Use DEFINE_SHOW_ATTRIBUTE macro to simplify the code.
Signed-off-by: Peng Donglin <dolinux.peng@gmail.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
When rewriting swapper using nG mappings, we must performance cache
maintenance around each page table access in order to avoid coherency
problems with the host's cacheable alias under KVM. To ensure correct
ordering of the maintenance with respect to Device memory accesses made
with the Stage-1 MMU disabled, DMBs need to be added between the
maintenance and the corresponding memory access.
This patch adds a missing DMB between writing a new page table entry and
performing a clean+invalidate on the same line.
Fixes: f992b4dfd5 ("arm64: kpti: Add ->enable callback to remap swapper using nG mappings")
Cc: <stable@vger.kernel.org> # 4.16.x-
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
dma_alloc_*() buffers might be exposed to userspace via mmap() call, so
they should be cleared on allocation. In case of IOMMU-based dma-mapping
implementation such buffer clearing was missing in the code path for
DMA_ATTR_FORCE_CONTIGUOUS flag handling, because dma_alloc_from_contiguous()
doesn't honor __GFP_ZERO flag. This patch fixes this issue. For more
information on clearing buffers allocated by dma_alloc_* functions,
see commit 6829e274a6 ("arm64: dma-mapping: always clear allocated
buffers").
Fixes: 44176bb38f ("arm64: Add support for DMA_ATTR_FORCE_CONTIGUOUS to IOMMU")
Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
With PHYS_ADDR_MAX there is now a type safe variant for all bits set.
Make use of it.
Patch created using a semantic patch as follows:
// <smpl>
@@
typedef phys_addr_t;
@@
-(phys_addr_t)ULLONG_MAX
+PHYS_ADDR_MAX
// </smpl>
Link: http://lkml.kernel.org/r/20180419214204.19322-1-stefan@agner.ch
Signed-off-by: Stefan Agner <stefan@agner.ch>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com> [arm64]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
- Spectre v4 mitigation (Speculative Store Bypass Disable) support for
arm64 using SMC firmware call to set a hardware chicken bit
- ACPI PPTT (Processor Properties Topology Table) parsing support and
enable the feature for arm64
- Report signal frame size to user via auxv (AT_MINSIGSTKSZ). The
primary motivation is Scalable Vector Extensions which requires more
space on the signal frame than the currently defined MINSIGSTKSZ
- ARM perf patches: allow building arm-cci as module, demote dev_warn()
to dev_dbg() in arm-ccn event_init(), miscellaneous cleanups
- cmpwait() WFE optimisation to avoid some spurious wakeups
- L1_CACHE_BYTES reverted back to 64 (for performance reasons that have
to do with some network allocations) while keeping ARCH_DMA_MINALIGN
to 128. cache_line_size() returns the actual hardware Cache Writeback
Granule
- Turn LSE atomics on by default in Kconfig
- Kernel fault reporting tidying
- Some #include and miscellaneous cleanups
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEE5RElWfyWxS+3PLO2a9axLQDIXvEFAlsaoqsACgkQa9axLQDI
XvH+8RAAqRCrEtkNPS7zxHyMK/D2cxSy9EVtlJ1sxhmsONEe5t5MDTWX9byobQ5A
PAKMSQBQgUvecqHLOtD7SJWef1il30zgWmc/yPcgNv3OsA1Au7j2g3ht/Drw+N5I
Vy0aOUEtw+Jzs7y/CJyl6lufSkkOzszOujt2Nybiz6omztOrwkW9isKnURzQBNj5
gquZI35h604YJ9F0TqS6ZqU7tNcuB9q02FxvVBpLmb83jP4jSEjYACUJwVVxvEAB
UXjdD4N130rRXDS5OMRWo5+4SAj+kPYhdVYEvaDx7xTOIRHhXK05GlJbsUAc5E6l
xy810fH5Dm0diYpVvYWTA5J+BU1jNOvCys5zKWl7gs2P8YB59PdqY4M2YBPNGb5H
PaVgq73TZAsww6ZInbZlK+wZOIxZZIOf//Z+QKn6EPtu3RmzIFWwyttTj01w1E3i
LhjcUoGnvxJFcMoCr59ihDwfP9nkCVrNc4REOGaWDk6L/t/bOfaZfDz+OCGbwQdL
akCFKZI6q5O/no+YfhtdtNFpCQb/Bo1J88KuotICRXq8z4vO41zIG53bi97W8QeG
rCBiX0NxUxYJ3ybus7kZHTmMGieMyEHP28n12QffwvJj4vJBsUXQBrV8hclx0djZ
HMt7iPi/0BW6nVV7ngIgN3cdCpaDCEGRsfO4Ch0rFZrC9UbYQnE=
=uums
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Catalin Marinas:
"Apart from the core arm64 and perf changes, the Spectre v4 mitigation
touches the arm KVM code and the ACPI PPTT support touches drivers/
(acpi and cacheinfo). I should have the maintainers' acks in place.
Summary:
- Spectre v4 mitigation (Speculative Store Bypass Disable) support
for arm64 using SMC firmware call to set a hardware chicken bit
- ACPI PPTT (Processor Properties Topology Table) parsing support and
enable the feature for arm64
- Report signal frame size to user via auxv (AT_MINSIGSTKSZ). The
primary motivation is Scalable Vector Extensions which requires
more space on the signal frame than the currently defined
MINSIGSTKSZ
- ARM perf patches: allow building arm-cci as module, demote
dev_warn() to dev_dbg() in arm-ccn event_init(), miscellaneous
cleanups
- cmpwait() WFE optimisation to avoid some spurious wakeups
- L1_CACHE_BYTES reverted back to 64 (for performance reasons that
have to do with some network allocations) while keeping
ARCH_DMA_MINALIGN to 128. cache_line_size() returns the actual
hardware Cache Writeback Granule
- Turn LSE atomics on by default in Kconfig
- Kernel fault reporting tidying
- Some #include and miscellaneous cleanups"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (53 commits)
arm64: Fix syscall restarting around signal suppressed by tracer
arm64: topology: Avoid checking numa mask for scheduler MC selection
ACPI / PPTT: fix build when CONFIG_ACPI_PPTT is not enabled
arm64: cpu_errata: include required headers
arm64: KVM: Move VCPU_WORKAROUND_2_FLAG macros to the top of the file
arm64: signal: Report signal frame size to userspace via auxv
arm64/sve: Thin out initialisation sanity-checks for sve_max_vl
arm64: KVM: Add ARCH_WORKAROUND_2 discovery through ARCH_FEATURES_FUNC_ID
arm64: KVM: Handle guest's ARCH_WORKAROUND_2 requests
arm64: KVM: Add ARCH_WORKAROUND_2 support for guests
arm64: KVM: Add HYP per-cpu accessors
arm64: ssbd: Add prctl interface for per-thread mitigation
arm64: ssbd: Introduce thread flag to control userspace mitigation
arm64: ssbd: Restore mitigation status on CPU resume
arm64: ssbd: Skip apply_ssbd if not using dynamic mitigation
arm64: ssbd: Add global mitigation state accessor
arm64: Add 'ssbd' command-line option
arm64: Add ARCH_WORKAROUND_2 probing
arm64: Add per-cpu infrastructure to call ARCH_WORKAROUND_2
arm64: Call ARCH_WORKAROUND_2 on transitions between EL0 and EL1
...
Pull siginfo updates from Eric Biederman:
"This set of changes close the known issues with setting si_code to an
invalid value, and with not fully initializing struct siginfo. There
remains work to do on nds32, arc, unicore32, powerpc, arm, arm64, ia64
and x86 to get the code that generates siginfo into a simpler and more
maintainable state. Most of that work involves refactoring the signal
handling code and thus careful code review.
Also not included is the work to shrink the in kernel version of
struct siginfo. That depends on getting the number of places that
directly manipulate struct siginfo under control, as it requires the
introduction of struct kernel_siginfo for the in kernel things.
Overall this set of changes looks like it is making good progress, and
with a little luck I will be wrapping up the siginfo work next
development cycle"
* 'siginfo-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace: (46 commits)
signal/sh: Stop gcc warning about an impossible case in do_divide_error
signal/mips: Report FPE_FLTUNK for undiagnosed floating point exceptions
signal/um: More carefully relay signals in relay_signal.
signal: Extend siginfo_layout with SIL_FAULT_{MCEERR|BNDERR|PKUERR}
signal: Remove unncessary #ifdef SEGV_PKUERR in 32bit compat code
signal/signalfd: Add support for SIGSYS
signal/signalfd: Remove __put_user from signalfd_copyinfo
signal/xtensa: Use force_sig_fault where appropriate
signal/xtensa: Consistenly use SIGBUS in do_unaligned_user
signal/um: Use force_sig_fault where appropriate
signal/sparc: Use force_sig_fault where appropriate
signal/sparc: Use send_sig_fault where appropriate
signal/sh: Use force_sig_fault where appropriate
signal/s390: Use force_sig_fault where appropriate
signal/riscv: Replace do_trap_siginfo with force_sig_fault
signal/riscv: Use force_sig_fault where appropriate
signal/parisc: Use force_sig_fault where appropriate
signal/parisc: Use force_sig_mceerr where appropriate
signal/openrisc: Use force_sig_fault where appropriate
signal/nios2: Use force_sig_fault where appropriate
...
- replaceme the force_dma flag with a dma_configure bus method.
(Nipun Gupta, although one patch is іncorrectly attributed to me
due to a git rebase bug)
- use GFP_DMA32 more agressively in dma-direct. (Takashi Iwai)
- remove PCI_DMA_BUS_IS_PHYS and rely on the dma-mapping API to do the
right thing for bounce buffering.
- move dma-debug initialization to common code, and apply a few cleanups
to the dma-debug code.
- cleanup the Kconfig mess around swiotlb selection
- swiotlb comment fixup (Yisheng Xie)
- a trivial swiotlb fix. (Dan Carpenter)
- support swiotlb on RISC-V. (based on a patch from Palmer Dabbelt)
- add a new generic dma-noncoherent dma_map_ops implementation and use
it for arc, c6x and nds32.
- improve scatterlist validity checking in dma-debug. (Robin Murphy)
- add a struct device quirk to limit the dma-mask to 32-bit due to
bridge/system issues, and switch x86 to use it instead of a local
hack for VIA bridges.
- handle devices without a dma_mask more gracefully in the dma-direct
code.
-----BEGIN PGP SIGNATURE-----
iQI/BAABCAApFiEEgdbnc3r/njty3Iq9D55TZVIEUYMFAlsU1hwLHGhjaEBsc3Qu
ZGUACgkQD55TZVIEUYPraxAAocC7JiFKW133/VugCtGA1x9uE8DPHealtsWTAeEq
KOOB3GxWMU2hKqQ4km5tcfdWoGJvvab6hmDXcitzZGi2JajO7Ae0FwIy3yvxSIKm
iH/ON7c4sJt8gKrXYsLVylmwDaimNs4a6xfODoCRgnWuovI2QrrZzupnlzPNsiOC
lv8ezzcW+Ay/gvDD/r72psO+w3QELETif/OzR/qTOtvLrVabM06eHmPQ8Wb98smu
/UPMMv6/3XwQnxpxpdyqN+p/gUdneXithzT261wTeZ+8gDXmcWBwHGcMBCimcoBi
FklW52moazIPIsTysqoNlVFsLGJTeS4p2D3BLAp5NwWYsLv+zHUVZsI1JY/8u5Ox
mM11LIfvu9JtUzaqD9SvxlxIeLhhYZZGnUoV3bQAkpHSQhN/xp2YXd5NWSo5ac2O
dch83+laZkZgd6ryw6USpt/YTPM/UHBYy7IeGGHX/PbmAke0ZlvA6Rae7kA5DG59
7GaLdwQyrHp8uGFgwze8P+R4POSk1ly73HHLBT/pFKnDD7niWCPAnBzuuEQGJs00
0zuyWLQyzOj1l6HCAcMNyGnYSsMp8Fx0fvEmKR/EYs8O83eJKXi6L9aizMZx4v1J
0wTolUWH6SIIdz474YmewhG5YOLY7mfe9E8aNr8zJFdwRZqwaALKoteRGUxa3f6e
zUE=
=6Acj
-----END PGP SIGNATURE-----
Merge tag 'dma-mapping-4.18' of git://git.infradead.org/users/hch/dma-mapping
Pull dma-mapping updates from Christoph Hellwig:
- replace the force_dma flag with a dma_configure bus method. (Nipun
Gupta, although one patch is іncorrectly attributed to me due to a
git rebase bug)
- use GFP_DMA32 more agressively in dma-direct. (Takashi Iwai)
- remove PCI_DMA_BUS_IS_PHYS and rely on the dma-mapping API to do the
right thing for bounce buffering.
- move dma-debug initialization to common code, and apply a few
cleanups to the dma-debug code.
- cleanup the Kconfig mess around swiotlb selection
- swiotlb comment fixup (Yisheng Xie)
- a trivial swiotlb fix. (Dan Carpenter)
- support swiotlb on RISC-V. (based on a patch from Palmer Dabbelt)
- add a new generic dma-noncoherent dma_map_ops implementation and use
it for arc, c6x and nds32.
- improve scatterlist validity checking in dma-debug. (Robin Murphy)
- add a struct device quirk to limit the dma-mask to 32-bit due to
bridge/system issues, and switch x86 to use it instead of a local
hack for VIA bridges.
- handle devices without a dma_mask more gracefully in the dma-direct
code.
* tag 'dma-mapping-4.18' of git://git.infradead.org/users/hch/dma-mapping: (48 commits)
dma-direct: don't crash on device without dma_mask
nds32: use generic dma_noncoherent_ops
nds32: implement the unmap_sg DMA operation
nds32: consolidate DMA cache maintainance routines
x86/pci-dma: switch the VIA 32-bit DMA quirk to use the struct device flag
x86/pci-dma: remove the explicit nodac and allowdac option
x86/pci-dma: remove the experimental forcesac boot option
Documentation/x86: remove a stray reference to pci-nommu.c
core, dma-direct: add a flag 32-bit dma limits
dma-mapping: remove unused gfp_t parameter to arch_dma_alloc_attrs
dma-debug: check scatterlist segments
c6x: use generic dma_noncoherent_ops
arc: use generic dma_noncoherent_ops
arc: fix arc_dma_{map,unmap}_page
arc: fix arc_dma_sync_sg_for_{cpu,device}
arc: simplify arc_dma_sync_single_for_{cpu,device}
dma-mapping: provide a generic dma-noncoherent implementation
dma-mapping: simplify Kconfig dependencies
riscv: add swiotlb support
riscv: only enable ZONE_DMA32 for 64-bit
...
Commit 15122ee2c5 ("arm64: Enforce BBM for huge IO/VMAP mappings")
disallowed block mappings for ioremap since that code does not honor
break-before-make. The same APIs are also used for permission updating
though and the extra checks prevent the permission updates from happening,
even though this should be permitted. This results in read-only permissions
not being fully applied. Visibly, this can occasionaly be seen as a failure
on the built in rodata test when the test data ends up in a section or
as an odd RW gap on the page table dump. Fix this by using
pgattr_change_is_safe instead of p*d_present for determining if the
change is permitted.
Reviewed-by: Kees Cook <keescook@chromium.org>
Tested-by: Peter Robinson <pbrobinson@gmail.com>
Reported-by: Peter Robinson <pbrobinson@gmail.com>
Fixes: 15122ee2c5 ("arm64: Enforce BBM for huge IO/VMAP mappings")
Signed-off-by: Laura Abbott <labbott@redhat.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
In do_page_fault(), we handle some kernel faults early, and simply
die() with a message. For faults handled later, we dump the faulting
address, decode the ESR, walk the page tables, and perform a number of
steps to ensure that this data is reported.
Let's unify the handling of fatal kernel faults with a new
die_kernel_fault() helper, handling all of these details. This is
largely the same as the existing logic in __do_kernel_fault(), except
that addresses are consistently padded to 16 hex characters, as would be
expected for a 64-bit address.
The messages currently logged in do_page_fault are adjusted to fit into
the die_kernel_fault() message template.
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The naming of is_permission_fault() makes it sound like it should return
true for permission faults from EL0, but by design, it only does so for
faults from EL1.
Let's make this clear by dropping el1 in the name, as we do for
is_el1_instruction_abort().
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
If userspace faults on a kernel address, handing them the raw ESR
value on the sigframe as part of the delivered signal can leak data
useful to attackers who are using information about the underlying hardware
fault type (e.g. translation vs permission) as a mechanism to defeat KASLR.
However there are also legitimate uses for the information provided
in the ESR -- notably the GCC and LLVM sanitizers use this to report
whether wild pointer accesses by the application are reads or writes
(since a wild write is a more serious bug than a wild read), so we
don't want to drop the ESR information entirely.
For faulting addresses in the kernel, sanitize the ESR. We choose
to present userspace with the illusion that there is nothing mapped
in the kernel's part of the address space at all, by reporting all
faults as level 0 translation faults taken to EL1.
These fields are safe to pass through to userspace as they depend
only on the instruction that userspace used to provoke the fault:
EC IL (always)
ISV CM WNR (for all data aborts)
All the other fields in ESR except DFSC are architecturally RES0
for an L0 translation fault taken to EL1, so can be zeroed out
without confusing userspace.
The illusion is not entirely perfect, as there is a tiny wrinkle
where we will report an alignment fault that was not due to the memory
type (for instance a LDREX to an unaligned address) as a translation
fault, whereas if you do this on real unmapped memory the alignment
fault takes precedence. This is not likely to trip anybody up in
practice, as the only users we know of for the ESR information who
care about the behaviour for kernel addresses only really want to
know about the WnR bit.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
This patch increases the ARCH_DMA_MINALIGN to 128 so that it covers the
currently known Cache Writeback Granule (CTR_EL0.CWG) on arm64 and moves
the fallback in cache_line_size() from L1_CACHE_BYTES to this constant.
In addition, it warns (and taints) if the CWG is larger than
ARCH_DMA_MINALIGN as this is not safe with non-coherent DMA.
Cc: Will Deacon <will.deacon@arm.com>
Cc: Robin Murphy <robin.murphy@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Most mainstream architectures are using 65536 entries, so lets stick to
that. If someone is really desperate to override it that can still be
done through <asm/dma-mapping.h>, but I'd rather see a really good
rationale for that.
dma_debug_init is now called as a core_initcall, which for many
architectures means much earlier, and provides dma-debug functionality
earlier in the boot process. This should be safe as it only relies
on the memory allocator already being available.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Marek Szyprowski <m.szyprowski@samsung.com>
Reviewed-by: Robin Murphy <robin.murphy@arm.com>
INITRD reserved area entry is not removed from memblock
even though initrd reserved area is freed. After freeing
the memory it is released from memblock. The same can be
checked from /sys/kernel/debug/memblock/reserved.
The patch makes sure that the initrd entry is removed from
memblock when keepinitrd is not enabled.
The patch only affects accounting and debugging. This does not
fix any memory leak.
Acked-by: Laura Abbott <labbott@redhat.com>
Signed-off-by: CHANDAN VN <chandan.vn@samsung.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Call clear_siginfo to ensure every stack allocated siginfo is properly
initialized before being passed to the signal sending functions.
Note: It is not safe to depend on C initializers to initialize struct
siginfo on the stack because C is allowed to skip holes when
initializing a structure.
The initialization of struct siginfo in tracehook_report_syscall_exit
was moved from the helper user_single_step_siginfo into
tracehook_report_syscall_exit itself, to make it clear that the local
variable siginfo gets fully initialized.
In a few cases the scope of struct siginfo has been reduced to make it
clear that siginfo siginfo is not used on other paths in the function
in which it is declared.
Instances of using memset to initialize siginfo have been replaced
with calls clear_siginfo for clarity.
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
The addr parameter isn't used for anything. Let's simplify and get rid of
it, like arm.
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Shaokun Zhang <zhangshaokun@hisilicon.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Patch series "exec: Pin stack limit during exec".
Attempts to solve problems with the stack limit changing during exec
continue to be frustrated[1][2]. In addition to the specific issues
around the Stack Clash family of flaws, Andy Lutomirski pointed out[3]
other places during exec where the stack limit is used and is assumed to
be unchanging. Given the many places it gets used and the fact that it
can be manipulated/raced via setrlimit() and prlimit(), I think the only
way to handle this is to move away from the "current" view of the stack
limit and instead attach it to the bprm, and plumb this down into the
functions that need to know the stack limits. This series implements
the approach.
[1] 04e35f4495 ("exec: avoid RLIMIT_STACK races with prlimit()")
[2] 779f4e1c6c ("Revert "exec: avoid RLIMIT_STACK races with prlimit()"")
[3] to security@kernel.org, "Subject: existing rlimit races?"
This patch (of 3):
Since it is possible that the stack rlimit can change externally during
exec (either via another thread calling setrlimit() or another process
calling prlimit()), provide a way to pass the rlimit down into the
per-architecture mm layout functions so that the rlimit can stay in the
bprm structure instead of sitting in the signal structure until exec is
finalized.
