This reverts commit 36de5f303c.
The commit caused boot failures on some configurations due to cgroup
hierarchies not being created at all.
Signed-off-by: Tejun Heo <tj@kernel.org>
Source file locations for syscall definitions can change over a period
of time. File paths in comments get stale and are hard to maintain long
term. Also, their usefulness is questionable since it would be easier to
locate a syscall definition using the SYSCALL_DEFINEx() macro.
Remove all source file path comments from the syscall headers. Also,
equalize the uneven line spacing (some of which is introduced due to the
deletions).
Signed-off-by: Sohil Mehta <sohil.mehta@intel.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
strlcpy() reads the entire source buffer first.
This read may exceed the destination size limit.
This is both inefficient and can lead to linear read
overflows if a source string is not NUL-terminated [1].
In an effort to remove strlcpy() completely [2], replace
strlcpy() here with strscpy().
Direct replacement is safe here since return value of -E2BIG
is used to check for truncation instead of sizeof(dest).
[1] https://www.kernel.org/doc/html/latest/process/deprecated.html#strlcpy
[2] https://github.com/KSPP/linux/issues/89
Link: https://lore.kernel.org/linux-trace-kernel/20230613004125.3539934-1-azeemshaikh38@gmail.com
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Azeem Shaikh <azeemshaikh38@gmail.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Going a step further, we propose a way to use any user-space
workload as the task waiting for the timerlat timer. This is done
via a per-CPU file named osnoise/cpu$id/timerlat_fd file.
The tracef_fd allows a task to open at a time. When a task reads
the file, the timerlat timer is armed for future osnoise/timerlat_period_us
time. When the timer fires, it prints the IRQ latency and
wakes up the user-space thread waiting in the timerlat_fd.
The thread then starts to run, executes the timerlat measurement, prints
the thread scheduling latency and returns to user-space.
When the thread rereads the timerlat_fd, the tracer will print the
user-ret(urn) latency, which is an additional metric.
This additional metric is also traced by the tracer and can be used, for
example of measuring the context switch overhead from kernel-to-user and
user-to-kernel, or the response time for an arbitrary execution in
user-space.
The tracer supports one thread per CPU, the thread must be pinned to
the CPU, and it cannot migrate while holding the timerlat_fd. The reason
is that the tracer is per CPU (nothing prohibits the tracer from
allowing migrations in the future). The tracer monitors the migration
of the thread and disables the tracer if detected.
The timerlat_fd is only available for opening/reading when timerlat
tracer is enabled, and NO_OSNOISE_WORKLOAD is set.
The simplest way to activate this feature from user-space is:
-------------------------------- %< -----------------------------------
int main(void)
{
char buffer[1024];
int timerlat_fd;
int retval;
long cpu = 0; /* place in CPU 0 */
cpu_set_t set;
CPU_ZERO(&set);
CPU_SET(cpu, &set);
if (sched_setaffinity(gettid(), sizeof(set), &set) == -1)
return 1;
snprintf(buffer, sizeof(buffer),
"/sys/kernel/tracing/osnoise/per_cpu/cpu%ld/timerlat_fd",
cpu);
timerlat_fd = open(buffer, O_RDONLY);
if (timerlat_fd < 0) {
printf("error opening %s: %s\n", buffer, strerror(errno));
exit(1);
}
for (;;) {
retval = read(timerlat_fd, buffer, 1024);
if (retval < 0)
break;
}
close(timerlat_fd);
exit(0);
}
-------------------------------- >% -----------------------------------
When disabling timerlat, if there is a workload holding the timerlat_fd,
the SIGKILL will be sent to the thread.
Link: https://lkml.kernel.org/r/69fe66a863d2792ff4c3a149bf9e32e26468bb3a.1686063934.git.bristot@kernel.org
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: William White <chwhite@redhat.com>
Cc: Daniel Bristot de Oliveira <bristot@kernel.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Signed-off-by: Daniel Bristot de Oliveira <bristot@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
In the case of all tracing instances being off, sleep for the entire
period.
Q: Why not kill all threads so?
A: It is valid and useful to start the threads with tracing off.
For example, rtla disables tracing, starts the tracer, applies the
scheduling setup to the threads, e.g., sched priority and cgroup,
and then begin tracing with all set.
Skipping the period helps to speed up rtla setup and save the
trace after a stop tracing.
Link: https://lkml.kernel.org/r/aa4dd9b7e76fcb63901fe5407e15ec002b318599.1686063934.git.bristot@kernel.org
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: William White <chwhite@redhat.com>
Cc: Daniel Bristot de Oliveira <bristot@kernel.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Signed-off-by: Daniel Bristot de Oliveira <bristot@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Currently, osnoise/timerlat threads run with PF_NO_SETAFFINITY set.
It works well, however, cgroups do not allow PF_NO_SETAFFINITY threads
to be accepted, and this creates a limitation to osnoise/timerlat.
To avoid this limitation, disable migration of the threads as soon
as they start to run, and then clean the PF_NO_SETAFFINITY flag (still)
used during thread creation.
If for some reason a thread migration is requested, e.g., via
sched_settafinity, the tracer thread will notice and exit.
Link: https://lkml.kernel.org/r/8ba8bc9c15b3ea40cf73cf67a9bc061a264609f0.1686063934.git.bristot@kernel.org
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: William White <chwhite@redhat.com>
Cc: Daniel Bristot de Oliveira <bristot@kernel.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Signed-off-by: Daniel Bristot de Oliveira <bristot@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Adding new available_filter_functions_addrs file that shows all available
functions (same as available_filter_functions) together with addresses,
like:
# cat available_filter_functions_addrs | head
ffffffff81000770 __traceiter_initcall_level
ffffffff810007c0 __traceiter_initcall_start
ffffffff81000810 __traceiter_initcall_finish
ffffffff81000860 trace_initcall_finish_cb
...
Note displayed address is the patch-site address and can differ from
/proc/kallsyms address.
It's useful to have address avilable for traceable symbols, so we don't
need to allways cross check kallsyms with available_filter_functions
(or the other way around) and have all the data in single file.
For backwards compatibility reasons we can't change the existing
available_filter_functions file output, but we need to add new file.
The problem is that we need to do 2 passes:
- through available_filter_functions and find out if the function is traceable
- through /proc/kallsyms to get the address for traceable function
Having available_filter_functions symbols together with addresses allow
us to skip the kallsyms step and we are ok with the address in
available_filter_functions_addr not being the function entry, because
kprobe_multi uses fprobe and that handles both entry and patch-site
address properly.
We have 2 interfaces how to create kprobe_multi link:
a) passing symbols to kernel
1) user gathers symbols and need to ensure that they are
trace-able -> pass through available_filter_functions file
2) kernel takes those symbols and translates them to addresses
through kallsyms api
3) addresses are passed to fprobe/ftrace through:
register_fprobe_ips
-> ftrace_set_filter_ips
b) passing addresses to kernel
1) user gathers symbols and needs to ensure that they are
trace-able -> pass through available_filter_functions file
2) user takes those symbols and translates them to addresses
through /proc/kallsyms
3) addresses are passed to the kernel and kernel calls:
register_fprobe_ips
-> ftrace_set_filter_ips
The new available_filter_functions_addrs file helps us with option b),
because we can make 'b 1' and 'b 2' in one step - while filtering traceable
functions, we get the address directly.
Link: https://lore.kernel.org/linux-trace-kernel/20230611130029.1202298-1-jolsa@kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Andrii Nakryiko <andrii.nakryiko@gmail.com>
Tested-by: Jackie Liu <liuyun01@kylinos.cn> # x86
Suggested-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Suggested-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Commit 7b4537199a ("kbuild: link symbol CRCs at final link, removing
CONFIG_MODULE_REL_CRCS") made modpost output CRCs in the same way
whether the EXPORT_SYMBOL() is placed in *.c or *.S.
For further cleanups, this commit applies a similar approach to the
entire data structure of EXPORT_SYMBOL().
The EXPORT_SYMBOL() compilation is split into two stages.
When a source file is compiled, EXPORT_SYMBOL() will be converted into
a dummy symbol in the .export_symbol section.
For example,
EXPORT_SYMBOL(foo);
EXPORT_SYMBOL_NS_GPL(bar, BAR_NAMESPACE);
will be encoded into the following assembly code:
.section ".export_symbol","a"
__export_symbol_foo:
.asciz "" /* license */
.asciz "" /* name space */
.balign 8
.quad foo /* symbol reference */
.previous
.section ".export_symbol","a"
__export_symbol_bar:
.asciz "GPL" /* license */
.asciz "BAR_NAMESPACE" /* name space */
.balign 8
.quad bar /* symbol reference */
.previous
They are mere markers to tell modpost the name, license, and namespace
of the symbols. They will be dropped from the final vmlinux and modules
because the *(.export_symbol) will go into /DISCARD/ in the linker script.
Then, modpost extracts all the information about EXPORT_SYMBOL() from the
.export_symbol section, and generates the final C code:
KSYMTAB_FUNC(foo, "", "");
KSYMTAB_FUNC(bar, "_gpl", "BAR_NAMESPACE");
KSYMTAB_FUNC() (or KSYMTAB_DATA() if it is data) is expanded to struct
kernel_symbol that will be linked to the vmlinux or a module.
With this change, EXPORT_SYMBOL() works in the same way for *.c and *.S
files, providing the following benefits.
[1] Deprecate EXPORT_DATA_SYMBOL()
In the old days, EXPORT_SYMBOL() was only available in C files. To export
a symbol in *.S, EXPORT_SYMBOL() was placed in a separate *.c file.
arch/arm/kernel/armksyms.c is one example written in the classic manner.
Commit 22823ab419 ("EXPORT_SYMBOL() for asm") removed this limitation.
Since then, EXPORT_SYMBOL() can be placed close to the symbol definition
in *.S files. It was a nice improvement.
However, as that commit mentioned, you need to use EXPORT_DATA_SYMBOL()
for data objects on some architectures.
In the new approach, modpost checks symbol's type (STT_FUNC or not),
and outputs KSYMTAB_FUNC() or KSYMTAB_DATA() accordingly.
