* 'release' of git://git.kernel.org/pub/scm/linux/kernel/git/lenb/linux-acpi-2.6: (59 commits)
ACPI / PM: Fix build problems for !CONFIG_ACPI related to NVS rework
ACPI: fix resource check message
ACPI / Battery: Update information on info notification and resume
ACPI: Drop device flag wake_capable
ACPI: Always check if _PRW is present before trying to evaluate it
ACPI / PM: Check status of power resources under mutexes
ACPI / PM: Rename acpi_power_off_device()
ACPI / PM: Drop acpi_power_nocheck
ACPI / PM: Drop acpi_bus_get_power()
Platform / x86: Make fujitsu_laptop use acpi_bus_update_power()
ACPI / Fan: Rework the handling of power resources
ACPI / PM: Register power resource devices as soon as they are needed
ACPI / PM: Register acpi_power_driver early
ACPI / PM: Add function for updating device power state consistently
ACPI / PM: Add function for device power state initialization
ACPI / PM: Introduce __acpi_bus_get_power()
ACPI / PM: Introduce function for refcounting device power resources
ACPI / PM: Add functions for manipulating lists of power resources
ACPI / PM: Prevent acpi_power_get_inferred_state() from making changes
ACPICA: Update version to 20101209
...
IS_ERR() already implies unlikely(), so it can be omitted here.
Signed-off-by: Tobias Klauser <tklauser@distanz.ch>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Four architectures (arm, mips, sparc, x86) use __vmalloc_area() for
module_init(). Much of the code is duplicated and can be generalized in a
globally accessible function, __vmalloc_node_range().
__vmalloc_node() now calls into __vmalloc_node_range() with a range of
[VMALLOC_START, VMALLOC_END) for functionally equivalent behavior.
Each architecture may then use __vmalloc_node_range() directly to remove
the duplication of code.
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
pcpu_get_vm_areas() only uses GFP_KERNEL allocations, so remove the gfp_t
formal and use the mask internally.
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
get_vm_area_node() is unused in the kernel and can thus be removed.
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Generic Hardware Error Source provides a way to report platform
hardware errors (such as that from chipset). It works in so called
"Firmware First" mode, that is, hardware errors are reported to
firmware firstly, then reported to Linux by firmware. This way, some
non-standard hardware error registers or non-standard hardware link
can be checked by firmware to produce more valuable hardware error
information for Linux.
This patch adds POLL/IRQ/NMI notification types support.
Because the memory area used to transfer hardware error information
from BIOS to Linux can be determined only in NMI, IRQ or timer
handler, but general ioremap can not be used in atomic context, so a
special version of atomic ioremap is implemented for that.
Known issue:
- Error information can not be printed for recoverable errors notified
via NMI, because printk is not NMI-safe. Will fix this via delay
printing to IRQ context via irq_work or make printk NMI-safe.
v2:
- adjust printk format per comments.
Signed-off-by: Huang Ying <ying.huang@intel.com>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
On stock 2.6.37-rc4, running:
# mount lilith:/export /mnt/lilith
# find /mnt/lilith/ -type f -print0 | xargs -0 file
crashes the machine fairly quickly under Xen. Often it results in oops
messages, but the couple of times I tried just now, it just hung quietly
and made Xen print some rude messages:
(XEN) mm.c:2389:d80 Bad type (saw 7400000000000001 != exp
3000000000000000) for mfn 1d7058 (pfn 18fa7)
(XEN) mm.c:964:d80 Attempt to create linear p.t. with write perms
(XEN) mm.c:2389:d80 Bad type (saw 7400000000000010 != exp
1000000000000000) for mfn 1d2e04 (pfn 1d1fb)
(XEN) mm.c:2965:d80 Error while pinning mfn 1d2e04
Which means the domain tried to map a pagetable page RW, which would
allow it to map arbitrary memory, so Xen stopped it. This is because
vm_unmap_ram() left some pages mapped in the vmalloc area after NFS had
finished with them, and those pages got recycled as pagetable pages
while still having these RW aliases.
Removing those mappings immediately removes the Xen-visible aliases, and
so it has no problem with those pages being reused as pagetable pages.
Deferring the TLB flush doesn't upset Xen because it can flush the TLB
itself as needed to maintain its invariants.
When unmapping a region in the vmalloc space, clear the ptes
immediately. There's no point in deferring this because there's no
amortization benefit.
The TLBs are left dirty, and they are flushed lazily to amortize the
cost of the IPIs.
This specific motivation for this patch is an oops-causing regression
since 2.6.36 when using NFS under Xen, triggered by the NFS client's use
of vm_map_ram() introduced in 56e4ebf877 ("NFS: readdir with vmapped
pages") . XFS also uses vm_map_ram() and could cause similar problems.
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Cc: Nick Piggin <npiggin@kernel.dk>
Cc: Bryan Schumaker <bjschuma@netapp.com>
Cc: Trond Myklebust <Trond.Myklebust@netapp.com>
Cc: Alex Elder <aelder@sgi.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add vzalloc() and vzalloc_node() to encapsulate the
vmalloc-then-memset-zero operation.
Use __GFP_ZERO to zero fill the allocated memory.
Signed-off-by: Dave Young <hidave.darkstar@gmail.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Acked-by: Greg Ungerer <gerg@snapgear.com>
Cc: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
s_start() and s_stop() grab/release vmlist_lock but were missing proper
annotations. Add them.
Signed-off-by: Namhyung Kim <namhyung@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Rename redundant 'tmp' to fix following sparse warnings:
mm/vmalloc.c:296:34: warning: symbol 'tmp' shadows an earlier one
mm/vmalloc.c:293:24: originally declared here
Signed-off-by: Namhyung Kim <namhyung@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu:
percpu: update comments to reflect that percpu allocations are always zero-filled
percpu: Optimize __get_cpu_var()
x86, percpu: Optimize this_cpu_ptr
percpu: clear memory allocated with the km allocator
percpu: fix build breakage on s390 and cleanup build configuration tests
percpu: use percpu allocator on UP too
percpu: reduce PCPU_MIN_UNIT_SIZE to 32k
vmalloc: pcpu_get/free_vm_areas() aren't needed on UP
Fixed up trivial conflicts in include/linux/percpu.h
During the reading of /proc/vmcore the kernel is doing
ioremap()/iounmap() repeatedly. And the buildup of un-flushed
vm_area_struct's is causing a great deal of overhead. (rb_next()
is chewing up most of that time).
This solution is to provide function set_iounmap_nonlazy(). It
causes a subsequent call to iounmap() to immediately purge the
vma area (with try_purge_vmap_area_lazy()).
With this patch we have seen the time for writing a 250MB
compressed dump drop from 71 seconds to 44 seconds.
Signed-off-by: Cliff Wickman <cpw@sgi.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: kexec@lists.infradead.org
Cc: <stable@kernel.org>
LKML-Reference: <E1OwHZ4-0005WK-Tw@eag09.americas.sgi.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
These functions are used only by percpu memory allocator on SMP.
Don't build them on UP.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Nick Piggin <npiggin@kernel.dk>
Reviewed-by: Chrsitoph Lameter <cl@linux.com>
* 'stable/xen-swiotlb-0.8.6' of git://git.kernel.org/pub/scm/linux/kernel/git/konrad/xen:
x86: Detect whether we should use Xen SWIOTLB.
pci-swiotlb-xen: Add glue code to setup dma_ops utilizing xen_swiotlb_* functions.
swiotlb-xen: SWIOTLB library for Xen PV guest with PCI passthrough.
xen/mmu: inhibit vmap aliases rather than trying to clear them out
vmap: add flag to allow lazy unmap to be disabled at runtime
xen: Add xen_create_contiguous_region
xen: Rename the balloon lock
xen: Allow unprivileged Xen domains to create iomap pages
xen: use _PAGE_IOMAP in ioremap to do machine mappings
Fix up trivial conflicts (adding both xen swiotlb and xen pci platform
driver setup close to each other) in drivers/xen/{Kconfig,Makefile} and
include/xen/xen-ops.h
kmalloc() may fail, if so return -ENOMEM.
