All users -- GUP and KSM -- are gone, let's just remove it.
Link: https://lkml.kernel.org/r/20221021101141.84170-4-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Peter Xu <peterx@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Extend FAULT_FLAG_UNSHARE to break COW on anything mapped into a
COW (i.e., private writable) mapping and adjust the documentation
accordingly.
FAULT_FLAG_UNSHARE will now also break COW when encountering the shared
zeropage, a pagecache page, a PFNMAP, ... inside a COW mapping, by
properly replacing the mapped page/pfn by a private copy (an exclusive
anonymous page).
Note that only do_wp_page() needs care: hugetlb_wp() already handles
FAULT_FLAG_UNSHARE correctly. wp_huge_pmd()/wp_huge_pud() also handles it
correctly, for example, splitting the huge zeropage on FAULT_FLAG_UNSHARE
such that we can handle FAULT_FLAG_UNSHARE on the PTE level.
This change is a requirement for reliable long-term R/O pinning in
COW mappings.
Link: https://lkml.kernel.org/r/20221116102659.70287-9-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
If we already have a PMD/PUD mapped write-protected in a private mapping
and we want to break COW either due to FAULT_FLAG_WRITE or
FAULT_FLAG_UNSHARE, there is no need to inform the file system just like on
the PTE path.
Let's just split (->zap) + fallback in that case.
This is a preparation for more generic FAULT_FLAG_UNSHARE support in
COW mappings.
Link: https://lkml.kernel.org/r/20221116102659.70287-8-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
We want to extent FAULT_FLAG_UNSHARE support to anything mapped into a
COW mapping (pagecache page, zeropage, PFN, ...), not just anonymous pages.
Let's prepare for that by handling shared mappings first such that we can
handle private mappings last.
While at it, use folio-based functions instead of page-based functions
where we touch the code either way.
Link: https://lkml.kernel.org/r/20221116102659.70287-7-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Let's catch abuse of FAULT_FLAG_WRITE early, such that we don't have to
care in all other handlers and might get "surprises" if we forget to do
so.
Write faults without VM_MAYWRITE don't make any sense, and our
maybe_mkwrite() logic could have hidden such abuse for now.
Write faults without VM_WRITE on something that is not a COW mapping is
similarly broken, and e.g., do_wp_page() could end up placing an
anonymous page into a shared mapping, which would be bad.
This is a preparation for reliable R/O long-term pinning of pages in
private mappings, whereby we want to make sure that we will never break
COW in a read-only private mapping.
Link: https://lkml.kernel.org/r/20221116102659.70287-6-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
For now, FAULT_FLAG_UNSHARE only applies to anonymous pages, which
implies a COW mapping. Let's hide FAULT_FLAG_UNSHARE early if we're not
dealing with a COW mapping, such that we treat it like a read fault as
documented and don't have to worry about the flag throughout all fault
handlers.
While at it, centralize the check for mutual exclusion of
FAULT_FLAG_UNSHARE and FAULT_FLAG_WRITE and just drop the check that
either flag is set in the WP handler.
Link: https://lkml.kernel.org/r/20221116102659.70287-5-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Flag delayed_rmap of 'struct mmu_gather' is rather a private member, but
it is still accessed directly. Instead, let the TLB gather code access
the flag.
Link: https://lkml.kernel.org/r/Y3SWCu6NRaMQ5dbD@li-4a3a4a4c-28e5-11b2-a85c-a8d192c6f089.ibm.com
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
When we remove a page table entry, we are very careful to only free the
page after we have flushed the TLB, because other CPUs could still be
using the page through stale TLB entries until after the flush.
However, we have removed the rmap entry for that page early, which means
that functions like folio_mkclean() would end up not serializing with the
page table lock because the page had already been made invisible to rmap.
And that is a problem, because while the TLB entry exists, we could end up
with the following situation:
(a) one CPU could come in and clean it, never seeing our mapping of the
page
(b) another CPU could continue to use the stale and dirty TLB entry and
continue to write to said page
resulting in a page that has been dirtied, but then marked clean again,
all while another CPU might have dirtied it some more.
End result: possibly lost dirty data.
This extends our current TLB gather infrastructure to optionally track a
"should I do a delayed page_remove_rmap() for this page after flushing the
TLB". It uses the newly introduced 'encoded page pointer' to do that
without having to keep separate data around.
Note, this is complicated by a couple of issues:
- we want to delay the rmap removal, but not past the page table lock,
because that simplifies the memcg accounting
- only SMP configurations want to delay TLB flushing, since on UP
there are obviously no remote TLBs to worry about, and the page
table lock means there are no preemption issues either
- s390 has its own mmu_gather model that doesn't delay TLB flushing,
and as a result also does not want the delayed rmap. As such, we can
treat S390 like the UP case and use a common fallback for the "no
delays" case.
- we can track an enormous number of pages in our mmu_gather structure,
with MAX_GATHER_BATCH_COUNT batches of MAX_TABLE_BATCH pages each,
all set up to be approximately 10k pending pages.
We do not want to have a huge number of batched pages that we then
need to check for delayed rmap handling inside the page table lock.
Particularly that last point results in a noteworthy detail, where the
normal page batch gathering is limited once we have delayed rmaps pending,
in such a way that only the last batch (the so-called "active batch") in
the mmu_gather structure can have any delayed entries.
NOTE! While the "possibly lost dirty data" sounds catastrophic, for this
all to happen you need to have a user thread doing either madvise() with
MADV_DONTNEED or a full re-mmap() of the area concurrently with another
thread continuing to use said mapping.
So arguably this is about user space doing crazy things, but from a VM
consistency standpoint it's better if we track the dirty bit properly even
when user space goes off the rails.
[akpm@linux-foundation.org: fix UP build, per Linus]
Link: https://lore.kernel.org/all/B88D3073-440A-41C7-95F4-895D3F657EF2@gmail.com/
Link: https://lkml.kernel.org/r/20221109203051.1835763-4-torvalds@linux-foundation.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Hugh Dickins <hughd@google.com>
Reported-by: Nadav Amit <nadav.amit@gmail.com>
Tested-by: Nadav Amit <nadav.amit@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
commit b191f9b106 ("mm: numa: preserve PTE write permissions across a
NUMA hinting fault") added remembering write permissions using ordinary
pte_write() for PROT_NONE mapped pages to avoid write faults when
remapping the page !PROT_NONE on NUMA hinting faults.
That commit noted:
The patch looks hacky but the alternatives looked worse. The tidest was
to rewalk the page tables after a hinting fault but it was more complex
than this approach and the performance was worse. It's not generally
safe to just mark the page writable during the fault if it's a write
fault as it may have been read-only for COW so that approach was
discarded.
Later, commit 288bc54949 ("mm/autonuma: let architecture override how
the write bit should be stashed in a protnone pte.") introduced a family
of savedwrite PTE functions that didn't necessarily improve the whole
situation.
One confusing thing is that nowadays, if a page is pte_protnone()
and pte_savedwrite() then also pte_write() is true. Another source of
confusion is that there is only a single pte_mk_savedwrite() call in the
kernel. All other write-protection code seems to silently rely on
pte_wrprotect().
Ever since PageAnonExclusive was introduced and we started using it in
mprotect context via commit 64fe24a3e0 ("mm/mprotect: try avoiding write
faults for exclusive anonymous pages when changing protection"), we do
have machinery in place to avoid write faults when changing protection,
which is exactly what we want to do here.
Let's similarly do what ordinary mprotect() does nowadays when upgrading
write permissions and reuse can_change_pte_writable() and
can_change_pmd_writable() to detect if we can upgrade PTE permissions to be
writable.
For anonymous pages there should be absolutely no change: if an
anonymous page is not exclusive, it could not have been mapped writable --
because only exclusive anonymous pages can be mapped writable.
However, there *might* be a change for writable shared mappings that
require writenotify: if they are not dirty, we cannot map them writable.
While it might not matter in practice, we'd need a different way to
identify whether writenotify is actually required -- and ordinary mprotect
would benefit from that as well.
Note that we don't optimize for the actual migration case:
(1) When migration succeeds the new PTE will not be writable because the
source PTE was not writable (protnone); in the future we
might just optimize that case similarly by reusing
can_change_pte_writable()/can_change_pmd_writable() when removing
migration PTEs.