There are only two users of EXPORT_DATA_SYMBOL:
EXPORT_DATA_SYMBOL_GPL(empty_zero_page) (arch/ia64/kernel/head.S)
EXPORT_DATA_SYMBOL(ia64_ivt) (arch/ia64/kernel/ivt.S)
They are transformed as follows and output into .vmlinux.export.c
KSYMTAB_DATA(empty_zero_page, "_gpl", "");
KSYMTAB_DATA(ia64_ivt, "", "");
The other EXPORT_SYMBOL users in ia64 assembly are output as
KSYMTAB_FUNC().
EXPORT_DATA_SYMBOL() is now deprecated.
[2] merge <linux/export.h> and <asm-generic/export.h>
There are two similar header implementations:
include/linux/export.h for .c files
include/asm-generic/export.h for .S files
Ideally, the functionality should be consistent between them, but they
tend to diverge.
Commit 8651ec01da ("module: add support for symbol namespaces.") did
not support the namespace for *.S files.
This commit shifts the essential implementation part to C, which supports
EXPORT_SYMBOL_NS() for *.S files.
<asm/export.h> and <asm-generic/export.h> will remain as a wrapper of
<linux/export.h> for a while.
They will be removed after #include <asm/export.h> directives are all
replaced with #include <linux/export.h>.
[3] Implement CONFIG_TRIM_UNUSED_KSYMS in one-pass algorithm (by a later commit)
When CONFIG_TRIM_UNUSED_KSYMS is enabled, Kbuild recursively traverses
the directory tree to determine which EXPORT_SYMBOL to trim. If an
EXPORT_SYMBOL turns out to be unused by anyone, Kbuild begins the
second traverse, where some source files are recompiled with their
EXPORT_SYMBOL() tuned into a no-op.
We can do this better now; modpost can selectively emit KSYMTAB entries
that are really used by modules.
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Sparse warns about lock imbalance vs. the hrtimer_base lock due to missing
sparse annotations:
kernel/time/hrtimer.c:175:33: warning: context imbalance in 'lock_hrtimer_base' - wrong count at exit
kernel/time/hrtimer.c:1301:28: warning: context imbalance in 'hrtimer_start_range_ns' - unexpected unlock
kernel/time/hrtimer.c:1336:28: warning: context imbalance in 'hrtimer_try_to_cancel' - unexpected unlock
kernel/time/hrtimer.c:1457:9: warning: context imbalance in '__hrtimer_get_remaining' - unexpected unlock
Add the annotations to the relevant functions.
Signed-off-by: Ben Dooks <ben.dooks@codethink.co.uk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20230621075928.394481-1-ben.dooks@codethink.co.uk
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQTFp0I1jqZrAX+hPRXbK58LschIgwUCZJK5DwAKCRDbK58LschI
gyUtAQD4gT4BEVHRqvniw9yyqYo0BvElAznutDq7o9kFHFep2gEAoksEWS84OdZj
0L5mSKjXrpHKzmY/jlMrVIcTb3VzOw0=
=gAYE
-----END PGP SIGNATURE-----
Merge tag 'for-netdev' of https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf
Daniel Borkmann says:
====================
pull-request: bpf 2023-06-21
We've added 7 non-merge commits during the last 14 day(s) which contain
a total of 7 files changed, 181 insertions(+), 15 deletions(-).
The main changes are:
1) Fix a verifier id tracking issue with scalars upon spill,
from Maxim Mikityanskiy.
2) Fix NULL dereference if an exception is generated while a BPF
subprogram is running, from Krister Johansen.
3) Fix a BTF verification failure when compiling kernel with LLVM_IAS=0,
from Florent Revest.
4) Fix expected_attach_type enforcement for kprobe_multi link,
from Jiri Olsa.
5) Fix a bpf_jit_dump issue for x86_64 to pick the correct JITed image,
from Yonghong Song.
* tag 'for-netdev' of https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf:
bpf: Force kprobe multi expected_attach_type for kprobe_multi link
bpf/btf: Accept function names that contain dots
selftests/bpf: add a test for subprogram extables
bpf: ensure main program has an extable
bpf: Fix a bpf_jit_dump issue for x86_64 with sysctl bpf_jit_enable.
selftests/bpf: Add test cases to assert proper ID tracking on spill
bpf: Fix verifier id tracking of scalars on spill
====================
Link: https://lore.kernel.org/r/20230621101116.16122-1-daniel@iogearbox.net
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Hello,
This patch is to expose misc.current on cgroup v2 root for tracking
how much of the resource has been consumed in total on the system.
Most of the cloud infrastucture use cgroup to fetch the host
information for scheduling purpose.
Currently, the misc controller can be used by Intel TDX HKIDs and
AMD SEV ASIDs, which are both used for creating encrypted VMs.
Intel TDX and AMD SEV are mostly be used by the cloud providers
for providing confidential VMs.
In actual use of a server, these confidential VMs may be launched
in different ways. For the cloud solution, there are kubvirt and
coco (tracked by kubepods.slice); on host, they can be booted
directly through qemu by end user (tracked by user.slice), etc.
In this complex environment, when wanting to know how many resource
is used in total it has to iterate through all existing slices to
get the value of each misc.current and add them up to calculate
the total number of consumed keys.
So exposing misc.current to root cgroup tends to give much easier
when calculates how much resource has been used in total, which
helps to schedule and count resources for the cloud infrastucture.
Signed-off-by: LeiZhou-97 <lei.zhou@intel.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Address the following -Wstringop-overflow warnings seen when
built with ARM architecture and aspeed_g4_defconfig configuration
(notice that under this configuration CGROUP_SUBSYS_COUNT == 0):
kernel/cgroup/cgroup.c:1208:16: warning: 'find_existing_css_set' accessing 4 bytes in a region of size 0 [-Wstringop-overflow=]
kernel/cgroup/cgroup.c:1258:15: warning: 'css_set_hash' accessing 4 bytes in a region of size 0 [-Wstringop-overflow=]
kernel/cgroup/cgroup.c:6089:18: warning: 'css_set_hash' accessing 4 bytes in a region of size 0 [-Wstringop-overflow=]
kernel/cgroup/cgroup.c:6153:18: warning: 'css_set_hash' accessing 4 bytes in a region of size 0 [-Wstringop-overflow=]
These changes are based on commit d20d30ebb1 ("cgroup: Avoid compiler
warnings with no subsystems").
Signed-off-by: Gustavo A. R. Silva <gustavoars@kernel.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Tejun Heo <tj@kernel.org>
For a long time the tick was aligned to clock MONOTONIC so that the tick
event happened at a multiple of nanoseconds per tick starting from clock
MONOTONIC = 0.
At some point this changed as the refined jiffies clocksource which is
used during boot before the TSC or other clocksources becomes usable, was
adjusted with a boot offset, so that time 0 is closer to the point where
the kernel starts.
This broke the assumption in the tick code that when the tick setup
happens early on ktime_get() will return a multiple of nanoseconds per
tick. As a consequence applications which aligned their periodic
execution so that it does not collide with the tick were not longer
guaranteed that the tick period starts from time 0.
The fix for this regression was to realign the tick when it is initially
set up to a multiple of tick periods. That works as long as the
underlying tick device supports periodic mode, but breaks under certain
conditions when the tick device supports only one shot mode.
Depending on the offset, the alignment delta to clock MONOTONIC can get
in a range where the minimal programming delta of the underlying clock
event device is larger than the calculated delta to the next tick. This
results in a boot hang as the tick code tries to play catch up, but as
the tick never fires jiffies are not advanced so it keeps trying for
ever.
Solve this by moving the tick alignement into the NOHZ / HIGHRES
enablement code because at that point it is guaranteed that the
underlying clocksource is high resolution capable and not longer
depending on the tick.
This is far before user space starts, so at the point where applications
try to align their timers, the old behaviour of the tick happening at a
multiple of nanoseconds per tick starting from clock MONOTONIC = 0 is
restored.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmSTUNQTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoQQjD/4+zHK7IxRK+1k1lIStxksEudVeNuqK
7RZKNTawZFSChrxGmv5uhmqYDK9/tudnZot+uyAXI81JHnnGSXbco+VrAA2DQ2v2
w/oxhAHIAobJWDzUuCqT2YsseDVNoTGMrTTPrL4klXqhVtShVOLTI/603+macEiw
Olqmd7XxlyhCloNqoMIh18EwSNIs78kP3YAQHUmq3NoRkJT5c3wWKvZy38WOxSJ9
Jjpw75tePfcwWte9fGVq+oJ8hOWkPAKN5hFL8420RrEgdIkxKlhVmuyG48ieZKH1
LE1brB5iaU8+M91PevZMRlD7oio8u/d6xX1vT3Cqz9UBe1NLj1I0ToX6COhwSNxm
50U0HJ5wGlpodu4IyBHXTG45UAVwpOg/EgDlFigeP3Nxl6h45ugrA010r6FqE1zV
KltjNGsk/OD5d8ywW+yManU2mySm9znqmWN2zbjRGm138Tuz7vglcBhFB6jEJFUF
V8vYPLwI4J2gqifx8NoFBIfLuZp/+D4LOQiJ7XRc9CVm3JLK8Xi8fxnHGTBwJHIn
45WU4hzmY7fjR/gGhAyG7lH6tlo7VTC9/lrO+YtAy2hL2sK14+m/ZH7836I5bAhw
EgSyVlcfR6tgO55I3JgkbNIyO5TUAZPZIAY1TlyR53xXvMkb9aZTh9UMm1xMJ3uX
+sQaLAuDFNUQSg==
=/uvx
-----END PGP SIGNATURE-----
Merge tag 'timers-urgent-2023-06-21' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull timer fix from Thomas Gleixner:
"A single regression fix for a regression fix:
For a long time the tick was aligned to clock MONOTONIC so that the
tick event happened at a multiple of nanoseconds per tick starting
from clock MONOTONIC = 0.
At some point this changed as the refined jiffies clocksource which is
used during boot before the TSC or other clocksources becomes usable,
was adjusted with a boot offset, so that time 0 is closer to the point
where the kernel starts.
This broke the assumption in the tick code that when the tick setup
happens early on ktime_get() will return a multiple of nanoseconds per
tick. As a consequence applications which aligned their periodic
execution so that it does not collide with the tick were not longer
guaranteed that the tick period starts from time 0.