Signed-off-by: Kulikov Vasiliy <segooon@gmail.com>
Acked-by: Pekka Enberg <penberg@cs.helsinki.fi>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use ERR_CAST(x) rather than ERR_PTR(PTR_ERR(x)). The former makes more
clear what is the purpose of the operation, which otherwise looks like a
no-op.
The semantic patch that makes this change is as follows:
(http://coccinelle.lip6.fr/)
// <smpl>
@@
type T;
T x;
identifier f;
@@
T f (...) { <+...
- ERR_PTR(PTR_ERR(x))
+ x
...+> }
@@
expression x;
@@
- ERR_PTR(PTR_ERR(x))
+ ERR_CAST(x)
// </smpl>
Signed-off-by: Julia Lawall <julia@diku.dk>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add a flag to force lazy_max_pages() to zero to prevent any outstanding
mapped pages. We'll need this for Xen.
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Acked-by: Nick Piggin <npiggin@suse.de>
Current x86 ioremap() doesn't handle physical address higher than
32-bit properly in X86_32 PAE mode. When physical address higher than
32-bit is passed to ioremap(), higher 32-bits in physical address is
cleared wrongly. Due to this bug, ioremap() can map wrong address to
linear address space.
In my case, 64-bit MMIO region was assigned to a PCI device (ioat
device) on my system. Because of the ioremap()'s bug, wrong physical
address (instead of MMIO region) was mapped to linear address space.
Because of this, loading ioatdma driver caused unexpected behavior
(kernel panic, kernel hangup, ...).
Signed-off-by: Kenji Kaneshige <kaneshige.kenji@jp.fujitsu.com>
LKML-Reference: <4C1AE680.7090408@jp.fujitsu.com>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Improve handling of fragmented per-CPU vmaps. We previously don't free
up per-CPU maps until all its addresses have been used and freed. So
fragmented blocks could fill up vmalloc space even if they actually had
no active vmap regions within them.
Add some logic to allow all CPUs to have these blocks purged in the case
of failure to allocate a new vm area, and also put some logic to trim
such blocks of a current CPU if we hit them in the allocation path (so
as to avoid a large build up of them).
Christoph reported some vmap allocation failures when using the per CPU
vmap APIs in XFS, which cannot be reproduced after this patch and the
previous bug fix.
Cc: linux-mm@kvack.org
Cc: stable@kernel.org
Tested-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Nick Piggin <npiggin@suse.de>
--
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
RCU list walking of the per-cpu vmap cache was broken. It did not use
RCU primitives, and also the union of free_list and rcu_head is
obviously wrong (because free_list is indeed the list we are RCU
walking).
While we are there, remove a couple of unused fields from an earlier
iteration.
These APIs aren't actually used anywhere, because of problems with the
XFS conversion. Christoph has now verified that the problems are solved
with these patches. Also it is an exported interface, so I think it
will be good to be merged now (and Christoph wants to get the XFS
changes into their local tree).
Cc: stable@kernel.org
Cc: linux-mm@kvack.org
Tested-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Nick Piggin <npiggin@suse.de>
--
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In free_unmap_area_noflush(), va->flags is marked as VM_LAZY_FREE first, and
then vmap_lazy_nr is increased atomically.
But, in __purge_vmap_area_lazy(), while traversing of vmap_are_list, nr
is counted by checking VM_LAZY_FREE is set to va->flags. After counting
the variable nr, kernel reads vmap_lazy_nr atomically and checks a
BUG_ON condition whether nr is greater than vmap_lazy_nr to prevent
vmap_lazy_nr from being negative.
The problem is that, if interrupted right after marking VM_LAZY_FREE,
increment of vmap_lazy_nr can be delayed. Consequently, BUG_ON
condition can be met because nr is counted more than vmap_lazy_nr.
It is highly probable when vmalloc/vfree are called frequently. This
scenario have been verified by adding delay between marking VM_LAZY_FREE
and increasing vmap_lazy_nr in free_unmap_area_noflush().
Even the vmap_lazy_nr is for checking high watermark, it never be the
strict watermark. Although the BUG_ON condition is to prevent
vmap_lazy_nr from being negative, vmap_lazy_nr is signed variable. So,
it could go down to negative value temporarily.
Consequently, removing the BUG_ON condition is proper.
A possible BUG_ON message is like the below.
kernel BUG at mm/vmalloc.c:517!
invalid opcode: 0000 [#1] SMP
EIP: 0060:[<c04824a4>] EFLAGS: 00010297 CPU: 3
EIP is at __purge_vmap_area_lazy+0x144/0x150
EAX: ee8a8818 EBX: c08e77d4 ECX: e7c7ae40 EDX: c08e77ec
ESI: 000081fe EDI: e7c7ae60 EBP: e7c7ae64 ESP: e7c7ae3c
DS: 007b ES: 007b FS: 00d8 GS: 0033 SS: 0068
Call Trace:
[<c0482ad9>] free_unmap_vmap_area_noflush+0x69/0x70
[<c0482b02>] remove_vm_area+0x22/0x70
[<c0482c15>] __vunmap+0x45/0xe0
[<c04831ec>] vmalloc+0x2c/0x30
Code: 8d 59 e0 eb 04 66 90 89 cb 89 d0 e8 87 fe ff ff 8b 43 20 89 da 8d 48 e0 8d 43 20 3b 04 24 75 e7 fe 05 a8 a5 a3 c0 e9 78 ff ff ff <0f> 0b eb fe 90 8d b4 26 00 00 00 00 56 89 c6 b8 ac a5 a3 c0 31
EIP: [<c04824a4>] __purge_vmap_area_lazy+0x144/0x150 SS:ESP 0068:e7c7ae3c
[ See also http://marc.info/?l=linux-kernel&m=126335856228090&w=2 ]
Signed-off-by: Yongseok Koh <yongseok.koh@samsung.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
- avoid wasting more precious resources (DMA or DMA32 pools), when
being called through vmalloc_32{,_user}()
- explicitly allow using high memory here even if the outer allocation
request doesn't allow it
Signed-off-by: Jan Beulich <jbeulich@novell.com>
Acked-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu: (34 commits)
m68k: rename global variable vmalloc_end to m68k_vmalloc_end
percpu: add missing per_cpu_ptr_to_phys() definition for UP
percpu: Fix kdump failure if booted with percpu_alloc=page
percpu: make misc percpu symbols unique
percpu: make percpu symbols in ia64 unique
percpu: make percpu symbols in powerpc unique
percpu: make percpu symbols in x86 unique
percpu: make percpu symbols in xen unique
percpu: make percpu symbols in cpufreq unique
percpu: make percpu symbols in oprofile unique
percpu: make percpu symbols in tracer unique
percpu: make percpu symbols under kernel/ and mm/ unique
percpu: remove some sparse warnings
percpu: make alloc_percpu() handle array types
vmalloc: fix use of non-existent percpu variable in put_cpu_var()
this_cpu: Use this_cpu_xx in trace_functions_graph.c
this_cpu: Use this_cpu_xx for ftrace
this_cpu: Use this_cpu_xx in nmi handling
this_cpu: Use this_cpu operations in RCU
this_cpu: Use this_cpu ops for VM statistics
...