(2) When migration fails, we'd have to recalculate the "writable" flag
because we temporarily dropped the PT lock; for now keep it simple and
set "writable=false".
We'll remove all savedwrite leftovers next.
Link: https://lkml.kernel.org/r/20221108174652.198904-6-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Nadav Amit <namit@vmware.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
PTE markers are ideal mechanism for things like SWP_SWAPIN_ERROR. Using a
whole swap entry type for this purpose can be an overkill, especially if
we already have PTE markers. Define a new bit for swapin error and
replace it with pte markers. Then we can safely drop SWP_SWAPIN_ERROR and
give one device slot back to swap.
We used to have SWP_SWAPIN_ERROR taking the page pfn as part of the swap
entry, but it's never used. Neither do I see how it can be useful because
normally the swapin failure should not be caused by a bad page but bad
swap device. Drop it alongside.
Link: https://lkml.kernel.org/r/20221030214151.402274-3-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Huang Ying <ying.huang@intel.com>
Reviewed-by: Miaohe Lin <linmiaohe@huawei.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "mm: Use pte marker for swapin errors".
This series uses the pte marker to replace the swapin error swap entry,
then we save one more swap entry slot for swap devices. A new pte marker
bit is defined.
This patch (of 2):
The PTE markers code is tiny and now it's enabled for most of the
distributions. It's fine to keep it as-is, but to make a broader use of
it (e.g. replacing read error swap entry) it needs to be there always
otherwise we need special code path to take care of !PTE_MARKER case.
It'll be easier just make pte marker always exist. Use this chance to
extend its usage to anonymous too by simply touching up some of the old
comments, because it'll be used for anonymous pages in the follow up
patches.
Link: https://lkml.kernel.org/r/20221030214151.402274-1-peterx@redhat.com
Link: https://lkml.kernel.org/r/20221030214151.402274-2-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Huang Ying <ying.huang@intel.com>
Reviewed-by: Miaohe Lin <linmiaohe@huawei.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Peter Xu <peterx@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cannot call memory_failure() directly from the fault handler because
mmap_lock (and others) are held.
It is important, but not urgent, to mark the source page as h/w poisoned
and unmap it from other tasks.
Use memory_failure_queue() to request a call to memory_failure() for the
page with the error.
Also provide a stub version for CONFIG_MEMORY_FAILURE=n
Link: https://lkml.kernel.org/r/20221021200120.175753-3-tony.luck@intel.com
Signed-off-by: Tony Luck <tony.luck@intel.com>
Reviewed-by: Miaohe Lin <linmiaohe@huawei.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Shuai Xue <xueshuai@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "Copy-on-write poison recovery", v3.
Part 1 deals with the process that triggered the copy on write fault with
a store to a shared read-only page. That process is send a SIGBUS with
the usual machine check decoration to specify the virtual address of the
lost page, together with the scope.
Part 2 sets up to asynchronously take the page with the uncorrected error
offline to prevent additional machine check faults. H/t to Miaohe Lin
<linmiaohe@huawei.com> and Shuai Xue <xueshuai@linux.alibaba.com> for
pointing me to the existing function to queue a call to memory_failure().
On x86 there is some duplicate reporting (because the error is also
signalled by the memory controller as well as by the core that triggered
the machine check). Console logs look like this:
This patch (of 2):
If the kernel is copying a page as the result of a copy-on-write
fault and runs into an uncorrectable error, Linux will crash because
it does not have recovery code for this case where poison is consumed
by the kernel.
It is easy to set up a test case. Just inject an error into a private
page, fork(2), and have the child process write to the page.
I wrapped that neatly into a test at:
git://git.kernel.org/pub/scm/linux/kernel/git/aegl/ras-tools.git
just enable ACPI error injection and run:
# ./einj_mem-uc -f copy-on-write
Add a new copy_user_highpage_mc() function that uses copy_mc_to_kernel()
on architectures where that is available (currently x86 and powerpc).
When an error is detected during the page copy, return VM_FAULT_HWPOISON
to caller of wp_page_copy(). This propagates up the call stack. Both x86
and powerpc have code in their fault handler to deal with this code by
sending a SIGBUS to the application.
Note that this patch avoids a system crash and signals the process that
triggered the copy-on-write action. It does not take any action for the
memory error that is still in the shared page. To handle that a call to
memory_failure() is needed. But this cannot be done from wp_page_copy()
because it holds mmap_lock(). Perhaps the architecture fault handlers
can deal with this loose end in a subsequent patch?
On Intel/x86 this loose end will often be handled automatically because
the memory controller provides an additional notification of the h/w
poison in memory, the handler for this will call memory_failure(). This
isn't a 100% solution. If there are multiple errors, not all may be
logged in this way.
[tony.luck@intel.com: add call to kmsan_unpoison_memory(), per Miaohe Lin]
Link: https://lkml.kernel.org/r/20221031201029.102123-2-tony.luck@intel.com
Link: https://lkml.kernel.org/r/20221021200120.175753-1-tony.luck@intel.com
Link: https://lkml.kernel.org/r/20221021200120.175753-2-tony.luck@intel.com
Signed-off-by: Tony Luck <tony.luck@intel.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Reviewed-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: Alexander Potapenko <glider@google.com>
Tested-by: Shuai Xue <xueshuai@linux.alibaba.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Currently mm_struct maintains rss_stats which are updated on page fault
and the unmapping codepaths. For page fault codepath the updates are
cached per thread with the batch of TASK_RSS_EVENTS_THRESH which is 64.
The reason for caching is performance for multithreaded applications
otherwise the rss_stats updates may become hotspot for such applications.
However this optimization comes with the cost of error margin in the rss
stats. The rss_stats for applications with large number of threads can be
very skewed. At worst the error margin is (nr_threads * 64) and we have a
lot of applications with 100s of threads, so the error margin can be very
high. Internally we had to reduce TASK_RSS_EVENTS_THRESH to 32.
Recently we started seeing the unbounded errors for rss_stats for specific
applications which use TCP rx0cp. It seems like vm_insert_pages()
codepath does not sync rss_stats at all.
This patch converts the rss_stats into percpu_counter to convert the error
margin from (nr_threads * 64) to approximately (nr_cpus ^ 2). However
this conversion enable us to get the accurate stats for situations where
accuracy is more important than the cpu cost.
This patch does not make such tradeoffs - we can just use
percpu_counter_add_local() for the updates and percpu_counter_sum() (or
percpu_counter_sync() + percpu_counter_read) for the readers. At the
moment the readers are either procfs interface, oom_killer and memory
reclaim which I think are not performance critical and should be ok with
slow read. However I think we can make that change in a separate patch.
Link: https://lkml.kernel.org/r/20221024052841.3291983-1-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
madvise(MADV_DONTNEED) ends up calling zap_page_range() to clear page
tables associated with the address range. For hugetlb vmas,
zap_page_range will call __unmap_hugepage_range_final. However,
__unmap_hugepage_range_final assumes the passed vma is about to be removed
and deletes the vma_lock to prevent pmd sharing as the vma is on the way
out. In the case of madvise(MADV_DONTNEED) the vma remains, but the
missing vma_lock prevents pmd sharing and could potentially lead to issues
with truncation/fault races.
This issue was originally reported here [1] as a BUG triggered in
page_try_dup_anon_rmap. Prior to the introduction of the hugetlb
vma_lock, __unmap_hugepage_range_final cleared the VM_MAYSHARE flag to
prevent pmd sharing. Subsequent faults on this vma were confused as
VM_MAYSHARE indicates a sharable vma, but was not set so page_mapping was
not set in new pages added to the page table. This resulted in pages that
appeared anonymous in a VM_SHARED vma and triggered the BUG.
Address issue by adding a new zap flag ZAP_FLAG_UNMAP to indicate an unmap
call from unmap_vmas(). This is used to indicate the 'final' unmapping of
a hugetlb vma. When called via MADV_DONTNEED, this flag is not set and
the vm_lock is not deleted.
[1] https://lore.kernel.org/lkml/CAO4mrfdLMXsao9RF4fUE8-Wfde8xmjsKrTNMNC9wjUb6JudD0g@mail.gmail.com/
Link: https://lkml.kernel.org/r/20221114235507.294320-3-mike.kravetz@oracle.com
Fixes: 90e7e7f5ef ("mm: enable MADV_DONTNEED for hugetlb mappings")
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reported-by: Wei Chen <harperchen1110@gmail.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mina Almasry <almasrymina@google.com>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev>
Cc: Peter Xu <peterx@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
This series addresses the issue first reported in [1], and fully described
in patch 2. Patches 1 and 2 address the user visible issue and are tagged
for stable backports.