Link: http://lkml.kernel.org/r/1518638796-20819-2-git-send-email-keescook@chromium.org
Signed-off-by: Kees Cook <keescook@chromium.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Ben Hutchings <ben@decadent.org.uk>
Cc: Willy Tarreau <w@1wt.eu>
Cc: Hugh Dickins <hughd@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Laura Abbott <labbott@redhat.com>
Cc: Greg KH <greg@kroah.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Ben Hutchings <ben.hutchings@codethink.co.uk>
Cc: Brad Spengler <spender@grsecurity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Nothing particularly stands out here, probably because people were tied
up with spectre/meltdown stuff last time around. Still, the main pieces
are:
- Rework of our CPU features framework so that we can whitelist CPUs that
don't require kpti even in a heterogeneous system
- Support for the IDC/DIC architecture extensions, which allow us to elide
instruction and data cache maintenance when writing out instructions
- Removal of the large memory model which resulted in suboptimal codegen
by the compiler and increased the use of literal pools, which could
potentially be used as ROP gadgets since they are mapped as executable
- Rework of forced signal delivery so that the siginfo_t is well-formed
and handling of show_unhandled_signals is consolidated and made
consistent between different fault types
- More siginfo cleanup based on the initial patches from Eric Biederman
- Workaround for Cortex-A55 erratum #1024718
- Some small ACPI IORT updates and cleanups from Lorenzo Pieralisi
- Misc cleanups and non-critical fixes
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABCgAGBQJaw1TCAAoJELescNyEwWM0gyQIAJVMK4QveBW+LwF96NYdZo16
p90Aa+nqKelh/s93govQArDMv1gxyuXdFlQZVOGPQHfqpz6RhJWmBA2tFsUbQrUc
OBcioPrRihqTmKBe+1r1XORwZxkVX6GGmCn0LYpPR7I3TjxXZpvxqaxGxiUvHkci
yVxWlDTyN/7eL3akhCpCDagN3Fxwk3QnJLqE3fxOFMlY7NvQcmUxcITiUl/s469q
xK6SWH9SRH1JK8jTHPitwUBiU//3FfCqSI9HLEdDIDoTuPcVM8UetWvi4QzrzJL1
UYg8lmU0CXNmflDzZJDaMf+qFApOrGxR0YVPpBzlQvxe0JIY69g48f+JzDPz8nc=
=+gNa
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Will Deacon:
"Nothing particularly stands out here, probably because people were
tied up with spectre/meltdown stuff last time around. Still, the main
pieces are:
- Rework of our CPU features framework so that we can whitelist CPUs
that don't require kpti even in a heterogeneous system
- Support for the IDC/DIC architecture extensions, which allow us to
elide instruction and data cache maintenance when writing out
instructions
- Removal of the large memory model which resulted in suboptimal
codegen by the compiler and increased the use of literal pools,
which could potentially be used as ROP gadgets since they are
mapped as executable
- Rework of forced signal delivery so that the siginfo_t is
well-formed and handling of show_unhandled_signals is consolidated
and made consistent between different fault types
- More siginfo cleanup based on the initial patches from Eric
Biederman
- Workaround for Cortex-A55 erratum #1024718
- Some small ACPI IORT updates and cleanups from Lorenzo Pieralisi
- Misc cleanups and non-critical fixes"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (70 commits)
arm64: uaccess: Fix omissions from usercopy whitelist
arm64: fpsimd: Split cpu field out from struct fpsimd_state
arm64: tlbflush: avoid writing RES0 bits
arm64: cmpxchg: Include linux/compiler.h in asm/cmpxchg.h
arm64: move percpu cmpxchg implementation from cmpxchg.h to percpu.h
arm64: cmpxchg: Include build_bug.h instead of bug.h for BUILD_BUG
arm64: lse: Include compiler_types.h and export.h for out-of-line LL/SC
arm64: fpsimd: include <linux/init.h> in fpsimd.h
drivers/perf: arm_pmu_platform: do not warn about affinity on uniprocessor
perf: arm_spe: include linux/vmalloc.h for vmap()
Revert "arm64: Revert L1_CACHE_SHIFT back to 6 (64-byte cache line size)"
arm64: cpufeature: Avoid warnings due to unused symbols
arm64: Add work around for Arm Cortex-A55 Erratum 1024718
arm64: Delay enabling hardware DBM feature
arm64: Add MIDR encoding for Arm Cortex-A55 and Cortex-A35
arm64: capabilities: Handle shared entries
arm64: capabilities: Add support for checks based on a list of MIDRs
arm64: Add helpers for checking CPU MIDR against a range
arm64: capabilities: Clean up midr range helpers
arm64: capabilities: Change scope of VHE to Boot CPU feature
...
This reverts commit 1f85b42a69.
The internal dma-direct.h API has changed in -next, which collides with
us trying to use it to manage non-coherent DMA devices on systems with
unreasonably large cache writeback granules.
This isn't at all trivial to resolve, so revert our changes for now and
we can revisit this after the merge window. Effectively, this just
restores our behaviour back to that of 4.16.
Signed-off-by: Will Deacon <will.deacon@arm.com>
We enable hardware DBM bit in a capable CPU, very early in the
boot via __cpu_setup. This doesn't give us a flexibility of
optionally disable the feature, as the clearing the bit
is a bit costly as the TLB can cache the settings. Instead,
we delay enabling the feature until the CPU is brought up
into the kernel. We use the feature capability mechanism
to handle it.
The hardware DBM is a non-conflicting feature. i.e, the kernel
can safely run with a mix of CPUs with some using the feature
and the others don't. So, it is safe for a late CPU to have
this capability and enable it, even if the active CPUs don't.
To get this handled properly by the infrastructure, we
unconditionally set the capability and only enable it
on CPUs which really have the feature. Also, we print the
feature detection from the "matches" call back to make sure
we don't mislead the user when none of the CPUs could use the
feature.
Cc: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Dave Martin <dave.martin@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
We issue the enable() call back for all CPU hwcaps capabilities
available on the system, on all the CPUs. So far we have ignored
the argument passed to the call back, which had a prototype to
accept a "void *" for use with on_each_cpu() and later with
stop_machine(). However, with commit 0a0d111d40
("arm64: cpufeature: Pass capability structure to ->enable callback"),
there are some users of the argument who wants the matching capability
struct pointer where there are multiple matching criteria for a single
capability. Clean up the declaration of the call back to make it clear.
1) Renamed to cpu_enable(), to imply taking necessary actions on the
called CPU for the entry.
2) Pass const pointer to the capability, to allow the call back to
check the entry. (e.,g to check if any action is needed on the CPU)
3) We don't care about the result of the call back, turning this to
a void.
Cc: Will Deacon <will.deacon@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Andre Przywara <andre.przywara@arm.com>
Cc: James Morse <james.morse@arm.com>
Acked-by: Robin Murphy <robin.murphy@arm.com>
Reviewed-by: Julien Thierry <julien.thierry@arm.com>
Signed-off-by: Dave Martin <dave.martin@arm.com>
[suzuki: convert more users, rename call back and drop results]
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
On architectures with CONFIG_HAVE_ARCH_HUGE_VMAP set, ioremap() may
create pud/pmd mappings. A kernel panic was observed on arm64 systems
with Cortex-A75 in the following steps as described by Hanjun Guo.
1. ioremap a 4K size, valid page table will build,
2. iounmap it, pte0 will set to 0;
3. ioremap the same address with 2M size, pgd/pmd is unchanged,
then set the a new value for pmd;
4. pte0 is leaked;
5. CPU may meet exception because the old pmd is still in TLB,
which will lead to kernel panic.
This panic is not reproducible on x86. INVLPG, called from iounmap,
purges all levels of entries associated with purged address on x86. x86
still has memory leak.
The patch changes the ioremap path to free unmapped page table(s) since
doing so in the unmap path has the following issues:
- The iounmap() path is shared with vunmap(). Since vmap() only
supports pte mappings, making vunmap() to free a pte page is an
overhead for regular vmap users as they do not need a pte page freed
up.
- Checking if all entries in a pte page are cleared in the unmap path
is racy, and serializing this check is expensive.
- The unmap path calls free_vmap_area_noflush() to do lazy TLB purges.
Clearing a pud/pmd entry before the lazy TLB purges needs extra TLB
purge.
Add two interfaces, pud_free_pmd_page() and pmd_free_pte_page(), which
clear a given pud/pmd entry and free up a page for the lower level
entries.
This patch implements their stub functions on x86 and arm64, which work
as workaround.
[akpm@linux-foundation.org: fix typo in pmd_free_pte_page() stub]
Link: http://lkml.kernel.org/r/20180314180155.19492-2-toshi.kani@hpe.com
Fixes: e61ce6ade4 ("mm: change ioremap to set up huge I/O mappings")
Reported-by: Lei Li <lious.lilei@hisilicon.com>
Signed-off-by: Toshi Kani <toshi.kani@hpe.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Wang Xuefeng <wxf.wang@hisilicon.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Hanjun Guo <guohanjun@huawei.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Chintan Pandya <cpandya@codeaurora.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, as reported by Eric, an invalid si_code value 0 is
passed in many signals delivered to userspace in response to faults
and other kernel errors. Typically 0 is passed when the fault is
insufficiently diagnosable or when there does not appear to be any
sensible alternative value to choose.
This appears to violate POSIX, and is intuitively wrong for at
least two reasons arising from the fact that 0 == SI_USER:
1) si_code is a union selector, and SI_USER (and si_code <= 0 in
general) implies the existence of a different set of fields
(siginfo._kill) from that which exists for a fault signal
(siginfo._sigfault). However, the code raising the signal
typically writes only the _sigfault fields, and the _kill
fields make no sense in this case.
Thus when userspace sees si_code == 0 (SI_USER) it may
legitimately inspect fields in the inactive union member _kill
and obtain garbage as a result.
There appears to be software in the wild relying on this,
albeit generally only for printing diagnostic messages.
2) Software that wants to be robust against spurious signals may
discard signals where si_code == SI_USER (or <= 0), or may
filter such signals based on the si_uid and si_pid fields of
siginfo._sigkill. In the case of fault signals, this means
that important (and usually fatal) error conditions may be
silently ignored.
In practice, many of the faults for which arm64 passes si_code == 0
are undiagnosable conditions such as exceptions with syndrome
values in ESR_ELx to which the architecture does not yet assign any
meaning, or conditions indicative of a bug or error in the kernel
or system and thus that are unrecoverable and should never occur in
normal operation.
The approach taken in this patch is to translate all such
undiagnosable or "impossible" synchronous fault conditions to
SIGKILL, since these are at least probably localisable to a single
process. Some of these conditions should really result in a kernel
panic, but due to the lack of diagnostic information it is
difficult to be certain: this patch does not add any calls to
panic(), but this could change later if justified.
Although si_code will not reach userspace in the case of SIGKILL,
it is still desirable to pass a nonzero value so that the common
siginfo handling code can detect incorrect use of si_code == 0
without false positives. In this case the si_code dependent
siginfo fields will not be correctly initialised, but since they
are not passed to userspace I deem this not to matter.
A few faults can reasonably occur in realistic userspace scenarios,
and _should_ raise a regular, handleable (but perhaps not
ignorable/blockable) signal: for these, this patch attempts to
choose a suitable standard si_code value for the raised signal in
each case instead of 0.
arm64 was the only arch to define a BUS_FIXME code, so after this
patch nobody defines it. This patch therefore also removes the
relevant code from siginfo_layout().
Cc: James Morse <james.morse@arm.com>
Reported-by: Eric W. Biederman <ebiederm@xmission.com>
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
The DCache clean & ICache invalidation requirements for instructions
to be data coherence are discoverable through new fields in CTR_EL0.
The following two control bits DIC and IDC were defined for this
purpose. No need to perform point of unification cache maintenance
operations from software on systems where CPU caches are transparent.
This patch optimize the three functions __flush_cache_user_range(),
clean_dcache_area_pou() and invalidate_icache_range() if the hardware
reports CTR_EL0.IDC and/or CTR_EL0.IDC. Basically it skips the two
instructions 'DC CVAU' and 'IC IVAU', and the associated loop logic
in order to avoid the unnecessary overhead.
CTR_EL0.DIC: Instruction cache invalidation requirements for
instruction to data coherence. The meaning of this bit[29].
0: Instruction cache invalidation to the point of unification
is required for instruction to data coherence.
1: Instruction cache cleaning to the point of unification is
not required for instruction to data coherence.
CTR_EL0.IDC: Data cache clean requirements for instruction to data
coherence. The meaning of this bit[28].
0: Data cache clean to the point of unification is required for
instruction to data coherence, unless CLIDR_EL1.LoC == 0b000
or (CLIDR_EL1.LoUIS == 0b000 && CLIDR_EL1.LoUU == 0b000).
1: Data cache clean to the point of unification is not required
for instruction to data coherence.
Co-authored-by: Philip Elcan <pelcan@codeaurora.org>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Shanker Donthineni <shankerd@codeaurora.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
TCR_EL1.NFD1 was allocated by SVE and ensures that fault-surpressing SVE
memory accesses (e.g. speculative accesses from a first-fault gather load)
which translate via TTBR1_EL1 result in a translation fault if they
miss in the TLB when executed from EL0. This mitigates some timing attacks
against KASLR, where the kernel address space could otherwise be probed
efficiently using the FFR in conjunction with suppressed faults on SVE
loads.
Cc: Dave Martin <Dave.Martin@arm.com>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Commit 9730348075 ("arm64: Increase the max granular size") increased
the cache line size to 128 to match Cavium ThunderX, apparently for some
performance benefit which could not be confirmed. This change, however,
has an impact on the network packets allocation in certain
circumstances, requiring slightly over a 4K page with a significant
performance degradation.
This patch reverts L1_CACHE_SHIFT back to 6 (64-byte cache line) while
keeping ARCH_DMA_MINALIGN at 128. The cache_line_size() function was
changed to default to ARCH_DMA_MINALIGN in the absence of a meaningful
CTR_EL0.CWG bit field.
In addition, if a system with ARCH_DMA_MINALIGN < CTR_EL0.CWG is
detected, the kernel will force swiotlb bounce buffering for all
non-coherent devices since DMA cache maintenance on sub-CWG ranges is
not safe, leading to data corruption.
Cc: Tirumalesh Chalamarla <tchalamarla@cavium.com>
Cc: Timur Tabi <timur@codeaurora.org>
Cc: Florian Fainelli <f.fainelli@gmail.com>
Acked-by: Robin Murphy <robin.murphy@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Reporting unhandled user pagefaults via arm64_force_sig_info means
that __do_user_fault can be drastically simplified, since it no longer
has to worry about printing the fault information and can consequently
just take the siginfo as a parameter.
Signed-off-by: Will Deacon <will.deacon@arm.com>
There's no need for callers of arm64_notify_die to print information
about user faults. Instead, they can pass a string to arm64_notify_die
which will be printed subject to show_unhandled_signals.
Signed-off-by: Will Deacon <will.deacon@arm.com>
The routine pgattr_change_is_safe() was extended in commit 4e60205655
("arm64: mm: Permit transitioning from Global to Non-Global without BBM")
to permit changing the nG attribute from not set to set, but did so in a
way that inadvertently disallows such changes if other permitted attribute
changes take place at the same time. So update the code to take this into
account.
Fixes: 4e60205655 ("arm64: mm: Permit transitioning from Global to ...")
Cc: <stable@vger.kernel.org> # 4.14.x-
Acked-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
ioremap_page_range doesn't honour break-before-make and attempts to put
down huge mappings (using p*d_set_huge) over the top of pre-existing
table entries. This leads to us leaking page table memory and also gives
rise to TLB conflicts and spurious aborts, which have been seen in
practice on Cortex-A75.
Until this has been resolved, refuse to put block mappings when the
existing entry is found to be present.
Fixes: 324420bf91 ("arm64: add support for ioremap() block mappings")
Reported-by: Hanjun Guo <hanjun.guo@linaro.org>
Reported-by: Lei Li <lious.lilei@hisilicon.com>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
In many cases, page tables can be accessed concurrently by either another
CPU (due to things like fast gup) or by the hardware page table walker
itself, which may set access/dirty bits. In such cases, it is important
to use READ_ONCE/WRITE_ONCE when accessing page table entries so that
entries cannot be torn, merged or subject to apparent loss of coherence
due to compiler transformations.
Whilst there are some scenarios where this cannot happen (e.g. pinned
kernel mappings for the linear region), the overhead of using READ_ONCE
/WRITE_ONCE everywhere is minimal and makes the code an awful lot easier
to reason about. This patch consistently uses these macros in the arch
code, as well as explicitly namespacing pointers to page table entries
from the entries themselves by using adopting a 'p' suffix for the former
(as is sometimes used elsewhere in the kernel source).
Tested-by: Yury Norov <ynorov@caviumnetworks.com>
Tested-by: Richard Ruigrok <rruigrok@codeaurora.org>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
When KASAN is enabled, the swapper page table contains many identical
mappings of the zero page, which can lead to a stall during boot whilst
the G -> nG code continually walks the same page table entries looking
for global mappings.
This patch sets the nG bit (bit 11, which is IGNORED) in table entries
after processing the subtree so we can easily skip them if we see them
a second time.
Tested-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
ARM:
- Include icache invalidation optimizations, improving VM startup time
- Support for forwarded level-triggered interrupts, improving
performance for timers and passthrough platform devices
- A small fix for power-management notifiers, and some cosmetic changes
PPC:
- Add MMIO emulation for vector loads and stores
- Allow HPT guests to run on a radix host on POWER9 v2.2 CPUs without
requiring the complex thread synchronization of older CPU versions
- Improve the handling of escalation interrupts with the XIVE interrupt
controller
- Support decrement register migration
- Various cleanups and bugfixes.
s390:
- Cornelia Huck passed maintainership to Janosch Frank
- Exitless interrupts for emulated devices
- Cleanup of cpuflag handling
- kvm_stat counter improvements
- VSIE improvements
- mm cleanup
x86:
- Hypervisor part of SEV
- UMIP, RDPID, and MSR_SMI_COUNT emulation
- Paravirtualized TLB shootdown using the new KVM_VCPU_PREEMPTED bit
- Allow guests to see TOPOEXT, GFNI, VAES, VPCLMULQDQ, and more AVX512
features
- Show vcpu id in its anonymous inode name
- Many fixes and cleanups
- Per-VCPU MSR bitmaps (already merged through x86/pti branch)
- Stable KVM clock when nesting on Hyper-V (merged through x86/hyperv)
-----BEGIN PGP SIGNATURE-----
iQEcBAABCAAGBQJafvMtAAoJEED/6hsPKofo6YcH/Rzf2RmshrWaC3q82yfIV0Qz
Z8N8yJHSaSdc3Jo6cmiVj0zelwAxdQcyjwlT7vxt5SL2yML+/Q0st9Hc3EgGGXPm
Il99eJEl+2MYpZgYZqV8ff3mHS5s5Jms+7BITAeh6Rgt+DyNbykEAvzt+MCHK9cP
xtsIZQlvRF7HIrpOlaRzOPp3sK2/MDZJ1RBE7wYItK3CUAmsHim/LVYKzZkRTij3
/9b4LP1yMMbziG+Yxt1o682EwJB5YIat6fmDG9uFeEVI5rWWN7WFubqs8gCjYy/p
FX+BjpOdgTRnX+1m9GIj0Jlc/HKMXryDfSZS07Zy4FbGEwSiI5SfKECub4mDhuE=
=C/uD
-----END PGP SIGNATURE-----
Merge tag 'kvm-4.16-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Radim Krčmář:
"ARM:
- icache invalidation optimizations, improving VM startup time
- support for forwarded level-triggered interrupts, improving
performance for timers and passthrough platform devices
- a small fix for power-management notifiers, and some cosmetic
changes
PPC:
- add MMIO emulation for vector loads and stores
- allow HPT guests to run on a radix host on POWER9 v2.2 CPUs without
requiring the complex thread synchronization of older CPU versions
- improve the handling of escalation interrupts with the XIVE
interrupt controller
- support decrement register migration
- various cleanups and bugfixes.
s390:
- Cornelia Huck passed maintainership to Janosch Frank
- exitless interrupts for emulated devices
- cleanup of cpuflag handling
- kvm_stat counter improvements
- VSIE improvements
- mm cleanup
x86:
- hypervisor part of SEV
- UMIP, RDPID, and MSR_SMI_COUNT emulation
- paravirtualized TLB shootdown using the new KVM_VCPU_PREEMPTED bit
- allow guests to see TOPOEXT, GFNI, VAES, VPCLMULQDQ, and more
AVX512 features
- show vcpu id in its anonymous inode name
- many fixes and cleanups
- per-VCPU MSR bitmaps (already merged through x86/pti branch)
- stable KVM clock when nesting on Hyper-V (merged through
x86/hyperv)"
* tag 'kvm-4.16-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (197 commits)
KVM: PPC: Book3S: Add MMIO emulation for VMX instructions
KVM: PPC: Book3S HV: Branch inside feature section
KVM: PPC: Book3S HV: Make HPT resizing work on POWER9
KVM: PPC: Book3S HV: Fix handling of secondary HPTEG in HPT resizing code
KVM: PPC: Book3S PR: Fix broken select due to misspelling
KVM: x86: don't forget vcpu_put() in kvm_arch_vcpu_ioctl_set_sregs()
KVM: PPC: Book3S PR: Fix svcpu copying with preemption enabled
KVM: PPC: Book3S HV: Drop locks before reading guest memory
kvm: x86: remove efer_reload entry in kvm_vcpu_stat
KVM: x86: AMD Processor Topology Information
x86/kvm/vmx: do not use vm-exit instruction length for fast MMIO when running nested
kvm: embed vcpu id to dentry of vcpu anon inode
kvm: Map PFN-type memory regions as writable (if possible)
x86/kvm: Make it compile on 32bit and with HYPYERVISOR_GUEST=n
KVM: arm/arm64: Fixup userspace irqchip static key optimization
KVM: arm/arm64: Fix userspace_irqchip_in_use counting
KVM: arm/arm64: Fix incorrect timer_is_pending logic
MAINTAINERS: update KVM/s390 maintainers
MAINTAINERS: add Halil as additional vfio-ccw maintainer
MAINTAINERS: add David as a reviewer for KVM/s390
...
Spectre v1 mitigation:
- back-end version of array_index_mask_nospec()
- masking of the syscall number to restrict speculation through the
syscall table
- masking of __user pointers prior to deference in uaccess routines
Spectre v2 mitigation update:
- using the new firmware SMC calling convention specification update
- removing the current PSCI GET_VERSION firmware call mitigation as
vendors are deploying new SMCCC-capable firmware
- additional branch predictor hardening for synchronous exceptions and
interrupts while in user mode
Meltdown v3 mitigation update for Cavium Thunder X: unaffected but
hardware erratum gets in the way. The kernel now starts with the page
tables mapped as global and switches to non-global if kpti needs to be
enabled.
Other:
- Theoretical trylock bug fixed
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEE5RElWfyWxS+3PLO2a9axLQDIXvEFAlp8lqcACgkQa9axLQDI
XvH2lxAAnsYqthpGQ11MtDJB+/UiBAFkg9QWPDkwrBDvNhgpll+J0VQuCN1QJ2GX
qQ8rkv8uV+y4Fqr8hORGJy5At+0aI63ZCJ72RGkZTzJAtbFbFGIDHP7RhAEIGJBS
Lk9kDZ7k39wLEx30UXIFYTTVzyHar397TdI7vkTcngiTzZ8MdFATfN/hiKO906q3
14pYnU9Um4aHUdcJ+FocL3dxvdgniuuMBWoNiYXyOCZXjmbQOnDNU2UrICroV8lS
mB+IHNEhX1Gl35QzNBtC0ET+aySfHBMJmM5oln+uVUljIGx6En1WLj6mrHYcx8U2
rIBm5qO/X/4iuzYPGkxwQtpjq3wPYxsSUnMdKJrsUZqAfy2QeIhFx6XUtJsZPB2J
/lgls5xSXMOS7oiOQtmVjcDLBURDmYXGwljXR4n4jLm4CT1V9qSLcKHu1gdFU9Mq
VuMUdPOnQub1vqKndi154IoYDTo21jAib2ktbcxpJfSJnDYoit4Gtnv7eWY+M3Pd
Toaxi8htM2HSRwbvslHYGW8ZcVpI79Jit+ti7CsFg7m9Lvgs0zxcnNui4uPYDymT
jh2JYxuirIJbX9aGGhnmkNhq9REaeZJg9LA2JM8S77FCHN3bnlSdaG6wy899J6EI
lK4anCuPQKKKhUia/dc1MeKwrmmC18EfPyGUkOzywg/jGwGCmZM=
=Y0TT
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull more arm64 updates from Catalin Marinas:
"As I mentioned in the last pull request, there's a second batch of
security updates for arm64 with mitigations for Spectre/v1 and an
improved one for Spectre/v2 (via a newly defined firmware interface
API).