Fix up trivial (famous last words) global per-cpu naming conflicts in
arch/x86/kvm/svm.c
mm/slab.c
vmalloc used non-existent percpu variable vmap_cpu_blocks instead of
the intended vmap_block_queue. This went unnoticed because
put_cpu_var() didn't evaluate the parameter. Fix it.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Nick Piggin <npiggin@suse.de>
After m68k's task_thread_info() doesn't refer to current,
it's possible to remove sched.h from interrupt.h and not break m68k!
Many thanks to Heiko Carstens for allowing this.
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
* 'sparc-perf-events-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
mm, perf_event: Make vmalloc_user() align base kernel virtual address to SHMLBA
perf_event: Provide vmalloc() based mmap() backing
When a vmalloc'd area is mmap'd into userspace, some kind of
co-ordination is necessary for this to work on platforms with cpu
D-caches which can have aliases.
Otherwise kernel side writes won't be seen properly in userspace
and vice versa.
If the kernel side mapping and the user side one have the same
alignment, modulo SHMLBA, this can work as long as VM_SHARED is
shared of VMA and for all current users this is true. VM_SHARED
will force SHMLBA alignment of the user side mmap on platforms with
D-cache aliasing matters.
The bulk of this patch is just making it so that a specific
alignment can be passed down into __get_vm_area_node(). All
existing callers pass in '1' which preserves existing behavior.
vmalloc_user() gives SHMLBA for the alignment.
As a side effect this should get the video media drivers and other
vmalloc_user() users into more working shape on such systems.
Signed-off-by: David S. Miller <davem@davemloft.net>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Jens Axboe <jens.axboe@oracle.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
LKML-Reference: <200909211922.n8LJMYjw029425@imap1.linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
fix the following 'make includecheck' warning:
mm/vmalloc.c: linux/highmem.h is included more than once.
Signed-off-by: Jaswinder Singh Rajput <jaswinderrajput@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Some archs define MODULED_VADDR/MODULES_END which is not in VMALLOC area.
This is handled only in x86-64. This patch make it more generic. And we
can use vread/vwrite to access the area. Fix it.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Jiri Slaby <jirislaby@gmail.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: WANG Cong <xiyou.wangcong@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Sizing of memory allocations shouldn't depend on the number of physical
pages found in a system, as that generally includes (perhaps a huge amount
of) non-RAM pages. The amount of what actually is usable as storage
should instead be used as a basis here.
Some of the calculations (i.e. those not intending to use high memory)
should likely even use (totalram_pages - totalhigh_pages).
Signed-off-by: Jan Beulich <jbeulich@novell.com>
Acked-by: Rusty Russell <rusty@rustcorp.com.au>
Acked-by: Ingo Molnar <mingo@elte.hu>
Cc: Dave Airlie <airlied@linux.ie>
Cc: Kyle McMartin <kyle@mcmartin.ca>
Cc: Jeremy Fitzhardinge <jeremy@goop.org>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Patrick McHardy <kaber@trash.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
vread/vwrite access vmalloc area without checking there is a page or not.
In most case, this works well.
In old ages, the caller of get_vm_ara() is only IOREMAP and there is no
memory hole within vm_struct's [addr...addr + size - PAGE_SIZE] (
-PAGE_SIZE is for a guard page.)
After per-cpu-alloc patch, it uses get_vm_area() for reserve continuous
virtual address but remap _later_. There tend to be a hole in valid
vmalloc area in vm_struct lists. Then, skip the hole (not mapped page) is
necessary. This patch updates vread/vwrite() for avoiding memory hole.
Routines which access vmalloc area without knowing for which addr is used
are
- /proc/kcore
- /dev/kmem
kcore checks IOREMAP, /dev/kmem doesn't. After this patch, IOREMAP is
checked and /dev/kmem will avoid to read/write it. Fixes to /proc/kcore
will be in the next patch in series.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: WANG Cong <xiyou.wangcong@gmail.com>
Cc: Mike Smith <scgtrp@gmail.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
vmap area should be purged after vm_struct is removed from the list
because vread/vwrite etc...believes the range is valid while it's on
vm_struct list.
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: WANG Cong <xiyou.wangcong@gmail.com>
Cc: Mike Smith <scgtrp@gmail.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There is no need for double error checking.
Signed-off-by: Figo.zhang <figo1802@gmail.com>
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
To directly use spread NUMA memories for percpu units, percpu
allocator will be updated to allow sparsely mapping units in a chunk.
As the distances between units can be very large, this makes
allocating single vmap area for each chunk undesirable. This patch
implements pcpu_get_vm_areas() and pcpu_free_vm_areas() which
allocates and frees sparse congruent vmap areas.
pcpu_get_vm_areas() take @offsets and @sizes array which define
distances and sizes of vmap areas. It scans down from the top of
vmalloc area looking for the top-most address which can accomodate all
the areas. The top-down scan is to avoid interacting with regular
vmallocs which can push up these congruent areas up little by little
ending up wasting address space and page table.
To speed up top-down scan, the highest possible address hint is
maintained. Although the scan is linear from the hint, given the
usual large holes between memory addresses between NUMA nodes, the
scanning is highly likely to finish after finding the first hole for
the last unit which is scanned first.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Nick Piggin <npiggin@suse.de>
Separate out insert_vmalloc_vm() from __get_vm_area_node().
insert_vmalloc_vm() initializes vm_struct from vmap_area and inserts
it into vmlist. insert_vmalloc_vm() only initializes fields which can
be determined from @vm, @flags and @caller The rest should be
initialized by the caller. For __get_vm_area_node(), all other fields
just need to be cleared and this is done by using kzalloc instead of
kmalloc.
This will be used to implement pcpu_get_vm_areas().
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Nick Piggin <npiggin@suse.de>
* 'for-linus' of git://linux-arm.org/linux-2.6:
kmemleak: Add the corresponding MAINTAINERS entry
kmemleak: Simple testing module for kmemleak
kmemleak: Enable the building of the memory leak detector
kmemleak: Remove some of the kmemleak false positives
kmemleak: Add modules support
kmemleak: Add kmemleak_alloc callback from alloc_large_system_hash
kmemleak: Add the vmalloc memory allocation/freeing hooks
kmemleak: Add the slub memory allocation/freeing hooks
kmemleak: Add the slob memory allocation/freeing hooks
kmemleak: Add the slab memory allocation/freeing hooks
kmemleak: Add documentation on the memory leak detector
kmemleak: Add the base support
Manual conflict resolution (with the slab/earlyboot changes) in:
drivers/char/vt.c
init/main.c
mm/slab.c
We can call vmalloc_init() after kmem_cache_init() and use kzalloc() instead of
the bootmem allocator when initializing vmalloc data structures.
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Acked-by: Nick Piggin <npiggin@suse.de>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Yinghai Lu <yinghai@kernel.org>
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
If alloc_vmap_area() fails the allocated struct vmap_area has to be freed.
Signed-off-by: Ralph Wuerthner <ralphw@linux.vnet.ibm.com>
Reviewed-by: Christoph Lameter <cl@linux-foundation.org>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
vmap's dirty_list is unused. It's for optimizing flushing. but Nick
didn't write the code yet. so, we don't need it until time as it is
needed.
This patch removes vmap_block's dirty_list and codes related to it.