While exploring solutions to this issue, related problems with mmu
notification calls were discovered. This is addressed in the patch
"hugetlb: remove duplicate mmu notifications:". Since there are no user
visible effects, this third is not tagged for stable backports.
Previous discussions suggested further cleanup by removing the
routine zap_page_range. This is possible because zap_page_range_single
is now exported, and all callers of zap_page_range pass ranges entirely
within a single vma. This work will be done in a later patch so as not
to distract from this bug fix.
[1] https://lore.kernel.org/lkml/CAO4mrfdLMXsao9RF4fUE8-Wfde8xmjsKrTNMNC9wjUb6JudD0g@mail.gmail.com/
This patch (of 2):
Expose the routine zap_page_range_single to zap a range within a single
vma. The madvise routine madvise_dontneed_single_vma can use this routine
as it explicitly operates on a single vma. Also, update the mmu
notification range in zap_page_range_single to take hugetlb pmd sharing
into account. This is required as MADV_DONTNEED supports hugetlb vmas.
Link: https://lkml.kernel.org/r/20221114235507.294320-1-mike.kravetz@oracle.com
Link: https://lkml.kernel.org/r/20221114235507.294320-2-mike.kravetz@oracle.com
Fixes: 90e7e7f5ef ("mm: enable MADV_DONTNEED for hugetlb mappings")
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reported-by: Wei Chen <harperchen1110@gmail.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mina Almasry <almasrymina@google.com>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev>
Cc: Peter Xu <peterx@redhat.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The migrate_to_ram() callback should always succeed, but in rare cases can
fail usually returning VM_FAULT_SIGBUS. Commit 16ce101db8
("mm/memory.c: fix race when faulting a device private page") incorrectly
stopped passing the return code up the stack. Fix this by setting the ret
variable, restoring the previous behaviour on migrate_to_ram() failure.
Link: https://lkml.kernel.org/r/20221114115537.727371-1-apopple@nvidia.com
Fixes: 16ce101db8 ("mm/memory.c: fix race when faulting a device private page")
Signed-off-by: Alistair Popple <apopple@nvidia.com>
Acked-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Felix Kuehling <Felix.Kuehling@amd.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Alex Sierra <alex.sierra@amd.com>
Cc: Ben Skeggs <bskeggs@redhat.com>
Cc: Lyude Paul <lyude@redhat.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
With " mm/uffd: Fix vma check on userfault for wp" to fix the
registration, we'll be safe to remove the macro hacks now.
Link: https://lkml.kernel.org/r/20221024193336.1233616-3-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
As message in commit 7df6769743 ("mm/memory.c: Update local TLB if PTE
entry exists") said, we should update local TLB only on the second thread.
So in the do_anonymous_page() here, we should use update_mmu_tlb()
instead of update_mmu_cache() on the second thread.
As David pointed out, this is a performance improvement, not a
correctness fix.
Link: https://lkml.kernel.org/r/20220929112318.32393-2-zhengqi.arch@bytedance.com
Signed-off-by: Qi Zheng <zhengqi.arch@bytedance.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Bibo Mao <maobibo@loongson.cn>
Cc: Chris Zankel <chris@zankel.net>
Cc: Huacai Chen <chenhuacai@loongson.cn>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "Fix several device private page reference counting issues",
v2
This series aims to fix a number of page reference counting issues in
drivers dealing with device private ZONE_DEVICE pages. These result in
use-after-free type bugs, either from accessing a struct page which no
longer exists because it has been removed or accessing fields within the
struct page which are no longer valid because the page has been freed.
During normal usage it is unlikely these will cause any problems. However
without these fixes it is possible to crash the kernel from userspace.
These crashes can be triggered either by unloading the kernel module or
unbinding the device from the driver prior to a userspace task exiting.
In modules such as Nouveau it is also possible to trigger some of these
issues by explicitly closing the device file-descriptor prior to the task
exiting and then accessing device private memory.
This involves some minor changes to both PowerPC and AMD GPU code.
Unfortunately I lack hardware to test either of those so any help there
would be appreciated. The changes mimic what is done in for both Nouveau
and hmm-tests though so I doubt they will cause problems.
This patch (of 8):
When the CPU tries to access a device private page the migrate_to_ram()
callback associated with the pgmap for the page is called. However no
reference is taken on the faulting page. Therefore a concurrent migration
of the device private page can free the page and possibly the underlying
pgmap. This results in a race which can crash the kernel due to the
migrate_to_ram() function pointer becoming invalid. It also means drivers
can't reliably read the zone_device_data field because the page may have
been freed with memunmap_pages().
Close the race by getting a reference on the page while holding the ptl to
ensure it has not been freed. Unfortunately the elevated reference count
will cause the migration required to handle the fault to fail. To avoid
this failure pass the faulting page into the migrate_vma functions so that
if an elevated reference count is found it can be checked to see if it's
expected or not.
[mpe@ellerman.id.au: fix build]
Link: https://lkml.kernel.org/r/87fsgbf3gh.fsf@mpe.ellerman.id.au
Link: https://lkml.kernel.org/r/cover.60659b549d8509ddecafad4f498ee7f03bb23c69.1664366292.git-series.apopple@nvidia.com
Link: https://lkml.kernel.org/r/d3e813178a59e565e8d78d9b9a4e2562f6494f90.1664366292.git-series.apopple@nvidia.com
Signed-off-by: Alistair Popple <apopple@nvidia.com>
Acked-by: Felix Kuehling <Felix.Kuehling@amd.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Lyude Paul <lyude@redhat.com>
Cc: Alex Deucher <alexander.deucher@amd.com>
Cc: Alex Sierra <alex.sierra@amd.com>
Cc: Ben Skeggs <bskeggs@redhat.com>
Cc: Christian König <christian.koenig@amd.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
When PTE_MARKER_UFFD_WP not configured, it's still possible to reach pte
marker code and trigger an warning. Add a few CONFIG_PTE_MARKER_UFFD_WP
ifdefs to make sure the code won't be reached when not compiled in.
Link: https://lkml.kernel.org/r/YzeR+R6b4bwBlBHh@x1n
Fixes: b1f9e87686 ("mm/uffd: enable write protection for shmem & hugetlbfs")
Signed-off-by: Peter Xu <peterx@redhat.com>
Reported-by: <syzbot+2b9b4f0895be09a6dec3@syzkaller.appspotmail.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Brian Geffon <bgeffon@google.com>
Cc: Edward Liaw <edliaw@google.com>
Cc: Liu Shixin <liushixin2@huawei.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "hugetlb: fixes for new vma lock series".
In review of the series "hugetlb: Use new vma lock for huge pmd sharing
synchronization", Miaohe Lin pointed out two key issues:
1) There is a race in the routine hugetlb_unmap_file_folio when locks
are dropped and reacquired in the correct order [1].
2) With the switch to using vma lock for fault/truncate synchronization,
we need to make sure lock exists for all VM_MAYSHARE vmas, not just
vmas capable of pmd sharing.
These two issues are addressed here. In addition, having a vma lock
present in all VM_MAYSHARE vmas, uncovered some issues around vma
splitting. Those are also addressed.
[1] https://lore.kernel.org/linux-mm/01f10195-7088-4462-6def-909549c75ef4@huawei.com/
This patch (of 3):
The hugetlb vma lock hangs off the vm_private_data field and is specific
to the vma. When vm_area_dup() is called as part of vma splitting, the
vma lock pointer is copied to the new vma. This will result in issues
such as double freeing of the structure. Update the hugetlb open vm_ops
to allocate a new vma lock for the new vma.
The routine __unmap_hugepage_range_final unconditionally unset VM_MAYSHARE
to prevent subsequent pmd sharing. hugetlb_vma_lock_free attempted to
anticipate this by checking both VM_MAYSHARE and VM_SHARED. However, if
only VM_MAYSHARE was set we would miss the free. With the introduction of
the vma lock, a vma can not participate in pmd sharing if vm_private_data
is NULL. Instead of clearing VM_MAYSHARE in __unmap_hugepage_range_final,
free the vma lock to prevent sharing. Also, update the sharing code to
make sure vma lock is indeed a condition for pmd sharing.
hugetlb_vma_lock_free can then key off VM_MAYSHARE and not miss any vmas.