The fix for this regression was to realign the tick when it is
initially set up to a multiple of tick periods. That works as long as
the underlying tick device supports periodic mode, but breaks under
certain conditions when the tick device supports only one shot mode.
Depending on the offset, the alignment delta to clock MONOTONIC can
get in a range where the minimal programming delta of the underlying
clock event device is larger than the calculated delta to the next
tick. This results in a boot hang as the tick code tries to play catch
up, but as the tick never fires jiffies are not advanced so it keeps
trying for ever.
Solve this by moving the tick alignement into the NOHZ / HIGHRES
enablement code because at that point it is guaranteed that the
underlying clocksource is high resolution capable and not longer
depending on the tick.
This is far before user space starts, so at the point where
applications try to align their timers, the old behaviour of the tick
happening at a multiple of nanoseconds per tick starting from clock
MONOTONIC = 0 is restored"
* tag 'timers-urgent-2023-06-21' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
tick/common: Align tick period during sched_timer setup
The debug feature is supported since commit 8cc38fa7fa ("cgroup: make
debug an implicit controller on cgroup2"), update corresponding comment.
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
* irq/misc-6.5:
: .
: Misc cleanups:
:
: - Add a number of missing prototypes
: - Mark global symbol as static where needed
: - Drop some now useless non-DT code paths
: - Add a missing interrupt mapping to the STM32 irqchip
: - Silence another STM32 warning when building with W=1
: - Fix the jcore-aic driver that actually never worked...
: .
Revert "irqchip/mxs: Include linux/irqchip/mxs.h"
irqchip/jcore-aic: Fix missing allocation of IRQ descriptors
irqchip/stm32-exti: Fix warning on initialized field overwritten
irqchip/stm32-exti: Add STM32MP15xx IWDG2 EXTI to GIC map
irqchip/gicv3: Add a iort_pmsi_get_dev_id() prototype
irqchip/mxs: Include linux/irqchip/mxs.h
irqchip/clps711x: Remove unused clps711x_intc_init() function
irqchip/mmp: Remove non-DT codepath
irqchip/ftintc010: Mark all function static
irqdomain: Include internals.h for function prototypes
Signed-off-by: Marc Zyngier <maz@kernel.org>
We currently allow to create perf link for program with
expected_attach_type == BPF_TRACE_KPROBE_MULTI.
This will cause crash when we call helpers like get_attach_cookie or
get_func_ip in such program, because it will call the kprobe_multi's
version (current->bpf_ctx context setup) of those helpers while it
expects perf_link's current->bpf_ctx context setup.
Making sure that we use BPF_TRACE_KPROBE_MULTI expected_attach_type
only for programs attaching through kprobe_multi link.
Fixes: ca74823c6e ("bpf: Add cookie support to programs attached with kprobe multi link")
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20230618131414.75649-1-jolsa@kernel.org
When building a kernel with LLVM=1, LLVM_IAS=0 and CONFIG_KASAN=y, LLVM
leaves DWARF tags for the "asan.module_ctor" & co symbols. In turn,
pahole creates BTF_KIND_FUNC entries for these and this makes the BTF
metadata validation fail because they contain a dot.
In a dramatic turn of event, this BTF verification failure can cause
the netfilter_bpf initialization to fail, causing netfilter_core to
free the netfilter_helper hashmap and netfilter_ftp to trigger a
use-after-free. The risk of u-a-f in netfilter will be addressed
separately but the existence of "asan.module_ctor" debug info under some
build conditions sounds like a good enough reason to accept functions
that contain dots in BTF.
Although using only LLVM=1 is the recommended way to compile clang-based
kernels, users can certainly do LLVM=1, LLVM_IAS=0 as well and we still
try to support that combination according to Nick. To clarify:
- > v5.10 kernel, LLVM=1 (LLVM_IAS=0 is not the default) is recommended,
but user can still have LLVM=1, LLVM_IAS=0 to trigger the issue
- <= 5.10 kernel, LLVM=1 (LLVM_IAS=0 is the default) is recommended in
which case GNU as will be used
Fixes: 1dc9285184 ("bpf: kernel side support for BTF Var and DataSec")
Signed-off-by: Florent Revest <revest@chromium.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Cc: Yonghong Song <yhs@meta.com>
Cc: Nick Desaulniers <ndesaulniers@google.com>
Link: https://lore.kernel.org/bpf/20230615145607.3469985-1-revest@chromium.org
Analyzing system call failures with the function_graph tracer can be a
time-consuming process, particularly when locating the kernel function
that first returns an error in the trace logs. This change aims to
simplify the process by recording the function return value to the
'retval' member of 'ftrace_graph_ret' and printing it when outputting
the trace log.
We have introduced new trace options: funcgraph-retval and
funcgraph-retval-hex. The former controls whether to display the return
value, while the latter controls the display format.
Please note that even if a function's return type is void, a return
value will still be printed. You can simply ignore it.
This patch only establishes the fundamental infrastructure. Subsequent
patches will make this feature available on some commonly used processor
architectures.
Here is an example:
I attempted to attach the demo process to a cpu cgroup, but it failed:
echo `pidof demo` > /sys/fs/cgroup/cpu/test/tasks
-bash: echo: write error: Invalid argument
The strace logs indicate that the write system call returned -EINVAL(-22):
...
write(1, "273\n", 4) = -1 EINVAL (Invalid argument)
...
To capture trace logs during a write system call, use the following
commands:
cd /sys/kernel/debug/tracing/
echo 0 > tracing_on
echo > trace
echo *sys_write > set_graph_function
echo *spin* > set_graph_notrace
echo *rcu* >> set_graph_notrace
echo *alloc* >> set_graph_notrace
echo preempt* >> set_graph_notrace
echo kfree* >> set_graph_notrace
echo $$ > set_ftrace_pid
echo function_graph > current_tracer
echo 1 > options/funcgraph-retval
echo 0 > options/funcgraph-retval-hex
echo 1 > tracing_on
echo `pidof demo` > /sys/fs/cgroup/cpu/test/tasks
echo 0 > tracing_on
cat trace > ~/trace.log
To locate the root cause, search for error code -22 directly in the file
trace.log and identify the first function that returned -22. Once you
have identified this function, examine its code to determine the root
cause.
For example, in the trace log below, cpu_cgroup_can_attach
returned -22 first, so we can focus our analysis on this function to
identify the root cause.
...
1) | cgroup_migrate() {
1) 0.651 us | cgroup_migrate_add_task(); /* = 0xffff93fcfd346c00 */
1) | cgroup_migrate_execute() {
1) | cpu_cgroup_can_attach() {
1) | cgroup_taskset_first() {
1) 0.732 us | cgroup_taskset_next(); /* = 0xffff93fc8fb20000 */
1) 1.232 us | } /* cgroup_taskset_first = 0xffff93fc8fb20000 */
1) 0.380 us | sched_rt_can_attach(); /* = 0x0 */
1) 2.335 us | } /* cpu_cgroup_can_attach = -22 */
1) 4.369 us | } /* cgroup_migrate_execute = -22 */
1) 7.143 us | } /* cgroup_migrate = -22 */
...
Link: https://lkml.kernel.org/r/1fc502712c981e0e6742185ba242992170ac9da8.1680954589.git.pengdonglin@sangfor.com.cn
Tested-by: Florian Kauer <florian.kauer@linutronix.de>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Donglin Peng <pengdonglin@sangfor.com.cn>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
In final testing of:
1fc502712c.1680954589.git.pengdonglin@sangfor.com.cn/
"function_graph: Support recording and printing the return value of function"
The test failed due to a new warning found in the build:
kernel/trace/fgraph.c:243:56: warning: ‘struct fgraph_ret_regs’ declared inside parameter list will not be visible outside of this definition or declaration
Instead of asking to send another patch series, just add it and then apply
the updates.
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
- Fix MAINTAINERS file to point to proper mailing list for rtla and rv
The mailing list pointed to linux-trace-devel instead of
linux-trace-kernel. The former is for the tracing libraries
and the latter is for anything in the Linux kernel tree.
The wrong mailing list was used because linux-trace-kernel did not
exist when rtla and rv were created.
- User events:
. Fix matching of dynamic events to their user events
When user writes to dynamic_events file, a lookup of the
registered dynamic events are made, but there were some cases
that a match could be incorrectly made.
. Add auto cleanup of user events
Have the user events automatically get removed when the last
reference (file descriptor) is closed. This was asked for to
prevent leaks of user events hanging around needing admins
to clean them up.
. Add persistent logic (but not let user space use it yet)
In some cases, having a persistent user event (one that does not
get cleaned up automatically) is useful. But there's still
debates about how to expose this to user space. The infrastructure
is added, but the API is not.
. Update the selftests
Update the user event selftests to reflect the above changes.
-----BEGIN PGP SIGNATURE-----
iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCZJGrABQccm9zdGVkdEBn
b29kbWlzLm9yZwAKCRAp5XQQmuv6qgRDAQDvF8ktlcn+gqyUxt2OcTlbBh0jqS0b
FKXYdq6FTgfWYQD/ctunFbPdzn4D6Kc/lG8p4QxpMmtA19BUOPwEt3CkAwM=
=CDzr
-----END PGP SIGNATURE-----
Merge tag 'trace-v6.4-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace
Pull tracing fixes from Steven Rostedt:
- Fix MAINTAINERS file to point to proper mailing list for rtla and rv
The mailing list pointed to linux-trace-devel instead of
linux-trace-kernel. The former is for the tracing libraries and the
latter is for anything in the Linux kernel tree. The wrong mailing
list was used because linux-trace-kernel did not exist when rtla and
rv were created.
- User events:
- Fix matching of dynamic events to their user events
When user writes to dynamic_events file, a lookup of the
registered dynamic events is made, but there were some cases that
a match could be incorrectly made.
- Add auto cleanup of user events
Have the user events automatically get removed when the last
reference (file descriptor) is closed. This was asked for to
prevent leaks of user events hanging around needing admins to
clean them up.