Signed-off-by: MinChan Kim <minchan.kim@gmail.com>
Acked-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
I just got this new warning from kmemcheck:
WARNING: kmemcheck: Caught 32-bit read from freed memory (c7806a60)
a06a80c7ecde70c1a04080c700000000a06709c1000000000000000000000000
f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f
^
Pid: 0, comm: swapper Not tainted (2.6.29-rc4 #230)
EIP: 0060:[<c1096df7>] EFLAGS: 00000286 CPU: 0
EIP is at __purge_vmap_area_lazy+0x117/0x140
EAX: 00070f43 EBX: c7806a40 ECX: c1677080 EDX: 00027b66
ESI: 00002001 EDI: c170df0c EBP: c170df00 ESP: c178830c
DS: 007b ES: 007b FS: 00d8 GS: 0000 SS: 0068
CR0: 80050033 CR2: c7806b14 CR3: 01775000 CR4: 00000690
DR0: 00000000 DR1: 00000000 DR2: 00000000 DR3: 00000000
DR6: 00004000 DR7: 00000000
[<c1096f3e>] free_unmap_vmap_area_noflush+0x6e/0x70
[<c1096f6a>] remove_vm_area+0x2a/0x70
[<c1097025>] __vunmap+0x45/0xe0
[<c10970de>] vunmap+0x1e/0x30
[<c1008ba5>] text_poke+0x95/0x150
[<c1008ca9>] alternatives_smp_unlock+0x49/0x60
[<c171ef47>] alternative_instructions+0x11b/0x124
[<c171f991>] check_bugs+0xbd/0xdc
[<c17148c5>] start_kernel+0x2ed/0x360
[<c171409e>] __init_begin+0x9e/0xa9
[<ffffffff>] 0xffffffff
It happened here:
$ addr2line -e vmlinux -i c1096df7
mm/vmalloc.c:540
Code:
list_for_each_entry(va, &valist, purge_list)
__free_vmap_area(va);
It's this instruction:
mov 0x20(%ebx),%edx
Which corresponds to a dereference of va->purge_list.next:
(gdb) p ((struct vmap_area *) 0)->purge_list.next
Cannot access memory at address 0x20
It seems that we should use "safe" list traversal here, as the element
is freed inside the loop. Please verify that this is the right fix.
Acked-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Vegard Nossum <vegard.nossum@gmail.com>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Cc: <stable@kernel.org> [2.6.28.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The new vmap allocator can wrap the address and get confused in the case
of large allocations or VMALLOC_END near the end of address space.
Problem reported by Christoph Hellwig on a 32-bit XFS workload.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Reported-by: Christoph Hellwig <hch@lst.de>
Cc: <stable@kernel.org> [2.6.28.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Impact: allow larger alignment for early vmalloc area allocation
Some early vmalloc users might want larger alignment, for example, for
custom large page mapping. Add @align to vm_area_register_early().
While at it, drop docbook comment on non-existent @size.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Impact: proper vcache flush on unmap_kernel_range()
flush_cache_vunmap() should be called before pages are unmapped. Add
a call to it in unmap_kernel_range().
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Nick Piggin <npiggin@suse.de>
Acked-by: David S. Miller <davem@davemloft.net>
Cc: <stable@kernel.org> [2.6.28.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Impact: two more public map/unmap functions
Implement map_kernel_range_noflush() and unmap_kernel_range_noflush().
These functions respectively map and unmap address range in kernel VM
area but doesn't do any vcache or tlb flushing. These will be used by
new percpu allocator.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Impact: allow multiple early vm areas
There are places where kernel VM area needs to be allocated before
vmalloc is initialized. This is done by allocating static vm_struct,
initializing several fields and linking it to vmlist and later vmalloc
initialization picking up these from vmlist. This is currently done
manually and if there's more than one such areas, there's no defined
way to arbitrate who gets which address.
This patch implements vm_area_register_early(), which takes vm_area
struct with flags and size initialized, assigns address to it and puts
it on the vmlist. This way, multiple early vm areas can determine
which addresses they should use. The only current user - alpha mm
init - is converted to use it.
Signed-off-by: Tejun Heo <tj@kernel.org>
Impact: proper vcache flush on unmap_kernel_range()
flush_cache_vunmap() should be called before pages are unmapped. Add
a call to it in unmap_kernel_range().
Signed-off-by: Tejun Heo <tj@kernel.org>
We have get_vm_area_caller() and __get_vm_area() but not
__get_vm_area_caller()
On powerpc, I use __get_vm_area() to separate the ranges of addresses
given to vmalloc vs. ioremap (various good reasons for that) so in order
to be able to implement the new caller tracking in /proc/vmallocinfo, I
need a "_caller" variant of it.
(akpm: needed for ongoing powerpc development, so merge it early)
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
On alpha, we have to map some stuff in the VMALLOC space very early in the
boot process (to make SRM console callbacks work and so on, see
arch/alpha/mm/init.c). For old VM allocator, we just manually placed a
vm_struct onto the global vmlist and this worked for ages.
Unfortunately, the new allocator isn't aware of this, so it constantly
tries to allocate the VM space which is already in use, making vmalloc on
alpha defunct.
This patch forces KVA to import vmlist entries on init.
[akpm@linux-foundation.org: remove unneeded check (per Johannes)]
Signed-off-by: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Lazy unmapping in the vmalloc code has now opened the possibility for use
after free bugs to go undetected. We can catch those by forcing an unmap
and flush (which is going to be slow, but that's what happens).
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The vmalloc purge lock can be a mutex so we can sleep while a purge is
going on (purge involves a global kernel TLB invalidate, so it can take
quite a while).
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If we do that, output of files like /proc/vmallocinfo will show things
like "vmalloc_32", "vmalloc_user", or whomever the caller was as the
caller. This info is not as useful as the real caller of the allocation.
So, proposal is to call __vmalloc_node node directly, with matching
parameters to save the caller information
Signed-off-by: Glauber Costa <glommer@redhat.com>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If we can't service a vmalloc allocation, show size of the allocation that
actually failed. Useful for debugging.
Signed-off-by: Glauber Costa <glommer@redhat.com>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The flush_cache_vmap in vmap_page_range() is called with the end of the
range twice. The following patch fixes this for me.
Signed-off-by: Adam Lackorzynski <adam@os.inf.tu-dresden.de>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Miles Lane tailing /sys files hit a BUG which Pekka Enberg has tracked
to my 966c8c12dc sprint_symbol(): use
less stack exposing a bug in slub's list_locations() -
kallsyms_lookup() writes a 0 to namebuf[KSYM_NAME_LEN-1], but that was
beyond the end of page provided.
The 100 slop which list_locations() allows at end of page looks roughly
enough for all the other stuff it might print after the symbol before
it checks again: break out KSYM_SYMBOL_LEN earlier than before.
Latencytop and ftrace and are using KSYM_NAME_LEN buffers where they
need KSYM_SYMBOL_LEN buffers, and vmallocinfo a 2*KSYM_NAME_LEN buffer
where it wants a KSYM_SYMBOL_LEN buffer: fix those before anyone copies
them.
[akpm@linux-foundation.org: ftrace.h needs module.h]
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc Miles Lane <miles.lane@gmail.com>
Acked-by: Pekka Enberg <penberg@cs.helsinki.fi>
Acked-by: Steven Rostedt <srostedt@redhat.com>
Acked-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Jim Radford has reported that the vmap subsystem rewrite was sometimes
causing his VIVT ARM system to behave strangely (seemed like going into
infinite loops trying to fault in pages to userspace).
We determined that the problem was most likely due to a cache aliasing
issue. flush_cache_vunmap was only being called at the moment the page
tables were to be taken down, however with lazy unmapping, this can happen
after the page has subsequently been freed and allocated for something
else. The dangling alias may still have dirty data attached to it.
The fix for this problem is to do the cache flushing when the caller has
called vunmap -- it would be a bug for them to write anything else to the
mapping at that point.
That appeared to solve Jim's problems.
Reported-by: Jim Radford <radford@blackbean.org>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Cc: Russell King <rmk@arm.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Current vmalloc restart search for a free area in case we can't find one.
The reason is there are areas which are lazily freed, and could be
possibly freed now. However, current implementation start searching the
tree from the last failing address, which is pretty much by definition at
the end of address space. So, we fail.
The proposal of this patch is to restart the search from the beginning of
the requested vstart address. This fixes the regression in running KVM
virtual machines for me, described in http://lkml.org/lkml/2008/10/28/349,
caused by commit db64fe0225.