Link: https://lkml.kernel.org/r/20221005011707.514612-1-mike.kravetz@oracle.com
Link: https://lkml.kernel.org/r/20221005011707.514612-2-mike.kravetz@oracle.com
Fixes: "hugetlb: add vma based lock for pmd sharing"
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: James Houghton <jthoughton@google.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mina Almasry <almasrymina@google.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Prakash Sangappa <prakash.sangappa@oracle.com>
Cc: Sven Schnelle <svens@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The new hugetlb vma lock is used to address this race:
Faulting thread Unsharing thread
... ...
ptep = huge_pte_offset()
or
ptep = huge_pte_alloc()
...
i_mmap_lock_write
lock page table
ptep invalid <------------------------ huge_pmd_unshare()
Could be in a previously unlock_page_table
sharing process or worse i_mmap_unlock_write
...
The vma_lock is used as follows:
- During fault processing. The lock is acquired in read mode before
doing a page table lock and allocation (huge_pte_alloc). The lock is
held until code is finished with the page table entry (ptep).
- The lock must be held in write mode whenever huge_pmd_unshare is
called.
Lock ordering issues come into play when unmapping a page from all
vmas mapping the page. The i_mmap_rwsem must be held to search for the
vmas, and the vma lock must be held before calling unmap which will
call huge_pmd_unshare. This is done today in:
- try_to_migrate_one and try_to_unmap_ for page migration and memory
error handling. In these routines we 'try' to obtain the vma lock and
fail to unmap if unsuccessful. Calling routines already deal with the
failure of unmapping.
- hugetlb_vmdelete_list for truncation and hole punch. This routine
also tries to acquire the vma lock. If it fails, it skips the
unmapping. However, we can not have file truncation or hole punch
fail because of contention. After hugetlb_vmdelete_list, truncation
and hole punch call remove_inode_hugepages. remove_inode_hugepages
checks for mapped pages and call hugetlb_unmap_file_page to unmap them.
hugetlb_unmap_file_page is designed to drop locks and reacquire in the
correct order to guarantee unmap success.
Link: https://lkml.kernel.org/r/20220914221810.95771-9-mike.kravetz@oracle.com
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: James Houghton <jthoughton@google.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mina Almasry <almasrymina@google.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Prakash Sangappa <prakash.sangappa@oracle.com>
Cc: Sven Schnelle <svens@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
To handle the discontiguous case, mem_map_next() has a parameter named
`offset`. As a function caller, one would be confused why "get next
entry" needs a parameter named "offset". The other drawback of
mem_map_next() is that the callers must take care of the map between
parameter "iter" and "offset", otherwise we may get an hole or duplication
during iteration. So we use nth_page instead of mem_map_next.
And replace mem_map_offset with nth_page() per Matthew's comments.
Link: https://lkml.kernel.org/r/1662708669-9395-1-git-send-email-lic121@chinatelecom.cn
Signed-off-by: Cheng Li <lic121@chinatelecom.cn>
Fixes: 69d177c2fc ("hugetlbfs: handle pages higher order than MAX_ORDER")
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
All callers have now been converted to folio_free_swap() and we can remove
this wrapper.
Link: https://lkml.kernel.org/r/20220902194653.1739778-49-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
All callers now have a folio, so convert the function to take a folio.
Saves a couple of calls to compound_head().
Link: https://lkml.kernel.org/r/20220902194653.1739778-48-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Also convert should_try_to_free_swap() to use a folio. This removes a few
calls to compound_head().
Link: https://lkml.kernel.org/r/20220902194653.1739778-47-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
All callers now have a folio, so pass it in here and remove an unnecessary
call to page_folio().
Link: https://lkml.kernel.org/r/20220902194653.1739778-17-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The 'swapcache' variable is used to track whether the page is from the
swapcache or not. It can do this equally well by being the folio of the
page rather than the page itself, and this saves a number of calls to
compound_head().
Link: https://lkml.kernel.org/r/20220902194653.1739778-16-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Replace any vm_next use with vma_find().
Update free_pgtables(), unmap_vmas(), and zap_page_range() to use the
maple tree.
Use the new free_pgtables() and unmap_vmas() in do_mas_align_munmap(). At
the same time, alter the loop to be more compact.
Now that free_pgtables() and unmap_vmas() take a maple tree as an
argument, rearrange do_mas_align_munmap() to use the new tree to hold the
vmas to remove.
Remove __vma_link_list() and __vma_unlink_list() as they are exclusively
used to update the linked list.
Drop linked list update from __insert_vm_struct().
Rework validation of tree as it was depending on the linked list.
[yang.lee@linux.alibaba.com: fix one kernel-doc comment]
Link: https://bugzilla.openanolis.cn/show_bug.cgi?id=1949
Link: https://lkml.kernel.org/r/20220824021918.94116-1-yang.lee@linux.alibaba.comLink: https://lkml.kernel.org/r/20220906194824.2110408-69-Liam.Howlett@oracle.com
Signed-off-by: Liam R. Howlett <Liam.Howlett@Oracle.com>
Signed-off-by: Yang Li <yang.lee@linux.alibaba.com>
Tested-by: Yu Zhao <yuzhao@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: SeongJae Park <sj@kernel.org>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
With memory tier support we can have memory only NUMA nodes in the top
tier from which we want to avoid promotion tracking NUMA faults. Update
node_is_toptier to work with memory tiers. All NUMA nodes are by default
top tier nodes. With lower(slower) memory tiers added we consider all
memory tiers above a memory tier having CPU NUMA nodes as a top memory
tier
[sj@kernel.org: include missed header file, memory-tiers.h]
Link: https://lkml.kernel.org/r/20220820190720.248704-1-sj@kernel.org
[akpm@linux-foundation.org: mm/memory.c needs linux/memory-tiers.h]
[aneesh.kumar@linux.ibm.com: make toptier_distance inclusive upper bound of toptiers]
Link: https://lkml.kernel.org/r/20220830081457.118960-1-aneesh.kumar@linux.ibm.com
Link: https://lkml.kernel.org/r/20220818131042.113280-10-aneesh.kumar@linux.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Acked-by: Wei Xu <weixugc@google.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Bharata B Rao <bharata@amd.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Hesham Almatary <hesham.almatary@huawei.com>
Cc: Jagdish Gediya <jvgediya.oss@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tim Chen <tim.c.chen@intel.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Evictable pages are divided into multiple generations for each lruvec.
The youngest generation number is stored in lrugen->max_seq for both
anon and file types as they are aged on an equal footing. The oldest
generation numbers are stored in lrugen->min_seq[] separately for anon
and file types as clean file pages can be evicted regardless of swap
constraints. These three variables are monotonically increasing.
Generation numbers are truncated into order_base_2(MAX_NR_GENS+1) bits
in order to fit into the gen counter in folio->flags. Each truncated
generation number is an index to lrugen->lists[]. The sliding window
technique is used to track at least MIN_NR_GENS and at most
MAX_NR_GENS generations. The gen counter stores a value within [1,
MAX_NR_GENS] while a page is on one of lrugen->lists[]. Otherwise it
stores 0.
There are two conceptually independent procedures: "the aging", which
produces young generations, and "the eviction", which consumes old
generations. They form a closed-loop system, i.e., "the page reclaim".
Both procedures can be invoked from userspace for the purposes of working
set estimation and proactive reclaim. These techniques are commonly used
to optimize job scheduling (bin packing) in data centers [1][2].
To avoid confusion, the terms "hot" and "cold" will be applied to the
multi-gen LRU, as a new convention; the terms "active" and "inactive" will
be applied to the active/inactive LRU, as usual.
The protection of hot pages and the selection of cold pages are based
on page access channels and patterns. There are two access channels:
one through page tables and the other through file descriptors. The
protection of the former channel is by design stronger because:
1. The uncertainty in determining the access patterns of the former
channel is higher due to the approximation of the accessed bit.
2. The cost of evicting the former channel is higher due to the TLB
flushes required and the likelihood of encountering the dirty bit.
3. The penalty of underprotecting the former channel is higher because
applications usually do not prepare themselves for major page
faults like they do for blocked I/O. E.g., GUI applications
commonly use dedicated I/O threads to avoid blocking rendering
threads.