Spectre v1 mitigation:
- back-end version of array_index_mask_nospec()
- masking of the syscall number to restrict speculation through the
syscall table
- masking of __user pointers prior to deference in uaccess routines
Spectre v2 mitigation update:
- using the new firmware SMC calling convention specification update
- removing the current PSCI GET_VERSION firmware call mitigation as
vendors are deploying new SMCCC-capable firmware
- additional branch predictor hardening for synchronous exceptions
and interrupts while in user mode
Meltdown v3 mitigation update:
- Cavium Thunder X is unaffected but a hardware erratum gets in the
way. The kernel now starts with the page tables mapped as global
and switches to non-global if kpti needs to be enabled.
Other:
- Theoretical trylock bug fixed"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (38 commits)
arm64: Kill PSCI_GET_VERSION as a variant-2 workaround
arm64: Add ARM_SMCCC_ARCH_WORKAROUND_1 BP hardening support
arm/arm64: smccc: Implement SMCCC v1.1 inline primitive
arm/arm64: smccc: Make function identifiers an unsigned quantity
firmware/psci: Expose SMCCC version through psci_ops
firmware/psci: Expose PSCI conduit
arm64: KVM: Add SMCCC_ARCH_WORKAROUND_1 fast handling
arm64: KVM: Report SMCCC_ARCH_WORKAROUND_1 BP hardening support
arm/arm64: KVM: Turn kvm_psci_version into a static inline
arm/arm64: KVM: Advertise SMCCC v1.1
arm/arm64: KVM: Implement PSCI 1.0 support
arm/arm64: KVM: Add smccc accessors to PSCI code
arm/arm64: KVM: Add PSCI_VERSION helper
arm/arm64: KVM: Consolidate the PSCI include files
arm64: KVM: Increment PC after handling an SMC trap
arm: KVM: Fix SMCCC handling of unimplemented SMC/HVC calls
arm64: KVM: Fix SMCCC handling of unimplemented SMC/HVC calls
arm64: entry: Apply BP hardening for suspicious interrupts from EL0
arm64: entry: Apply BP hardening for high-priority synchronous exceptions
arm64: futex: Mask __user pointers prior to dereference
...
Right now the fact that KASAN uses a single shadow byte for 8 bytes of
memory is scattered all over the code.
This change defines KASAN_SHADOW_SCALE_SHIFT early in asm include files
and makes use of this constant where necessary.
[akpm@linux-foundation.org: coding-style fixes]
Link: http://lkml.kernel.org/r/34937ca3b90736eaad91b568edf5684091f662e3.1515775666.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Acked-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It is possible to take an IRQ from EL0 following a branch to a kernel
address in such a way that the IRQ is prioritised over the instruction
abort. Whilst an attacker would need to get the stars to align here,
it might be sufficient with enough calibration so perform BP hardening
in the rare case that we see a kernel address in the ELR when handling
an IRQ from EL0.
Reported-by: Dan Hettena <dhettena@nvidia.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Software-step and PC alignment fault exceptions have higher priority than
instruction abort exceptions, so apply the BP hardening hooks there too
if the user PC appears to reside in kernel space.
Reported-by: Dan Hettena <dhettena@nvidia.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Currently, USER_DS represents an exclusive limit while KERNEL_DS is
inclusive. In order to do some clever trickery for speculation-safe
masking, we need them both to behave equivalently - there aren't enough
bits to make KERNEL_DS exclusive, so we have precisely one option. This
also happens to correct a longstanding false negative for a range
ending on the very top byte of kernel memory.
Mark Rutland points out that we've actually got the semantics of
addresses vs. segments muddled up in most of the places we need to
amend, so shuffle the {USER,KERNEL}_DS definitions around such that we
can correct those properly instead of just pasting "-1"s everywhere.
Signed-off-by: Robin Murphy <robin.murphy@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The identity map is mapped as both writeable and executable by the
SWAPPER_MM_MMUFLAGS and this is relied upon by the kpti code to manage
a synchronisation flag. Update the .pushsection flags to reflect the
actual mapping attributes.
Reported-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Since AArch64 assembly instructions take the destination register as
their first operand, do the same thing for the phys_to_ttbr macro.
Acked-by: Robin Murphy <robin.murphy@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Defaulting to global mappings for kernel space is generally good for
performance and appears to be necessary for Cavium ThunderX. If we
subsequently decide that we need to enable kpti, then we need to rewrite
our existing page table entries to be non-global. This is fiddly, and
made worse by the possible use of contiguous mappings, which require
a strict break-before-make sequence.
Since the enable callback runs on each online CPU from stop_machine
context, we can have all CPUs enter the idmap, where secondaries can
wait for the primary CPU to rewrite swapper with its MMU off. It's all
fairly horrible, but at least it only runs once.
Tested-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Break-before-make is not needed when transitioning from Global to
Non-Global mappings, provided that the contiguous hint is not being used.
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
* Require struct page by default for filesystem DAX to remove a number of
surprising failure cases. This includes failures with direct I/O, gdb and
fork(2).
* Add support for the new Platform Capabilities Structure added to the NFIT in
ACPI 6.2a. This new table tells us whether the platform supports flushing
of CPU and memory controller caches on unexpected power loss events.
* Revamp vmem_altmap and dev_pagemap handling to clean up code and better
support future future PCI P2P uses.
* Deprecate the ND_IOCTL_SMART_THRESHOLD command whose payload has become
out-of-sync with recent versions of the NVDIMM_FAMILY_INTEL spec, and
instead rely on the generic ND_CMD_CALL approach used by the two other IOCTL
families, NVDIMM_FAMILY_{HPE,MSFT}.
* Enhance nfit_test so we can test some of the new things added in version 1.6
of the DSM specification. This includes testing firmware download and
simulating the Last Shutdown State (LSS) status.
-----BEGIN PGP SIGNATURE-----
iQIcBAABAgAGBQJaeOg0AAoJEJ/BjXdf9fLBAFoQAI/IgcgJ2h9lfEpgjBRTC44t
2p8dxwT1Ofw3Y1aR/tI8nYRXjRtAGuP4UIeRVnb1CL/N7PagJyoMGU+6hmzg+ptY
c7cEDvw6nZOhrFwXx/xn7R53sYG8zH+UE6+jTR/PP/G4mQJfFCg4iF9R72Y7z0n7
aurf82Kz137NPUy6dNr4V9bmPMJWAaOci9WOj5SKddR5ZSNbjoxylTwQRvre5y4r
7HQTScEkirABOdSf1JoXTSUXCH/RC9UFFXR03ScHstGb1HjCj3KdcicVc50Q++Ub
qsEudhE6i44PEW1Hh4Qkg6hjHMEa8qHP+ShBuRuVaUmlghYTQn66niJAYLZilwdz
EVjE7vR+toHA5g3YCalEmYVutUEhIDkh/xfpd7vM6ZorUGJy95a2elEJs2fHBffC
gEhnCip7FROPcK5RDNUM8hBgnG/q5wwWPQMKY+6rKDZQx3mXssCrKp2Vlx7kBwMG
rpblkEpYjPonbLEHxsSU8yTg9Uq55ciIWgnOToffcjZvjbihi8WUVlHcwHUMPf/o
DWElg+4qmG0Sdd4S2NeAGwTl1Ewrf2RrtUGMjHtH4OUFs1wo6ZmfrxFzzMfoZ1Od
ko/s65v4uwtTzECh2o+XQaNsReR5YETXxmA40N/Jpo7/7twABIoZ/ASvj/3ZBYj+
sie+u2rTod8/gQWSfHpJ
=MIMX
-----END PGP SIGNATURE-----
Merge tag 'libnvdimm-for-4.16' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm
Pull libnvdimm updates from Ross Zwisler:
- Require struct page by default for filesystem DAX to remove a number
of surprising failure cases. This includes failures with direct I/O,
gdb and fork(2).
- Add support for the new Platform Capabilities Structure added to the
NFIT in ACPI 6.2a. This new table tells us whether the platform
supports flushing of CPU and memory controller caches on unexpected
power loss events.
- Revamp vmem_altmap and dev_pagemap handling to clean up code and
better support future future PCI P2P uses.
- Deprecate the ND_IOCTL_SMART_THRESHOLD command whose payload has
become out-of-sync with recent versions of the NVDIMM_FAMILY_INTEL
spec, and instead rely on the generic ND_CMD_CALL approach used by
the two other IOCTL families, NVDIMM_FAMILY_{HPE,MSFT}.
- Enhance nfit_test so we can test some of the new things added in
version 1.6 of the DSM specification. This includes testing firmware
download and simulating the Last Shutdown State (LSS) status.
* tag 'libnvdimm-for-4.16' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm: (37 commits)
libnvdimm, namespace: remove redundant initialization of 'nd_mapping'
acpi, nfit: fix register dimm error handling
libnvdimm, namespace: make min namespace size 4K
tools/testing/nvdimm: force nfit_test to depend on instrumented modules
libnvdimm/nfit_test: adding support for unit testing enable LSS status
libnvdimm/nfit_test: add firmware download emulation
nfit-test: Add platform cap support from ACPI 6.2a to test
libnvdimm: expose platform persistence attribute for nd_region
acpi: nfit: add persistent memory control flag for nd_region
acpi: nfit: Add support for detect platform CPU cache flush on power loss
device-dax: Fix trailing semicolon
libnvdimm, btt: fix uninitialized err_lock
dax: require 'struct page' by default for filesystem dax
ext2: auto disable dax instead of failing mount
ext4: auto disable dax instead of failing mount
mm, dax: introduce pfn_t_special()
mm: Fix devm_memremap_pages() collision handling
mm: Fix memory size alignment in devm_memremap_pages_release()
memremap: merge find_dev_pagemap into get_dev_pagemap
memremap: change devm_memremap_pages interface to use struct dev_pagemap
...
This pull requests contains a consolidation of the generic no-IOMMU code,
a well as the glue code for swiotlb. All the code is based on the x86
implementation with hooks to allow all architectures that aren't cache
coherent to use it. The x86 conversion itself has been deferred because
the x86 maintainers were a little busy in the last months.
-----BEGIN PGP SIGNATURE-----
iQI/BAABCAApFiEEgdbnc3r/njty3Iq9D55TZVIEUYMFAlpxcVoLHGhjaEBsc3Qu
ZGUACgkQD55TZVIEUYN/Lw/+Je9teM4NPQ8lU/ncbJN/bUzCFGJ6dFt2eVX/6xs3
sfl8vBdeHt6CBM02rRNecEr31z3+orjQes5JnlEJFYeG3jumV0zCPw/zbxqjzbJ1
3n6cckLxbxzy8Ca1G/BVjHLAUX5eWp1ujn/Q4d03VKVQZhJvFYlqDbP3TrNVx7xn
k86u37p/o+ngjwX66UdZ3C4iIBF8zqy6n2kkpv4HUQtHHzPwEvliN39eNilovb56
iGOzjDX1UWHAu4xCTVnPHSG4fA4XU41NWzIN3DIVPE25lYSISSl9TFAdR8GeZA0G
0Yj6sW53pRSoUwco1ocoS44/FgrPOB5/vHIL06pABvicXBiomje1QylqcK7zAczk
esjkfPEZrmZuu99GtqFyDNKEvKKdy+aBGaTZ3y+NxsuBs+0xS2Owz1IE4Tk28xaw
xh7zn+CVdk2fJh6ZIdw5Eu9b9VN08UriqDmDzO/ylDlcNGcDi7wcxiSTEkHJ1ON/
g9nletV6f3egL0wljDcOnhCJCHTvmWEeq3z8lE55QzPzSH0hHpnGQ2WD0tKrroxz
kjOZp0TdXa4F5iysOHe2xl2sftOH0zIkBQJ+oBcK12mTaLu21+yeuCggQXJ/CBdk
1Ol7l9g9T0TDuZPfiTHt5+6jmECQs92LElWA8x7uF7Fpix3BpnafWaaSMSsosF3F
D1Y=
=Nrl9
-----END PGP SIGNATURE-----
Merge tag 'dma-mapping-4.16' of git://git.infradead.org/users/hch/dma-mapping
Pull dma mapping updates from Christoph Hellwig:
"Except for a runtime warning fix from Christian this is all about
consolidation of the generic no-IOMMU code, a well as the glue code
for swiotlb.
All the code is based on the x86 implementation with hooks to allow
all architectures that aren't cache coherent to use it.
The x86 conversion itself has been deferred because the x86
maintainers were a little busy in the last months"
* tag 'dma-mapping-4.16' of git://git.infradead.org/users/hch/dma-mapping: (57 commits)
MAINTAINERS: add the iommu list for swiotlb and xen-swiotlb
arm64: use swiotlb_alloc and swiotlb_free
arm64: replace ZONE_DMA with ZONE_DMA32
mips: use swiotlb_{alloc,free}
mips/netlogic: remove swiotlb support
tile: use generic swiotlb_ops
tile: replace ZONE_DMA with ZONE_DMA32
unicore32: use generic swiotlb_ops
ia64: remove an ifdef around the content of pci-dma.c
ia64: clean up swiotlb support
ia64: use generic swiotlb_ops
ia64: replace ZONE_DMA with ZONE_DMA32
swiotlb: remove various exports
swiotlb: refactor coherent buffer allocation
swiotlb: refactor coherent buffer freeing
swiotlb: wire up ->dma_supported in swiotlb_dma_ops
swiotlb: add common swiotlb_map_ops
swiotlb: rename swiotlb_free to swiotlb_exit
x86: rename swiotlb_dma_ops
powerpc: rename swiotlb_dma_ops
...
Pull siginfo cleanups from Eric Biederman:
"Long ago when 2.4 was just a testing release copy_siginfo_to_user was
made to copy individual fields to userspace, possibly for efficiency
and to ensure initialized values were not copied to userspace.
Unfortunately the design was complex, it's assumptions unstated, and
humans are fallible and so while it worked much of the time that
design failed to ensure unitialized memory is not copied to userspace.
This set of changes is part of a new design to clean up siginfo and
simplify things, and hopefully make the siginfo handling robust enough
that a simple inspection of the code can be made to ensure we don't
copy any unitializied fields to userspace.
The design is to unify struct siginfo and struct compat_siginfo into a
single definition that is shared between all architectures so that
anyone adding to the set of information shared with struct siginfo can
see the whole picture. Hopefully ensuring all future si_code
assignments are arch independent.
The design is to unify copy_siginfo_to_user32 and
copy_siginfo_from_user32 so that those function are complete and cope
with all of the different cases documented in signinfo_layout. I don't
think there was a single implementation of either of those functions
that was complete and correct before my changes unified them.
The design is to introduce a series of helpers including
force_siginfo_fault that take the values that are needed in struct
siginfo and build the siginfo structure for their callers. Ensuring
struct siginfo is built correctly.
The remaining work for 4.17 (unless someone thinks it is post -rc1
material) is to push usage of those helpers down into the
architectures so that architecture specific code will not need to deal
with the fiddly work of intializing struct siginfo, and then when
struct siginfo is guaranteed to be fully initialized change copy
siginfo_to_user into a simple wrapper around copy_to_user.
Further there is work in progress on the issues that have been
documented requires arch specific knowledge to sort out.
The changes below fix or at least document all of the issues that have
been found with siginfo generation. Then proceed to unify struct
siginfo the 32 bit helpers that copy siginfo to and from userspace,
and generally clean up anything that is not arch specific with regards
to siginfo generation.
It is a lot but with the unification you can of siginfo you can
already see the code reduction in the kernel"
* 'siginfo-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace: (45 commits)
signal/memory-failure: Use force_sig_mceerr and send_sig_mceerr
mm/memory_failure: Remove unused trapno from memory_failure
signal/ptrace: Add force_sig_ptrace_errno_trap and use it where needed
signal/powerpc: Remove unnecessary signal_code parameter of do_send_trap
signal: Helpers for faults with specialized siginfo layouts
signal: Add send_sig_fault and force_sig_fault
signal: Replace memset(info,...) with clear_siginfo for clarity
signal: Don't use structure initializers for struct siginfo
signal/arm64: Better isolate the COMPAT_TASK portion of ptrace_hbptriggered
ptrace: Use copy_siginfo in setsiginfo and getsiginfo
signal: Unify and correct copy_siginfo_to_user32
signal: Remove the code to clear siginfo before calling copy_siginfo_from_user32
signal: Unify and correct copy_siginfo_from_user32
signal/blackfin: Remove pointless UID16_SIGINFO_COMPAT_NEEDED
signal/blackfin: Move the blackfin specific si_codes to asm-generic/siginfo.h
signal/tile: Move the tile specific si_codes to asm-generic/siginfo.h
signal/frv: Move the frv specific si_codes to asm-generic/siginfo.h
signal/ia64: Move the ia64 specific si_codes to asm-generic/siginfo.h
signal/powerpc: Remove redefinition of NSIGTRAP on powerpc
signal: Move addr_lsb into the _sigfault union for clarity
...
- Security mitigations:
- variant 2: invalidating the branch predictor with a call to secure firmware
- variant 3: implementing KPTI for arm64
- 52-bit physical address support for arm64 (ARMv8.2)
- arm64 support for RAS (firmware first only) and SDEI (software
delegated exception interface; allows firmware to inject a RAS error
into the OS)
- Perf support for the ARM DynamIQ Shared Unit PMU
- CPUID and HWCAP bits updated for new floating point multiplication
instructions in ARMv8.4
- Removing some virtual memory layout printks during boot
- Fix initial page table creation to cope with larger than 32M kernel
images when 16K pages are enabled
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEE5RElWfyWxS+3PLO2a9axLQDIXvEFAlpwxDMACgkQa9axLQDI
XvF55BAAniMpxPXnYNfv6l7/4O8eKo1lJIaG1wbej4JRZ/rT3K4Z3OBXW1dKHO8d
/PTbVmZ90IqIGROkoDrE+6xyjjn9yK3uuW4ytN2zQkBa8VFaHAnHlX+zKQcuwy9f
yxwiHk+C7vK5JR7mpXTazjRknsUv1MPtlTt7DQrSdq0KRDJVDNFC+grmbew2rz0X
cjQDqZqgzuFyrKxdiQVjDmc3zH9NsNBhDo0hlGHf2jK6bGJsAPtI8M2JcLrK8ITG
Ye/dD7BJp1mWD8ff0BPaMxu24qfAMNLH8f2dpTa986/H78irVz7i/t5HG0/1+5Jh
EE4OFRTKZ59Qgyo1zWcaJvdp8YjiaX/L4PWJg8CxM5OhP9dIac9ydcFQfWzpKpUs
xyZfmK6XliGFReAkVOOf5tEqFUDhMtsqhzPYmbmU1lp61wmSYIZ8CTenpWWCJSRO
NOGyG1X2uFBvP69+iPNlfTGz1r7tg1URY5iO8fUEIhY8LrgyORkiqw4OvPEgnMXP
Ngy+dXhyvnps2AAWbSX0O4puRlTgEYLT5KaMLzH/+gWsXATT0rzUCD/aOwUQq/Y7
SWXZHkb3jpmOZZnzZsLL2MNzEIPCFBwSUE9fSv4dA9d/N6tUmlmZALJjHkfzCDpj
+mPsSmAMTj72kUYzm0b5GCtOu/iQ2kDWOZjOM1m4+v/B+f7JoEE=
=iEjP
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Catalin Marinas:
"The main theme of this pull request is security covering variants 2
and 3 for arm64. I expect to send additional patches next week
covering an improved firmware interface (requires firmware changes)
for variant 2 and way for KPTI to be disabled on unaffected CPUs
(Cavium's ThunderX doesn't work properly with KPTI enabled because of
a hardware erratum).
Summary:
- Security mitigations:
- variant 2: invalidate the branch predictor with a call to
secure firmware
- variant 3: implement KPTI for arm64
- 52-bit physical address support for arm64 (ARMv8.2)
- arm64 support for RAS (firmware first only) and SDEI (software
delegated exception interface; allows firmware to inject a RAS
error into the OS)
- perf support for the ARM DynamIQ Shared Unit PMU
- CPUID and HWCAP bits updated for new floating point multiplication
instructions in ARMv8.4
- remove some virtual memory layout printks during boot
- fix initial page table creation to cope with larger than 32M kernel
images when 16K pages are enabled"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (104 commits)
arm64: Fix TTBR + PAN + 52-bit PA logic in cpu_do_switch_mm
arm64: Turn on KPTI only on CPUs that need it
arm64: Branch predictor hardening for Cavium ThunderX2
arm64: Run enable method for errata work arounds on late CPUs
arm64: Move BP hardening to check_and_switch_context
arm64: mm: ignore memory above supported physical address size
arm64: kpti: Fix the interaction between ASID switching and software PAN
KVM: arm64: Emulate RAS error registers and set HCR_EL2's TERR & TEA
KVM: arm64: Handle RAS SErrors from EL2 on guest exit
KVM: arm64: Handle RAS SErrors from EL1 on guest exit
KVM: arm64: Save ESR_EL2 on guest SError
KVM: arm64: Save/Restore guest DISR_EL1
KVM: arm64: Set an impdef ESR for Virtual-SError using VSESR_EL2.
KVM: arm/arm64: mask/unmask daif around VHE guests
arm64: kernel: Prepare for a DISR user
arm64: Unconditionally enable IESB on exception entry/return for firmware-first
arm64: kernel: Survive corrected RAS errors notified by SError
arm64: cpufeature: Detect CPU RAS Extentions
arm64: sysreg: Move to use definitions for all the SCTLR bits
arm64: cpufeature: __this_cpu_has_cap() shouldn't stop early
...