Signed-off-by: Glauber Costa <glommer@redhat.com>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
An initial vmalloc failure should start off a synchronous flush of lazy
areas, in case someone is in progress flushing them already, which could
cause us to return an allocation failure even if there is plenty of KVA
free.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix off by one bug in the KVA allocator that can leave gaps in the address
space.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Xen can end up calling vm_unmap_aliases() before vmalloc_init() has
been called. In this case its safe to make it a simple no-op.
Signed-off-by: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Cc: Linux Memory Management List <linux-mm@kvack.org>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
As of 73bdf0a60e, the kernel needs
to know where modules are located in the virtual address space.
On ARM, we located this region between MODULE_START and MODULE_END.
Unfortunately, everyone else calls it MODULES_VADDR and MODULES_END.
Update ARM to use the same naming, so is_vmalloc_or_module_addr()
can work properly. Also update the comment on mm/vmalloc.c to
reflect that ARM also places modules in a separate region from the
vmalloc space.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Delete excess kernel-doc notation in mm/ subdirectory.
Actually this is a kernel-doc notation fix.
Warning(/var/linsrc/linux-2.6.27-git10//mm/vmalloc.c:902): Excess function parameter or struct member 'returns' description in 'vm_map_ram'
Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'x86-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86 ACPI: fix breakage of resume on 64-bit UP systems with SMP kernel
Introduce is_vmalloc_or_module_addr() and use with DEBUG_VIRTUAL
Rewrite the vmap allocator to use rbtrees and lazy tlb flushing, and
provide a fast, scalable percpu frontend for small vmaps (requires a
slightly different API, though).
The biggest problem with vmap is actually vunmap. Presently this requires
a global kernel TLB flush, which on most architectures is a broadcast IPI
to all CPUs to flush the cache. This is all done under a global lock. As
the number of CPUs increases, so will the number of vunmaps a scaled
workload will want to perform, and so will the cost of a global TLB flush.
This gives terrible quadratic scalability characteristics.
Another problem is that the entire vmap subsystem works under a single
lock. It is a rwlock, but it is actually taken for write in all the fast
paths, and the read locking would likely never be run concurrently anyway,
so it's just pointless.
This is a rewrite of vmap subsystem to solve those problems. The existing
vmalloc API is implemented on top of the rewritten subsystem.
The TLB flushing problem is solved by using lazy TLB unmapping. vmap
addresses do not have to be flushed immediately when they are vunmapped,
because the kernel will not reuse them again (would be a use-after-free)
until they are reallocated. So the addresses aren't allocated again until
a subsequent TLB flush. A single TLB flush then can flush multiple
vunmaps from each CPU.
XEN and PAT and such do not like deferred TLB flushing because they can't
always handle multiple aliasing virtual addresses to a physical address.
They now call vm_unmap_aliases() in order to flush any deferred mappings.
That call is very expensive (well, actually not a lot more expensive than
a single vunmap under the old scheme), however it should be OK if not
called too often.
The virtual memory extent information is stored in an rbtree rather than a
linked list to improve the algorithmic scalability.
There is a per-CPU allocator for small vmaps, which amortizes or avoids
global locking.
To use the per-CPU interface, the vm_map_ram / vm_unmap_ram interfaces
must be used in place of vmap and vunmap. Vmalloc does not use these
interfaces at the moment, so it will not be quite so scalable (although it
will use lazy TLB flushing).
As a quick test of performance, I ran a test that loops in the kernel,
linearly mapping then touching then unmapping 4 pages. Different numbers
of tests were run in parallel on an 4 core, 2 socket opteron. Results are
in nanoseconds per map+touch+unmap.
threads vanilla vmap rewrite
1 14700 2900
2 33600 3000
4 49500 2800
8 70631 2900
So with a 8 cores, the rewritten version is already 25x faster.
In a slightly more realistic test (although with an older and less
scalable version of the patch), I ripped the not-very-good vunmap batching
code out of XFS, and implemented the large buffer mapping with vm_map_ram
and vm_unmap_ram... along with a couple of other tricks, I was able to
speed up a large directory workload by 20x on a 64 CPU system. I believe
vmap/vunmap is actually sped up a lot more than 20x on such a system, but
I'm running into other locks now. vmap is pretty well blown off the
profiles.
Before:
1352059 total 0.1401
798784 _write_lock 8320.6667 <- vmlist_lock
529313 default_idle 1181.5022
15242 smp_call_function 15.8771 <- vmap tlb flushing
2472 __get_vm_area_node 1.9312 <- vmap
1762 remove_vm_area 4.5885 <- vunmap
316 map_vm_area 0.2297 <- vmap
312 kfree 0.1950
300 _spin_lock 3.1250
252 sn_send_IPI_phys 0.4375 <- tlb flushing
238 vmap 0.8264 <- vmap
216 find_lock_page 0.5192
196 find_next_bit 0.3603
136 sn2_send_IPI 0.2024
130 pio_phys_write_mmr 2.0312
118 unmap_kernel_range 0.1229
After:
78406 total 0.0081
40053 default_idle 89.4040
33576 ia64_spinlock_contention 349.7500
1650 _spin_lock 17.1875
319 __reg_op 0.5538
281 _atomic_dec_and_lock 1.0977
153 mutex_unlock 1.5938
123 iget_locked 0.1671
117 xfs_dir_lookup 0.1662
117 dput 0.1406
114 xfs_iget_core 0.0268
92 xfs_da_hashname 0.1917
75 d_alloc 0.0670
68 vmap_page_range 0.0462 <- vmap
58 kmem_cache_alloc 0.0604
57 memset 0.0540
52 rb_next 0.1625
50 __copy_user 0.0208
49 bitmap_find_free_region 0.2188 <- vmap
46 ia64_sn_udelay 0.1106
45 find_inode_fast 0.1406
42 memcmp 0.2188
42 finish_task_switch 0.1094
42 __d_lookup 0.0410
40 radix_tree_lookup_slot 0.1250
37 _spin_unlock_irqrestore 0.3854
36 xfs_bmapi 0.0050
36 kmem_cache_free 0.0256
35 xfs_vn_getattr 0.0322
34 radix_tree_lookup 0.1062
33 __link_path_walk 0.0035
31 xfs_da_do_buf 0.0091
30 _xfs_buf_find 0.0204
28 find_get_page 0.0875
27 xfs_iread 0.0241
27 __strncpy_from_user 0.2812
26 _xfs_buf_initialize 0.0406
24 _xfs_buf_lookup_pages 0.0179
24 vunmap_page_range 0.0250 <- vunmap
23 find_lock_page 0.0799
22 vm_map_ram 0.0087 <- vmap
20 kfree 0.0125
19 put_page 0.0330
18 __kmalloc 0.0176
17 xfs_da_node_lookup_int 0.0086
17 _read_lock 0.0885
17 page_waitqueue 0.0664
vmap has gone from being the top 5 on the profiles and flushing the crap
out of all TLBs, to using less than 1% of kernel time.
[akpm@linux-foundation.org: cleanups, section fix]
[akpm@linux-foundation.org: fix build on alpha]
Signed-off-by: Nick Piggin <npiggin@suse.de>
Cc: Jeremy Fitzhardinge <jeremy@goop.org>
Cc: Krzysztof Helt <krzysztof.h1@poczta.fm>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Impact: crash on module insertion with CONFIG_DEBUG_VIRTUAL
We would incorrectly BUG due to:
VIRTUAL_BUG_ON(!is_vmalloc_addr(vmalloc_addr) &&
!is_module_address(addr));
... because, at least on x86-64, is_module_address() doesn't do what
it should. This patch introduces is_vmalloc_or_module_addr(), which
is what we really want anyway, and uses it instead.