There are also two access patterns: one with temporal locality and the
other without. For the reasons listed above, the former channel is
assumed to follow the former pattern unless VM_SEQ_READ or VM_RAND_READ is
present; the latter channel is assumed to follow the latter pattern unless
outlying refaults have been observed [3][4].
The next patch will address the "outlying refaults". Three macros, i.e.,
LRU_REFS_WIDTH, LRU_REFS_PGOFF and LRU_REFS_MASK, used later are added in
this patch to make the entire patchset less diffy.
A page is added to the youngest generation on faulting. The aging needs
to check the accessed bit at least twice before handing this page over to
the eviction. The first check takes care of the accessed bit set on the
initial fault; the second check makes sure this page has not been used
since then. This protocol, AKA second chance, requires a minimum of two
generations, hence MIN_NR_GENS.
[1] https://dl.acm.org/doi/10.1145/3297858.3304053
[2] https://dl.acm.org/doi/10.1145/3503222.3507731
[3] https://lwn.net/Articles/495543/
[4] https://lwn.net/Articles/815342/
Link: https://lkml.kernel.org/r/20220918080010.2920238-6-yuzhao@google.com
Signed-off-by: Yu Zhao <yuzhao@google.com>
Acked-by: Brian Geffon <bgeffon@google.com>
Acked-by: Jan Alexander Steffens (heftig) <heftig@archlinux.org>
Acked-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Acked-by: Steven Barrett <steven@liquorix.net>
Acked-by: Suleiman Souhlal <suleiman@google.com>
Tested-by: Daniel Byrne <djbyrne@mtu.edu>
Tested-by: Donald Carr <d@chaos-reins.com>
Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com>
Tested-by: Konstantin Kharlamov <Hi-Angel@yandex.ru>
Tested-by: Shuang Zhai <szhai2@cs.rochester.edu>
Tested-by: Sofia Trinh <sofia.trinh@edi.works>
Tested-by: Vaibhav Jain <vaibhav@linux.ibm.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Barry Song <baohua@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Michael Larabel <Michael@MichaelLarabel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "Multi-Gen LRU Framework", v14.
What's new
==========
1. OpenWrt, in addition to Android, Arch Linux Zen, Armbian, ChromeOS,
Liquorix, post-factum and XanMod, is now shipping MGLRU on 5.15.
2. Fixed long-tailed direct reclaim latency seen on high-memory (TBs)
machines. The old direct reclaim backoff, which tries to enforce a
minimum fairness among all eligible memcgs, over-swapped by about
(total_mem>>DEF_PRIORITY)-nr_to_reclaim. The new backoff, which
pulls the plug on swapping once the target is met, trades some
fairness for curtailed latency:
https://lore.kernel.org/r/20220918080010.2920238-10-yuzhao@google.com/
3. Fixed minior build warnings and conflicts. More comments and nits.
TLDR
====
The current page reclaim is too expensive in terms of CPU usage and it
often makes poor choices about what to evict. This patchset offers an
alternative solution that is performant, versatile and
straightforward.
Patchset overview
=================
The design and implementation overview is in patch 14:
https://lore.kernel.org/r/20220918080010.2920238-15-yuzhao@google.com/
01. mm: x86, arm64: add arch_has_hw_pte_young()
02. mm: x86: add CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG
Take advantage of hardware features when trying to clear the accessed
bit in many PTEs.
03. mm/vmscan.c: refactor shrink_node()
04. Revert "include/linux/mm_inline.h: fold __update_lru_size() into
its sole caller"
Minor refactors to improve readability for the following patches.
05. mm: multi-gen LRU: groundwork
Adds the basic data structure and the functions that insert pages to
and remove pages from the multi-gen LRU (MGLRU) lists.
06. mm: multi-gen LRU: minimal implementation
A minimal implementation without optimizations.
07. mm: multi-gen LRU: exploit locality in rmap
Exploits spatial locality to improve efficiency when using the rmap.
08. mm: multi-gen LRU: support page table walks
Further exploits spatial locality by optionally scanning page tables.
09. mm: multi-gen LRU: optimize multiple memcgs
Optimizes the overall performance for multiple memcgs running mixed
types of workloads.
10. mm: multi-gen LRU: kill switch
Adds a kill switch to enable or disable MGLRU at runtime.
11. mm: multi-gen LRU: thrashing prevention
12. mm: multi-gen LRU: debugfs interface
Provide userspace with features like thrashing prevention, working set
estimation and proactive reclaim.
13. mm: multi-gen LRU: admin guide
14. mm: multi-gen LRU: design doc
Add an admin guide and a design doc.
Benchmark results
=================
Independent lab results
-----------------------
Based on the popularity of searches [01] and the memory usage in
Google's public cloud, the most popular open-source memory-hungry
applications, in alphabetical order, are:
Apache Cassandra Memcached
Apache Hadoop MongoDB
Apache Spark PostgreSQL
MariaDB (MySQL) Redis
An independent lab evaluated MGLRU with the most widely used benchmark
suites for the above applications. They posted 960 data points along
with kernel metrics and perf profiles collected over more than 500
hours of total benchmark time. Their final reports show that, with 95%
confidence intervals (CIs), the above applications all performed
significantly better for at least part of their benchmark matrices.
On 5.14:
1. Apache Spark [02] took 95% CIs [9.28, 11.19]% and [12.20, 14.93]%
less wall time to sort three billion random integers, respectively,
under the medium- and the high-concurrency conditions, when
overcommitting memory. There were no statistically significant
changes in wall time for the rest of the benchmark matrix.
2. MariaDB [03] achieved 95% CIs [5.24, 10.71]% and [20.22, 25.97]%
more transactions per minute (TPM), respectively, under the medium-
and the high-concurrency conditions, when overcommitting memory.
There were no statistically significant changes in TPM for the rest
of the benchmark matrix.
3. Memcached [04] achieved 95% CIs [23.54, 32.25]%, [20.76, 41.61]%
and [21.59, 30.02]% more operations per second (OPS), respectively,
for sequential access, random access and Gaussian (distribution)
access, when THP=always; 95% CIs [13.85, 15.97]% and
[23.94, 29.92]% more OPS, respectively, for random access and
Gaussian access, when THP=never. There were no statistically
significant changes in OPS for the rest of the benchmark matrix.
4. MongoDB [05] achieved 95% CIs [2.23, 3.44]%, [6.97, 9.73]% and
[2.16, 3.55]% more operations per second (OPS), respectively, for
exponential (distribution) access, random access and Zipfian
(distribution) access, when underutilizing memory; 95% CIs
[8.83, 10.03]%, [21.12, 23.14]% and [5.53, 6.46]% more OPS,
respectively, for exponential access, random access and Zipfian
access, when overcommitting memory.
On 5.15:
5. Apache Cassandra [06] achieved 95% CIs [1.06, 4.10]%, [1.94, 5.43]%
and [4.11, 7.50]% more operations per second (OPS), respectively,
for exponential (distribution) access, random access and Zipfian
(distribution) access, when swap was off; 95% CIs [0.50, 2.60]%,
[6.51, 8.77]% and [3.29, 6.75]% more OPS, respectively, for
exponential access, random access and Zipfian access, when swap was
on.
6. Apache Hadoop [07] took 95% CIs [5.31, 9.69]% and [2.02, 7.86]%
less average wall time to finish twelve parallel TeraSort jobs,
respectively, under the medium- and the high-concurrency
conditions, when swap was on. There were no statistically
significant changes in average wall time for the rest of the
benchmark matrix.
7. PostgreSQL [08] achieved 95% CI [1.75, 6.42]% more transactions per
minute (TPM) under the high-concurrency condition, when swap was
off; 95% CIs [12.82, 18.69]% and [22.70, 46.86]% more TPM,
respectively, under the medium- and the high-concurrency
conditions, when swap was on. There were no statistically
significant changes in TPM for the rest of the benchmark matrix.
8. Redis [09] achieved 95% CIs [0.58, 5.94]%, [6.55, 14.58]% and
[11.47, 19.36]% more total operations per second (OPS),
respectively, for sequential access, random access and Gaussian
(distribution) access, when THP=always; 95% CIs [1.27, 3.54]%,
[10.11, 14.81]% and [8.75, 13.64]% more total OPS, respectively,
for sequential access, random access and Gaussian access, when
THP=never.