- Add persistent logic (but not let user space use it yet)
In some cases, having a persistent user event (one that does not
get cleaned up automatically) is useful. But there's still debates
about how to expose this to user space. The infrastructure is
added, but the API is not.
- Update the selftests
Update the user event selftests to reflect the above changes"
* tag 'trace-v6.4-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace:
tracing/user_events: Document auto-cleanup and remove dyn_event refs
selftests/user_events: Adapt dyn_test to non-persist events
selftests/user_events: Ensure auto cleanup works as expected
tracing/user_events: Add auto cleanup and future persist flag
tracing/user_events: Track refcount consistently via put/get
tracing/user_events: Store register flags on events
tracing/user_events: Remove user_ns walk for groups
selftests/user_events: Add perf self-test for empty arguments events
selftests/user_events: Clear the events after perf self-test
selftests/user_events: Add ftrace self-test for empty arguments events
tracing/user_events: Fix the incorrect trace record for empty arguments events
tracing: Modify print_fields() for fields output order
tracing/user_events: Handle matching arguments that is null from dyn_events
tracing/user_events: Prevent same name but different args event
tracing/rv/rtla: Update MAINTAINERS file to point to proper mailing list
The HAVE_ prefix means that the code could be enabled. Add another
variable for HAVE_HARDLOCKUP_DETECTOR_SPARC64 without this prefix.
It will be set when it should be built. It will make it compatible
with the other hardlockup detectors.
Before, it is far from obvious that the SPARC64 variant is actually used:
$> make ARCH=sparc64 defconfig
$> grep HARDLOCKUP_DETECTOR .config
CONFIG_HAVE_HARDLOCKUP_DETECTOR_BUDDY=y
CONFIG_HAVE_HARDLOCKUP_DETECTOR_SPARC64=y
After, it is more clear:
$> make ARCH=sparc64 defconfig
$> grep HARDLOCKUP_DETECTOR .config
CONFIG_HAVE_HARDLOCKUP_DETECTOR_BUDDY=y
CONFIG_HAVE_HARDLOCKUP_DETECTOR_SPARC64=y
CONFIG_HARDLOCKUP_DETECTOR_SPARC64=y
Link: https://lkml.kernel.org/r/20230616150618.6073-6-pmladek@suse.com
Signed-off-by: Petr Mladek <pmladek@suse.com>
Reviewed-by: Douglas Anderson <dianders@chromium.org>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
There are several hardlockup detector implementations and several Kconfig
values which allow selection and build of the preferred one.
CONFIG_HARDLOCKUP_DETECTOR was introduced by the commit 23637d477c
("lockup_detector: Introduce CONFIG_HARDLOCKUP_DETECTOR") in v2.6.36.
It was a preparation step for introducing the new generic perf hardlockup
detector.
The existing arch-specific variants did not support the to-be-created
generic build configurations, sysctl interface, etc. This distinction
was made explicit by the commit 4a7863cc2e ("x86, nmi_watchdog:
Remove ARCH_HAS_NMI_WATCHDOG and rely on CONFIG_HARDLOCKUP_DETECTOR")
in v2.6.38.
CONFIG_HAVE_NMI_WATCHDOG was introduced by the commit d314d74c69
("nmi watchdog: do not use cpp symbol in Kconfig") in v3.4-rc1. It replaced
the above mentioned ARCH_HAS_NMI_WATCHDOG. At that time, it was still used
by three architectures, namely blackfin, mn10300, and sparc.
The support for blackfin and mn10300 architectures has been completely
dropped some time ago. And sparc is the only architecture with the historic
NMI watchdog at the moment.
And the old sparc implementation is really special. It is always built on
sparc64. It used to be always enabled until the commit 7a5c8b57ce
("sparc: implement watchdog_nmi_enable and watchdog_nmi_disable") added
in v4.10-rc1.
There are only few locations where the sparc64 NMI watchdog interacts
with the generic hardlockup detectors code:
+ implements arch_touch_nmi_watchdog() which is called from the generic
touch_nmi_watchdog()
+ implements watchdog_hardlockup_enable()/disable() to support
/proc/sys/kernel/nmi_watchdog
+ is always preferred over other generic watchdogs, see
CONFIG_HARDLOCKUP_DETECTOR
+ includes asm/nmi.h into linux/nmi.h because some sparc-specific
functions are needed in sparc-specific code which includes
only linux/nmi.h.
The situation became more complicated after the commit 05a4a95279
("kernel/watchdog: split up config options") and commit 2104180a53
("powerpc/64s: implement arch-specific hardlockup watchdog") in v4.13-rc1.
They introduced HAVE_HARDLOCKUP_DETECTOR_ARCH. It was used for powerpc
specific hardlockup detector. It was compatible with the perf one
regarding the general boot, sysctl, and programming interfaces.
HAVE_HARDLOCKUP_DETECTOR_ARCH was defined as a superset of
HAVE_NMI_WATCHDOG. It made some sense because all arch-specific
detectors had some common requirements, namely:
+ implemented arch_touch_nmi_watchdog()
+ included asm/nmi.h into linux/nmi.h
+ defined the default value for /proc/sys/kernel/nmi_watchdog
But it actually has made things pretty complicated when the generic
buddy hardlockup detector was added. Before the generic perf detector
was newer supported together with an arch-specific one. But the buddy
detector could work on any SMP system. It means that an architecture
could support both the arch-specific and buddy detector.
As a result, there are few tricky dependencies. For example,
CONFIG_HARDLOCKUP_DETECTOR depends on:
((HAVE_HARDLOCKUP_DETECTOR_PERF || HAVE_HARDLOCKUP_DETECTOR_BUDDY) && !HAVE_NMI_WATCHDOG) || HAVE_HARDLOCKUP_DETECTOR_ARCH
The problem is that the very special sparc implementation is defined as:
HAVE_NMI_WATCHDOG && !HAVE_HARDLOCKUP_DETECTOR_ARCH
Another problem is that the meaning of HAVE_NMI_WATCHDOG is far from clear
without reading understanding the history.
Make the logic less tricky and more self-explanatory by making
HAVE_NMI_WATCHDOG specific for the sparc64 implementation. And rename it to
HAVE_HARDLOCKUP_DETECTOR_SPARC64.
Note that HARDLOCKUP_DETECTOR_PREFER_BUDDY, HARDLOCKUP_DETECTOR_PERF,
and HARDLOCKUP_DETECTOR_BUDDY may conflict only with
HAVE_HARDLOCKUP_DETECTOR_ARCH. They depend on HARDLOCKUP_DETECTOR
and it is not longer enabled when HAVE_NMI_WATCHDOG is set.
Link: https://lkml.kernel.org/r/20230616150618.6073-5-pmladek@suse.com
Signed-off-by: Petr Mladek <pmladek@suse.com>
Reviewed-by: Douglas Anderson <dianders@chromium.org>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
It's been suggested that since the SMP barriers are only potentially
useful for the buddy hardlockup detector, not the perf hardlockup
detector, that the barriers belong in the buddy code. Let's move them and
add clearer comments about why they're needed.
Link: https://lkml.kernel.org/r/20230526184139.9.I5ab0a0eeb0bd52fb23f901d298c72fa5c396e22b@changeid
Signed-off-by: Douglas Anderson <dianders@chromium.org>
Suggested-by: Petr Mladek <pmladek@suse.com>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
There's no reason to make a copy of the "watchdog_cpus" locally in
watchdog_next_cpu(). Making a copy wouldn't make things any more race
free and we're just reading the value so there's no need for a copy.
Link: https://lkml.kernel.org/r/20230526184139.7.If466f9a2b50884cbf6a1d8ad05525a2c17069407@changeid
Signed-off-by: Douglas Anderson <dianders@chromium.org>
Suggested-by: Petr Mladek <pmladek@suse.com>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
In the patch ("watchdog/hardlockup: detect hard lockups using secondary
(buddy) CPUs"), we added a call from the common watchdog.c file into the
buddy. That call could be done more cleanly. Specifically:
1. If we move the call into watchdog_hardlockup_kick() then it keeps
watchdog_timer_fn() simpler.
2. We don't need to pass an "unsigned long" to the buddy for the timer
count. In the patch ("watchdog/hardlockup: add a "cpu" param to
watchdog_hardlockup_check()") the count was changed to "atomic_t"
which is backed by an int, so we should match types.
Link: https://lkml.kernel.org/r/20230526184139.6.I006c7d958a1ea5c4e1e4dc44a25596d9bb5fd3ba@changeid
Signed-off-by: Douglas Anderson <dianders@chromium.org>
Suggested-by: Petr Mladek <pmladek@suse.com>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
In the patch ("watchdog/hardlockup: add a "cpu" param to
watchdog_hardlockup_check()") we started using a cpumask to keep track of
which CPUs to backtrace. When setting up this cpumask, it's better to use
cpumask_copy() than to just copy the structure directly. Fix this.
Link: https://lkml.kernel.org/r/20230526184139.4.Iccee2d1ea19114dafb6553a854ea4d8ab2a3f25b@changeid
Signed-off-by: Douglas Anderson <dianders@chromium.org>
Suggested-by: Petr Mladek <pmladek@suse.com>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
In the patch ("watchdog/hardlockup: add a "cpu" param to
watchdog_hardlockup_check()") there was no reason to use raw_cpu_ptr().
Using this_cpu_ptr() works fine.
Link: https://lkml.kernel.org/r/20230526184139.3.I660e103077dcc23bb29aaf2be09cb234e0495b2d@changeid
Signed-off-by: Douglas Anderson <dianders@chromium.org>
Suggested-by: Petr Mladek <pmladek@suse.com>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Right now there is one arch (sparc64) that selects HAVE_NMI_WATCHDOG
without selecting HAVE_HARDLOCKUP_DETECTOR_ARCH. Because of that one
architecture, we have some special case code in the watchdog core to
handle the fact that watchdog_hardlockup_probe() isn't implemented.
Let's implement watchdog_hardlockup_probe() for sparc64 and get rid of the
special case.