In cpu_do_switch_mm(.) with ARM64_SW_TTBR0_PAN=y we apply phys_to_ttbr
to a value that already has an ASID inserted into the upper bits. For
52-bit PA configurations this then can give us TTBR0_EL1 registers that
cause translation table walks to attempt to access non-zero PA[51:48]
spuriously. Ultimately leading to a Synchronous External Abort on level
1 translation.
This patch re-arranges the logic in cpu_do_switch_mm(.) such that
phys_to_ttbr is called before the ASID is inserted into the TTBR0 value.
Fixes: 6b88a32c7a ("arm64: kpti: Fix the interaction between ASID switching and software PAN")
Acked-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Tested-by: Kristina Martsenko <kristina.martsenko@arm.com>
Reviewed-by: Kristina Martsenko <kristina.martsenko@arm.com>
Signed-off-by: Steve Capper <steve.capper@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
We call arm64_apply_bp_hardening() from post_ttbr_update_workaround,
which has the unexpected consequence of being triggered on every
exception return to userspace when ARM64_SW_TTBR0_PAN is selected,
even if no context switch actually occured.
This is a bit suboptimal, and it would be more logical to only
invalidate the branch predictor when we actually switch to
a different mm.
In order to solve this, move the call to arm64_apply_bp_hardening()
into check_and_switch_context(), where we're guaranteed to pick
a different mm context.
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
When booting a kernel without 52-bit PA support (e.g. a kernel with 4k
pages) on a system with 52-bit memory, the kernel will currently try to
use the 52-bit memory and crash. Fix this by ignoring any memory higher
than what the kernel supports.
Fixes: f77d281713 ("arm64: enable 52-bit physical address support")
Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Add an extra temporary register parameter to uaccess_ttbr0_disable which
is about to be required for arm64 PAN support.
This patch doesn't introduce any functional change but ensures that the
kernel compiles once the KVM/ARM tree is merged with the arm64 tree by
ensuring a trivially mergable conflict with commit
6b88a32c7a
("arm64: kpti: Fix the interaction between ASID switching and software PAN").
Cc: Will Deacon <will.deacon@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
With ARM64_SW_TTBR0_PAN enabled, the exception entry code checks the
active ASID to decide whether user access was enabled (non-zero ASID)
when the exception was taken. On return from exception, if user access
was previously disabled, it re-instates TTBR0_EL1 from the per-thread
saved value (updated in switch_mm() or efi_set_pgd()).
Commit 7655abb953 ("arm64: mm: Move ASID from TTBR0 to TTBR1") makes a
TTBR0_EL1 + ASID switching non-atomic. Subsequently, commit 27a921e757
("arm64: mm: Fix and re-enable ARM64_SW_TTBR0_PAN") changes the
__uaccess_ttbr0_disable() function and asm macro to first write the
reserved TTBR0_EL1 followed by the ASID=0 update in TTBR1_EL1. If an
exception occurs between these two, the exception return code will
re-instate a valid TTBR0_EL1. Similar scenario can happen in
cpu_switch_mm() between setting the reserved TTBR0_EL1 and the ASID
update in cpu_do_switch_mm().
This patch reverts the entry.S check for ASID == 0 to TTBR0_EL1 and
disables the interrupts around the TTBR0_EL1 and ASID switching code in
__uaccess_ttbr0_disable(). It also ensures that, when returning from the
EFI runtime services, efi_set_pgd() doesn't leave a non-zero ASID in
TTBR1_EL1 by using uaccess_ttbr0_{enable,disable}.
The accesses to current_thread_info()->ttbr0 are updated to use
READ_ONCE/WRITE_ONCE.
As a safety measure, __uaccess_ttbr0_enable() always masks out any
existing non-zero ASID TTBR1_EL1 before writing in the new ASID.
Fixes: 27a921e757 ("arm64: mm: Fix and re-enable ARM64_SW_TTBR0_PAN")
Acked-by: Will Deacon <will.deacon@arm.com>
Reported-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: James Morse <james.morse@arm.com>
Tested-by: James Morse <james.morse@arm.com>
Co-developed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
KVM would like to consume any pending SError (or RAS error) after guest
exit. Today it has to unmask SError and use dsb+isb to synchronise the
CPU. With the RAS extensions we can use ESB to synchronise any pending
SError.
Add the necessary macros to allow DISR to be read and converted to an
ESR.
We clear the DISR register when we enable the RAS cpufeature, and the
kernel has not executed any ESB instructions. Any value we find in DISR
must have belonged to firmware. Executing an ESB instruction is the
only way to update DISR, so we can expect firmware to have handled
any deferred SError. By the same logic we clear DISR in the idle path.
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
__cpu_setup() configures SCTLR_EL1 using some hard coded hex masks,
and el2_setup() duplicates some this when setting RES1 bits.
Lets make this the same as KVM's hyp_init, which uses named bits.
First, we add definitions for all the SCTLR_EL{1,2} bits, the RES{1,0}
bits, and those we want to set or clear.
Add a build_bug checks to ensures all bits are either set or clear.
This means we don't need to preserve endian-ness configuration
generated elsewhere.
Finally, move the head.S and proc.S users of these hard-coded masks
over to the macro versions.
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Printing kernel addresses should be done in limited circumstances, mostly
for debugging purposes. Printing out the virtual memory layout at every
kernel bootup doesn't really fall into this category so delete the prints.
There are other ways to get the same information.
Acked-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Laura Abbott <labbott@redhat.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The generic swiotlb_alloc and swiotlb_free routines already take care
of CMA allocations and adding GFP_DMA32 where needed, so use them
instead of the arm specific helpers.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Christian König <christian.koenig@amd.com>
Reviewed-by: Robin Murphy <robin.murphy@arm.com>
arm64 uses ZONE_DMA for allocations below 32-bits. These days we
name the zone for that ZONE_DMA32, which will allow to use the
dma-direct and generic swiotlb code as-is, so rename it.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Christian König <christian.koenig@amd.com>
Reviewed-by: Robin Murphy <robin.murphy@arm.com>
We'll need that name for a generic implementation soon.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Christian König <christian.koenig@amd.com>
Reviewed-by: Robin Murphy <robin.murphy@arm.com>
Currently the early assembler page table code assumes that precisely
1xpgd, 1xpud, 1xpmd are sufficient to represent the early kernel text
mappings.
Unfortunately this is rarely the case when running with a 16KB granule,
and we also run into limits with 4KB granule when building much larger
kernels.
This patch re-writes the early page table logic to compute indices of
mappings for each level of page table, and if multiple indices are
required, the next-level page table is scaled up accordingly.
Also the required size of the swapper_pg_dir is computed at link time
to cover the mapping [KIMAGE_ADDR + VOFFSET, _end]. When KASLR is
enabled, an extra page is set aside for each level that may require extra
entries at runtime.
Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Steve Capper <steve.capper@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
SDEI needs to calculate an offset in the trampoline page too. Move
the extern char[] to sections.h.
This patch just moves code around.
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Now that KVM uses tpidr_el2 in the same way as Linux's cpu_offset in
tpidr_el1, merge the two. This saves KVM from save/restoring tpidr_el1
on VHE hosts, and allows future code to blindly access per-cpu variables
without triggering world-switch.
Signed-off-by: James Morse <james.morse@arm.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Setting si_code to 0 results in a userspace seeing an si_code of 0.
This is the same si_code as SI_USER. Posix and common sense requires
that SI_USER not be a signal specific si_code. As such this use of 0
for the si_code is a pretty horribly broken ABI.
Further use of si_code == 0 guaranteed that copy_siginfo_to_user saw a
value of __SI_KILL and now sees a value of SIL_KILL with the result
that uid and pid fields are copied and which might copying the si_addr
field by accident but certainly not by design. Making this a very
flakey implementation.
Utilizing FPE_FIXME, BUS_FIXME, TRAP_FIXME siginfo_layout will now return
SIL_FAULT and the appropriate fields will be reliably copied.
But folks this is a new and unique kind of bad. This is massively
untested code bad. This is inventing new and unique was to get
siginfo wrong bad. This is don't even think about Posix or what
siginfo means bad. This is lots of eyeballs all missing the fact
that the code does the wrong thing bad. This is getting stuck
and keep making the same mistake bad.
I really hope we can find a non userspace breaking fix for this on a
port as new as arm64.
Possible ABI fixes include:
- Send the signal without siginfo
- Don't generate a signal
- Possibly assign and use an appropriate si_code
- Don't handle cases which can't happen
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Tyler Baicar <tbaicar@codeaurora.org>
Cc: James Morse <james.morse@arm.com>
Cc: Tony Lindgren <tony@atomide.com>
Cc: Nicolas Pitre <nico@linaro.org>
Cc: Olof Johansson <olof@lixom.net>
Cc: Santosh Shilimkar <santosh.shilimkar@ti.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: linux-arm-kernel@lists.infradead.org
Ref: 53631b54c8 ("arm64: Floating point and SIMD")
Ref: 32015c2356 ("arm64: exception: handle Synchronous External Abort")
Ref: 1d18c47c73 ("arm64: MMU fault handling and page table management")
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
phys_to_dma, dma_to_phys and dma_capable are helpers published by
architecture code for use of swiotlb and xen-swiotlb only. Drivers are
not supposed to use these directly, but use the DMA API instead.
Move these to a new asm/dma-direct.h helper, included by a
linux/dma-direct.h wrapper that provides the default linear mapping
unless the architecture wants to override it.
In the MIPS case the existing dma-coherent.h is reused for now as
untangling it will take a bit of work.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Robin Murphy <robin.murphy@arm.com>
Add an extra temporary register parameter to uaccess_ttbr0_enable which
is about to be required for arm64 PAN support.
This patch doesn't introduce any functional change but ensures that the
kernel compiles once the KVM/ARM tree is merged with the arm64 tree by
ensuring a trivially mergable conflict with commit
27a921e757
("arm64: mm: Fix and re-enable ARM64_SW_TTBR0_PAN").
Cc: Will Deacon <will.deacon@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
We can just pass this on instead of having to do a radix tree lookup
without proper locking a few levels into the callchain.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
We can just pass this on instead of having to do a radix tree lookup
without proper locking a few levels into the callchain.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Aliasing attacks against CPU branch predictors can allow an attacker to
redirect speculative control flow on some CPUs and potentially divulge
information from one context to another.
This patch adds initial skeleton code behind a new Kconfig option to
enable implementation-specific mitigations against these attacks for
CPUs that are affected.
Co-developed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
We will soon need to invoke a CPU-specific function pointer after changing
page tables, so move post_ttbr_update_workaround out into C code to make
this possible.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
We currently tightly couple dcache clean with icache invalidation,
but KVM could do without the initial flush to PoU, as we've
already flushed things to PoC.
Let's introduce invalidate_icache_range which is limited to
invalidating the icache from the linear mapping (and thus
has none of the userspace fault handling complexity), and
wire it in KVM instead of flush_icache_range.
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Under some uncommon timing conditions, a generation check and
xchg(active_asids, A1) in check_and_switch_context() on P1 can race with
an ASID roll-over on P2. If P2 has not seen the update to
active_asids[P1], it can re-allocate A1 to a new task T2 on P2. P1 ends
up waiting on the spinlock since the xchg() returned 0 while P2 can go
through a second ASID roll-over with (T2,A1,G2) active on P2. This
roll-over copies active_asids[P1] == A1,G1 into reserved_asids[P1] and
active_asids[P2] == A1,G2 into reserved_asids[P2]. A subsequent
scheduling of T1 on P1 and T2 on P2 would match reserved_asids and get
their generation bumped to G3:
P1 P2
-- --
TTBR0.BADDR = T0
TTBR0.ASID = A0
asid_generation = G1
check_and_switch_context(T1,A1,G1)
generation match
check_and_switch_context(T2,A0,G0)
new_context()
ASID roll-over
asid_generation = G2
flush_context()
active_asids[P1] = 0
asid_map[A1] = 0
reserved_asids[P1] = A0,G0
xchg(active_asids, A1)
active_asids[P1] = A1,G1
xchg returns 0
spin_lock_irqsave()
allocated ASID (T2,A1,G2)
asid_map[A1] = 1
active_asids[P2] = A1,G2
...
check_and_switch_context(T3,A0,G0)
new_context()
ASID roll-over
asid_generation = G3
flush_context()
active_asids[P1] = 0
asid_map[A1] = 1
reserved_asids[P1] = A1,G1
reserved_asids[P2] = A1,G2
allocated ASID (T3,A2,G3)
asid_map[A2] = 1
active_asids[P2] = A2,G3
new_context()
check_update_reserved_asid(A1,G1)
matches reserved_asid[P1]
reserved_asid[P1] = A1,G3
updated T1 ASID to (T1,A1,G3)
check_and_switch_context(T2,A1,G2)
new_context()
check_and_switch_context(A1,G2)
matches reserved_asids[P2]
reserved_asids[P2] = A1,G3
updated T2 ASID to (T2,A1,G3)
At this point, we have two tasks, T1 and T2 both using ASID A1 with the
latest generation G3. Any of them is allowed to be scheduled on the
other CPU leading to two different tasks with the same ASID on the same
CPU.
This patch changes the xchg to cmpxchg so that the active_asids is only
updated if non-zero to avoid a race with an ASID roll-over on a
different CPU.
The ASID allocation algorithm has been formally verified using the TLA+
model checker (see
https://git.kernel.org/pub/scm/linux/kernel/git/cmarinas/kernel-tla.git/tree/asidalloc.tla
for the spec).
Reviewed-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
* for-next/52-bit-pa:
arm64: enable 52-bit physical address support
arm64: allow ID map to be extended to 52 bits
arm64: handle 52-bit physical addresses in page table entries
arm64: don't open code page table entry creation
arm64: head.S: handle 52-bit PAs in PTEs in early page table setup
arm64: handle 52-bit addresses in TTBR
arm64: limit PA size to supported range
arm64: add kconfig symbol to configure physical address size
Currently, when using VA_BITS < 48, if the ID map text happens to be
placed in physical memory above VA_BITS, we increase the VA size (up to
48) and create a new table level, in order to map in the ID map text.
This is okay because the system always supports 48 bits of VA.
This patch extends the code such that if the system supports 52 bits of
VA, and the ID map text is placed that high up, then we increase the VA
size accordingly, up to 52.
One difference from the current implementation is that so far the
condition of VA_BITS < 48 has meant that the top level table is always
"full", with the maximum number of entries, and an extra table level is
always needed. Now, when VA_BITS = 48 (and using 64k pages), the top
level table is not full, and we simply need to increase the number of
entries in it, instead of creating a new table level.
Tested-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Tested-by: Bob Picco <bob.picco@oracle.com>
Reviewed-by: Bob Picco <bob.picco@oracle.com>
Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com>
[catalin.marinas@arm.com: reduce arguments to __create_hyp_mappings()]
[catalin.marinas@arm.com: reworked/renamed __cpu_uses_extended_idmap_level()]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Instead of open coding the generation of page table entries, use the
macros/functions that exist for this - pfn_p*d and p*d_populate. Most
code in the kernel already uses these macros, this patch tries to fix
up the few places that don't. This is useful for the next patch in this
series, which needs to change the page table entry logic, and it's
better to have that logic in one place.
The KVM extended ID map is special, since we're creating a level above
CONFIG_PGTABLE_LEVELS and the required function isn't available. Leave
it as is and add a comment to explain it. (The normal kernel ID map code
doesn't need this change because its page tables are created in assembly
(__create_page_tables)).
Tested-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Tested-by: Bob Picco <bob.picco@oracle.com>
Reviewed-by: Bob Picco <bob.picco@oracle.com>
Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The top 4 bits of a 52-bit physical address are positioned at bits 2..5
in the TTBR registers. Introduce a couple of macros to move the bits
there, and change all TTBR writers to use them.
Leave TTBR0 PAN code unchanged, to avoid complicating it. A system with
52-bit PA will have PAN anyway (because it's ARMv8.1 or later), and a
system without 52-bit PA can only use up to 48-bit PAs. A later patch in
this series will add a kconfig dependency to ensure PAN is configured.
In addition, when using 52-bit PA there is a special alignment
requirement on the top-level table. We don't currently have any VA_BITS
configuration that would violate the requirement, but one could be added
in the future, so add a compile-time BUG_ON to check for it.
Tested-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Tested-by: Bob Picco <bob.picco@oracle.com>
Reviewed-by: Bob Picco <bob.picco@oracle.com>
Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com>
[catalin.marinas@arm.com: added TTBR_BADD_MASK_52 comment]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
We currently copy the physical address size from
ID_AA64MMFR0_EL1.PARange directly into TCR.(I)PS. This will not work for
4k and 16k granule kernels on systems that support 52-bit physical
addresses, since 52-bit addresses are only permitted with the 64k
granule.
To fix this, fall back to 48 bits when configuring the PA size when the
kernel does not support 52-bit PAs. When it does, fall back to 52, to
avoid similar problems in the future if the PA size is ever increased
above 52.
Tested-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Tested-by: Bob Picco <bob.picco@oracle.com>
Reviewed-by: Bob Picco <bob.picco@oracle.com>
Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com>
[catalin.marinas@arm.com: tcr_set_pa_size macro renamed to tcr_compute_pa_size]
[catalin.marinas@arm.com: comments added to tcr_compute_pa_size]
[catalin.marinas@arm.com: definitions added for TCR_*PS_SHIFT]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
In ptdump_check_wx(), we pass walk_pgd() a start address of 0 (rather
than VA_START) for the init_mm. This means that any reported W&X
addresses are offset by VA_START, which is clearly wrong and can make
them appear like userspace addresses.
Fix this by telling the ptdump code that we're walking init_mm starting
at VA_START. We don't need to update the addr_markers, since these are
still valid bounds regardless.
Cc: <stable@vger.kernel.org>
Fixes: 1404d6f13e ("arm64: dump: Add checking for writable and exectuable pages")
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Laura Abbott <labbott@redhat.com>
Reported-by: Timur Tabi <timur@codeaurora.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
do_sea() calls arm64_notify_die() which will always signal
user-space. It also returns whether APEI claimed the external
abort as a RAS notification. If it returns failure do_mem_abort()
will signal user-space too.
do_mem_abort() wants to know if we handled the error, we always
call arm64_notify_die() so can always return success.
Signed-off-by: Dongjiu Geng <gengdongjiu@huawei.com>
Reviewed-by: James Morse <james.morse@arm.com>
Reviewed-by: Xie XiuQi <xiexiuqi@huawei.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
The high_memory global variable is used by
cma_declare_contiguous(.) before it is defined.
We don't notice this as we compute __pa(high_memory - 1), and it looks
like we're processing a VA from the direct linear map.
This problem becomes apparent when we flip the kernel virtual address
space and the linear map is moved to the bottom of the kernel VA space.
This patch moves the initialisation of high_memory before it used.
Cc: <stable@vger.kernel.org>
Fixes: f7426b983a ("mm: cma: adjust address limit to avoid hitting low/high memory boundary")
Signed-off-by: Steve Capper <steve.capper@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
The literal pool entry for identifying the vectors base is the only piece
of information in the trampoline page that identifies the true location
of the kernel.
This patch moves it into a page-aligned region of the .rodata section
and maps this adjacent to the trampoline text via an additional fixmap
entry, which protects against any accidental leakage of the trampoline
contents.
Suggested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Tested-by: Laura Abbott <labbott@redhat.com>
Tested-by: Shanker Donthineni <shankerd@codeaurora.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
The exception entry trampoline needs to be mapped at the same virtual
address in both the trampoline page table (which maps nothing else)
and also the kernel page table, so that we can swizzle TTBR1_EL1 on
exceptions from and return to EL0.
This patch maps the trampoline at a fixed virtual address in the fixmap
area of the kernel virtual address space, which allows the kernel proper
to be randomized with respect to the trampoline when KASLR is enabled.
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Laura Abbott <labbott@redhat.com>
Tested-by: Shanker Donthineni <shankerd@codeaurora.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
In preparation for separate kernel/user ASIDs, allocate them in pairs
for each mm_struct. The bottom bit distinguishes the two: if it is set,
then the ASID will map only userspace.
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Laura Abbott <labbott@redhat.com>
Tested-by: Shanker Donthineni <shankerd@codeaurora.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
With the ASID now installed in TTBR1, we can re-enable ARM64_SW_TTBR0_PAN
by ensuring that we switch to a reserved ASID of zero when disabling
user access and restore the active user ASID on the uaccess enable path.
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Laura Abbott <labbott@redhat.com>
Tested-by: Shanker Donthineni <shankerd@codeaurora.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
The post_ttbr0_update_workaround hook applies to any change to TTBRx_EL1.
Since we're using TTBR1 for the ASID, rename the hook to make it clearer
as to what it's doing.
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Laura Abbott <labbott@redhat.com>
Tested-by: Shanker Donthineni <shankerd@codeaurora.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
The pre_ttbr0_update_workaround hook is called prior to context-switching
TTBR0 because Falkor erratum E1003 can cause TLB allocation with the wrong
ASID if both the ASID and the base address of the TTBR are updated at
the same time.
With the ASID sitting safely in TTBR1, we no longer update things
atomically, so we can remove the pre_ttbr0_update_workaround macro as
it's no longer required. The erratum infrastructure and documentation
is left around for #E1003, as it will be required by the entry
trampoline code in a future patch.
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Laura Abbott <labbott@redhat.com>
Tested-by: Shanker Donthineni <shankerd@codeaurora.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
In preparation for mapping kernelspace and userspace with different
ASIDs, move the ASID to TTBR1 and update switch_mm to context-switch
TTBR0 via an invalid mapping (the zero page).
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Laura Abbott <labbott@redhat.com>
Tested-by: Shanker Donthineni <shankerd@codeaurora.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
The comments in the ASID allocator incorrectly hint at an MP-style idiom
using the asid_generation and the active_asids array. In fact, the
synchronisation is achieved using a combination of an xchg operation
and a spinlock, so update the comments and remove the pointless smp_wmb().
Cc: James Morse <james.morse@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
pgd_cache is setup once while init stage and never changed after
that, so it is good candidate for __ro_after_init
Signed-off-by: Jinbum Park <jinb.park7@gmail.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Since commit:
155433cb36 ("arm64: cache: Remove support for ASID-tagged VIVT I-caches")
... the kernel no longer cares about AIVIVT I-caches, as these were
removed from the architecture.
This patch removes the stale references to such I-caches.
The comment in flush_context() is also updated to clarify when and where
the TLB invalidation occurs.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
The kasan shadow is currently mapped using vmemmap_populate() since that
provides a semi-convenient way to map pages into init_top_pgt. However,
since that no longer zeroes the mapped pages, it is not suitable for
kasan, which requires zeroed shadow memory.