Our lab results
---------------
To supplement the above results, we ran the following benchmark suites
on 5.16-rc7 and found no regressions [10].
fs_fio_bench_hdd_mq pft
fs_lmbench pgsql-hammerdb
fs_parallelio redis
fs_postmark stream
hackbench sysbenchthread
kernbench tpcc_spark
memcached unixbench
multichase vm-scalability
mutilate will-it-scale
nginx
[01] https://trends.google.com
[02] https://lore.kernel.org/r/20211102002002.92051-1-bot@edi.works/
[03] https://lore.kernel.org/r/20211009054315.47073-1-bot@edi.works/
[04] https://lore.kernel.org/r/20211021194103.65648-1-bot@edi.works/
[05] https://lore.kernel.org/r/20211109021346.50266-1-bot@edi.works/
[06] https://lore.kernel.org/r/20211202062806.80365-1-bot@edi.works/
[07] https://lore.kernel.org/r/20211209072416.33606-1-bot@edi.works/
[08] https://lore.kernel.org/r/20211218071041.24077-1-bot@edi.works/
[09] https://lore.kernel.org/r/20211122053248.57311-1-bot@edi.works/
[10] https://lore.kernel.org/r/20220104202247.2903702-1-yuzhao@google.com/
Read-world applications
=======================
Third-party testimonials
------------------------
Konstantin reported [11]:
I have Archlinux with 8G RAM + zswap + swap. While developing, I
have lots of apps opened such as multiple LSP-servers for different
langs, chats, two browsers, etc... Usually, my system gets quickly
to a point of SWAP-storms, where I have to kill LSP-servers,
restart browsers to free memory, etc, otherwise the system lags
heavily and is barely usable.
1.5 day ago I migrated from 5.11.15 kernel to 5.12 + the LRU
patchset, and I started up by opening lots of apps to create memory
pressure, and worked for a day like this. Till now I had not a
single SWAP-storm, and mind you I got 3.4G in SWAP. I was never
getting to the point of 3G in SWAP before without a single
SWAP-storm.
Vaibhav from IBM reported [12]:
In a synthetic MongoDB Benchmark, seeing an average of ~19%
throughput improvement on POWER10(Radix MMU + 64K Page Size) with
MGLRU patches on top of 5.16 kernel for MongoDB + YCSB across
three different request distributions, namely, Exponential, Uniform
and Zipfan.
Shuang from U of Rochester reported [13]:
With the MGLRU, fio achieved 95% CIs [38.95, 40.26]%, [4.12, 6.64]%
and [9.26, 10.36]% higher throughput, respectively, for random
access, Zipfian (distribution) access and Gaussian (distribution)
access, when the average number of jobs per CPU is 1; 95% CIs
[42.32, 49.15]%, [9.44, 9.89]% and [20.99, 22.86]% higher
throughput, respectively, for random access, Zipfian access and
Gaussian access, when the average number of jobs per CPU is 2.
Daniel from Michigan Tech reported [14]:
With Memcached allocating ~100GB of byte-addressable Optante,
performance improvement in terms of throughput (measured as queries
per second) was about 10% for a series of workloads.
Large-scale deployments
-----------------------
We've rolled out MGLRU to tens of millions of ChromeOS users and
about a million Android users. Google's fleetwide profiling [15] shows
an overall 40% decrease in kswapd CPU usage, in addition to
improvements in other UX metrics, e.g., an 85% decrease in the number
of low-memory kills at the 75th percentile and an 18% decrease in
app launch time at the 50th percentile.
The downstream kernels that have been using MGLRU include:
1. Android [16]
2. Arch Linux Zen [17]
3. Armbian [18]
4. ChromeOS [19]
5. Liquorix [20]
6. OpenWrt [21]
7. post-factum [22]
8. XanMod [23]
[11] https://lore.kernel.org/r/140226722f2032c86301fbd326d91baefe3d7d23.camel@yandex.ru/
[12] https://lore.kernel.org/r/87czj3mux0.fsf@vajain21.in.ibm.com/
[13] https://lore.kernel.org/r/20220105024423.26409-1-szhai2@cs.rochester.edu/
[14] https://lore.kernel.org/r/CA+4-3vksGvKd18FgRinxhqHetBS1hQekJE2gwco8Ja-bJWKtFw@mail.gmail.com/
[15] https://dl.acm.org/doi/10.1145/2749469.2750392
[16] https://android.com
[17] https://archlinux.org
[18] https://armbian.com
[19] https://chromium.org
[20] https://liquorix.net
[21] https://openwrt.org
[22] https://codeberg.org/pf-kernel
[23] https://xanmod.org
Summary
=======
The facts are:
1. The independent lab results and the real-world applications
indicate substantial improvements; there are no known regressions.
2. Thrashing prevention, working set estimation and proactive reclaim
work out of the box; there are no equivalent solutions.
3. There is a lot of new code; no smaller changes have been
demonstrated similar effects.
Our options, accordingly, are:
1. Given the amount of evidence, the reported improvements will likely
materialize for a wide range of workloads.
2. Gauging the interest from the past discussions, the new features
will likely be put to use for both personal computers and data
centers.
3. Based on Google's track record, the new code will likely be well
maintained in the long term. It'd be more difficult if not
impossible to achieve similar effects with other approaches.
This patch (of 14):
Some architectures automatically set the accessed bit in PTEs, e.g., x86
and arm64 v8.2. On architectures that do not have this capability,
clearing the accessed bit in a PTE usually triggers a page fault following
the TLB miss of this PTE (to emulate the accessed bit).
Being aware of this capability can help make better decisions, e.g.,
whether to spread the work out over a period of time to reduce bursty page
faults when trying to clear the accessed bit in many PTEs.
Note that theoretically this capability can be unreliable, e.g.,
hotplugged CPUs might be different from builtin ones. Therefore it should
not be used in architecture-independent code that involves correctness,
e.g., to determine whether TLB flushes are required (in combination with
the accessed bit).
Link: https://lkml.kernel.org/r/20220918080010.2920238-1-yuzhao@google.com
Link: https://lkml.kernel.org/r/20220918080010.2920238-2-yuzhao@google.com
Signed-off-by: Yu Zhao <yuzhao@google.com>
Reviewed-by: Barry Song <baohua@kernel.org>
Acked-by: Brian Geffon <bgeffon@google.com>
Acked-by: Jan Alexander Steffens (heftig) <heftig@archlinux.org>
Acked-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Acked-by: Steven Barrett <steven@liquorix.net>
Acked-by: Suleiman Souhlal <suleiman@google.com>
Acked-by: Will Deacon <will@kernel.org>
Tested-by: Daniel Byrne <djbyrne@mtu.edu>
Tested-by: Donald Carr <d@chaos-reins.com>
Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com>
Tested-by: Konstantin Kharlamov <Hi-Angel@yandex.ru>
Tested-by: Shuang Zhai <szhai2@cs.rochester.edu>
Tested-by: Sofia Trinh <sofia.trinh@edi.works>
Tested-by: Vaibhav Jain <vaibhav@linux.ibm.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linux-arm-kernel@lists.infradead.org
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michael Larabel <Michael@MichaelLarabel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Running this test program on ARMv4 a few times (sometimes just once)
reproduces the bug.
int main()
{
unsigned i;
char paragon[SIZE];
void* ptr;
memset(paragon, 0xAA, SIZE);
ptr = mmap(NULL, SIZE, PROT_READ | PROT_WRITE,
MAP_ANON | MAP_SHARED, -1, 0);
if (ptr == MAP_FAILED) return 1;
printf("ptr = %p\n", ptr);
for (i=0;i<10000;i++){
memset(ptr, 0xAA, SIZE);
if (memcmp(ptr, paragon, SIZE)) {
printf("Unexpected bytes on iteration %u!!!\n", i);
break;
}
}
munmap(ptr, SIZE);
}
In the "ptr" buffer there appear runs of zero bytes which are aligned
by 16 and their lengths are multiple of 16.
Linux v5.11 does not have the bug, "git bisect" finds the first bad commit:
f9ce0be71d ("mm: Cleanup faultaround and finish_fault() codepaths")
Before the commit update_mmu_cache() was called during a call to
filemap_map_pages() as well as finish_fault(). After the commit
finish_fault() lacks it.