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
Use WARN() instead of a printk+WARN_ON() pair; this way the message becomes
part of the warning section for better reporting/collection.
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add some (configurable) expensive sanity checking to catch wrong address
translations on x86.
- create linux/mmdebug.h file to be able include this file in
asm headers to not get unsolvable loops in header files
- __phys_addr on x86_32 became a function in ioremap.c since
PAGE_OFFSET, is_vmalloc_addr and VMALLOC_* non-constasts are undefined
if declared in page_32.h
- add __phys_addr_const for initializing doublefault_tss.__cr3
Tested on 386, 386pae, x86_64 and x86_64 numa=fake=2.
Contains Andi's enable numa virtual address debug patch.
Signed-off-by: Jiri Slaby <jirislaby@gmail.com>
Cc: Andi Kleen <andi@firstfloor.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Fix vmalloc kernel-doc warning:
Warning(linux-2.6.25-git14//mm/vmalloc.c:555): No description found for parameter 'caller'
Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We can see an ever repeating problem pattern with objects of any kind in the
kernel:
1) freeing of active objects
2) reinitialization of active objects
Both problems can be hard to debug because the crash happens at a point where
we have no chance to decode the root cause anymore. One problem spot are
kernel timers, where the detection of the problem often happens in interrupt
context and usually causes the machine to panic.
While working on a timer related bug report I had to hack specialized code
into the timer subsystem to get a reasonable hint for the root cause. This
debug hack was fine for temporary use, but far from a mergeable solution due
to the intrusiveness into the timer code.
The code further lacked the ability to detect and report the root cause
instantly and keep the system operational.
Keeping the system operational is important to get hold of the debug
information without special debugging aids like serial consoles and special
knowledge of the bug reporter.
The problems described above are not restricted to timers, but timers tend to
expose it usually in a full system crash. Other objects are less explosive,
but the symptoms caused by such mistakes can be even harder to debug.
Instead of creating specialized debugging code for the timer subsystem a
generic infrastructure is created which allows developers to verify their code
and provides an easy to enable debug facility for users in case of trouble.
The debugobjects core code keeps track of operations on static and dynamic
objects by inserting them into a hashed list and sanity checking them on
object operations and provides additional checks whenever kernel memory is
freed.
The tracked object operations are:
- initializing an object
- adding an object to a subsystem list
- deleting an object from a subsystem list
Each operation is sanity checked before the operation is executed and the
subsystem specific code can provide a fixup function which allows to prevent
the damage of the operation. When the sanity check triggers a warning message
and a stack trace is printed.
The list of operations can be extended if the need arises. For now it's
limited to the requirements of the first user (timers).
The core code enqueues the objects into hash buckets. The hash index is
generated from the address of the object to simplify the lookup for the check
on kfree/vfree. Each bucket has it's own spinlock to avoid contention on a
global lock.
The debug code can be compiled in without being active. The runtime overhead
is minimal and could be optimized by asm alternatives. A kernel command line
option enables the debugging code.
Thanks to Ingo Molnar for review, suggestions and cleanup patches.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Cc: Greg KH <greg@kroah.com>
Cc: Randy Dunlap <randy.dunlap@oracle.com>
Cc: Kay Sievers <kay.sievers@vrfy.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Implement a new proc file that allows the display of the currently allocated
vmalloc memory.
It allows to see the users of vmalloc. That is important if vmalloc space is
scarce (i386 for example).
And it's going to be important for the compound page fallback to vmalloc.
Many of the current users can be switched to use compound pages with fallback.
This means that the number of users of vmalloc is reduced and page tables no
longer necessary to access the memory. /proc/vmallocinfo allows to review how
that reduction occurs.
If memory becomes fragmented and larger order allocations are no longer
possible then /proc/vmallocinfo allows to see which compound page allocations
fell back to virtual compound pages. That is important for new users of
virtual compound pages. Such as order 1 stack allocation etc that may
fallback to virtual compound pages in the future.
/proc/vmallocinfo permissions are made readable-only-by-root to avoid possible
information leakage.
[akpm@linux-foundation.org: coding-style fixes]
[akpm@linux-foundation.org: CONFIG_MMU=n build fix]
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Arjan van de Ven <arjan@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix various kernel-doc notation in mm/:
filemap.c: add function short description; convert 2 to kernel-doc
fremap.c: change parameter 'prot' to @prot
pagewalk.c: change "-" in function parameters to ":"
slab.c: fix short description of kmem_ptr_validate()
swap.c: fix description & parameters of put_pages_list()
swap_state.c: fix function parameters
vmalloc.c: change "@returns" to "Returns:" since that is not a parameter
Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Background: I've implemented 1K/2K page tables for s390. These sub-page
page tables are required to properly support the s390 virtualization
instruction with KVM. The SIE instruction requires that the page tables
have 256 page table entries (pte) followed by 256 page status table entries
(pgste). The pgstes are only required if the process is using the SIE
instruction. The pgstes are updated by the hardware and by the hypervisor
for a number of reasons, one of them is dirty and reference bit tracking.
To avoid wasting memory the standard pte table allocation should return
1K/2K (31/64 bit) and 2K/4K if the process is using SIE.
Problem: Page size on s390 is 4K, page table size is 1K or 2K. That means
the s390 version for pte_alloc_one cannot return a pointer to a struct
page. Trouble is that with the CONFIG_HIGHPTE feature on x86 pte_alloc_one
cannot return a pointer to a pte either, since that would require more than
32 bit for the return value of pte_alloc_one (and the pte * would not be
accessible since its not kmapped).
Solution: The only solution I found to this dilemma is a new typedef: a
pgtable_t. For s390 pgtable_t will be a (pte *) - to be introduced with a
later patch. For everybody else it will be a (struct page *). The
additional problem with the initialization of the ptl lock and the
NR_PAGETABLE accounting is solved with a constructor pgtable_page_ctor and
a destructor pgtable_page_dtor. The page table allocation and free
functions need to call these two whenever a page table page is allocated or
freed. pmd_populate will get a pgtable_t instead of a struct page pointer.
To get the pgtable_t back from a pmd entry that has been installed with
pmd_populate a new function pmd_pgtable is added. It replaces the pmd_page
call in free_pte_range and apply_to_pte_range.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: <linux-arch@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When running with a 16M IOREMAP_MAX_ORDER (on armv7) we found that the
vmlist search routine in __get_vm_area_node can mistakenly allow a driver
to ioremap a range larger than vmalloc space.
If at the time of the ioremap all existing vmlist areas sit below the
determined alignment then the search routine continues past all entries and
exits the for loop - straight into the found: label - without ever testing
for integer wrapping or that the requested size fits.
We were seeing a driver successfully ioremap 128M of flash even though
there was only 120M of vmalloc space. From that point the system was left
with the remainder of the first 16M of space to vmalloc/ioremap within.
Signed-off-by: Robert Bragg <robert@sixbynine.org>
Acked-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
__vmalloc_area_node() can become static.
Signed-off-by: Adrian Bunk <bunk@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The page array is repeatedly indexed both in vunmap and vmalloc_area_node().
Add a temporary variable to make it easier to read (and easier to patch
later).
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Make vmalloc functions work the same way as kfree() and friends that
take a const void * argument.
[akpm@linux-foundation.org: fix consts, coding-style]
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We already have page table manipulation for vmalloc in vmalloc.c. Move the
vmalloc_to_page() function there as well.
Move the definitions for vmalloc related functions in mm.h to a newly created
section. A better place would be vmalloc.h but mm.h is basic and may depend
on these functions. An alternative would be to include vmalloc.h in mm.h
(like done for vmstat.h).