Add kasan_populate_shadow() interface and use it instead of
vmemmap_populate(). Besides, this allows us to take advantage of
gigantic pages and use them to populate the shadow, which should save us
some memory wasted on page tables and reduce TLB pressure.
Link: http://lkml.kernel.org/r/20171103185147.2688-3-pasha.tatashin@oracle.com
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Steven Sistare <steven.sistare@oracle.com>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Bob Picco <bob.picco@oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Sam Ravnborg <sam@ravnborg.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Plenty of acronym soup here:
- Initial support for the Scalable Vector Extension (SVE)
- Improved handling for SError interrupts (required to handle RAS events)
- Enable GCC support for 128-bit integer types
- Remove kernel text addresses from backtraces and register dumps
- Use of WFE to implement long delay()s
- ACPI IORT updates from Lorenzo Pieralisi
- Perf PMU driver for the Statistical Profiling Extension (SPE)
- Perf PMU driver for Hisilicon's system PMUs
- Misc cleanups and non-critical fixes
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABCgAGBQJaCcLqAAoJELescNyEwWM0JREH/2FbmD/khGzEtP8LW+o9D8iV
TBM02uWQxS1bbO1pV2vb+512YQO+iWfeQwJH9Jv2FZcrMvFv7uGRnYgAnJuXNGrl
W+LL6OhN22A24LSawC437RU3Xe7GqrtONIY/yLeJBPablfcDGzPK1eHRA0pUzcyX
VlyDruSHWX44VGBPV6JRd3x0vxpV8syeKOjbRvopRfn3Nwkbd76V3YSfEgwoTG5W
ET1sOnXLmHHdeifn/l1Am5FX1FYstpcd7usUTJ4Oto8y7e09tw3bGJCD0aMJ3vow
v1pCUWohEw7fHqoPc9rTrc1QEnkdML4vjJvMPUzwyTfPrN+7uEuMIEeJierW+qE=
=0qrg
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Will Deacon:
"The big highlight is support for the Scalable Vector Extension (SVE)
which required extensive ABI work to ensure we don't break existing
applications by blowing away their signal stack with the rather large
new vector context (<= 2 kbit per vector register). There's further
work to be done optimising things like exception return, but the ABI
is solid now.
Much of the line count comes from some new PMU drivers we have, but
they're pretty self-contained and I suspect we'll have more of them in
future.
Plenty of acronym soup here:
- initial support for the Scalable Vector Extension (SVE)
- improved handling for SError interrupts (required to handle RAS
events)
- enable GCC support for 128-bit integer types
- remove kernel text addresses from backtraces and register dumps
- use of WFE to implement long delay()s
- ACPI IORT updates from Lorenzo Pieralisi
- perf PMU driver for the Statistical Profiling Extension (SPE)
- perf PMU driver for Hisilicon's system PMUs
- misc cleanups and non-critical fixes"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (97 commits)
arm64: Make ARMV8_DEPRECATED depend on SYSCTL
arm64: Implement __lshrti3 library function
arm64: support __int128 on gcc 5+
arm64/sve: Add documentation
arm64/sve: Detect SVE and activate runtime support
arm64/sve: KVM: Hide SVE from CPU features exposed to guests
arm64/sve: KVM: Treat guest SVE use as undefined instruction execution
arm64/sve: KVM: Prevent guests from using SVE
arm64/sve: Add sysctl to set the default vector length for new processes
arm64/sve: Add prctl controls for userspace vector length management
arm64/sve: ptrace and ELF coredump support
arm64/sve: Preserve SVE registers around EFI runtime service calls
arm64/sve: Preserve SVE registers around kernel-mode NEON use
arm64/sve: Probe SVE capabilities and usable vector lengths
arm64: cpufeature: Move sys_caps_initialised declarations
arm64/sve: Backend logic for setting the vector length
arm64/sve: Signal handling support
arm64/sve: Support vector length resetting for new processes
arm64/sve: Core task context handling
arm64/sve: Low-level CPU setup
...
Nothing calls arch_apei_flush_tlb_one() anymore, instead relying on
__set_fixmap() to do the invalidation. Remove it.
Move the IPI-considered-harmful comment to __set_fixmap().
Signed-off-by: James Morse <james.morse@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Tested-by: Tyler Baicar <tbaicar@codeaurora.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: All applicable <stable@vger.kernel.org>
There are a few places where we want to mask all exceptions. Today we
do this in a piecemeal fashion, typically we expect the caller to
have masked irqs and the arch code masks debug exceptions, ignoring
serror which is probably masked.
Make it clear that 'mask all exceptions' is the intention by adding
helpers to do exactly that.
This will let us unmask SError without having to add 'oh and SError'
to these paths.
Signed-off-by: James Morse <james.morse@arm.com>
Reviewed-by: Julien Thierry <julien.thierry@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Commit 42dbf54e88 ("arm64: consistently log ESR and page table")
dumps page table entries for user faults hitting do_bad entries in the
fault handler table. Whilst this shouldn't really happen in practice,
it's not beyond the realms of possibility if e.g. running an old kernel
on a new CPU.
Generally, we want to avoid exposing physical addresses under the control
of userspace (see commit bf396c09c2 ("arm64: mm: don't print out page
table entries on EL0 faults")), so walk the page tables only on exceptions
from EL1.
Reported-by: Kristina Martsenko <kristina.martsenko@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
When we take a fault we can't handle, we try to dump some relevant
information, but we're not consistent about doing so.
In do_mem_abort(), we log the full ESR, but don't dump a page table
walk. In __do_kernel_fault, we dump an attempted decoding of the ESR
(but not the ESR itself) along with a page table walk.
Let's try to make things more consistent by dumping the full ESR in
mem_abort_decode(), and having do_mem_abort dump a page table walk. The
existing dump of the ESR in do_mem_abort() is rendered redundant, and
removed.
Tested-by: Laura Abbott <labbott@redhat.com>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Julien Thierry <julien.thierry@arm.com>
Cc: Kristina Martsenko <kristina.martsenko@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Based on: ARM Architecture Reference Manual, ARMv8 (DDI 0487B.b).
ARMv8.1 introduces the optional feature ARMv8.1-TTHM which can trigger a
new type of memory abort. This exception is triggered when hardware update
of page table flags is not atomic in regards to other memory accesses.
Replace the corresponding unknown entry with a more accurate one.
Cf: Section D10.2.28 ESR_ELx, Exception Syndrome Register (p D10-2381),
section D4.4.11 Restriction on memory types for hardware updates on page
tables (p D4-2116 - D4-2117).
ARMv8.2 does not add new exception types, however it is worth mentioning
that when obligatory feature RAS (optional for ARMv8.{0,1}) is implemented,
exceptions related to "Synchronous parity or ECC error on memory access,
not on translation table walk" become reserved and should not occur.
Signed-off-by: Julien Thierry <julien.thierry@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
For example on arm64 board, this add info to "user" entries in vmallocinfo
Before :
[...]
0xffffff8008997000 0xffffff80089d8000 266240 user
[...]
Afer :
[...]
0xffffff8008997000 0xffffff80089d8000 266240 atomic_pool_init+0x0/0x1d8 user
[...]
This help to debug mapping issues, and is consistent with others entries
(ioremap, vmalloc, ...) that already provide caller.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Matthieu CASTET <matthieu.castet@parrot.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Currently data_abort_decode() dumps the ISS field as a decimal value
with a '0x' prefix, which is somewhat misleading.
Fix it to print as hexadecimal, as was intended.
Fixes: 1f9b8936f3 ("arm64: Decode information from ESR upon mem faults")
Reviewed-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Julien Thierry <julien.thierry@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Use vma_pages function on vma object instead of explicit computation.
Found by coccinelle spatch "api/vma_pages.cocci"
Reviewed-by: Robin Murphy <robin.murphy@arm.com>
Signed-off-by: Thomas Meyer <thomas@m3y3r.de>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Fault.c seems to be a magnet for useless and wrong comments, largely
due to its ancestry in other architectures where the code has since
moved on, but the comments have remained intact.
This patch removes both useless and incorrect comments, leaving only
those that say something correct and relevant.
Reported-by: Wenjia Zhou <zhiyuan_zhu@htc.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
We currently route pte translation faults via do_page_fault, which elides
the address check against TASK_SIZE before invoking the mm fault handling
code. However, this can cause issues with the path walking code in
conjunction with our word-at-a-time implementation because
load_unaligned_zeropad can end up faulting in kernel space if it reads
across a page boundary and runs into a page fault (e.g. by attempting to
read from a guard region).
In the case of such a fault, load_unaligned_zeropad has registered a
fixup to shift the valid data and pad with zeroes, however the abort is
reported as a level 3 translation fault and we dispatch it straight to
do_page_fault, despite it being a kernel address. This results in calling
a sleeping function from atomic context:
BUG: sleeping function called from invalid context at arch/arm64/mm/fault.c:313
in_atomic(): 0, irqs_disabled(): 0, pid: 10290
Internal error: Oops - BUG: 0 [#1] PREEMPT SMP
[...]
[<ffffff8e016cd0cc>] ___might_sleep+0x134/0x144
[<ffffff8e016cd158>] __might_sleep+0x7c/0x8c
[<ffffff8e016977f0>] do_page_fault+0x140/0x330
[<ffffff8e01681328>] do_mem_abort+0x54/0xb0
Exception stack(0xfffffffb20247a70 to 0xfffffffb20247ba0)
[...]
[<ffffff8e016844fc>] el1_da+0x18/0x78
[<ffffff8e017f399c>] path_parentat+0x44/0x88
[<ffffff8e017f4c9c>] filename_parentat+0x5c/0xd8
[<ffffff8e017f5044>] filename_create+0x4c/0x128
[<ffffff8e017f59e4>] SyS_mkdirat+0x50/0xc8
[<ffffff8e01684e30>] el0_svc_naked+0x24/0x28
Code: 36380080 d5384100 f9400800 9402566d (d4210000)
---[ end trace 2d01889f2bca9b9f ]---
Fix this by dispatching all translation faults to do_translation_faults,
which avoids invoking the page fault logic for faults on kernel addresses.
Cc: <stable@vger.kernel.org>
Reported-by: Ankit Jain <ankijain@codeaurora.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
- VMAP_STACK support, allowing the kernel stacks to be allocated in
the vmalloc space with a guard page for trapping stack overflows. One
of the patches introduces THREAD_ALIGN and changes the generic
alloc_thread_stack_node() to use this instead of THREAD_SIZE (no
functional change for other architectures)
- Contiguous PTE hugetlb support re-enabled (after being reverted a
couple of times). We now have the semantics agreed in the generic mm
layer together with API improvements so that the architecture code can
detect between contiguous and non-contiguous huge PTEs
- Initial support for persistent memory on ARM: DC CVAP instruction
exposed to user space (HWCAP) and the in-kernel pmem API implemented
- raid6 improvements for arm64: faster algorithm for the delta syndrome
and implementation of the recovery routines using Neon
- FP/SIMD refactoring and removal of support for Neon in interrupt
context. This is in preparation for full SVE support
- PTE accessors converted from inline asm to cmpxchg so that we can
use LSE atomics if available (ARMv8.1)
- Perf support for Cortex-A35 and A73
- Non-urgent fixes and cleanups
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEE5RElWfyWxS+3PLO2a9axLQDIXvEFAlmuunYACgkQa9axLQDI
XvEH9BAAo8V94GOMkX6HkT+2hjkl7DQ9krjumzmfzLV5AdgHMMzBNozmWKOCzgh0
yaxRcTUju3EyNeKhADr7yLiKDH8fnRPmYEJiVrwfgo7MaPApaCorr7LLIXfPGuxe
DTBHw+oxRMjlmaHeATX4PBWfQxAx+vjjhHqv3Qpmvdm4nYqR+0hZomH2BNsu64fk
AkSeUCxfCEyzSFIKuQM04M4zhSSZHz1tDxWI0b0RcK73qqEOuYZNkn6qxSKP5J4X
b2Y2U8nmxJ5C2fXpDYZaK9shiJ4Vu7X3Ocf/M7hsJzGY5z4dhnmUmxpHROaNiSvo
hCx7POYKyAPovps7zMSqcdsujkqOIQO8RHp4zGXx/pIr1RumjIiCY+RGpUYGibvU
N4Px5hZNneuHaPZZ+sWjOOdNB28xyzeUp2UK9Bb6uHB+/3xssMAD8Fd/b2ZLnS6a
YW3wrZmqA+ckfETsSRibabTs/ayqYHs2SDVwnlDJGtn+4Pw8oQpwGrwokxLQuuw3
uF2sNEPhJz+dcy21q3udYAQE1qOJBlLqTptgP96CHoVqh8X6nYSi5obT7y30ln3n
dhpZGOdi6R8YOouxgXS3Wg07pxn444L/VzDw5ku/5DkdryPOZCSRbk/2t8If6oDM
2VD6PCbTx3hsGc7SZ7FdSwIysD2j446u40OMGdH2iLB5jWBwyOM=
=vd0/
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Catalin Marinas:
- VMAP_STACK support, allowing the kernel stacks to be allocated in the
vmalloc space with a guard page for trapping stack overflows. One of
the patches introduces THREAD_ALIGN and changes the generic
alloc_thread_stack_node() to use this instead of THREAD_SIZE (no
functional change for other architectures)
- Contiguous PTE hugetlb support re-enabled (after being reverted a
couple of times). We now have the semantics agreed in the generic mm
layer together with API improvements so that the architecture code
can detect between contiguous and non-contiguous huge PTEs
- Initial support for persistent memory on ARM: DC CVAP instruction
exposed to user space (HWCAP) and the in-kernel pmem API implemented
- raid6 improvements for arm64: faster algorithm for the delta syndrome
and implementation of the recovery routines using Neon
- FP/SIMD refactoring and removal of support for Neon in interrupt
context. This is in preparation for full SVE support
- PTE accessors converted from inline asm to cmpxchg so that we can use
LSE atomics if available (ARMv8.1)
- Perf support for Cortex-A35 and A73
- Non-urgent fixes and cleanups
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (75 commits)
arm64: cleanup {COMPAT_,}SET_PERSONALITY() macro
arm64: introduce separated bits for mm_context_t flags
arm64: hugetlb: Cleanup setup_hugepagesz
arm64: Re-enable support for contiguous hugepages
arm64: hugetlb: Override set_huge_swap_pte_at() to support contiguous hugepages
arm64: hugetlb: Override huge_pte_clear() to support contiguous hugepages
arm64: hugetlb: Handle swap entries in huge_pte_offset() for contiguous hugepages
arm64: hugetlb: Add break-before-make logic for contiguous entries
arm64: hugetlb: Spring clean huge pte accessors
arm64: hugetlb: Introduce pte_pgprot helper
arm64: hugetlb: set_huge_pte_at Add WARN_ON on !pte_present
arm64: kexec: have own crash_smp_send_stop() for crash dump for nonpanic cores
arm64: dma-mapping: Mark atomic_pool as __ro_after_init
arm64: dma-mapping: Do not pass data to gen_pool_set_algo()
arm64: Remove the !CONFIG_ARM64_HW_AFDBM alternative code paths
arm64: Ignore hardware dirty bit updates in ptep_set_wrprotect()
arm64: Move PTE_RDONLY bit handling out of set_pte_at()
kvm: arm64: Convert kvm_set_s2pte_readonly() from inline asm to cmpxchg()
arm64: Convert pte handling from inline asm to using (cmp)xchg
arm64: neon/efi: Make EFI fpsimd save/restore variables static
...
When there's a fatal signal pending, arm64's do_page_fault()
implementation returns 0. The intent is that we'll return to the
faulting userspace instruction, delivering the signal on the way.
However, if we take a fatal signal during fixing up a uaccess, this
results in a return to the faulting kernel instruction, which will be
instantly retried, resulting in the same fault being taken forever. As
the task never reaches userspace, the signal is not delivered, and the
task is left unkillable. While the task is stuck in this state, it can
inhibit the forward progress of the system.
To avoid this, we must ensure that when a fatal signal is pending, we
apply any necessary fixup for a faulting kernel instruction. Thus we
will return to an error path, and it is up to that code to make forward
progress towards delivering the fatal signal.
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Laura Abbott <labbott@redhat.com>
Cc: stable@vger.kernel.org
Reviewed-by: Steve Capper <steve.capper@arm.com>
Tested-by: Steve Capper <steve.capper@arm.com>
Reviewed-by: James Morse <james.morse@arm.com>
Tested-by: James Morse <james.morse@arm.com>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Replace a lot of if statements with switch and case labels to make it
much clearer which huge page sizes are supported.
Also, we prevent PUD_SIZE from being used on systems not running with
4KB PAGE_SIZE. Before if one supplied PUD_SIZE in these circumstances,
then unusuable huge page sizes would be in use.
Fixes: 084bd29810 ("ARM64: mm: HugeTLB support.")
Cc: David Woods <dwoods@mellanox.com>
Signed-off-by: Steve Capper <steve.capper@arm.com>
Signed-off-by: Punit Agrawal <punit.agrawal@arm.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
also known as -
Revert "Revert "Revert "commit 66b3923a1a ("arm64: hugetlb: add
support for PTE contiguous bit")"""
Now that our hugetlb implementation is compliant with the
break-before-make requirements of the architecture and we have addressed
some of the issues in core code required for properly dealing with
hardware poisoning of contiguous hugepages let's re-enable support for
contiguous hugepages.
This reverts commit 6ae979ab39.
Signed-off-by: Punit Agrawal <punit.agrawal@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The default implementation of set_huge_swap_pte_at() does not support
hugepages consisting of contiguous ptes. Override it to add support for
contiguous hugepages.
Signed-off-by: Punit Agrawal <punit.agrawal@arm.com>
Cc: David Woods <dwoods@mellanox.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The default huge_pte_clear() implementation does not clear contiguous
page table entries when it encounters contiguous hugepages that are
supported on arm64.
Fix this by overriding the default implementation to clear all the
entries associated with contiguous hugepages.
Signed-off-by: Punit Agrawal <punit.agrawal@arm.com>
Cc: David Woods <dwoods@mellanox.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
huge_pte_offset() was updated to correctly handle swap entries for
hugepages. With the addition of the size parameter, it is now possible
to disambiguate whether the request is for a regular hugepage or a
contiguous hugepage.
Fix huge_pte_offset() for contiguous hugepages by using the size to find
the correct page table entry.
Signed-off-by: Punit Agrawal <punit.agrawal@arm.com>
Cc: David Woods <dwoods@mellanox.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
It has become apparent that one has to take special care when modifying
attributes of memory mappings that employ the contiguous bit.
Both the requirement and the architecturally correct "Break-Before-Make"
technique of updating contiguous entries can be found described in:
ARM DDI 0487A.k_iss10775, "Misprogramming of the Contiguous bit",
page D4-1762.
The huge pte accessors currently replace the attributes of contiguous
pte entries in place thus can, on certain platforms, lead to TLB
conflict aborts or even erroneous results returned from TLB lookups.
This patch adds two helper functions -
* get_clear_flush(.) - clears a contiguous entry and returns the head
pte (whilst taking care to retain dirty bit information that could
have been modified by DBM).
* clear_flush(.) that clears a contiguous entry
A tlb invalidate is performed to then ensure that there is no
possibility of multiple tlb entries being present for the same region.
Cc: David Woods <dwoods@mellanox.com>
Signed-off-by: Steve Capper <steve.capper@arm.com>
(Added helper clear_flush(), updated commit log, and some cleanup)
Signed-off-by: Punit Agrawal <punit.agrawal@arm.com>
[catalin.marinas@arm.com: remove CONFIG_ARM64_HW_AFDBM check]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This patch aims to re-structure the huge pte accessors without affecting
their functionality. Control flow is changed to reduce indentation and
expanded use is made of post for loop variable modification.
It is then much easier to add break-before-make semantics in a subsequent
patch.
Cc: David Woods <dwoods@mellanox.com>
Signed-off-by: Steve Capper <steve.capper@arm.com>
Signed-off-by: Punit Agrawal <punit.agrawal@arm.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Rather than xor pte bits in various places, use this helper function.
Cc: David Woods <dwoods@mellanox.com>
Signed-off-by: Steve Capper <steve.capper@arm.com>
Signed-off-by: Punit Agrawal <punit.agrawal@arm.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This patch adds a WARN_ON to set_huge_pte_at as the accessor assumes
that entries to be written down are all present. (There are separate
accessors to clear huge ptes).
We will need to handle the !pte_present case where memory offlining
is used on hugetlb pages. swap and migration entries will be supplied
to set_huge_pte_at in this case.
Cc: David Woods <dwoods@mellanox.com>
Signed-off-by: Steve Capper <steve.capper@arm.com>
Signed-off-by: Punit Agrawal <punit.agrawal@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
atomic_pool is setup once while init stage and never changed after
that, so it is good candidate for __ro_after_init
Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
gen_pool_first_fit_order_align() does not make use of additional data,
so pass plain NULL there.
Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Since the pte handling for hardware AF/DBM works even when the hardware
feature is not present, make the pte accessors implementation permanent
and remove the corresponding #ifdefs. The Kconfig option is kept as it
can still be used to disable the feature at the hardware level.
Reviewed-by: Will Deacon <will.deacon@arm.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Currently PTE_RDONLY is treated as a hardware only bit and not handled
by the pte_mkwrite(), pte_wrprotect() or the user PAGE_* definitions.
The set_pte_at() function is responsible for setting this bit based on
the write permission or dirty state. This patch moves the PTE_RDONLY
handling out of set_pte_at into the pte_mkwrite()/pte_wrprotect()
functions. The PAGE_* definitions to need to be updated to explicitly
include PTE_RDONLY when !PTE_WRITE.
The patch also removes the redundant PAGE_COPY(_EXEC) definitions as
they are identical to the corresponding PAGE_READONLY(_EXEC).
Reviewed-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
With the support for hardware updates of the access and dirty states,
the following pte handling functions had to be implemented using
exclusives: __ptep_test_and_clear_young(), ptep_get_and_clear(),
ptep_set_wrprotect() and ptep_set_access_flags(). To take advantage of
the LSE atomic instructions and also make the code cleaner, convert
these pte functions to use the more generic cmpxchg()/xchg().