Bring back update_mmu_cache() to finish_fault() to fix the bug.
Also call update_mmu_tlb() only when returning VM_FAULT_NOPAGE to more
closely reproduce the code of alloc_set_pte() function that existed before
the commit.
On many platforms update_mmu_cache() is nop:
x86, see arch/x86/include/asm/pgtable
ARMv6+, see arch/arm/include/asm/tlbflush.h
So, it seems, few users ran into this bug.
Link: https://lkml.kernel.org/r/20220908204809.2012451-1-saproj@gmail.com
Fixes: f9ce0be71d ("mm: Cleanup faultaround and finish_fault() codepaths")
Signed-off-by: Sergei Antonov <saproj@gmail.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Will Deacon <will@kernel.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "memory tiering: hot page selection", v4.
To optimize page placement in a memory tiering system with NUMA balancing,
the hot pages in the slow memory nodes need to be identified.
Essentially, the original NUMA balancing implementation selects the mostly
recently accessed (MRU) pages to promote. But this isn't a perfect
algorithm to identify the hot pages. Because the pages with quite low
access frequency may be accessed eventually given the NUMA balancing page
table scanning period could be quite long (e.g. 60 seconds). So in this
patchset, we implement a new hot page identification algorithm based on
the latency between NUMA balancing page table scanning and hint page
fault. Which is a kind of mostly frequently accessed (MFU) algorithm.
In NUMA balancing memory tiering mode, if there are hot pages in slow
memory node and cold pages in fast memory node, we need to promote/demote
hot/cold pages between the fast and cold memory nodes.
A choice is to promote/demote as fast as possible. But the CPU cycles and
memory bandwidth consumed by the high promoting/demoting throughput will
hurt the latency of some workload because of accessing inflating and slow
memory bandwidth contention.
A way to resolve this issue is to restrict the max promoting/demoting
throughput. It will take longer to finish the promoting/demoting. But
the workload latency will be better. This is implemented in this patchset
as the page promotion rate limit mechanism.
The promotion hot threshold is workload and system configuration
dependent. So in this patchset, a method to adjust the hot threshold
automatically is implemented. The basic idea is to control the number of
the candidate promotion pages to match the promotion rate limit.
We used the pmbench memory accessing benchmark tested the patchset on a
2-socket server system with DRAM and PMEM installed. The test results are
as follows,
pmbench score promote rate
(accesses/s) MB/s
------------- ------------
base 146887704.1 725.6
hot selection 165695601.2 544.0
rate limit 162814569.8 165.2
auto adjustment 170495294.0 136.9
From the results above,
With hot page selection patch [1/3], the pmbench score increases about
12.8%, and promote rate (overhead) decreases about 25.0%, compared with
base kernel.
With rate limit patch [2/3], pmbench score decreases about 1.7%, and
promote rate decreases about 69.6%, compared with hot page selection
patch.
With threshold auto adjustment patch [3/3], pmbench score increases about
4.7%, and promote rate decrease about 17.1%, compared with rate limit
patch.
Baolin helped to test the patchset with MySQL on a machine which contains
1 DRAM node (30G) and 1 PMEM node (126G).
sysbench /usr/share/sysbench/oltp_read_write.lua \
......
--tables=200 \
--table-size=1000000 \
--report-interval=10 \
--threads=16 \
--time=120
The tps can be improved about 5%.
This patch (of 3):
To optimize page placement in a memory tiering system with NUMA balancing,
the hot pages in the slow memory node need to be identified. Essentially,
the original NUMA balancing implementation selects the mostly recently
accessed (MRU) pages to promote. But this isn't a perfect algorithm to
identify the hot pages. Because the pages with quite low access frequency
may be accessed eventually given the NUMA balancing page table scanning
period could be quite long (e.g. 60 seconds). The most frequently
accessed (MFU) algorithm is better.
So, in this patch we implemented a better hot page selection algorithm.
Which is based on NUMA balancing page table scanning and hint page fault
as follows,
- When the page tables of the processes are scanned to change PTE/PMD
to be PROT_NONE, the current time is recorded in struct page as scan
time.
- When the page is accessed, hint page fault will occur. The scan
time is gotten from the struct page. And The hint page fault
latency is defined as
hint page fault time - scan time
The shorter the hint page fault latency of a page is, the higher the
probability of their access frequency to be higher. So the hint page
fault latency is a better estimation of the page hot/cold.
It's hard to find some extra space in struct page to hold the scan time.
Fortunately, we can reuse some bits used by the original NUMA balancing.
NUMA balancing uses some bits in struct page to store the page accessing
CPU and PID (referring to page_cpupid_xchg_last()). Which is used by the
multi-stage node selection algorithm to avoid to migrate pages shared
accessed by the NUMA nodes back and forth. But for pages in the slow
memory node, even if they are shared accessed by multiple NUMA nodes, as
long as the pages are hot, they need to be promoted to the fast memory
node. So the accessing CPU and PID information are unnecessary for the
slow memory pages. We can reuse these bits in struct page to record the
scan time. For the fast memory pages, these bits are used as before.
For the hot threshold, the default value is 1 second, which works well in
our performance test. All pages with hint page fault latency < hot
threshold will be considered hot.
It's hard for users to determine the hot threshold. So we don't provide a
kernel ABI to set it, just provide a debugfs interface for advanced users
to experiment. We will continue to work on a hot threshold automatic
adjustment mechanism.
The downside of the above method is that the response time to the workload
hot spot changing may be much longer. For example,
- A previous cold memory area becomes hot
- The hint page fault will be triggered. But the hint page fault
latency isn't shorter than the hot threshold. So the pages will
not be promoted.
- When the memory area is scanned again, maybe after a scan period,
the hint page fault latency measured will be shorter than the hot
threshold and the pages will be promoted.
To mitigate this, if there are enough free space in the fast memory node,
the hot threshold will not be used, all pages will be promoted upon the
hint page fault for fast response.
Thanks Zhong Jiang reported and tested the fix for a bug when disabling
memory tiering mode dynamically.
Link: https://lkml.kernel.org/r/20220713083954.34196-1-ying.huang@intel.com
Link: https://lkml.kernel.org/r/20220713083954.34196-2-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Tested-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Wei Xu <weixugc@google.com>
Cc: osalvador <osalvador@suse.de>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Zhong Jiang <zhongjiang-ali@linux.alibaba.com>
Cc: Oscar Salvador <osalvador@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
MADV_COLLAPSE is not coupled to the kernel-oriented sysfs THP settings[1].
hugepage_vma_check() is the authority on determining if a VMA is eligible
for THP allocation/collapse, and currently enforces the sysfs THP
settings. Add a flag to disable these checks. For now, only apply this
arg to anon and file, which use /sys/kernel/transparent_hugepage/enabled.
We can expand this to shmem, which uses
/sys/kernel/transparent_hugepage/shmem_enabled, later.
Use this flag in collapse_pte_mapped_thp() where previously the VMA flags
passed to hugepage_vma_check() were OR'd with VM_HUGEPAGE to elide the
VM_HUGEPAGE check in "madvise" THP mode. Prior to "mm: khugepaged: check
THP flag in hugepage_vma_check()", this check also didn't check "never"
THP mode. As such, this restores the previous behavior of
collapse_pte_mapped_thp() where sysfs THP settings are ignored. See
comment in code for justification why this is OK.
[1] https://lore.kernel.org/linux-mm/CAAa6QmQxay1_=Pmt8oCX2-Va18t44FV-Vs-WsQt_6+qBks4nZA@mail.gmail.com/
Link: https://lkml.kernel.org/r/20220706235936.2197195-8-zokeefe@google.com
Signed-off-by: Zach O'Keefe <zokeefe@google.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: Alex Shi <alex.shi@linux.alibaba.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Chris Kennelly <ckennelly@google.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Helge Deller <deller@gmx.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: James Bottomley <James.Bottomley@HansenPartnership.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Pavel Begunkov <asml.silence@gmail.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Rongwei Wang <rongwei.wang@linux.alibaba.com>
Cc: SeongJae Park <sj@kernel.org>
Cc: Song Liu <songliubraving@fb.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: "Souptick Joarder (HPE)" <jrdr.linux@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Lin, Yang Shi, Anshuman Khandual and Mike Rapoport
- Some kmemleak fixes from Patrick Wang and Waiman Long
- DAMON updates from SeongJae Park
- memcg debug/visibility work from Roman Gushchin
- vmalloc speedup from Uladzislau Rezki
- more folio conversion work from Matthew Wilcox
- enhancements for coherent device memory mapping from Alex Sierra
- addition of shared pages tracking and CoW support for fsdax, from
Shiyang Ruan
- hugetlb optimizations from Mike Kravetz
- Mel Gorman has contributed some pagealloc changes to improve latency
and realtime behaviour.