As a side effect of doing this, code inspection tells us that we could fix
a minor bug where the system won't properly realize that NMI watchdogs are
disabled. Specifically, on powerpc if CONFIG_PPC_WATCHDOG is turned off
the arch might still select CONFIG_HAVE_HARDLOCKUP_DETECTOR_ARCH which
selects CONFIG_HAVE_NMI_WATCHDOG. Since CONFIG_PPC_WATCHDOG was off then
nothing will override the "weak" watchdog_hardlockup_probe() and we'll
fallback to looking at CONFIG_HAVE_NMI_WATCHDOG.
Link: https://lkml.kernel.org/r/20230526184139.2.Ic6ebbf307ca0efe91f08ce2c1eb4a037ba6b0700@changeid
Signed-off-by: Douglas Anderson <dianders@chromium.org>
Suggested-by: Petr Mladek <pmladek@suse.com>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "watchdog: Cleanup / fixes after buddy series v5 reviews".
This patch series attempts to finish resolving the feedback received
from Petr Mladek on the v5 series I posted.
Probably the only thing that wasn't fully as clean as Petr requested was
the Kconfig stuff. I couldn't find a better way to express it without a
more major overhaul. In the very least, I renamed "NON_ARCH" to
"PERF_OR_BUDDY" in the hopes that will make it marginally better.
Nothing in this series is terribly critical and even the bugfixes are
small. However, it does cleanup a few things that were pointed out in
review.
This patch (of 10):
The permissions for the kernel.nmi_watchdog sysctl have always been set at
compile time despite the fact that a watchdog can fail to probe. Let's
fix this and set the permissions based on whether the hardlockup detector
actually probed.
Link: https://lkml.kernel.org/r/20230527014153.2793931-1-dianders@chromium.org
Link: https://lkml.kernel.org/r/20230526184139.1.I0d75971cc52a7283f495aac0bd5c3041aadc734e@changeid
Fixes: a994a3147e ("watchdog/hardlockup/perf: Implement init time detection of perf")
Signed-off-by: Douglas Anderson <dianders@chromium.org>
Reported-by: Petr Mladek <pmladek@suse.com>
Closes: https://lore.kernel.org/r/ZHCn4hNxFpY5-9Ki@alley
Reviewed-by: Petr Mladek <pmladek@suse.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
This inline function is unused, remove it.
Link: https://lkml.kernel.org/r/20230610102858.31488-1-yuehaibing@huawei.com
Signed-off-by: YueHaibing <yuehaibing@huawei.com>
Cc: Jeff Xu <jeffxu@google.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Luis Chamberlain <mcgrof@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Convert all instances of direct pte_t* dereferencing to instead use
ptep_get() helper. This means that by default, the accesses change from a
C dereference to a READ_ONCE(). This is technically the correct thing to
do since where pgtables are modified by HW (for access/dirty) they are
volatile and therefore we should always ensure READ_ONCE() semantics.
But more importantly, by always using the helper, it can be overridden by
the architecture to fully encapsulate the contents of the pte. Arch code
is deliberately not converted, as the arch code knows best. It is
intended that arch code (arm64) will override the default with its own
implementation that can (e.g.) hide certain bits from the core code, or
determine young/dirty status by mixing in state from another source.
Conversion was done using Coccinelle:
----
// $ make coccicheck \
// COCCI=ptepget.cocci \
// SPFLAGS="--include-headers" \
// MODE=patch
virtual patch
@ depends on patch @
pte_t *v;
@@
- *v
+ ptep_get(v)
----
Then reviewed and hand-edited to avoid multiple unnecessary calls to
ptep_get(), instead opting to store the result of a single call in a
variable, where it is correct to do so. This aims to negate any cost of
READ_ONCE() and will benefit arch-overrides that may be more complex.
Included is a fix for an issue in an earlier version of this patch that
was pointed out by kernel test robot. The issue arose because config
MMU=n elides definition of the ptep helper functions, including
ptep_get(). HUGETLB_PAGE=n configs still define a simple
huge_ptep_clear_flush() for linking purposes, which dereferences the ptep.
So when both configs are disabled, this caused a build error because
ptep_get() is not defined. Fix by continuing to do a direct dereference
when MMU=n. This is safe because for this config the arch code cannot be
trying to virtualize the ptes because none of the ptep helpers are
defined.
Link: https://lkml.kernel.org/r/20230612151545.3317766-4-ryan.roberts@arm.com
Reported-by: kernel test robot <lkp@intel.com>
Link: https://lore.kernel.org/oe-kbuild-all/202305120142.yXsNEo6H-lkp@intel.com/
Signed-off-by: Ryan Roberts <ryan.roberts@arm.com>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Alex Williamson <alex.williamson@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Daniel Vetter <daniel@ffwll.ch>
Cc: Dave Airlie <airlied@gmail.com>
Cc: Dimitri Sivanich <dimitri.sivanich@hpe.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Ian Rogers <irogers@google.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Jérôme Glisse <jglisse@redhat.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Oleksandr Tyshchenko <oleksandr_tyshchenko@epam.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: SeongJae Park <sj@kernel.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Uladzislau Rezki (Sony) <urezki@gmail.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
For direct DMA, if the size is small enough to have originated from a
kmalloc() cache below ARCH_DMA_MINALIGN, check its alignment against
dma_get_cache_alignment() and bounce if necessary. For larger sizes, it
is the responsibility of the DMA API caller to ensure proper alignment.
At this point, the kmalloc() caches are properly aligned but this will
change in a subsequent patch.
Architectures can opt in by selecting DMA_BOUNCE_UNALIGNED_KMALLOC.
Link: https://lkml.kernel.org/r/20230612153201.554742-15-catalin.marinas@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Robin Murphy <robin.murphy@arm.com>
Tested-by: Isaac J. Manjarres <isaacmanjarres@google.com>
Cc: Alasdair Kergon <agk@redhat.com>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Daniel Vetter <daniel@ffwll.ch>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: Jerry Snitselaar <jsnitsel@redhat.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Jonathan Cameron <jic23@kernel.org>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Lars-Peter Clausen <lars@metafoo.de>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Mark Brown <broonie@kernel.org>
Cc: Mike Snitzer <snitzer@kernel.org>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Saravana Kannan <saravanak@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
sg_is_dma_bus_address() is inconsistent with the naming pattern of its
corresponding setters and its own kerneldoc, so take the majority vote and
rename it sg_dma_is_bus_address() (and fix up the missing underscores in
the kerneldoc too). This gives us a nice clear pattern where SG DMA flags
are SG_DMA_<NAME>, and the helpers for acting on them are
sg_dma_<action>_<name>().
Link: https://lkml.kernel.org/r/20230612153201.554742-14-catalin.marinas@arm.com
Signed-off-by: Robin Murphy <robin.murphy@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jerry Snitselaar <jsnitsel@redhat.com>
Reviewed-by: Logan Gunthorpe <logang@deltatee.com>
Link: https://lore.kernel.org/r/fa2eca2862c7ffc41b50337abffb2dfd2864d3ea.1685036694.git.robin.murphy@arm.com
Tested-by: Isaac J. Manjarres <isaacmanjarres@google.com>
Cc: Alasdair Kergon <agk@redhat.com>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Daniel Vetter <daniel@ffwll.ch>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Jonathan Cameron <jic23@kernel.org>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Lars-Peter Clausen <lars@metafoo.de>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Mark Brown <broonie@kernel.org>
Cc: Mike Snitzer <snitzer@kernel.org>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Saravana Kannan <saravanak@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The DMA flags field will be useful for users beyond PCI P2P, so upgrade to
its own dedicated config option.
[catalin.marinas@arm.com: use #ifdef CONFIG_NEED_SG_DMA_FLAGS in scatterlist.h]
[catalin.marinas@arm.com: update PCI_P2PDMA dma_flags comment in scatterlist.h]
Link: https://lkml.kernel.org/r/20230612153201.554742-13-catalin.marinas@arm.com
Signed-off-by: Robin Murphy <robin.murphy@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Tested-by: Isaac J. Manjarres <isaacmanjarres@google.com>
Cc: Alasdair Kergon <agk@redhat.com>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Daniel Vetter <daniel@ffwll.ch>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: Jerry Snitselaar <jsnitsel@redhat.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Jonathan Cameron <jic23@kernel.org>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Lars-Peter Clausen <lars@metafoo.de>
Cc: Logan Gunthorpe <logang@deltatee.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Mark Brown <broonie@kernel.org>
Cc: Mike Snitzer <snitzer@kernel.org>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Saravana Kannan <saravanak@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
In rare transient cases, not yet made possible, pte_offset_map() and
pte_offet_map_lock() may not find a page table: handle appropriately.
[hughd@google.com: __wp_page_copy_user(): don't call update_mmu_tlb() with NULL]
Link: https://lkml.kernel.org/r/1a4db221-7872-3594-57ce-42369945ec8d@google.com
Link: https://lkml.kernel.org/r/a194441b-63f3-adb6-5964-7ca3171ae7c2@google.com
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: SeongJae Park <sj@kernel.org>
Cc: Song Liu <song@kernel.org>
Cc: Steven Price <steven.price@arm.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: Thomas Hellström <thomas.hellstrom@linux.intel.com>
Cc: Will Deacon <will@kernel.org>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Zack Rusin <zackr@vmware.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Move out flags validation and license checks out of the permission
checks. They were intermingled, which makes subsequent changes harder.
Clean this up: perform straightforward flag validation upfront, and
fetch and check license later, right where we use it. Also consolidate
capabilities check in one block, right after basic attribute sanity
checks.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Stanislav Fomichev <sdf@google.com>
Link: https://lore.kernel.org/bpf/20230613223533.3689589-5-andrii@kernel.org
This allows to do more centralized decisions later on, and generally
makes it very explicit which maps are privileged and which are not
(e.g., LRU_HASH and LRU_PERCPU_HASH, which are privileged HASH variants,
as opposed to unprivileged HASH and HASH_PERCPU; now this is explicit
and easy to verify).
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Stanislav Fomichev <sdf@google.com>
Link: https://lore.kernel.org/bpf/20230613223533.3689589-4-andrii@kernel.org
Currently find_and_alloc_map() performs two separate functions: some
argument sanity checking and partial map creation workflow hanling.
