior when both
KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE are set for a range. There is
nothing special about KVM's handling of this combination, whereas
explicitly documenting the combination suggests that there is some magic
behavior the user needs to be aware of.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/20220831001706.4075399-2-seanjc@google.com
Closer inspection of the Xen code shows that we aren't supposed to be
using the XEN_RUNSTATE_UPDATE flag unconditionally. It should be
explicitly enabled by guests through the HYPERVISOR_vm_assist hypercall.
If we randomly set the top bit of ->state_entry_time for a guest that
hasn't asked for it and doesn't expect it, that could make the runtimes
fail to add up and confuse the guest. Without the flag it's perfectly
safe for a vCPU to read its own vcpu_runstate_info; just not for one
vCPU to read *another's*.
I briefly pondered adding a word for the whole set of VMASST_TYPE_*
flags but the only one we care about for HVM guests is this, so it
seemed a bit pointless.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <20221127122210.248427-3-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Document both the restriction on VM_MTE_ALLOWED mappings and
the relaxation for shared mappings.
Signed-off-by: Peter Collingbourne <pcc@google.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221104011041.290951-9-pcc@google.com
- First batch of KVM changes for kernel virtual != physical address support
- Removal of a unused function
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEEwGNS88vfc9+v45Yq41TmuOI4ufgFAmN/eYwACgkQ41TmuOI4
ufjoxA/9Et38aXO/IhmUt8v0QhA4yec+sc5GSFfQSYehej/1Vqhw0DXx+ORUiRgg
+rtiXJSSqkuD2dL+BDffY2xoul6nzNdVf4AbkcnrWscfWr6xwVYlPvuL0ymGI6J2
U/IPedRoKw0bHw/wHs05yV5PubrRwDFERKhtyXWYGbPJhX0w2n3IFOoKH1oWBhLW
Dc8jEs6t3gDbJ71Er0xoeBUoiuu+PgZG06cpOvzBZ0KclRgjADXyISqqk8/4mu8w
R+/Wf8NcrbQYV1jfCeq5zIsKC8uvnFj25UuyTLumn5vh+dNNsvE72Khe4tz7LI0I
ZPZ+GZuemu7Yi12dKjw4Sw3ui0ejWH/5XL1SVB0X/xYIWrBqOot+Lq6538GCng+c
tJt+zsu64VFgXCCZ8O9qO4uE4DBL70H3ThT7VZxIghSTZtY0xh3uFc64f3/3d9dy
K4WTJHrmMxhXaA/rqtIa8I53JvFl8CztofZATiQQesyPuc7lZ01w1Co5el4xYaxe
YknyMTq11qf/iYqVOW7sjoWW/YRuuMZ4+FhpI3o/SllVdN98iTwkk1kP3wcoBO5P
bvzpm+WXHbv9OxifPrqkqv34+upbjfEmSogHudQzagBX4vl3rZRfBCdQGCAha0Uc
ZYyg68kiil5sWmHI/Ln/ZjANYfbS5sF0CreuWxnmqcwKl2NSN/E=
=/1yt
-----END PGP SIGNATURE-----
Merge tag 'kvm-s390-next-6.2-1' of https://git.kernel.org/pub/scm/linux/kernel/git/kvms390/linux into HEAD
- Second batch of the lazy destroy patches
- First batch of KVM changes for kernel virtual != physical address support
- Removal of a unused function
Add documentation for the new commands added to the KVM_S390_PV_COMMAND
ioctl.
Signed-off-by: Claudio Imbrenda <imbrenda@linux.ibm.com>
Reviewed-by: Nico Boehr <nrb@linux.ibm.com>
Reviewed-by: Steffen Eiden <seiden@linux.ibm.com>
Reviewed-by: Janosch Frank <frankja@linux.ibm.com>
Link: https://lore.kernel.org/r/20221111170632.77622-3-imbrenda@linux.ibm.com
Message-Id: <20221111170632.77622-3-imbrenda@linux.ibm.com>
Signed-off-by: Janosch Frank <frankja@linux.ibm.com>