- mprotect soft-dirty checking has been improved by Peter Xu
- Many other singleton patches all over the place
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCYuravgAKCRDdBJ7gKXxA
jpqSAQDrXSdII+ht9kSHlaCVYjqRFQz/rRvURQrWQV74f6aeiAD+NHHeDPwZn11/
SPktqEUrF1pxnGQxqLh1kUFUhsVZQgE=
=w/UH
-----END PGP SIGNATURE-----
Merge tag 'mm-stable-2022-08-03' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
"Most of the MM queue. A few things are still pending.
Liam's maple tree rework didn't make it. This has resulted in a few
other minor patch series being held over for next time.
Multi-gen LRU still isn't merged as we were waiting for mapletree to
stabilize. The current plan is to merge MGLRU into -mm soon and to
later reintroduce mapletree, with a view to hopefully getting both
into 6.1-rc1.
Summary:
- The usual batches of cleanups from Baoquan He, Muchun Song, Miaohe
Lin, Yang Shi, Anshuman Khandual and Mike Rapoport
- Some kmemleak fixes from Patrick Wang and Waiman Long
- DAMON updates from SeongJae Park
- memcg debug/visibility work from Roman Gushchin
- vmalloc speedup from Uladzislau Rezki
- more folio conversion work from Matthew Wilcox
- enhancements for coherent device memory mapping from Alex Sierra
- addition of shared pages tracking and CoW support for fsdax, from
Shiyang Ruan
- hugetlb optimizations from Mike Kravetz
- Mel Gorman has contributed some pagealloc changes to improve
latency and realtime behaviour.
- mprotect soft-dirty checking has been improved by Peter Xu
- Many other singleton patches all over the place"
[ XFS merge from hell as per Darrick Wong in
https://lore.kernel.org/all/YshKnxb4VwXycPO8@magnolia/ ]
* tag 'mm-stable-2022-08-03' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (282 commits)
tools/testing/selftests/vm/hmm-tests.c: fix build
mm: Kconfig: fix typo
mm: memory-failure: convert to pr_fmt()
mm: use is_zone_movable_page() helper
hugetlbfs: fix inaccurate comment in hugetlbfs_statfs()
hugetlbfs: cleanup some comments in inode.c
hugetlbfs: remove unneeded header file
hugetlbfs: remove unneeded hugetlbfs_ops forward declaration
hugetlbfs: use helper macro SZ_1{K,M}
mm: cleanup is_highmem()
mm/hmm: add a test for cross device private faults
selftests: add soft-dirty into run_vmtests.sh
selftests: soft-dirty: add test for mprotect
mm/mprotect: fix soft-dirty check in can_change_pte_writable()
mm: memcontrol: fix potential oom_lock recursion deadlock
mm/gup.c: fix formatting in check_and_migrate_movable_page()
xfs: fail dax mount if reflink is enabled on a partition
mm/memcontrol.c: remove the redundant updating of stats_flush_threshold
userfaultfd: don't fail on unrecognized features
hugetlb_cgroup: fix wrong hugetlb cgroup numa stat
...
When code reaches here, the page must be !PageAnon. There's no need to
check PageAnon again. Remove it.
Link: https://lkml.kernel.org/r/20220716081816.10752-1-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Since commit 7267ec008b ("mm: postpone page table allocation until we
have page to map"), do_fault_around is not called with page table lock
held. Cleanup the corresponding comments.
Link: https://lkml.kernel.org/r/20220716080359.38791-1-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
issues or are too minor to warrant backporting
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCYuCV7gAKCRDdBJ7gKXxA
jrK2AQDeoayQKXJFTcEltKAUTooXM/BoRf+O3ti/xrSWpwta8wEAjaBIJ8e7UlCj
g+p6u/pd38f226ldzI5w3bIBSPCbnwU=
=3rO0
-----END PGP SIGNATURE-----
Merge tag 'mm-hotfixes-stable-2022-07-26' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull misc fixes from Andrew Morton:
"Thirteen hotfixes.
Eight are cc:stable and the remainder are for post-5.18 issues or are
too minor to warrant backporting"
* tag 'mm-hotfixes-stable-2022-07-26' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm:
mailmap: update Gao Xiang's email addresses
userfaultfd: provide properly masked address for huge-pages
Revert "ocfs2: mount shared volume without ha stack"
hugetlb: fix memoryleak in hugetlb_mcopy_atomic_pte
fs: sendfile handles O_NONBLOCK of out_fd
ntfs: fix use-after-free in ntfs_ucsncmp()
secretmem: fix unhandled fault in truncate
mm/hugetlb: separate path for hwpoison entry in copy_hugetlb_page_range()
mm: fix missing wake-up event for FSDAX pages
mm: fix page leak with multiple threads mapping the same page
mailmap: update Seth Forshee's email address
tmpfs: fix the issue that the mount and remount results are inconsistent.
mm: kfence: apply kmemleak_ignore_phys on early allocated pool
We have an application with a lot of threads that use a shared mmap backed
by tmpfs mounted with -o huge=within_size. This application started
leaking loads of huge pages when we upgraded to a recent kernel.
Using the page ref tracepoints and a BPF program written by Tejun Heo we
were able to determine that these pages would have multiple refcounts from
the page fault path, but when it came to unmap time we wouldn't drop the
number of refs we had added from the faults.
I wrote a reproducer that mmap'ed a file backed by tmpfs with -o
huge=always, and then spawned 20 threads all looping faulting random
offsets in this map, while using madvise(MADV_DONTNEED) randomly for huge
page aligned ranges. This very quickly reproduced the problem.
The problem here is that we check for the case that we have multiple
threads faulting in a range that was previously unmapped. One thread maps
the PMD, the other thread loses the race and then returns 0. However at
this point we already have the page, and we are no longer putting this
page into the processes address space, and so we leak the page. We
actually did the correct thing prior to f9ce0be71d, however it looks
like Kirill copied what we do in the anonymous page case. In the
anonymous page case we don't yet have a page, so we don't have to drop a
reference on anything. Previously we did the correct thing for file based
faults by returning VM_FAULT_NOPAGE so we correctly drop the reference on
the page we faulted in.
Fix this by returning VM_FAULT_NOPAGE in the pmd_devmap_trans_unstable()
case, this makes us drop the ref on the page properly, and now my
reproducer no longer leaks the huge pages.
[josef@toxicpanda.com: v2]
Link: https://lkml.kernel.org/r/e90c8f0dbae836632b669c2afc434006a00d4a67.1657721478.git.josef@toxicpanda.com
Link: https://lkml.kernel.org/r/2b798acfd95c9ab9395fe85e8d5a835e2e10a920.1657051137.git.josef@toxicpanda.com
Fixes: f9ce0be71d ("mm: Cleanup faultaround and finish_fault() codepaths")
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Rik van Riel <riel@surriel.com>
Signed-off-by: Chris Mason <clm@fb.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Lazy page table copying at fork time was introduced with commit
d992895ba2 ("[PATCH] Lazy page table copies in fork()"). At the time,
hugetlb was very new and did not support page faulting. As a result, it
was excluded. When full page fault support was added for hugetlb, the
exclusion was not removed.
Simply remove the check that prevents lazy copying of hugetlb page tables
at fork. Of course, like other mappings this only applies to shared
mappings.
Lazy page table copying at fork will be less advantageous for hugetlb
mappings because:
- There are fewer page table entries with hugetlb
- hugetlb pmds can be shared instead of copied
In any case, completely eliminating the copy at fork time should speed
things up.
Link: https://lkml.kernel.org/r/20220621235620.291305-5-mike.kravetz@oracle.com
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Muchun Song <songmuchun@bytedance.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: James Houghton <jthoughton@google.com>
Cc: kernel test robot <lkp@intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mina Almasry <almasrymina@google.com>
Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Rolf Eike Beer <eike-kernel@sf-tec.de>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>