Neither of those functions are self-sufficient and are augmented by
further checks and initialization logic in the caller (map_create()
function). So unify all the sanity checks, permission checks, and
creation and initialization logic in one linear piece of code in
map_create() instead. This also make it easier to further enhance
permission checks and keep them located in one place.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Stanislav Fomichev <sdf@google.com>
Link: https://lore.kernel.org/bpf/20230613223533.3689589-3-andrii@kernel.org
Make each bpf() syscall command a bit more self-contained, making it
easier to further enhance it. We move sysctl_unprivileged_bpf_disabled
handling down to map_create() and bpf_prog_load(), two special commands
in this regard.
Also swap the order of checks, calling bpf_capable() only if
sysctl_unprivileged_bpf_disabled is true, avoiding unnecessary audit
messages.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Stanislav Fomichev <sdf@google.com>
Link: https://lore.kernel.org/bpf/20230613223533.3689589-2-andrii@kernel.org
The ratelimit logic in report_idle_softirq() is broken because the
exit condition is always true:
static int ratelimit;
if (ratelimit < 10)
return false; ---> always returns here
ratelimit++; ---> no chance to run
Make it check for >= 10 instead.
Fixes: 0345691b24 ("tick/rcu: Stop allowing RCU_SOFTIRQ in idle")
Signed-off-by: Wen Yang <wenyang.linux@foxmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/tencent_5AAA3EEAB42095C9B7740BE62FBF9A67E007@qq.com
Commit c78f261e5dcb ("posix-timers: Clarify posix_timer_fn() comments")
turns an ifdef CONFIG_HIGH_RES_TIMERS into an conditional on
"IS_ENABLED(CONFIG_HIGHRES_TIMERS)"; note that the new conditional refers
to "HIGHRES_TIMERS" not "HIGH_RES_TIMERS" as before.
Fix this typo introduced in that refactoring.
Fixes: c78f261e5dcb ("posix-timers: Clarify posix_timer_fn() comments")
Signed-off-by: Lukas Bulwahn <lukas.bulwahn@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20230609094643.26253-1-lukas.bulwahn@gmail.com
Make the issues vs. SIG_IGN understandable and remove the 15 years old
promise that a proper solution is already on the horizon.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/874jnrdmrq.ffs@tglx
The comment about timer lifetime at the end of the function is misplaced
and uncomprehensible.
Make it understandable and put it at the right place. Add a new comment
about the visibility of the new timer ID to user space.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20230425183313.619897296@linutronix.de
The descriptions for common_nsleep() is wrong and common_nsleep_timens()
lacks any form of comment.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20230425183313.567072835@linutronix.de
The documentation of sys_clock_settime() permissions is at a random place
and mostly word salad.
Remove it and add a concise comment into sys_clock_settime().
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20230425183313.514700292@linutronix.de
The decades old comment about Posix clock resolution is confusing at best.
Remove it and add a proper explanation to sys_clock_getres().
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20230425183313.356427330@linutronix.de
release_posix_timers() is called for cleaning up both hashed and unhashed
timers. The cases are differentiated by an argument and the usage is
hideous.
Seperate the actual free path out and use it for unhashed timers. Provide a
function for hashed timers.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20230425183313.301432503@linutronix.de
All usage of hash_lock is in thread context. No point in using
spin_lock_irqsave()/irqrestore() for a single usage site.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20230425183313.249063953@linutronix.de
Technically it's not required to set k_itimer::it_signal to NULL on exit()
because there is no other thread anymore which could lookup the timer
concurrently.
Set it to NULL for consistency sake and add a comment to that effect.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20230425183313.196462644@linutronix.de
k_itimer::it_signal is read lockless in the RCU protected hash lookup, but
it can be written concurrently in the timer_create() and timer_delete()
path. Annotate these places with READ_ONCE() and WRITE_ONCE()
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20230425183313.143596887@linutronix.de
Explain it better and add the CONFIG_POSIX_CPU_TIMERS_TASK_WORK=y aspect
for completeness.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20230425183312.985681995@linutronix.de
posix_timer_add() tries to allocate a posix timer ID by starting from the
cached ID which was stored by the last successful allocation.
This is done in a loop searching the ID space for a free slot one by
one. The loop has to terminate when the search wrapped around to the
starting point.
But that's racy vs. establishing the starting point. That is read out
lockless, which leads to the following problem:
CPU0 CPU1
posix_timer_add()
start = sig->posix_timer_id;
lock(hash_lock);
... posix_timer_add()
if (++sig->posix_timer_id < 0)
start = sig->posix_timer_id;
sig->posix_timer_id = 0;
So CPU1 can observe a negative start value, i.e. -1, and the loop break
never happens because the condition can never be true:
if (sig->posix_timer_id == start)
break;
While this is unlikely to ever turn into an endless loop as the ID space is
huge (INT_MAX), the racy read of the start value caught the attention of
KCSAN and Dmitry unearthed that incorrectness.
Rewrite it so that all id operations are under the hash lock.
Reported-by: syzbot+5c54bd3eb218bb595aa9@syzkaller.appspotmail.com
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/87bkhzdn6g.ffs@tglx
itimer_delete() has a retry loop when the timer is concurrently expired. On
non-RT kernels this just spin-waits until the timer callback has completed,
except for posix CPU timers which have HAVE_POSIX_CPU_TIMERS_TASK_WORK
enabled.
In that case and on RT kernels the existing task could live lock when
preempting the task which does the timer delivery.
Replace spin_unlock() with an invocation of timer_wait_running() to handle
it the same way as the other retry loops in the posix timer code.
Fixes: ec8f954a40 ("posix-timers: Use a callback for cancel synchronization on PREEMPT_RT")
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/87v8g7c50d.ffs@tglx
irq_domain_debugfs_init() is defined in irqdomain.c, but the
declaration is in a header that is not included here:
kernel/irq/irqdomain.c:1965:13: error: no previous prototype for 'irq_domain_debugfs_init' [-Werror=missing-prototypes]
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230516200432.554240-1-arnd@kernel.org
After commit 8ad075c2eb ("sched: Async unthrottling for cfs
bandwidth"), we may update the rq clock multiple times in the loop of
__cfsb_csd_unthrottle().
A prior (although less common) instance of this problem exists in
unthrottle_offline_cfs_rqs().
Cure both by ensuring update_rq_clock() is called before the loop and
setting RQCF_ACT_SKIP during the loop, to supress further updates.
The alternative would be pulling update_rq_clock() out of
unthrottle_cfs_rq(), but that gives an even bigger mess.
Fixes: 8ad075c2eb ("sched: Async unthrottling for cfs bandwidth")
Reviewed-By: Ben Segall <bsegall@google.com>
Suggested-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Hao Jia <jiahao.os@bytedance.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20230613082012.49615-4-jiahao.os@bytedance.com
There is a double update_rq_clock() invocation:
__balance_push_cpu_stop()
update_rq_clock()
__migrate_task()
update_rq_clock()
Sadly select_fallback_rq() also needs update_rq_clock() for
__do_set_cpus_allowed(), it is not possible to remove the update from
__balance_push_cpu_stop(). So remove it from __migrate_task() and
ensure all callers of this function call update_rq_clock() prior to
calling it.
Signed-off-by: Hao Jia <jiahao.os@bytedance.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20230613082012.49615-3-jiahao.os@bytedance.com
When using a cpufreq governor that uses
cpufreq_add_update_util_hook(), it is possible to trigger a missing
update_rq_clock() warning for the CPU hotplug path:
rq_attach_root()
set_rq_offline()
rq_offline_rt()
__disable_runtime()
sched_rt_rq_enqueue()
enqueue_top_rt_rq()
cpufreq_update_util()
data->func(data, rq_clock(rq), flags)
Move update_rq_clock() from sched_cpu_deactivate() (one of it's
callers) into set_rq_offline() such that it covers all
set_rq_offline() usage.
Additionally change rq_attach_root() to use rq_lock_irqsave() so that
it will properly manage the runqueue clock flags.
Suggested-by: Ben Segall <bsegall@google.com>
Signed-off-by: Hao Jia <jiahao.os@bytedance.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20230613082012.49615-2-jiahao.os@bytedance.com
According to the GRUB[1] rule, the runtime is depreciated as:
"dq = -max{u, (1 - Uinact - Uextra)} dt" (1)
To guarantee that deadline tasks doesn't starve lower class tasks,
we do not allocate the full bandwidth of the cpu to deadline tasks.
Maximum bandwidth usable by deadline tasks is denoted by "Umax".
Considering Umax, equation (1) becomes:
"dq = -(max{u, (Umax - Uinact - Uextra)} / Umax) dt" (2)
Current implementation has a minor bug in equation (2), which this
patch fixes.
The reclamation logic is verified by a sample program which creates
multiple deadline threads and observing their utilization. The tests
were run on an isolated cpu(isolcpus=3) on a 4 cpu system.
Tests on 6.3.0
==============
RUN 1: runtime=7ms, deadline=period=10ms, RT capacity = 95%
TID[693]: RECLAIM=1, (r=7ms, d=10ms, p=10ms), Util: 93.33
TID[693]: RECLAIM=1, (r=7ms, d=10ms, p=10ms), Util: 93.35
RUN 2: runtime=1ms, deadline=period=100ms, RT capacity = 95%
TID[708]: RECLAIM=1, (r=1ms, d=100ms, p=100ms), Util: 16.69
TID[708]: RECLAIM=1, (r=1ms, d=100ms, p=100ms), Util: 16.69
RUN 3: 2 tasks
Task 1: runtime=1ms, deadline=period=10ms
Task 2: runtime=1ms, deadline=period=100ms
TID[631]: RECLAIM=1, (r=1ms, d=10ms, p=10ms), Util: 62.67
TID[632]: RECLAIM=1, (r=1ms, d=100ms, p=100ms), Util: 6.37
TID[631]: RECLAIM=1, (r=1ms, d=10ms, p=10ms), Util: 62.38
TID[632]: RECLAIM=1, (r=1ms, d=100ms, p=100ms), Util: 6.23
As seen above, the reclamation doesn't reclaim the maximum allowed
bandwidth and as the bandwidth of tasks gets smaller, the reclaimed
bandwidth also comes down.