Reviewed-by: Will Deacon <will.deacon@arm.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Steve Capper <steve.capper@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Defining the two functions as 'static inline' and exporting them
leads to the interesting case where we can use the interface
from loadable modules, but not from built-in drivers, as shown
in this link failure:
vers/nvdimm/claim.o: In function `nsio_rw_bytes':
claim.c:(.text+0x1b8): undefined reference to `arch_invalidate_pmem'
drivers/nvdimm/pmem.o: In function `pmem_dax_flush':
pmem.c:(.text+0x11c): undefined reference to `arch_wb_cache_pmem'
drivers/nvdimm/pmem.o: In function `pmem_make_request':
pmem.c:(.text+0x5a4): undefined reference to `arch_invalidate_pmem'
pmem.c:(.text+0x650): undefined reference to `arch_invalidate_pmem'
pmem.c:(.text+0x6d4): undefined reference to `arch_invalidate_pmem'
This removes the bogus 'static inline'.
Fixes: d50e071fda ("arm64: Implement pmem API support")
Acked-by: Robin Murphy <robin.murphy@arm.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Add a clean-to-point-of-persistence cache maintenance helper, and wire
up the basic architectural support for the pmem driver based on it.
Reviewed-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Robin Murphy <robin.murphy@arm.com>
[catalin.marinas@arm.com: move arch_*_pmem() functions to arch/arm64/mm/flush.c]
[catalin.marinas@arm.com: change dmb(sy) to dmb(osh)]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
__inval_cache_range() is already the odd one out among our data cache
maintenance routines as the only remaining range-based one; as we're
going to want an invalidation routine to call from C code for the pmem
API, let's tweak the prototype and name to bring it in line with the
clean operations, and to make its relationship with __dma_inv_area()
neatly mirror that of __clean_dcache_area_poc() and __dma_clean_area().
The loop clearing the early page tables gets mildly massaged in the
process for the sake of consistency.
Reviewed-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Robin Murphy <robin.murphy@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
When receiving unhandled faults from the CPU, description is very sparse.
Adding information about faults decoded from ESR.
Added defines to esr.h corresponding ESR fields. Values are based on ARM
Archtecture Reference Manual (DDI 0487B.a), section D7.2.28 ESR_ELx, Exception
Syndrome Register (ELx) (pages D7-2275 to D7-2280).
New output is of the form:
[ 77.818059] Mem abort info:
[ 77.820826] Exception class = DABT (current EL), IL = 32 bits
[ 77.826706] SET = 0, FnV = 0
[ 77.829742] EA = 0, S1PTW = 0
[ 77.832849] Data abort info:
[ 77.835713] ISV = 0, ISS = 0x00000070
[ 77.839522] CM = 0, WnR = 1
Signed-off-by: Julien Thierry <julien.thierry@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
[catalin.marinas@arm.com: fix "%lu" in a pr_alert() call]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
In a system with DBM (dirty bit management) capable agents there is a
possible race between a CPU executing ptep_set_access_flags() (maybe
non-DBM capable) and a hardware update of the dirty state (clearing of
PTE_RDONLY). The scenario:
a) the pte is writable (PTE_WRITE set), clean (PTE_RDONLY set) and old
(PTE_AF clear)
b) ptep_set_access_flags() is called as a result of a read access and it
needs to set the pte to writable, clean and young (PTE_AF set)
c) a DBM-capable agent, as a result of a different write access, is
marking the entry as young (setting PTE_AF) and dirty (clearing
PTE_RDONLY)
The current ptep_set_access_flags() implementation would set the
PTE_RDONLY bit in the resulting value overriding the DBM update and
losing the dirty state.
This patch fixes such race by setting PTE_RDONLY to the most permissive
(lowest value) of the current entry and the new one.
Fixes: 66dbd6e61a ("arm64: Implement ptep_set_access_flags() for hardware AF/DBM")
Cc: Will Deacon <will.deacon@arm.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Steve Capper <steve.capper@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
- Ensure we have a guard page after the kernel image in vmalloc
- Fix incorrect prefetch stride in copy_page
- Ensure irqs are disabled in die()
- Fix for event group validation in QCOM L2 PMU driver
- Fix requesting of PMU IRQs on AMD Seattle
- Minor cleanups and fixes
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABCgAGBQJZey1iAAoJELescNyEwWM0w/0H/1RaHFUSoFUIoL+qFD0eGXcp
hORI0sIHrUlHRONTFYMTyNko7kxELz5aDm6pc87dzBUNoUq3gxhqeEa0zsmwOPsQ
m4iDa7r9xXT+nBITe2auAg6miEMX7Ym448dDrIyKNcRK+2SyZoFqS0vr8UVqs1P/
NwdFGgpKHbV4r1Jeoosom+n7VnuyE0vYBKo8TlRks6NvQJoh2duiPkL+AsBgCfBq
fznck7jIPL4z4kf4Fp/Yz1QsmMhkDSidPmGD/m97Bj4wvEbMwf0u8Dnv1tySK5wx
NwKeN0Dn7JphtL5c5j+OGiri7gTcswjxHJ9f6d0Ez+2TwnjWFM6JNQ+xdVqFcxc=
=EpS9
-----END PGP SIGNATURE-----
Merge tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 fixes from Will Deacon:
"I'd been collecting these whilst we debugged a CPU hotplug failure,
but we ended up diagnosing that one to tglx, who has taken a fix via
the -tip tree separately.
We're seeing some NFS issues that we haven't gotten to the bottom of
yet, and we've uncovered some issues with our backtracing too so there
might be another fixes pull before we're done.
Summary:
- Ensure we have a guard page after the kernel image in vmalloc
- Fix incorrect prefetch stride in copy_page
- Ensure irqs are disabled in die()
- Fix for event group validation in QCOM L2 PMU driver
- Fix requesting of PMU IRQs on AMD Seattle
- Minor cleanups and fixes"
* tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux:
arm64: mmu: Place guard page after mapping of kernel image
drivers/perf: arm_pmu: Request PMU SPIs with IRQF_PER_CPU
arm64: sysreg: Fix unprotected macro argmuent in write_sysreg
perf: qcom_l2: fix column exclusion check
arm64/lib: copy_page: use consistent prefetch stride
arm64/numa: Drop duplicate message
perf: Convert to using %pOF instead of full_name
arm64: Convert to using %pOF instead of full_name
arm64: traps: disable irq in die()
arm64: atomics: Remove '&' from '+&' asm constraint in lse atomics
arm64: uaccess: Remove redundant __force from addr cast in __range_ok
The vast majority of virtual allocations in the vmalloc region are followed
by a guard page, which can help to avoid overruning on vma into another,
which may map a read-sensitive device.
This patch adds a guard page to the end of the kernel image mapping (i.e.
following the data/bss segments).
Cc: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Christoph noticed [1] that default DMA pool in current form overload
the DMA coherent infrastructure. In reply, Robin suggested [2] to
split the per-device vs. global pool interfaces, so allocation/release
from default DMA pool is driven by dma ops implementation.
This patch implements Robin's idea and provide interface to
allocate/release/mmap the default (aka global) DMA pool.
To make it clear that existing *_from_coherent routines work on
per-device pool rename them to *_from_dev_coherent.
[1] https://lkml.org/lkml/2017/7/7/370
[2] https://lkml.org/lkml/2017/7/7/431
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Suggested-by: Robin Murphy <robin.murphy@arm.com>
Tested-by: Andras Szemzo <sza@esh.hu>
Reviewed-by: Robin Murphy <robin.murphy@arm.com>
Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
When RLIMIT_STACK is, for example, 256MB, the current code results in a
gap between the top of the task and mmap_base of 256MB, failing to take
into account the amount by which the stack address was randomized. In
other words, the stack gets less than RLIMIT_STACK space.
Ensure that the gap between the stack and mmap_base always takes stack
randomization and the stack guard gap into account.
Obtained from Daniel Micay's linux-hardened tree.
Link: http://lkml.kernel.org/r/20170622200033.25714-3-riel@redhat.com
Signed-off-by: Daniel Micay <danielmicay@gmail.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Reported-by: Florian Weimer <fweimer@redhat.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Daniel Micay <danielmicay@gmail.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We used to read several bytes of the shadow memory in advance.
Therefore additional shadow memory mapped to prevent crash if
speculative load would happen near the end of the mapped shadow memory.
Now we don't have such speculative loads, so we no longer need to map
additional shadow memory.
Link: http://lkml.kernel.org/r/20170601162338.23540-3-aryabinin@virtuozzo.com
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Merge misc updates from Andrew Morton:
- a few hotfixes
- various misc updates
- ocfs2 updates
- most of MM
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (108 commits)
mm, memory_hotplug: move movable_node to the hotplug proper
mm, memory_hotplug: drop CONFIG_MOVABLE_NODE
mm, memory_hotplug: drop artificial restriction on online/offline
mm: memcontrol: account slab stats per lruvec
mm: memcontrol: per-lruvec stats infrastructure
mm: memcontrol: use generic mod_memcg_page_state for kmem pages
mm: memcontrol: use the node-native slab memory counters
mm: vmstat: move slab statistics from zone to node counters
mm/zswap.c: delete an error message for a failed memory allocation in zswap_dstmem_prepare()
mm/zswap.c: improve a size determination in zswap_frontswap_init()
mm/zswap.c: delete an error message for a failed memory allocation in zswap_pool_create()
mm/swapfile.c: sort swap entries before free
mm/oom_kill: count global and memory cgroup oom kills
mm: per-cgroup memory reclaim stats
mm: kmemleak: treat vm_struct as alternative reference to vmalloc'ed objects
mm: kmemleak: factor object reference updating out of scan_block()
mm: kmemleak: slightly reduce the size of some structures on 64-bit architectures
mm, mempolicy: don't check cpuset seqlock where it doesn't matter
mm, cpuset: always use seqlock when changing task's nodemask
mm, mempolicy: simplify rebinding mempolicies when updating cpusets
...
In this new subsystem we'll try to properly maintain all the generic
code related to dma-mapping, and will further consolidate arch code
into common helpers.
This pull request contains:
- removal of the DMA_ERROR_CODE macro, replacing it with calls
to ->mapping_error so that the dma_map_ops instances are
more self contained and can be shared across architectures (me)
- removal of the ->set_dma_mask method, which duplicates the
->dma_capable one in terms of functionality, but requires more
duplicate code.
- various updates for the coherent dma pool and related arm code
(Vladimir)
- various smaller cleanups (me)
-----BEGIN PGP SIGNATURE-----
iQI/BAABCAApFiEEgdbnc3r/njty3Iq9D55TZVIEUYMFAlldmw0LHGhjaEBsc3Qu
ZGUACgkQD55TZVIEUYOiKA/+Ln1mFLSf3nfTzIHa24Bbk8ZTGr0B8TD4Vmyyt8iG
oO3AeaTLn3d6ugbH/uih/tPz8PuyXsdiTC1rI/ejDMiwMTSjW6phSiIHGcStSR9X
VFNhmMFacp7QpUpvxceV0XZYKDViAoQgHeGdp3l+K5h/v4AYePV/v/5RjQPaEyOh
YLbCzETO+24mRWdJxdAqtTW4ovYhzj6XsiJ+pAjlV0+SWU6m5L5E+VAPNi1vqv1H
1O2KeCFvVYEpcnfL3qnkw2timcjmfCfeFAd9mCUAc8mSRBfs3QgDTKw3XdHdtRml
LU2WuA5cpMrOdBO4mVra2plo8E2szvpB1OZZXoKKdCpK3VGwVpVHcTvClK2Ks/3B
GDLieroEQNu2ZIUIdWXf/g2x6le3BcC9MmpkAhnGPqCZ7skaIBO5Cjpxm0zTJAPl
PPY3CMBBEktAvys6DcudOYGixNjKUuAm5lnfpcfTEklFdG0AjhdK/jZOplAFA6w4
LCiy0rGHM8ZbVAaFxbYoFCqgcjnv6EjSiqkJxVI4fu/Q7v9YXfdPnEmE0PJwCVo5
+i7aCLgrYshTdHr/F3e5EuofHN3TDHwXNJKGh/x97t+6tt326QMvDKX059Kxst7R
rFukGbrYvG8Y7yXwrSDbusl443ta0Ht7T1oL4YUoJTZp0nScAyEluDTmrH1JVCsT
R4o=
=0Fso
-----END PGP SIGNATURE-----
Merge tag 'dma-mapping-4.13' of git://git.infradead.org/users/hch/dma-mapping
Pull dma-mapping infrastructure from Christoph Hellwig:
"This is the first pull request for the new dma-mapping subsystem
In this new subsystem we'll try to properly maintain all the generic
code related to dma-mapping, and will further consolidate arch code
into common helpers.
This pull request contains:
- removal of the DMA_ERROR_CODE macro, replacing it with calls to
->mapping_error so that the dma_map_ops instances are more self
contained and can be shared across architectures (me)
- removal of the ->set_dma_mask method, which duplicates the
->dma_capable one in terms of functionality, but requires more
duplicate code.
- various updates for the coherent dma pool and related arm code
(Vladimir)
- various smaller cleanups (me)"
* tag 'dma-mapping-4.13' of git://git.infradead.org/users/hch/dma-mapping: (56 commits)
ARM: dma-mapping: Remove traces of NOMMU code
ARM: NOMMU: Set ARM_DMA_MEM_BUFFERABLE for M-class cpus
ARM: NOMMU: Introduce dma operations for noMMU
drivers: dma-mapping: allow dma_common_mmap() for NOMMU
drivers: dma-coherent: Introduce default DMA pool
drivers: dma-coherent: Account dma_pfn_offset when used with device tree
dma: Take into account dma_pfn_offset
dma-mapping: replace dmam_alloc_noncoherent with dmam_alloc_attrs
dma-mapping: remove dmam_free_noncoherent
crypto: qat - avoid an uninitialized variable warning
au1100fb: remove a bogus dma_free_nonconsistent call
MAINTAINERS: add entry for dma mapping helpers
powerpc: merge __dma_set_mask into dma_set_mask
dma-mapping: remove the set_dma_mask method
powerpc/cell: use the dma_supported method for ops switching
powerpc/cell: clean up fixed mapping dma_ops initialization
tile: remove dma_supported and mapping_error methods
xen-swiotlb: remove xen_swiotlb_set_dma_mask
arm: implement ->dma_supported instead of ->set_dma_mask
mips/loongson64: implement ->dma_supported instead of ->set_dma_mask
...
A poisoned or migrated hugepage is stored as a swap entry in the page
tables. On architectures that support hugepages consisting of
contiguous page table entries (such as on arm64) this leads to ambiguity
in determining the page table entry to return in huge_pte_offset() when
a poisoned entry is encountered.
Let's remove the ambiguity by adding a size parameter to convey
additional information about the requested address. Also fixup the
definition/usage of huge_pte_offset() throughout the tree.
Link: http://lkml.kernel.org/r/20170522133604.11392-4-punit.agrawal@arm.com
Signed-off-by: Punit Agrawal <punit.agrawal@arm.com>
Acked-by: Steve Capper <steve.capper@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: James Hogan <james.hogan@imgtec.com> (odd fixer:METAG ARCHITECTURE)
Cc: Ralf Baechle <ralf@linux-mips.org> (supporter:MIPS)
Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
Cc: Helge Deller <deller@gmx.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Rich Felker <dalias@libc.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Chris Metcalf <cmetcalf@mellanox.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We don't need to call huge_ptep_offset as our accessors are already
supplied with the pte_t *. This patch removes those spurious calls.
[punit.agrawal@arm.com: resolve rebase conflicts due to patch re-ordering]
Link: http://lkml.kernel.org/r/20170524115409.31309-3-punit.agrawal@arm.com
Signed-off-by: Steve Capper <steve.capper@arm.com>
Signed-off-by: Punit Agrawal <punit.agrawal@arm.com>
Cc: David Woods <dwoods@mellanox.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "Support for contiguous pte hugepages", v4.
This patchset updates the hugetlb code to fix issues arising from
contiguous pte hugepages (such as on arm64). Compared to v3, This
version addresses a build failure on arm64 by including two cleanup
patches. Other than the arm64 cleanups, the rest are generic code
changes. The remaining arm64 support based on these patches will be
posted separately. The patches are based on v4.12-rc2. Previous
related postings can be found at [0], [1], [2], and [3].
The patches fall into three categories -
* Patch 1-2 - arm64 cleanups required to greatly simplify changing
huge_pte_offset() prototype in Patch 5.
Catalin, Will - are you happy for these patches to go via mm?
* Patches 3-4 address issues with gup
* Patches 5-8 relate to passing a size argument to hugepage helpers to
disambiguate the size of the referred page. These changes are
required to enable arch code to properly handle swap entries for
contiguous pte hugepages.
The changes to huge_pte_offset() (patch 5) touch multiple
architectures but I've managed to minimise these changes for the
other affected functions - huge_pte_clear() and set_huge_pte_at().
These patches gate the enabling of contiguous hugepages support on arm64
which has been requested for systems using !4k page granule.
The ARM64 architecture supports two flavours of hugepages -
* Block mappings at the pud/pmd level
These are regular hugepages where a pmd or a pud page table entry
points to a block of memory. Depending on the PAGE_SIZE in use the
following size of block mappings are supported -
PMD PUD
--- ---
4K: 2M 1G
16K: 32M
64K: 512M
For certain applications/usecases such as HPC and large enterprise
workloads, folks are using 64k page size but the minimum hugepage size
of 512MB isn't very practical.
To overcome this ...
* Using the Contiguous bit
The architecture provides a contiguous bit in the translation table
entry which acts as a hint to the mmu to indicate that it is one of a
contiguous set of entries that can be cached in a single TLB entry.
We use the contiguous bit in Linux to increase the mapping size at the
pmd and pte (last) level.
The number of supported contiguous entries varies by page size and
level of the page table.
Using the contiguous bit allows additional hugepage sizes -
CONT PTE PMD CONT PMD PUD
-------- --- -------- ---
4K: 64K 2M 32M 1G
16K: 2M 32M 1G
64K: 2M 512M 16G
Of these, 64K with 4K and 2M with 64K pages have been explicitly
requested by a few different users.
Entries with the contiguous bit set are required to be modified all
together - which makes things like memory poisoning and migration
impossible to do correctly without knowing the size of hugepage being
dealt with - the reason for adding size parameter to a few of the
hugepage helpers in this series.
This patch (of 8):
As we regularly check for contiguous pte's in the huge accessors, remove
this extra check from find_num_contig.
[punit.agrawal@arm.com: resolve rebase conflicts due to patch re-ordering]
Link: http://lkml.kernel.org/r/20170524115409.31309-2-punit.agrawal@arm.com
Signed-off-by: Steve Capper <steve.capper@arm.com>
Signed-off-by: Punit Agrawal <punit.agrawal@arm.com>
Cc: David Woods <dwoods@mellanox.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently external aborts are unsupported by the guest abort
handling. Add handling for SEAs so that the host kernel reports
SEAs which occur in the guest kernel.
When an SEA occurs in the guest kernel, the guest exits and is
routed to kvm_handle_guest_abort(). Prior to this patch, a print
message of an unsupported FSC would be printed and nothing else
would happen. With this patch, the code gets routed to the APEI
handling of SEAs in the host kernel to report the SEA information.
Signed-off-by: Tyler Baicar <tbaicar@codeaurora.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Acked-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
ARM APEI extension proposal added SEA (Synchronous External Abort)
notification type for ARMv8.
Add a new GHES error source handling function for SEA. If an error
source's notification type is SEA, then this function can be registered
into the SEA exception handler. That way GHES will parse and report
SEA exceptions when they occur.
An SEA can interrupt code that had interrupts masked and is treated as
an NMI. To aid this the page of address space for mapping APEI buffers
while in_nmi() is always reserved, and ghes_ioremap_pfn_nmi() is
changed to use the helper methods to find the prot_t to map with in
the same way as ghes_ioremap_pfn_irq().
Signed-off-by: Tyler Baicar <tbaicar@codeaurora.org>
CC: Jonathan (Zhixiong) Zhang <zjzhang@codeaurora.org>
Reviewed-by: James Morse <james.morse@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
SEA exceptions are often caused by an uncorrected hardware
error, and are handled when data abort and instruction abort
exception classes have specific values for their Fault Status
Code.
When SEA occurs, before killing the process, report the error
in the kernel logs.
Update fault_info[] with specific SEA faults so that the
new SEA handler is used.
Signed-off-by: Tyler Baicar <tbaicar@codeaurora.org>
CC: Jonathan (Zhixiong) Zhang <zjzhang@codeaurora.org>
Reviewed-by: James Morse <james.morse@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
[will: use NULL instead of 0 when assigning si_addr]
Signed-off-by: Will Deacon <will.deacon@arm.com>
The dma alloc interface returns an error by return NULL, and the
mapping interfaces rely on the mapping_error method, which the dummy
ops already implement correctly.
Thus remove the DMA_ERROR_CODE define.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Robin Murphy <robin.murphy@arm.com>
The current null-pointer check in __dma_alloc_coherent and
__dma_free_coherent is not needed anymore since the
__dma_alloc/__dma_free functions won't be called if !dev (dummy ops will
be called instead).
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Olav Haugan <ohaugan@codeaurora.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Re-organise the perf accounting for fault handling in preparation for
enabling handling of hardware poison faults in subsequent commits. The
change updates perf accounting to be inline with the behaviour on
x86.
With this update, the perf fault accounting -
* Always report PERF_COUNT_SW_PAGE_FAULTS
* Doesn't report anything else for VM_FAULT_ERROR (which includes
hwpoison faults)
* Reports PERF_COUNT_SW_PAGE_FAULTS_MAJ if it's a major
fault (indicated by VM_FAULT_MAJOR)
* Otherwise, reports PERF_COUNT_SW_PAGE_FAULTS_MIN
Signed-off-by: Punit Agrawal <punit.agrawal@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Add VM_FAULT_HWPOISON[_LARGE] handling to the arm64 page fault
handler. Handling of VM_FAULT_HWPOISON[_LARGE] is very similar
to VM_FAULT_OOM, the only difference is that a different si_code
(BUS_MCEERR_AR) is passed to user space and si_addr_lsb field is
initialized.
Signed-off-by: Jonathan (Zhixiong) Zhang <zjzhang@codeaurora.org>
Signed-off-by: Tyler Baicar <tbaicar@codeaurora.org>
(fix new __do_user_fault call-site)
Signed-off-by: Punit Agrawal <punit.agrawal@arm.com>
Acked-by: Steve Capper <steve.capper@arm.com>
Tested-by: Manoj Iyer <manoj.iyer@canonical.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
When memory failure is enabled, a poisoned hugepage pte is marked as a
swap entry. huge_pte_offset() does not return the poisoned page table
entries when it encounters PUD/PMD hugepages.