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The function of GFP_LEVEL_MASK seems to be unclear. In order to clear up
the mystery we get rid of it and replace GFP_LEVEL_MASK with 3 sets of GFP
flags:
GFP_RECLAIM_MASK Flags used to control page allocator reclaim behavior.
GFP_CONSTRAINT_MASK Flags used to limit where allocations can occur.
GFP_SLAB_BUG_MASK Flags that the slab allocator BUG()s on.
These replace the uses of GFP_LEVEL mask in the slab allocators and in
vmalloc.c.
The use of the flags not included in these sets may occur as a result of a
slab allocation standing in for a page allocation when constructing scatter
gather lists. Extraneous flags are cleared and not passed through to the
page allocator. __GFP_MOVABLE/RECLAIMABLE, __GFP_COLD and __GFP_COMP will
now be ignored if passed to a slab allocator.
Change the allocation of allocator meta data in SLAB and vmalloc to not
pass through flags listed in GFP_CONSTRAINT_MASK. SLAB already removes the
__GFP_THISNODE flag for such allocations. Generalize that to also cover
vmalloc. The use of GFP_CONSTRAINT_MASK also includes __GFP_HARDWALL.
The impact of allocator metadata placement on access latency to the
cachelines of the object itself is minimal since metadata is only
referenced on alloc and free. The attempt is still made to place the meta
data optimally but we consistently allow fallback both in SLAB and vmalloc
(SLUB does not need to allocate metadata like that).
Allocator metadata may serve multiple in kernel users and thus should not
be subject to the limitations arising from a single allocation context.
[akpm@linux-foundation.org: fix fallback_alloc()]
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
lguest does some fairly lowlevel things to support a host, which
normal modules don't need:
math_state_restore:
When the guest triggers a Device Not Available fault, we need
to be able to restore the FPU
__put_task_struct:
We need to hold a reference to another task for inter-guest
I/O, and put_task_struct() is an inline function which calls
__put_task_struct.
access_process_vm:
We need to access another task for inter-guest I/O.
map_vm_area & __get_vm_area:
We need to map the switcher shim (ie. monitor) at 0xFFC01000.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
I've noticed lots of failures of vmalloc_32 on machines where it
shouldn't have failed unless it was doing an atomic operation.
Looking closely, I noticed that:
#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
#define GFP_VMALLOC32 GFP_DMA32
#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
#define GFP_VMALLOC32 GFP_DMA
#else
#define GFP_VMALLOC32 GFP_KERNEL
#endif
Which seems to be incorrect, it should always -or- in the DMA flags
on top of GFP_KERNEL, thus this patch.
This fixes frequent errors launchin X with the nouveau DRM for example.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Andi Kleen <ak@suse.de>
Cc: Dave Airlie <airlied@linux.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Allocate/release a chunk of vmalloc address space:
alloc_vm_area reserves a chunk of address space, and makes sure all
the pagetables are constructed for that address range - but no pages.
free_vm_area releases the address space range.
Signed-off-by: Jeremy Fitzhardinge <jeremy@xensource.com>
Signed-off-by: Ian Pratt <ian.pratt@xensource.com>
Signed-off-by: Christian Limpach <Christian.Limpach@cl.cam.ac.uk>
Signed-off-by: Chris Wright <chrisw@sous-sol.org>
Cc: "Jan Beulich" <JBeulich@novell.com>
Cc: "Andi Kleen" <ak@muc.de>
kmalloc_node() and kmem_cache_alloc_node() were not available in a zeroing
variant in the past. But with __GFP_ZERO it is possible now to do zeroing
while allocating.
Use __GFP_ZERO to remove the explicit clearing of memory via memset whereever
we can.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This makes unmap_vm_area static and a wrapper around a new
exported unmap_kernel_range that takes an explicit range instead
of a vm_area struct.
This makes it more versatile for code that wants to play with kernel
page tables outside of the standard vmalloc area.
(One example is some rework of the PowerPC PCI IO space mapping
code that depends on that patch and removes some code duplication
and horrible abuse of forged struct vm_struct).
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
__vunmap doesn't seem to be used outside of mm/vmalloc.c, and has
no prototype in any header so let's make it static
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch moves the die notifier handling to common code. Previous
various architectures had exactly the same code for it. Note that the new
code is compiled unconditionally, this should be understood as an appel to
the other architecture maintainer to implement support for it aswell (aka
sprinkling a notify_die or two in the proper place)
arm had a notifiy_die that did something totally different, I renamed it to
arm_notify_die as part of the patch and made it static to the file it's
declared and used at. avr32 used to pass slightly less information through
this interface and I brought it into line with the other architectures.
[akpm@linux-foundation.org: build fix]
[akpm@linux-foundation.org: fix vmalloc_sync_all bustage]
[bryan.wu@analog.com: fix vmalloc_sync_all in nommu]
Signed-off-by: Christoph Hellwig <hch@lst.de>
Cc: <linux-arch@vger.kernel.org>
Cc: Russell King <rmk@arm.linux.org.uk>
Signed-off-by: Bryan Wu <bryan.wu@analog.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Ugly ifdef, but should handle all 64bit platforms that have suitable
zones. On some like Altix it's probably impossible without IOMMU
use to get memory <4GB this way, but they have to live with that.
Signed-off-by: Andi Kleen <ak@suse.de>
A variety of (mostly) innocuous fixes to the embedded kernel-doc content in
source files, including:
* make multi-line initial descriptions single line
* denote some function names, constants and structs as such
* change erroneous opening '/*' to '/**' in a few places
* reword some text for clarity
Signed-off-by: Robert P. J. Day <rpjday@mindspring.com>
Cc: "Randy.Dunlap" <rdunlap@xenotime.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Recently, __get_vm_area_node() was changed like following
if (unlikely(!area))
return NULL;
- if (unlikely(!size)) {
- kfree (area);
+ if (unlikely(!size))
return NULL;
- }
It is leaking `area', also original code seems strange already.
Probably, we wanted to do this patch.
Signed-off-by: OGAWA Hirofumi <hirofumi@mail.parknet.co.jp>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
- reorder 'struct vm_struct' to speedup lookups on CPUS with small cache
lines. The fields 'next,addr,size' should be now in the same cache line,
to speedup lookups.
- One minor cleanup in __get_vm_area_node()
- Bugfixes in vmalloc_user() and vmalloc_32_user() NULL returns from
__vmalloc() and __find_vm_area() were not tested.
[akpm@osdl.org: remove redundant BUG_ONs]
Signed-off-by: Eric Dumazet <dada1@cosmosbay.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
As reported by Martin J. Bligh <mbligh@google.com>, we let through some
non-slab bits to slab allocation through __get_vm_area_node when doing a
vmalloc.
I haven't been able to reproduce this, although I understand why it
happens: vmalloc allocates memory with
GFP_KERNEL | __GFP_HIGHMEM
and commit 52fd24ca1d resulted in the same
flags are passed down to cache_alloc_refill, causing the BUG. The
following patch fixes it.
Note that when calling kmalloc_node, I am masking off __GFP_HIGHMEM with
GFP_LEVEL_MASK, whereas __vmalloc_area_node does the same with
~(__GFP_HIGHMEM | __GFP_ZERO).
IMHO, using GFP_LEVEL_MASK is preferable, but either should fix this
problem.
Signed-off-by: Giridhar Pemmasani (pgiri@yahoo.com)
Cc: Martin J. Bligh <mbligh@google.com>
Cc: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
If __vmalloc is called to allocate memory with GFP_ATOMIC in atomic
context, the chain of calls results in __get_vm_area_node allocating memory
for vm_struct with GFP_KERNEL, causing the 'sleeping from invalid context'
warning. This patch fixes it by passing the gfp flags along so
__get_vm_area_node allocates memory for vm_struct with the same flags.
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
A recent change to the vmalloc() code accidentally resulted in us passing
__GFP_ZERO into the slab allocator. But we only wanted __GFP_ZERO for the
actual pages whcih are being vmalloc()ed, and passing __GFP_ZERO into slab is
not a rational thing to ask for.