Tests with this patch applied
=============================
RUN 1: runtime=7ms, deadline=period=10ms, RT capacity = 95%
TID[608]: RECLAIM=1, (r=7ms, d=10ms, p=10ms), Util: 95.19
TID[608]: RECLAIM=1, (r=7ms, d=10ms, p=10ms), Util: 95.16
RUN 2: runtime=1ms, deadline=period=100ms, RT capacity = 95%
TID[616]: RECLAIM=1, (r=1ms, d=100ms, p=100ms), Util: 95.27
TID[616]: RECLAIM=1, (r=1ms, d=100ms, p=100ms), Util: 95.21
RUN 3: 2 tasks
Task 1: runtime=1ms, deadline=period=10ms
Task 2: runtime=1ms, deadline=period=100ms
TID[620]: RECLAIM=1, (r=1ms, d=10ms, p=10ms), Util: 86.64
TID[621]: RECLAIM=1, (r=1ms, d=100ms, p=100ms), Util: 8.66
TID[620]: RECLAIM=1, (r=1ms, d=10ms, p=10ms), Util: 86.45
TID[621]: RECLAIM=1, (r=1ms, d=100ms, p=100ms), Util: 8.73
Running tasks on all cpus allowing for migration also showed that
the utilization is reclaimed to the maximum. Running 10 tasks on
3 cpus SCHED_FLAG_RECLAIM - top shows:
%Cpu0 : 94.6 us, 0.0 sy, 0.0 ni, 5.4 id, 0.0 wa
%Cpu1 : 95.2 us, 0.0 sy, 0.0 ni, 4.8 id, 0.0 wa
%Cpu2 : 95.8 us, 0.0 sy, 0.0 ni, 4.2 id, 0.0 wa
[1]: Abeni, Luca & Lipari, Giuseppe & Parri, Andrea & Sun, Youcheng.
(2015). Parallel and sequential reclaiming in multicore
real-time global scheduling.
Signed-off-by: Vineeth Pillai (Google) <vineeth@bitbyteword.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Daniel Bristot de Oliveira <bristot@kernel.org>
Acked-by: Juri Lelli <juri.lelli@redhat.com>
Link: https://lore.kernel.org/r/20230530135526.2385378-1-vineeth@bitbyteword.org
Add a tracepoint for when a CSD is queued to a remote CPU's
call_single_queue. This allows finding exactly which CPU queued a given CSD
when looking at a csd_function_{entry,exit} event, and also enables us to
accurately measure IPI delivery time with e.g. a synthetic event:
$ echo 'hist:keys=cpu,csd.hex:ts=common_timestamp.usecs' >\
/sys/kernel/tracing/events/smp/csd_queue_cpu/trigger
$ echo 'csd_latency unsigned int dst_cpu; unsigned long csd; u64 time' >\
/sys/kernel/tracing/synthetic_events
$ echo \
'hist:keys=common_cpu,csd.hex:'\
'time=common_timestamp.usecs-$ts:'\
'onmatch(smp.csd_queue_cpu).trace(csd_latency,common_cpu,csd,$time)' >\
/sys/kernel/tracing/events/smp/csd_function_entry/trigger
$ trace-cmd record -e 'synthetic:csd_latency' hackbench
$ trace-cmd report
<...>-467 [001] 21.824263: csd_queue_cpu: cpu=0 callsite=try_to_wake_up+0x2ea func=sched_ttwu_pending csd=0xffff8880076148b8
<...>-467 [001] 21.824280: ipi_send_cpu: cpu=0 callsite=try_to_wake_up+0x2ea callback=generic_smp_call_function_single_interrupt+0x0
<...>-489 [000] 21.824299: csd_function_entry: func=sched_ttwu_pending csd=0xffff8880076148b8
<...>-489 [000] 21.824320: csd_latency: dst_cpu=0, csd=18446612682193848504, time=36
Suggested-by: Valentin Schneider <vschneid@redhat.com>
Signed-off-by: Leonardo Bras <leobras@redhat.com>
Tested-and-reviewed-by: Valentin Schneider <vschneid@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230615065944.188876-7-leobras@redhat.com
The recently added ipi_send_{cpu,cpumask} tracepoints allow finding sources
of IPIs targeting CPUs running latency-sensitive applications.
For NOHZ_FULL CPUs, all IPIs are interference, and those tracepoints are
sufficient to find them and work on getting rid of them. In some setups
however, not *all* IPIs are to be suppressed, but long-running IPI
callbacks can still be problematic.
Add a pair of tracepoints to mark the start and end of processing a CSD IPI
callback, similar to what exists for softirq, workqueue or timer callbacks.
Signed-off-by: Leonardo Bras <leobras@redhat.com>
Tested-and-reviewed-by: Valentin Schneider <vschneid@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230615065944.188876-5-leobras@redhat.com
The tick period is aligned very early while the first clock_event_device is
registered. At that point the system runs in periodic mode and switches
later to one-shot mode if possible.
The next wake-up event is programmed based on the aligned value
(tick_next_period) but the delta value, that is used to program the
clock_event_device, is computed based on ktime_get().
With the subtracted offset, the device fires earlier than the exact time
frame. With a large enough offset the system programs the timer for the
next wake-up and the remaining time left is too small to make any boot
progress. The system hangs.
Move the alignment later to the setup of tick_sched timer. At this point
the system switches to oneshot mode and a high resolution clocksource is
available. At this point it is safe to align tick_next_period because
ktime_get() will now return accurate (not jiffies based) time.
[bigeasy: Patch description + testing].
Fixes: e9523a0d81 ("tick/common: Align tick period with the HZ tick.")
Reported-by: Mathias Krause <minipli@grsecurity.net>
Reported-by: "Bhatnagar, Rishabh" <risbhat@amazon.com>
Suggested-by: Mathias Krause <minipli@grsecurity.net>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Richard W.M. Jones <rjones@redhat.com>
Tested-by: Mathias Krause <minipli@grsecurity.net>
Acked-by: SeongJae Park <sj@kernel.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/5a56290d-806e-b9a5-f37c-f21958b5a8c0@grsecurity.net
Link: https://lore.kernel.org/12c6f9a3-d087-b824-0d05-0d18c9bc1bf3@amazon.com
Link: https://lore.kernel.org/r/20230615091830.RxMV2xf_@linutronix.de
bpf_free_inode() is invoked as a RCU callback. Usually RCU callbacks are
invoked within softirq context. By setting rcutree.use_softirq=0 boot
option the RCU callbacks will be invoked in a per-CPU kthread with
bottom halves disabled which implies a RCU read section.
On PREEMPT_RT the context remains fully preemptible. The RCU read
section however does not allow schedule() invocation. The latter happens
in mutex_lock() performed by bpf_trampoline_unlink_prog() originated
from bpf_link_put().
It was pointed out that the bpf_link_put() invocation should not be
delayed if originated from close(). It was also pointed out that other
invocations from within a syscall should also avoid the workqueue.
Everyone else should use workqueue by default to remain safe in the
future (while auditing the code, every caller was preemptible except for
the RCU case).
Let bpf_link_put() use the worker unconditionally. Add
bpf_link_put_direct() which will directly free the resources and is used
by close() and from within __sys_bpf().
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20230614083430.oENawF8f@linutronix.de
kthread_park and wait_woken have a similar race that
kthread_stop and wait_woken used to have before it was fixed in
commit cb6538e740 ("sched/wait: Fix a kthread race with
wait_woken()"). Extend that fix to also cover kthread_park.
[jstultz: Made changes suggested by Peter to optimize
memory loads]
Signed-off-by: Arve Hjønnevåg <arve@android.com>
Signed-off-by: John Stultz <jstultz@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lore.kernel.org/r/20230602212350.535358-1-jstultz@google.com
All callers of set_sched_topology() are within __init section. Mark
it __init too.
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lore.kernel.org/r/20230603073645.1173332-1-linmiaohe@huawei.com
cppcheck reports
kernel/sched/fair.c:7436:17: style: Local variable 'cpu_util' shadows outer function [shadowFunction]
unsigned long cpu_util;
^
Clean this up by renaming the variable to eff_util
Signed-off-by: Tom Rix <trix@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Link: https://lore.kernel.org/r/20230611122535.183654-1-trix@redhat.com
There is a class of interrupt controllers out there that, once they
have signalled a given interrupt number, will still signal incoming
instances of the *same* interrupt despite the original interrupt
not having been EOIed yet.
As long as the new interrupt reaches the *same* CPU, nothing bad
happens, as that CPU still has its interrupts globally disabled,
and we will only take the new interrupt once the interrupt has
been EOIed.
However, things become more "interesting" if an affinity change comes
in while the interrupt is being handled. More specifically, while
the per-irq lock is being dropped. This results in the affinity change
taking place immediately. At this point, there is nothing that prevents
the interrupt from firing on the new target CPU. We end-up with the
interrupt running concurrently on two CPUs, which isn't a good thing.
And that's where things become worse: the new CPU notices that the
interrupt handling is in progress (irq_may_run() return false), and
*drops the interrupt on the floor*.
The whole race looks like this:
CPU 0 | CPU 1
-----------------------------|-----------------------------
interrupt start |
handle_fasteoi_irq | set_affinity(CPU 1)
handler |
... | interrupt start
... | handle_fasteoi_irq -> early out
handle_fasteoi_irq return | interrupt end
interrupt end |
If the interrupt was an edge, too bad. The interrupt is lost, and
the system will eventually die one way or another. Not great.
A way to avoid this situation is to detect this problem at the point
we handle the interrupt on the new target. Instead of dropping the
interrupt, use the resend mechanism to force it to be replayed.
Also, in order to limit the impact of this workaround to the pathetic
architectures that require it, gate it behind a new irq flag aptly
named IRQD_RESEND_WHEN_IN_PROGRESS.
Suggested-by: Marc Zyngier <maz@kernel.org>
Signed-off-by: James Gowans <jgowans@amazon.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Marc Zyngier <maz@kernel.org>
Cc: KarimAllah Raslan <karahmed@amazon.com>
Cc: Yipeng Zou <zouyipeng@huawei.com>
Cc: Zhang Jianhua <chris.zjh@huawei.com>
[maz: reworded commit mesage]
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230608120021.3273400-3-jgowans@amazon.com
Adding a bit more info about what the flags are used for may help future
code readers.