This behaviour of huge_pte_offset() leads to error such as below when
munmap is called on poisoned hugepages.
[ 344.165544] mm/pgtable-generic.c:33: bad pmd 000000083af00074.
Fix huge_pte_offset() to return the poisoned pte which is then
appropriately handled by the generic layer code.
Signed-off-by: Punit Agrawal <punit.agrawal@arm.com>
Acked-by: Steve Capper <steve.capper@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: David Woods <dwoods@mellanox.com>
Tested-by: Manoj Iyer <manoj.iyer@canonical.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Whilst debugging a remote crash, I noticed that show_pte is unhelpful
when it comes to describing the structure of the page table being walked.
This is easily fixed by printing out the page table (swapper vs user),
page size and virtual address size when displaying the PGD address.
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Print out the name of the file associated with the vma that faulted.
This is usually the executable or shared library name. We already print
out the task name, but also printing the library name is useful for
pinpointing bugs to libraries.
Also print the base address and size of the vma, which together with the
PC (printed by __show_regs) gives the offset into the library.
Fault prints now look like:
test[2361]: unhandled level 2 translation fault (11) at 0x00000012, esr 0x92000006, in libfoo.so[ffffa0145000+1000]
This is already done on x86, for more details see commit 03252919b7
("x86: print which shared library/executable faulted in segfault etc.
messages v3").
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
When we take a fault from EL0 that can't be handled, we print out the
page table entries associated with the faulting address. This allows
userspace to print out any current page table entries, including kernel
(TTBR1) entries. Exposing kernel mappings like this could pose a
security risk, so don't print out page table information on EL0 faults.
(But still print it out for EL1 faults.) This also follows the same
behaviour as x86, printing out page table entries on kernel mode faults
but not user mode faults.
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
When we take a fault that can't be handled, we print out the page table
entries associated with the faulting address. In some cases we currently
print out the wrong entries. For a faulting TTBR1 address, we sometimes
print out TTBR0 table entries instead, and for a faulting TTBR0 address
we sometimes print out TTBR1 table entries. Fix this by choosing the
tables based on the faulting address.
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com>
[will: zero-extend addrs to 64-bit, don't walk swapper w/ TTBR0 addr]
Signed-off-by: Will Deacon <will.deacon@arm.com>
When running lscpu on an AArch64 system that has SMBIOS version 2.0
tables, it will segfault in the following way:
Unable to handle kernel paging request at virtual address ffff8000bfff0000
pgd = ffff8000f9615000
[ffff8000bfff0000] *pgd=0000000000000000
Internal error: Oops: 96000007 [#1] PREEMPT SMP
Modules linked in:
CPU: 0 PID: 1284 Comm: lscpu Not tainted 4.11.0-rc3+ #103
Hardware name: QEMU QEMU Virtual Machine, BIOS 0.0.0 02/06/2015
task: ffff8000fa78e800 task.stack: ffff8000f9780000
PC is at __arch_copy_to_user+0x90/0x220
LR is at read_mem+0xcc/0x140
This is caused by the fact that lspci issues a read() on /dev/mem at the
offset where it expects to find the SMBIOS structure array. However, this
region is classified as EFI_RUNTIME_SERVICE_DATA (as per the UEFI spec),
and so it is omitted from the linear mapping.
So let's restrict /dev/mem read/write access to those areas that are
covered by the linear region.
Reported-by: Alexander Graf <agraf@suse.de>
Fixes: 4dffbfc48d ("arm64/efi: mark UEFI reserved regions as MEMBLOCK_NOMAP")
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
arm64's mm/mmu.c uses vm_area_add_early, struct vm_area and other
definitions but relies on implict inclusion of linux/vmalloc.h which
means that changes in other headers could break the build. Thus, add an
explicit include.
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Tobias Klauser <tklauser@distanz.ch>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Generic code expects show_regs() to also dump the stack, but arm64's
show_reg() does not do this. Some arm64 callers of show_regs() *only*
want the registers dumped, without the stack.
To enable generic code to work as expected, we need to make
show_regs() dump the stack. Where we only want the registers dumped,
we must use __show_regs().
This patch updates code to use __show_regs() where only registers are
desired. A subsequent patch will modify show_regs().
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
This includes:
* Some code optimizations for the Intel VT-d driver
* Code to switch off a previously enabled Intel IOMMU
* Support for 'struct iommu_device' for OMAP, Rockchip and
Mediatek IOMMUs
* Some header optimizations for IOMMU core code headers and a
few fixes that became necessary in other parts of the kernel
because of that
* ACPI/IORT updates and fixes
* Some Exynos IOMMU optimizations
* Code updates for the IOMMU dma-api code to bring it closer to
use per-cpu iova caches
* New command-line option to set default domain type allocated
by the iommu core code
* Another command line option to allow the Intel IOMMU switched
off in a tboot environment
* ARM/SMMU: TLB sync optimisations for SMMUv2, Support for using
an IDENTITY domain in conjunction with DMA ops, Support for
SMR masking, Support for 16-bit ASIDs (was previously broken)
* Various other small fixes and improvements
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2
iQIcBAABAgAGBQJZEY4XAAoJECvwRC2XARrjth0QAKV56zjnFclv39aDo6eCq9CT
51+XT4bPY5VKQ2+Jx76TBNObHmGK+8KEMHfT9khpWJtFCDyy25SGckLry1nYqmZs
tSTsbj4sOeCyKzOLITlRN9/OzKXkjKAxYuq+sQZZFDFYf3kCM/eag0dGAU6aVLNp
tkIal3CSpGjCQ9M5JohrtQ1mwiGqCIkMIgvnBjRw+bfpLnQNG+VL6VU2G3RAkV2b
5Vbdoy+P7ZQnJSZr/bibYL2BaQs2diR4gOppT5YbsfniMq4QYSjheu1xBboGX8b7
sx8yuPi4370irSan0BDvlvdQdjBKIRiDjfGEKDhRwPhtvN6JREGakhEOC8MySQ37
mP96B72Lmd+a7DEl5udOL7tQILA0DcUCX0aOyF714khnZuFU5tVlCotb/36xeJ+T
FPc3RbEVQ90m8dYU6MNJ+ahtb/ZapxGTRfisIigB6wlnZa0Evabp9EJSce6oJMkm
whbBhDubeEU18n9XAaofMbu+P2LAzq8cxiRMlsDvT4mIy7jO86jjCmhpu1Tfn2GY
4wrEQZdWOMvhUsIhObXA0aC3BzC506uvnKPW3qy041RaxBuelWiBi29qzYbhxzkr
DLDpWbUZNYPyFJjttpavyQb2/XRduBTJdVP1pQpkJNDsW5jLiBkpSqm9xNADapRY
vLSYRX0JCIquaD+PAuxn
=3aE8
-----END PGP SIGNATURE-----
Merge tag 'iommu-updates-v4.12' of git://git.kernel.org/pub/scm/linux/kernel/git/joro/iommu
Pull IOMMU updates from Joerg Roedel:
- code optimizations for the Intel VT-d driver
- ability to switch off a previously enabled Intel IOMMU
- support for 'struct iommu_device' for OMAP, Rockchip and Mediatek
IOMMUs
- header optimizations for IOMMU core code headers and a few fixes that
became necessary in other parts of the kernel because of that
- ACPI/IORT updates and fixes
- Exynos IOMMU optimizations
- updates for the IOMMU dma-api code to bring it closer to use per-cpu
iova caches
- new command-line option to set default domain type allocated by the
iommu core code
- another command line option to allow the Intel IOMMU switched off in
a tboot environment
- ARM/SMMU: TLB sync optimisations for SMMUv2, Support for using an
IDENTITY domain in conjunction with DMA ops, Support for SMR masking,
Support for 16-bit ASIDs (was previously broken)
- various other small fixes and improvements
* tag 'iommu-updates-v4.12' of git://git.kernel.org/pub/scm/linux/kernel/git/joro/iommu: (63 commits)
soc/qbman: Move dma-mapping.h include to qman_priv.h
soc/qbman: Fix implicit header dependency now causing build fails
iommu: Remove trace-events include from iommu.h
iommu: Remove pci.h include from trace/events/iommu.h
arm: dma-mapping: Don't override dma_ops in arch_setup_dma_ops()
ACPI/IORT: Fix CONFIG_IOMMU_API dependency
iommu/vt-d: Don't print the failure message when booting non-kdump kernel
iommu: Move report_iommu_fault() to iommu.c
iommu: Include device.h in iommu.h
x86, iommu/vt-d: Add an option to disable Intel IOMMU force on
iommu/arm-smmu: Return IOVA in iova_to_phys when SMMU is bypassed
iommu/arm-smmu: Correct sid to mask
iommu/amd: Fix incorrect error handling in amd_iommu_bind_pasid()
iommu: Make iommu_bus_notifier return NOTIFY_DONE rather than error code
omap3isp: Remove iommu_group related code
iommu/omap: Add iommu-group support
iommu/omap: Make use of 'struct iommu_device'
iommu/omap: Store iommu_dev pointer in arch_data
iommu/omap: Move data structures to omap-iommu.h
iommu/omap: Drop legacy-style device support
...
The set_memory_* functions have moved to set_memory.h. Use that header
explicitly.
Link: http://lkml.kernel.org/r/1488920133-27229-4-git-send-email-labbott@redhat.com
Signed-off-by: Laura Abbott <labbott@redhat.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
- kdump support, including two necessary memblock additions:
memblock_clear_nomap() and memblock_cap_memory_range()
- ARMv8.3 HWCAP bits for JavaScript conversion instructions, complex
numbers and weaker release consistency
- arm64 ACPI platform MSI support
- arm perf updates: ACPI PMU support, L3 cache PMU in some Qualcomm
SoCs, Cortex-A53 L2 cache events and DTLB refills, MAINTAINERS update
for DT perf bindings
- architected timer errata framework (the arch/arm64 changes only)
- support for DMA_ATTR_FORCE_CONTIGUOUS in the arm64 iommu DMA API
- arm64 KVM refactoring to use common system register definitions
- remove support for ASID-tagged VIVT I-cache (no ARMv8 implementation
using it and deprecated in the architecture) together with some
I-cache handling clean-up
- PE/COFF EFI header clean-up/hardening
- define BUG() instruction without CONFIG_BUG
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJZDKMoAAoJEGvWsS0AyF7xR+YP/0EMEz5MDfCv0PVYj7/AIa0G
Zphl7OhysIkeDAz7urXw9Jdl0NfORNIqmD1vZNVSc321IyNp56Od+kWd82lBrOWB
ad3nNT67pEmu0pAW7CO48ju3rTesEnEl3ra45E1tULeLihmv93jc4ZlfXgumlKq3
/GE84XJ5ZFmluuhq1zgNefeUtyl1tbxTxHJ74+INF7dTd/5sJcphpqS4Dzpb+msT
20WYliccQCBF9zBFUYHc2KjcXXKRQGxLulGS3MuoN2DLkD+U9YyR/OmA7SoXh2J2
WXC5b0x856xTQJFCJ39pb7rw5xHjt3l5zfU3VLSvqEVL/+asBqCcgGNtNUgOW1Es
dEHC6bc66Ley6mn7bbpFE3MK8D+K5q8HwMF6G5KDtIVB6DB/iQ6kzi5aXKoupxtb
1EuU4OW6cDhmOFQYjgIDofLgqbmVvJofdF6+NfxasfZmWrMgHzv0rYvaCDnAV/Tr
t7bhH7hf9/KcP/wpk86O2AMKKpgoNTqe1Qy8cWVFFLnut567Pb6zs/L3ZXfleoLv
t613yM8Zj2fE05ja8ylMDjaasidNpXGttb08/4kAn06Daaoueqla0jmduAhy4aaV
dQ3OFP9lJ5MFaFnMMTPfU3vtvNLMHuo9MZsYCrv5zCaNNs3lpAPUiPNh588ZscKa
sWx4PEiaCi+wcOsLsJvh
=SDkm
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Catalin Marinas:
- kdump support, including two necessary memblock additions:
memblock_clear_nomap() and memblock_cap_memory_range()
- ARMv8.3 HWCAP bits for JavaScript conversion instructions, complex
numbers and weaker release consistency
- arm64 ACPI platform MSI support
- arm perf updates: ACPI PMU support, L3 cache PMU in some Qualcomm
SoCs, Cortex-A53 L2 cache events and DTLB refills, MAINTAINERS update
for DT perf bindings
- architected timer errata framework (the arch/arm64 changes only)
- support for DMA_ATTR_FORCE_CONTIGUOUS in the arm64 iommu DMA API
- arm64 KVM refactoring to use common system register definitions
- remove support for ASID-tagged VIVT I-cache (no ARMv8 implementation
using it and deprecated in the architecture) together with some
I-cache handling clean-up
- PE/COFF EFI header clean-up/hardening
- define BUG() instruction without CONFIG_BUG
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (92 commits)
arm64: Fix the DMA mmap and get_sgtable API with DMA_ATTR_FORCE_CONTIGUOUS
arm64: Print DT machine model in setup_machine_fdt()
arm64: pmu: Wire-up Cortex A53 L2 cache events and DTLB refills
arm64: module: split core and init PLT sections
arm64: pmuv3: handle pmuv3+
arm64: Add CNTFRQ_EL0 trap handler
arm64: Silence spurious kbuild warning on menuconfig
arm64: pmuv3: use arm_pmu ACPI framework
arm64: pmuv3: handle !PMUv3 when probing
drivers/perf: arm_pmu: add ACPI framework
arm64: add function to get a cpu's MADT GICC table
drivers/perf: arm_pmu: split out platform device probe logic
drivers/perf: arm_pmu: move irq request/free into probe
drivers/perf: arm_pmu: split cpu-local irq request/free
drivers/perf: arm_pmu: rename irq request/free functions
drivers/perf: arm_pmu: handle no platform_device
drivers/perf: arm_pmu: simplify cpu_pmu_request_irqs()
drivers/perf: arm_pmu: factor out pmu registration
drivers/perf: arm_pmu: fold init into alloc
drivers/perf: arm_pmu: define armpmu_init_fn
...
While honouring the DMA_ATTR_FORCE_CONTIGUOUS on arm64 (commit
44176bb38fa4: "arm64: Add support for DMA_ATTR_FORCE_CONTIGUOUS to
IOMMU"), the existing uses of dma_mmap_attrs() and dma_get_sgtable()
have been broken by passing a physically contiguous vm_struct with an
invalid pages pointer through the common iommu API.
Since the coherent allocation with DMA_ATTR_FORCE_CONTIGUOUS uses CMA,
this patch simply reuses the existing swiotlb logic for mmap and
get_sgtable.
Note that the current implementation of get_sgtable (both swiotlb and
iommu) is broken if dma_declare_coherent_memory() is used since such
memory does not have a corresponding struct page. To be addressed in a
subsequent patch.
Fixes: 44176bb38f ("arm64: Add support for DMA_ATTR_FORCE_CONTIGUOUS to IOMMU")
Reported-by: Andrzej Hajda <a.hajda@samsung.com>
Cc: Geert Uytterhoeven <geert+renesas@glider.be>
Acked-by: Robin Murphy <robin.murphy@arm.com>
Tested-by: Andrzej Hajda <a.hajda@samsung.com>
Reviewed-by: Andrzej Hajda <a.hajda@samsung.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The following commit:
commit 815dd18788
Author: Bart Van Assche <bart.vanassche@sandisk.com>
Date: Fri Jan 20 13:04:04 2017 -0800
treewide: Consolidate get_dma_ops() implementations
rearranges get_dma_ops in a way that xen_dma_ops are not returned when
running on Xen anymore, dev->dma_ops is returned instead (see
arch/arm/include/asm/dma-mapping.h:get_arch_dma_ops and
include/linux/dma-mapping.h:get_dma_ops).
Fix the problem by storing dev->dma_ops in dev_archdata, and setting
dev->dma_ops to xen_dma_ops. This way, xen_dma_ops is returned naturally
by get_dma_ops. The Xen code can retrieve the original dev->dma_ops from
dev_archdata when needed. It also allows us to remove __generic_dma_ops
from common headers.
Signed-off-by: Stefano Stabellini <sstabellini@kernel.org>
Tested-by: Julien Grall <julien.grall@arm.com>
Suggested-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: <stable@vger.kernel.org> [4.11+]
CC: linux@armlinux.org.uk
CC: catalin.marinas@arm.com
CC: will.deacon@arm.com
CC: boris.ostrovsky@oracle.com
CC: jgross@suse.com
CC: Julien Grall <julien.grall@arm.com>
The include file does not need any PCI specifics, so remove
that include. Also fix the places that relied on it.
Signed-off-by: Joerg Roedel <jroedel@suse.de>
With arch_setup_dma_ops now being called late during device's probe after
the device's iommu is probed, the notifier trick required to handle the
early setup of dma_ops before the iommu group gets created is not
required. So removing the notifier's here.
Tested-by: Marek Szyprowski <m.szyprowski@samsung.com>
Tested-by: Hanjun Guo <hanjun.guo@linaro.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Sricharan R <sricharan@codeaurora.org>
[rm: clean up even more]
Signed-off-by: Robin Murphy <robin.murphy@arm.com>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
The use of the contiguous bit by our hugetlb implementation violates
the break-before-make requirements of the architecture and can lead to
silent data corruption or TLB conflict aborts. Once again, disable these
hugetlb sizes whilst it gets worked out.
This reverts commit ab2e1b8923.
Conflicts:
arch/arm64/mm/hugetlbpage.c
Signed-off-by: Will Deacon <will.deacon@arm.com>
If a page is marked read only we should print out that fact,
instead of printing out that there was a page fault. Right now we
get a cryptic error message that something went wrong with an
unhandled fault, but we don't evaluate the esr to figure out that
it was a read/write permission fault.
Instead of seeing:
Unable to handle kernel paging request at virtual address ffff000008e460d8
pgd = ffff800003504000
[ffff000008e460d8] *pgd=0000000083473003, *pud=0000000083503003, *pmd=0000000000000000
Internal error: Oops: 9600004f [#1] PREEMPT SMP
we'll see:
Unable to handle kernel write to read-only memory at virtual address ffff000008e760d8
pgd = ffff80003d3de000
[ffff000008e760d8] *pgd=0000000083472003, *pud=0000000083435003, *pmd=0000000000000000
Internal error: Oops: 9600004f [#1] PREEMPT SMP
We also add a userspace address check into is_permission_fault()
so that the function doesn't return true for ttbr0 PAN faults
when it shouldn't.
Reviewed-by: James Morse <james.morse@arm.com>
Tested-by: James Morse <james.morse@arm.com>
Acked-by: Laura Abbott <labbott@redhat.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Stephen Boyd <stephen.boyd@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Arch-specific functions are added to allow for implementing a crash dump
file interface, /proc/vmcore, which can be viewed as a ELF file.
A user space tool, like kexec-tools, is responsible for allocating
a separate region for the core's ELF header within crash kdump kernel
memory and filling it in when executing kexec_load().
Then, its location will be advertised to crash dump kernel via a new
device-tree property, "linux,elfcorehdr", and crash dump kernel preserves
the region for later use with reserve_elfcorehdr() at boot time.
On crash dump kernel, /proc/vmcore will access the primary kernel's memory
with copy_oldmem_page(), which feeds the data page-by-page by ioremap'ing
it since it does not reside in linear mapping on crash dump kernel.
Meanwhile, elfcorehdr_read() is simple as the region is always mapped.
Signed-off-by: AKASHI Takahiro <takahiro.akashi@linaro.org>
Reviewed-by: James Morse <james.morse@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Since arch_kexec_protect_crashkres() removes a mapping for crash dump
kernel image, the loaded data won't be preserved around hibernation.
In this patch, helper functions, crash_prepare_suspend()/
crash_post_resume(), are additionally called before/after hibernation so
that the relevant memory segments will be mapped again and preserved just
as the others are.
In addition, to minimize the size of hibernation image, crash_is_nosave()
is added to pfn_is_nosave() in order to recognize only the pages that hold
loaded crash dump kernel image as saveable. Hibernation excludes any pages
that are marked as Reserved and yet "nosave."
Signed-off-by: AKASHI Takahiro <takahiro.akashi@linaro.org>
Reviewed-by: James Morse <james.morse@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
arch_kexec_protect_crashkres() and arch_kexec_unprotect_crashkres()
are meant to be called by kexec_load() in order to protect the memory
allocated for crash dump kernel once the image is loaded.
The protection is implemented by unmapping the relevant segments in crash
dump kernel memory, rather than making it read-only as other archs do,
to prevent coherency issues due to potential cache aliasing (with
mismatched attributes).
Page-level mappings are consistently used here so that we can change
the attributes of segments in page granularity as well as shrink the region
also in page granularity through /sys/kernel/kexec_crash_size, putting
the freed memory back to buddy system.
Signed-off-by: AKASHI Takahiro <takahiro.akashi@linaro.org>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This function validates and invalidates PTE entries, and will be utilized
in kdump to protect loaded crash dump kernel image.
Signed-off-by: AKASHI Takahiro <takahiro.akashi@linaro.org>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
"crashkernel=" kernel parameter specifies the size (and optionally
the start address) of the system ram to be used by crash dump kernel.
reserve_crashkernel() will allocate and reserve that memory at boot time
of primary kernel.
The memory range will be exposed to userspace as a resource named
"Crash kernel" in /proc/iomem.
Signed-off-by: AKASHI Takahiro <takahiro.akashi@linaro.org>
Signed-off-by: Mark Salter <msalter@redhat.com>
Signed-off-by: Pratyush Anand <panand@redhat.com>
Reviewed-by: James Morse <james.morse@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Crash dump kernel uses only a limited range of available memory as System
RAM. On arm64 kdump, This memory range is advertised to crash dump kernel
via a device-tree property under /chosen,
linux,usable-memory-range = <BASE SIZE>
Crash dump kernel reads this property at boot time and calls
memblock_cap_memory_range() to limit usable memory which are listed either
in UEFI memory map table or "memory" nodes of a device tree blob.
Signed-off-by: AKASHI Takahiro <takahiro.akashi@linaro.org>
Reviewed-by: Geoff Levand <geoff@infradead.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
After 52d7523 (arm64: mm: allow the kernel to handle alignment faults on
user accesses) commit user-land accesses that produce unaligned exceptions
like in case of aarch32 ldm/stm/ldrd/strd instructions operating on
unaligned memory received by user-land as SIGSEGV. It is wrong, it should
be reported as SIGBUS as it was before 52d7523 commit.