Cc: Jonathan Corbet <corbet@lwn.net>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This patch against fixes a spelling mistake ("control" instead of "cotrol").
Signed-off-by: Michael Opdenacker <michael@free-electrons.com>
Acked-by: Alan Cox <alan@redhat.com>
Signed-off-by: Adrian Bunk <bunk@stusta.de>
The function is exported but not used from anywhere else. It's also marked as
"not for driver use" so noone out there should really care.
Signed-off-by: Rolf Eike Beer <eike-kernel@sf-tec.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
The empty line between the short description and the first argument
description causes a section to appear twice in the generated manpage.
Also the short description should really be short: the script can't handle
multiple lines.
Signed-off-by: Rolf Eike Beer <eike-kernel@sf-tec.de>
Acked-by: Randy Dunlap <rdunlap@xenotime.net>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This patch makes the following needlessly global functions static:
- slab.c: kmem_find_general_cachep()
- swap.c: __page_cache_release()
- vmalloc.c: __vmalloc_node()
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
__vunmap must not rely on area->nr_pages when picking the release methode
for area->pages. It may be too small when __vmalloc_area_node failed early
due to lacking memory. Instead, use a flag in vmstruct to differentiate.
Signed-off-by: Jan Kiszka <jan.kiszka@web.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Generic lock debugging:
- generalized lock debugging framework. For example, a bug in one lock
subsystem turns off debugging in all lock subsystems.
- got rid of the caller address passing (__IP__/__IP_DECL__/etc.) from
the mutex/rtmutex debugging code: it caused way too much prototype
hackery, and lockdep will give the same information anyway.
- ability to do silent tests
- check lock freeing in vfree too.
- more finegrained debugging options, to allow distributions to
turn off more expensive debugging features.
There's no separate 'held mutexes' list anymore - but there's a 'held locks'
stack within lockdep, which unifies deadlock detection across all lock
classes. (this is independent of the lockdep validation stuff - lockdep first
checks whether we are holding a lock already)
Here are the current debugging options:
CONFIG_DEBUG_MUTEXES=y
CONFIG_DEBUG_LOCK_ALLOC=y
which do:
config DEBUG_MUTEXES
bool "Mutex debugging, basic checks"
config DEBUG_LOCK_ALLOC
bool "Detect incorrect freeing of live mutexes"
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Add remap_vmalloc_range, vmalloc_user, and vmalloc_32_user so that drivers
can have a nice interface for remapping vmalloc memory.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
this changes if() BUG(); constructs to BUG_ON() which is
cleaner, contains unlikely() and can better optimized away.
Signed-off-by: Eric Sesterhenn <snakebyte@gmx.de>
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Fix new kernel-doc errors in vmalloc.c.
Signed-off-by: Randy Dunlap <rdunlap@xenotime.net>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
First step in pushing down the page_table_lock. init_mm.page_table_lock has
been used throughout the architectures (usually for ioremap): not to serialize
kernel address space allocation (that's usually vmlist_lock), but because
pud_alloc,pmd_alloc,pte_alloc_kernel expect caller holds it.
Reverse that: don't lock or unlock init_mm.page_table_lock in any of the
architectures; instead rely on pud_alloc,pmd_alloc,pte_alloc_kernel to take
and drop it when allocating a new one, to check lest a racing task already
did. Similarly no page_table_lock in vmalloc's map_vm_area.
Some temporary ugliness in __pud_alloc and __pmd_alloc: since they also handle
user mms, which are converted only by a later patch, for now they have to lock
differently according to whether or not it's init_mm.
If sources get muddled, there's a danger that an arch source taking
init_mm.page_table_lock will be mixed with common source also taking it (or
neither take it). So break the rules and make another change, which should
break the build for such a mismatch: remove the redundant mm arg from
pte_alloc_kernel (ppc64 scrapped its distinct ioremap_mm in 2.6.13).
Exceptions: arm26 used pte_alloc_kernel on user mm, now pte_alloc_map; ia64
used pte_alloc_map on init_mm, now pte_alloc_kernel; parisc had bad args to
pmd_alloc and pte_alloc_kernel in unused USE_HPPA_IOREMAP code; ppc64
map_io_page forgot to unlock on failure; ppc mmu_mapin_ram and ppc64 im_free
took page_table_lock for no good reason.
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This patch adds
vmalloc_node(size, node) -> Allocate necessary memory on the specified node
and
get_vm_area_node(size, flags, node)
and the other functions that it depends on.
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
- added typedef unsigned int __nocast gfp_t;
- replaced __nocast uses for gfp flags with gfp_t - it gives exactly
the same warnings as far as sparse is concerned, doesn't change
generated code (from gcc point of view we replaced unsigned int with
typedef) and documents what's going on far better.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This patch clarifies NULL handling of kfree() and vfree(). I addition,
wording of calling context restriction for vfree() and vunmap() are changed
from "may not" to "must not."
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
Acked-by: Manfred Spraul <manfred@colorfullife.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Version 6 of the ARM architecture introduces the concept of 16MB pages
(supersections) and 36-bit (40-bit actually, but nobody uses this) physical
addresses. 36-bit addressed memory and I/O and ARMv6 can only be mapped
using supersections and the requirement on these is that both virtual and
physical addresses be 16MB aligned. In trying to add support for ioremap()
of 36-bit I/O, we run into the issue that get_vm_area() allows for a
maximum of 512K alignment via the IOREMAP_MAX_ORDER constant. To work
around this, we can:
- Allocate a larger VM area than needed (size + (1ul << IOREMAP_MAX_ORDER))
and then align the pointer ourselves, but this ends up with 512K of
wasted VM per ioremap().
- Provide a new __get_vm_area_aligned() API and make __get_vm_area() sit
on top of this. I did this and it works but I don't like the idea
adding another VM API just for this one case.
- My preferred solution which is to allow the architecture to override
the IOREMAP_MAX_ORDER constant with it's own version.
Signed-off-by: Deepak Saxena <dsaxena@plexity.net>
Cc: Russell King <rmk@arm.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Caused oopses again. Also fix potential mismatch in checking if
change_page_attr was needed.
To do it without races I needed to change mm/vmalloc.c to export a
__remove_vm_area that does not take vmlist lock.
Noticed by Terence Ripperda and based on a patch of his.
Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
I have recompiled Linux kernel 2.6.11.5 documentation for me and our
university students again. The documentation could be extended for more
sources which are equipped by structured comments for recent 2.6 kernels. I
have tried to proceed with that task. I have done that more times from 2.6.0
time and it gets boring to do same changes again and again. Linux kernel
compiles after changes for i386 and ARM targets. I have added references to
some more files into kernel-api book, I have added some section names as well.
So please, check that changes do not break something and that categories are
not too much skewed.
I have changed kernel-doc to accept "fastcall" and "asmlinkage" words reserved
by kernel convention. Most of the other changes are modifications in the
comments to make kernel-doc happy, accept some parameters description and do
not bail out on errors. Changed <pid> to @pid in the description, moved some
#ifdef before comments to correct function to comments bindings, etc.
You can see result of the modified documentation build at
http://cmp.felk.cvut.cz/~pisa/linux/lkdb-2.6.11.tar.gz
Some more sources are ready to be included into kernel-doc generated
documentation. Sources has been added into kernel-api for now. Some more
section names added and probably some more chaos introduced as result of quick
cleanup work.
Signed-off-by: Pavel Pisa <pisa@cmp.felk.cvut.cz>
Signed-off-by: Martin Waitz <tali@admingilde.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!