Changed do_bad_area function to take signal and code parameters out of esr
value using fault_info table, so in case of do_alignment_fault fault
user-land will receive SIGBUS. Wrapped access to fault_info table into
esr_to_fault_info function.
Cc: <stable@vger.kernel.org>
Fixes: 52d7523 (arm64: mm: allow the kernel to handle alignment faults on user accesses)
Signed-off-by: Victor Kamensky <kamensky@cisco.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
This is the third attempt at enabling the use of contiguous hints for
kernel mappings. The most recent attempt 0bfc445dec was reverted after
it turned out that updating permission attributes on live contiguous ranges
may result in TLB conflicts. So this time, the contiguous hint is not set
for .rodata or for the linear alias of .text/.rodata, both of which are
mapped read-write initially, and remapped read-only at a later stage.
(Note that the latter region could also be unmapped and remapped again
with updated permission attributes, given that the region, while live, is
only mapped for the convenience of the hibernation code, but that also
means the TLB footprint is negligible anyway, so why bother)
This enables the following contiguous range sizes for the virtual mapping
of the kernel image, and for the linear mapping:
granule size | cont PTE | cont PMD |
-------------+------------+------------+
4 KB | 64 KB | 32 MB |
16 KB | 2 MB | 1 GB* |
64 KB | 2 MB | 16 GB* |
* Only when built for 3 or more levels of translation. This is due to the
fact that a 2 level configuration only consists of PGDs and PTEs, and the
added complexity of dealing with folded PMDs is not justified considering
that 16 GB contiguous ranges are likely to be ignored by the hardware (and
16k/2 levels is a niche configuration)
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The routines __pud_populate and __pmd_populate only create a table
entry at their respective level which refers to the next level page
by its physical address, so there is no reason to map this page and
then unmap it immediately after.
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
In preparation of extending the policy for manipulating kernel mappings
with whether or not contiguous hints may be used in the page tables,
replace the bool 'page_mappings_only' with a flags field and a flag
NO_BLOCK_MAPPINGS.
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
A mapping with the contiguous bit cannot be safely manipulated while
live, regardless of whether the bit changes between the old and new
mapping. So take this into account when deciding whether the change
is safe.
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The debug_pagealloc facility manipulates kernel mappings in the linear
region at page granularity to detect out of bounds or use-after-free
accesses. Since the kernel segments are not allocated dynamically,
there is no point in taking the debug_pagealloc_enabled flag into
account for them, and we can use block mappings unconditionally.
Note that this applies equally to the linear alias of text/rodata:
we will never have dynamic allocations there given that the same
memory is statically in use by the kernel image.
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Align the function prototype of alloc_init_pte() with its pmd and pud
counterparts by replacing the pfn parameter with the equivalent physical
address.
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
To avoid having mappings that are writable and executable at the same
time, split the init region into a .init.text region that is mapped
read-only, and a .init.data region that is mapped non-executable.
This is possible now that the alternative patching occurs via the linear
mapping, and the linear alias of the init region is always mapped writable
(but never executable).
Since the alternatives descriptions themselves are read-only data, move
those into the .init.text region.
Reviewed-by: Laura Abbott <labbott@redhat.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Now that alternatives patching code no longer relies on the primary
mapping of .text being writable, we can remove the code that removes
the writable permissions post-init time, and map it read-only from
the outset.
To preserve the existing behavior under rodata=off, which is relied
upon by external debuggers to manage software breakpoints (as pointed
out by Mark), add an early_param() check for rodata=, and use RWX
permissions if it set to 'off'.
Reviewed-by: Laura Abbott <labbott@redhat.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
One important rule of thumb when desiging a secure software system is
that memory should never be writable and executable at the same time.
We mostly adhere to this rule in the kernel, except at boot time, when
regions may be mapped RWX until after we are done applying alternatives
or making other one-off changes.
For the alternative patching, we can improve the situation by applying
the fixups via the linear mapping, which is never mapped with executable
permissions. So map the linear alias of .text with RW- permissions
initially, and remove the write permissions as soon as alternative
patching has completed.
Reviewed-by: Laura Abbott <labbott@redhat.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
In preparation of refactoring the kernel mapping logic so that text regions
are never mapped writable, which would require adding explicit TLB
maintenance to new call sites of create_mapping_late() (which is currently
invoked twice from the same function), move the TLB maintenance from the
call site into create_mapping_late() itself, and change it from a full
TLB flush into a flush by VA, which is more appropriate here.
Also, given that create_mapping_late() has evolved into a routine that only
updates protection bits on existing mappings, rename it to
update_mapping_prot()
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Add support for allocating physically contiguous DMA buffers on arm64
systems with an IOMMU. This can be useful when two or more devices
with different memory requirements are involved in buffer sharing.
Note that as this uses the CMA allocator, setting the
DMA_ATTR_FORCE_CONTIGUOUS attribute has a runtime-dependency on
CONFIG_DMA_CMA, just like on arm32.
For arm64 systems using swiotlb, no changes are needed to support the
allocation of physically contiguous DMA buffers:
- swiotlb always uses physically contiguous buffers (up to
IO_TLB_SEGSIZE = 128 pages),
- arm64's __dma_alloc_coherent() already calls
dma_alloc_from_contiguous() when CMA is available.
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Acked-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: Robin Murphy <robin.murphy@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
cachetype.h and cache.h are small and both obviously related to caches.
Merge them together to reduce clutter.
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
As a recent change to ARMv8, ASID-tagged VIVT I-caches are removed
retrospectively from the architecture. Consequently, we don't need to
support them in Linux either.
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Booting a v4.11-rc1 kernel with DEBUG_VIRTUAL and KASAN enabled produces
the following splat (trimmed for brevity):
[ 0.000000] virt_to_phys used for non-linear address: ffff200008080000 (0xffff200008080000)
[ 0.000000] WARNING: CPU: 0 PID: 0 at arch/arm64/mm/physaddr.c:14 __virt_to_phys+0x48/0x70
[ 0.000000] PC is at __virt_to_phys+0x48/0x70
[ 0.000000] LR is at __virt_to_phys+0x48/0x70
[ 0.000000] Call trace:
[ 0.000000] [<ffff2000080b1ac0>] __virt_to_phys+0x48/0x70
[ 0.000000] [<ffff20000a03b86c>] kasan_init+0x1c0/0x498
[ 0.000000] [<ffff20000a034018>] setup_arch+0x2fc/0x948
[ 0.000000] [<ffff20000a030c68>] start_kernel+0xb8/0x570
[ 0.000000] [<ffff20000a0301e8>] __primary_switched+0x6c/0x74
This is because we use virt_to_pfn() on a kernel image address when
trying to figure out its nid, so that we can allocate its shadow from
the same node.
As with other recent changes, this patch uses lm_alias() to solve this.
We could instead use NUMA_NO_NODE, as x86 does for all shadow
allocations, though we'll likely want the "real" memory shadow to be
backed from its corresponding nid anyway, so we may as well be
consistent and find the nid for the image shadow.
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Acked-by: Laura Abbott <labbott@redhat.com>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
We are going to split <linux/sched/debug.h> out of <linux/sched.h>, which
will have to be picked up from other headers and a couple of .c files.
Create a trivial placeholder <linux/sched/debug.h> file that just
maps to <linux/sched.h> to make this patch obviously correct and
bisectable.
Include the new header in the files that are going to need it.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We are going to split more MM APIs out of <linux/sched.h>, which
will have to be picked up from a couple of .c files.
The APIs that we are going to move are:
arch_pick_mmap_layout()
arch_get_unmapped_area()
arch_get_unmapped_area_topdown()
mm_update_next_owner()
Include the header in the files that are going to need it.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We are going to split <linux/sched/signal.h> out of <linux/sched.h>, which
will have to be picked up from other headers and a couple of .c files.
Create a trivial placeholder <linux/sched/signal.h> file that just
maps to <linux/sched.h> to make this patch obviously correct and
bisectable.
Include the new header in the files that are going to need it.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
workaround
- Revert contiguous bit support due to TLB conflict aborts in simulation
- Don't treat all CPU ID register fields as 4-bit quantities
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABCgAGBQJYsHbpAAoJELescNyEwWM03xgH/jPZwxdS0UL1WftjqE7VXBI2
5STwLBXB8cBr527QHBY7VCbtEQZAFnij7vJ8Eqe6nA8SMDbC1RTJ2ZkiPq0rKjVg
pVJEdd3jEcRb3HNam90tOBTjlsyuR5Eagj0RI07j+YgsKhCxVTf6wu7z2StKhbuk
o8P3fbV9JA9c68JR2MR7Z2GFe2pZW0vbRrKoSx6CdoCU8Wod46BUq+P+BoeVR+vZ
593ERXnDi9tzoWFLyJYobO0PVuoipjX4e6+NxX+hPRKck6gJByainhnl63gGil9L
vavJ2r3GK4pO5qAsusx6eXQksyR9lX5tGPk7XgJi+M+WMd4Moe+/zNXd4NADGww=
=aG7Y
-----END PGP SIGNATURE-----
Merge tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 fixes from Will Deacon:
"The main fix here addresses a kernel panic triggered on Qualcomm
QDF2400 due to incorrect register usage in an erratum workaround
introduced during the merge window.
Summary:
- Fix kernel panic on specific Qualcomm platform due to broken
erratum workaround
- Revert contiguous bit support due to TLB conflict aborts in
simulation
- Don't treat all CPU ID register fields as 4-bit quantities"
* tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux:
arm64/cpufeature: check correct field width when updating sys_val
Revert "arm64: mm: set the contiguous bit for kernel mappings where appropriate"
arm64: Avoid clobbering mm in erratum workaround on QDF2400
Bart Van Assche noted that the ib DMA mapping code was significantly
similar enough to the core DMA mapping code that with a few changes
it was possible to remove the IB DMA mapping code entirely and
switch the RDMA stack to use the core DMA mapping code. This resulted
in a nice set of cleanups, but touched the entire tree. This branch
will be submitted separately to Linus at the end of the merge window
as per normal practice for tree wide changes like this.
-----BEGIN PGP SIGNATURE-----
iQIcBAABAgAGBQJYo06oAAoJELgmozMOVy/d9Z8QALedWHdu98St1L0u2c8sxnR9
2zo/4sF5Vb9u7FpmdIX32L4SQ9s9KhPE8Qp8NtZLf9v10zlDebIRJDpXknXtKooV
CAXxX4sxBXV27/UrhbZEfXiPrmm6ccJFyIfRnMU6NlMqh2AtAsRa5AC2/RMp8oUD
Med97PFiF0o6TD22/UH1VFbRpX1zjaKyqm7a3as5sJfzNA+UGIZAQ7Euz8000DKZ
xCgVLTEwS0FmOujtBkCst7xa9TjuqR1HLOB4DdGvAhP6BHdz2yamM7Qmh9NN+NEX
0BtjsuXomtn6j6AszGC+bpipCZh3NUigcwoFAARXCYFHibBvo4DPdFeGsraFgXdy
1+KyR8CCeQG3Aly5Vwr264RFPGkGpwMj8PsBlXgQVtrlg4rriaCzOJNmIIbfdADw
ftqhxBOzReZw77aH2s+9p2ILRfcAmPqhynLvFGFo9LBvsik8LVso7YgZN0xGxwcI
IjI/XGC8UskPVsIZBIYA6sl2bYzgOjtBIHiXjRrPlW3uhduIXLrvKFfLPP/5XLAG
ehLXK+J0bfsyY9ClmlNS8oH/WdLhXAyy/KNmnj5bRRm9qg6BRJR3bsOBhZJODuoC
XgEXFfF6/7roNESWxowff7pK0rTkRg/m/Pa4VQpeO+6NWHE7kgZhL6kyIp5nKcwS
3e7mgpcwC+3XfA/6vU3F
=e0Si
-----END PGP SIGNATURE-----
Merge tag 'for-next-dma_ops' of git://git.kernel.org/pub/scm/linux/kernel/git/dledford/rdma
Pull rdma DMA mapping updates from Doug Ledford:
"Drop IB DMA mapping code and use core DMA code instead.
Bart Van Assche noted that the ib DMA mapping code was significantly
similar enough to the core DMA mapping code that with a few changes it
was possible to remove the IB DMA mapping code entirely and switch the
RDMA stack to use the core DMA mapping code.
This resulted in a nice set of cleanups, but touched the entire tree
and has been kept separate for that reason."
* tag 'for-next-dma_ops' of git://git.kernel.org/pub/scm/linux/kernel/git/dledford/rdma: (37 commits)
IB/rxe, IB/rdmavt: Use dma_virt_ops instead of duplicating it
IB/core: Remove ib_device.dma_device
nvme-rdma: Switch from dma_device to dev.parent
RDS: net: Switch from dma_device to dev.parent
IB/srpt: Modify a debug statement
IB/srp: Switch from dma_device to dev.parent
IB/iser: Switch from dma_device to dev.parent
IB/IPoIB: Switch from dma_device to dev.parent
IB/rxe: Switch from dma_device to dev.parent
IB/vmw_pvrdma: Switch from dma_device to dev.parent
IB/usnic: Switch from dma_device to dev.parent
IB/qib: Switch from dma_device to dev.parent
IB/qedr: Switch from dma_device to dev.parent
IB/ocrdma: Switch from dma_device to dev.parent
IB/nes: Remove a superfluous assignment statement
IB/mthca: Switch from dma_device to dev.parent
IB/mlx5: Switch from dma_device to dev.parent
IB/mlx4: Switch from dma_device to dev.parent
IB/i40iw: Remove a superfluous assignment statement
IB/hns: Switch from dma_device to dev.parent
...
The callers of the DMA alloc functions already provide the proper
context GFP flags. Make sure to pass them through to the CMA allocator,
to make the CMA compaction context aware.
Link: http://lkml.kernel.org/r/20170127172328.18574-3-l.stach@pengutronix.de
Signed-off-by: Lucas Stach <l.stach@pengutronix.de>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Radim Krcmar <rkrcmar@redhat.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Alexander Graf <agraf@suse.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This reverts commit 0bfc445dec.
When we change the permissions of regions mapped using contiguous
entries, the architecture requires us to follow a Break-Before-Make
strategy, breaking *all* associated entries before we can change any of
the following properties from the entries:
- presence of the contiguous bit
- output address
- attributes
- permissiones
Failure to do so can result in a number of problems (e.g. TLB conflict
aborts and/or erroneous results from TLB lookups).
See ARM DDI 0487A.k_iss10775, "Misprogramming of the Contiguous bit",
page D4-1762.
We do not take this into account when altering the permissions of kernel
segments in mark_rodata_ro(), where we change the permissions of live
contiguous entires one-by-one, leaving them transiently inconsistent.
This has been observed to result in failures on some fast model
configurations.
Unfortunately, we cannot follow Break-Before-Make here as we'd have to
unmap kernel text and data used to perform the sequence.
For the timebeing, revert commit 0bfc445dec so as to avoid issues
resulting from this misuse of the contiguous bit.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reported-by: Jean-Philippe Brucker <jean-philippe.brucker@arm.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <Will.Deacon@arm.com>
Cc: stable@vger.kernel.org # v4.10
Signed-off-by: Will Deacon <will.deacon@arm.com>
Commit 38fd94b027 ("arm64: Work around Falkor erratum 1003") tried to
work around a hardware erratum, but actually caused a system crash of
its own during switch_mm:
cpu_do_switch_mm+0x20/0x40
efi_virtmap_load+0x34/0x40
virt_efi_get_next_variable+0x64/0xc8
efivar_init+0x8c/0x348
efisubsys_init+0xd4/0x270
do_one_initcall+0x80/0x110
kernel_init_freeable+0x19c/0x240
kernel_init+0x10/0x100
ret_from_fork+0x10/0x50
Kernel panic - not syncing: Attempted to kill init! exitcode=0x0000000b
In cpu_do_switch_mm, x1 contains the mm_struct pointer, which needs to
be preserved by the pre_ttbr0_update_workaround macro rather than passed
as a temporary.
This patch clobbers x2 and x3 instead, keeping the mm_struct intact
after the workaround has run.
Fixes: 38fd94b027 ("arm64: Work around Falkor erratum 1003")
Tested-by: Manoj Iyer <manoj.iyer@canonical.com>
Signed-off-by: Shanker Donthineni <shankerd@codeaurora.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
- Errata workarounds for Qualcomm's Falkor CPU
- Qualcomm L2 Cache PMU driver
- Qualcomm SMCCC firmware quirk
- Support for DEBUG_VIRTUAL
- CPU feature detection for userspace via MRS emulation
- Preliminary work for the Statistical Profiling Extension
- Misc cleanups and non-critical fixes
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABCgAGBQJYpIxqAAoJELescNyEwWM0xdwH/AsTYAXPZDMdRnrQUyV0Fd2H
/9pMzww6dHXEmCMKkImf++otUD6S+gTCJTsj7kEAXT5sZzLk27std5lsW7R9oPjc
bGQMalZy+ovLR1gJ6v072seM3In4xph/qAYOpD8Q0AfYCLHjfMMArQfoLa8Esgru
eSsrAgzVAkrK7XHi3sYycUjr9Hac9tvOOuQ3SaZkDz4MfFIbI4b43+c1SCF7wgT9
tQUHLhhxzGmgxjViI2lLYZuBWsIWsE+algvOe1qocvA9JEIXF+W8NeOuCjdL8WwX
3aoqYClC+qD/9+/skShFv5gM5fo0/IweLTUNIHADXpB6OkCYDyg+sxNM+xnEWQU=
=YrPg
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Will Deacon:
- Errata workarounds for Qualcomm's Falkor CPU
- Qualcomm L2 Cache PMU driver
- Qualcomm SMCCC firmware quirk
- Support for DEBUG_VIRTUAL
- CPU feature detection for userspace via MRS emulation
- Preliminary work for the Statistical Profiling Extension
- Misc cleanups and non-critical fixes
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (74 commits)
arm64/kprobes: consistently handle MRS/MSR with XZR
arm64: cpufeature: correctly handle MRS to XZR
arm64: traps: correctly handle MRS/MSR with XZR
arm64: ptrace: add XZR-safe regs accessors
arm64: include asm/assembler.h in entry-ftrace.S
arm64: fix warning about swapper_pg_dir overflow
arm64: Work around Falkor erratum 1003
arm64: head.S: Enable EL1 (host) access to SPE when entered at EL2
arm64: arch_timer: document Hisilicon erratum 161010101
arm64: use is_vmalloc_addr
arm64: use linux/sizes.h for constants
arm64: uaccess: consistently check object sizes
perf: add qcom l2 cache perf events driver
arm64: remove wrong CONFIG_PROC_SYSCTL ifdef
ARM: smccc: Update HVC comment to describe new quirk parameter
arm64: do not trace atomic operations
ACPI/IORT: Fix the error return code in iort_add_smmu_platform_device()
ACPI/IORT: Fix iort_node_get_id() mapping entries indexing
arm64: mm: enable CONFIG_HOLES_IN_ZONE for NUMA
perf: xgene: Include module.h
...
With 4 levels of 16KB pages, we get this warning about the fact that we are
copying a whole page into an array that is declared as having only two pointers
for the top level of the page table:
arch/arm64/mm/mmu.c: In function 'paging_init':
arch/arm64/mm/mmu.c:528:2: error: 'memcpy' writing 16384 bytes into a region of size 16 overflows the destination [-Werror=stringop-overflow=]
This is harmless since we actually reserve a whole page in the definition of the
array that comes from, and just the extern declaration is short. The pgdir
is initialized to zero either way, so copying the actual entries here seems
like the best solution.
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Will Deacon <will.deacon@arm.com>
The Qualcomm Datacenter Technologies Falkor v1 CPU may allocate TLB entries
using an incorrect ASID when TTBRx_EL1 is being updated. When the erratum
is triggered, page table entries using the new translation table base
address (BADDR) will be allocated into the TLB using the old ASID. All
circumstances leading to the incorrect ASID being cached in the TLB arise
when software writes TTBRx_EL1[ASID] and TTBRx_EL1[BADDR], a memory
operation is in the process of performing a translation using the specific
TTBRx_EL1 being written, and the memory operation uses a translation table
descriptor designated as non-global. EL2 and EL3 code changing the EL1&0
ASID is not subject to this erratum because hardware is prohibited from
performing translations from an out-of-context translation regime.
Consider the following pseudo code.
write new BADDR and ASID values to TTBRx_EL1
Replacing the above sequence with the one below will ensure that no TLB
entries with an incorrect ASID are used by software.
write reserved value to TTBRx_EL1[ASID]
ISB
write new value to TTBRx_EL1[BADDR]
ISB
write new value to TTBRx_EL1[ASID]
ISB
When the above sequence is used, page table entries using the new BADDR
value may still be incorrectly allocated into the TLB using the reserved
ASID. Yet this will not reduce functionality, since TLB entries incorrectly
tagged with the reserved ASID will never be hit by a later instruction.
Based on work by Shanker Donthineni <shankerd@codeaurora.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Christopher Covington <cov@codeaurora.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
To is_vmalloc_addr() to check if an address is a vmalloc address
instead of checking VMALLOC_START and VMALLOC_END manually.
Signed-off-by: Miles Chen <miles.chen@mediatek.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Back when this was first written, dma_supported() was somewhat of a
murky mess, with subtly different interpretations being relied upon in
various places. The "does device X support DMA to address range Y?"
uses assuming Y to be physical addresses, which motivated the current
iommu_dma_supported() implementation and are alluded to in the comment
therein, have since been cleaned up, leaving only the far less ambiguous
"can device X drive address bits Y" usage internal to DMA API mask
setting. As such, there is no reason to keep a slightly misleading
callback which does nothing but duplicate the current default behaviour;
we already constrain IOVA allocations to the iommu_domain aperture where
necessary, so let's leave DMA mask business to architecture-specific
code where it belongs.
Signed-off-by: Robin Murphy <robin.murphy@arm.com>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
When bypassing SWIOTLB on small-memory systems, we need to avoid calling
into swiotlb_dma_mapping_error() in exactly the same way as we avoid
swiotlb_dma_supported(), because the former also relies on SWIOTLB state
being initialised.
Under the assumptions for which we skip SWIOTLB, dma_map_{single,page}()
will only ever return the DMA-offset-adjusted physical address of the
page passed in, thus we can report success unconditionally.
Fixes: b67a8b29df ("arm64: mm: only initialize swiotlb when necessary")
CC: stable@vger.kernel.org
CC: Jisheng Zhang <jszhang@marvell.com>
Reported-by: Aaro Koskinen <aaro.koskinen@iki.fi>
Signed-off-by: Robin Murphy <robin.murphy@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>