Signed-off-by: James Gowans <jgowans@amazon.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Liao Chang <liaochang1@huawei.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230608120021.3273400-2-jgowans@amazon.com
Currently user events need to be manually deleted via the delete IOCTL
call or via the dynamic_events file. Most operators and processes wish
to have these events auto cleanup when they are no longer used by
anything to prevent them piling without manual maintenance. However,
some operators may not want this, such as pre-registering events via the
dynamic_events tracefs file.
Update user_event_put() to attempt an auto delete of the event if it's
the last reference. The auto delete must run in a work queue to ensure
proper behavior of class->reg() invocations that don't expect the call
to go away from underneath them during the unregister. Add work_struct
to user_event struct to ensure we can do this reliably.
Add a persist flag, that is not yet exposed, to ensure we can toggle
between auto-cleanup and leaving the events existing in the future. When
a non-zero flag is seen during register, return -EINVAL to ensure ABI
is clear for the user processes while we work out the best approach for
persistent events.
Link: https://lkml.kernel.org/r/20230614163336.5797-4-beaub@linux.microsoft.com
Link: https://lore.kernel.org/linux-trace-kernel/20230518093600.3f119d68@rorschach.local.home/
Suggested-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Beau Belgrave <beaub@linux.microsoft.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Various parts of the code today track user_event's refcnt field directly
via a refcount_add/dec. This makes it hard to modify the behavior of the
last reference decrement in all code paths consistently. For example, in
the future we will auto-delete events upon the last reference going
away. This last reference could happen in many places, but we want it to
be consistently handled.
Add user_event_get() and user_event_put() for the add/dec. Update all
places where direct refcounts are being used to utilize these new
functions. In each location pass if event_mutex is locked or not. This
allows us to drop events automatically in future patches clearly. Ensure
when caller states the lock is held, it really is (or is not) held.
Link: https://lkml.kernel.org/r/20230614163336.5797-3-beaub@linux.microsoft.com
Signed-off-by: Beau Belgrave <beaub@linux.microsoft.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Currently we don't have any available flags for user processes to use to
indicate options for user_events. We will soon have a flag to indicate
the event should or should not auto-delete once it's not being used by
anyone.
Add a reg_flags field to user_events and parameters to existing
functions to allow for this in future patches.
Link: https://lkml.kernel.org/r/20230614163336.5797-2-beaub@linux.microsoft.com
Signed-off-by: Beau Belgrave <beaub@linux.microsoft.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
During discussions it was suggested that user_ns is not a good place to
try to attach a tracing namespace. The current code has stubs to enable
that work that are very likely to change and incur a performance cost.
Remove the user_ns walk when creating a group and determining the system
name to use, since it's unlikely user_ns will be used in the future.
Link: https://lore.kernel.org/all/20230601-urenkel-holzofen-cd9403b9cadd@brauner/
Link: https://lore.kernel.org/linux-trace-kernel/20230601224928.301-1-beaub@linux.microsoft.com
Suggested-by: Christian Brauner <brauner@kernel.org>
Signed-off-by: Beau Belgrave <beaub@linux.microsoft.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
The user_events support events that has empty arguments. But the trace event
is discarded and not really committed when the arguments is empty. Fix this
by not attempting to copy in zero-length data.
Link: https://lkml.kernel.org/r/20230606062027.1008398-2-sunliming@kylinos.cn
Acked-by: Beau Belgrave <beaub@linux.microsoft.com>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: sunliming <sunliming@kylinos.cn>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
When A registering user event from dyn_events has no argments, it will pass the
matching check, regardless of whether there is a user event with the same name
and arguments. Add the matching check when the arguments of registering user
event is null.
Link: https://lore.kernel.org/linux-trace-kernel/20230529065110.303440-1-sunliming@kylinos.cn
Signed-off-by: sunliming <sunliming@kylinos.cn>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
User processes register name_args for events. If the same name but different
args event are registered. The trace outputs of second event are printed
as the first event. This is incorrect.
Return EADDRINUSE back to the user process if the same name but different args
event has being registered.
Link: https://lore.kernel.org/linux-trace-kernel/20230529032100.286534-1-sunliming@kylinos.cn
Signed-off-by: sunliming <sunliming@kylinos.cn>
Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Acked-by: Beau Belgrave <beaub@linux.microsoft.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Make sure that the following unsafe example is rejected by verifier:
1: r9 = ... some pointer with range X ...
2: r6 = ... unbound scalar ID=a ...
3: r7 = ... unbound scalar ID=b ...
4: if (r6 > r7) goto +1
5: r6 = r7
6: if (r6 > X) goto ...
--- checkpoint ---
7: r9 += r7
8: *(u64 *)r9 = Y
This example is unsafe because not all execution paths verify r7 range.
Because of the jump at (4) the verifier would arrive at (6) in two states:
I. r6{.id=b}, r7{.id=b} via path 1-6;
II. r6{.id=a}, r7{.id=b} via path 1-4, 6.
Currently regsafe() does not call check_ids() for scalar registers,
thus from POV of regsafe() states (I) and (II) are identical. If the
path 1-6 is taken by verifier first, and checkpoint is created at (6)
the path [1-4, 6] would be considered safe.
Changes in this commit:
- check_ids() is modified to disallow mapping multiple old_id to the
same cur_id.
- check_scalar_ids() is added, unlike check_ids() it treats ID zero as
a unique scalar ID.
- check_scalar_ids() needs to generate temporary unique IDs, field
'tmp_id_gen' is added to bpf_verifier_env::idmap_scratch to
facilitate this.
- regsafe() is updated to:
- use check_scalar_ids() for precise scalar registers.
- compare scalar registers using memcmp only for explore_alu_limits
branch. This simplifies control flow for scalar case, and has no
measurable performance impact.
- check_alu_op() is updated to avoid generating bpf_reg_state::id for
constant scalar values when processing BPF_MOV. ID is needed to
propagate range information for identical values, but there is
nothing to propagate for constants.
Fixes: 75748837b7 ("bpf: Propagate scalar ranges through register assignments.")
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20230613153824.3324830-4-eddyz87@gmail.com
Change mark_chain_precision() to track precision in situations
like below:
r2 = unknown value
...
--- state #0 ---
...
r1 = r2 // r1 and r2 now share the same ID
...
--- state #1 {r1.id = A, r2.id = A} ---
...
if (r2 > 10) goto exit; // find_equal_scalars() assigns range to r1
...
--- state #2 {r1.id = A, r2.id = A} ---
r3 = r10
r3 += r1 // need to mark both r1 and r2
At the beginning of the processing of each state, ensure that if a
register with a scalar ID is marked as precise, all registers sharing
this ID are also marked as precise.
This property would be used by a follow-up change in regsafe().
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20230613153824.3324830-2-eddyz87@gmail.com
When subprograms are in use, the main program is not jit'd after the
subprograms because jit_subprogs sets a value for prog->bpf_func upon
success. Subsequent calls to the JIT are bypassed when this value is
non-NULL. This leads to a situation where the main program and its
func[0] counterpart are both in the bpf kallsyms tree, but only func[0]
has an extable. Extables are only created during JIT. Now there are
two nearly identical program ksym entries in the tree, but only one has
an extable. Depending upon how the entries are placed, there's a chance
that a fault will call search_extable on the aux with the NULL entry.
Since jit_subprogs already copies state from func[0] to the main
program, include the extable pointer in this state duplication.
Additionally, ensure that the copy of the main program in func[0] is not
added to the bpf_prog_kallsyms table. Instead, let the main program get
added later in bpf_prog_load(). This ensures there is only a single
copy of the main program in the kallsyms table, and that its tag matches
the tag observed by tooling like bpftool.
Cc: stable@vger.kernel.org
Fixes: 1c2a088a66 ("bpf: x64: add JIT support for multi-function programs")
Signed-off-by: Krister Johansen <kjlx@templeofstupid.com>
Acked-by: Yonghong Song <yhs@fb.com>
Acked-by: Ilya Leoshkevich <iii@linux.ibm.com>
Tested-by: Ilya Leoshkevich <iii@linux.ibm.com>
Link: https://lore.kernel.org/r/6de9b2f4b4724ef56efbb0339daaa66c8b68b1e7.1686616663.git.kjlx@templeofstupid.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
introduced during this -rc cycle or which were considered inappropriate
for a backport.
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZIdw7QAKCRDdBJ7gKXxA
jki4AQCygi1UoqVPq4N/NzJbv2GaNDXNmcJIoLvPpp3MYFhucAEAtQNzAYO9z6CT
iLDMosnuh+1KLTaKNGL5iak3NAxnxQw=
=mTdI
-----END PGP SIGNATURE-----
Merge tag 'mm-hotfixes-stable-2023-06-12-12-22' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull misc fixes from Andrew Morton:
"19 hotfixes. 14 are cc:stable and the remainder address issues which
were introduced during this development cycle or which were considered
inappropriate for a backport"
* tag 'mm-hotfixes-stable-2023-06-12-12-22' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm:
zswap: do not shrink if cgroup may not zswap
page cache: fix page_cache_next/prev_miss off by one
ocfs2: check new file size on fallocate call
mailmap: add entry for John Keeping
mm/damon/core: fix divide error in damon_nr_accesses_to_accesses_bp()
epoll: ep_autoremove_wake_function should use list_del_init_careful
mm/gup_test: fix ioctl fail for compat task
nilfs2: reject devices with insufficient block count
ocfs2: fix use-after-free when unmounting read-only filesystem
lib/test_vmalloc.c: avoid garbage in page array
nilfs2: fix possible out-of-bounds segment allocation in resize ioctl
riscv/purgatory: remove PGO flags
powerpc/purgatory: remove PGO flags
x86/purgatory: remove PGO flags
kexec: support purgatories with .text.hot sections
mm/uffd: allow vma to merge as much as possible
mm/uffd: fix vma operation where start addr cuts part of vma
radix-tree: move declarations to header
nilfs2: fix incomplete buffer cleanup in nilfs_btnode_abort_change_key()
We currently export the bpf_cpumask_any() and bpf_cpumask_any_and()
kfuncs. Intuitively, one would expect these to choose any CPU in the
cpumask, but what they actually do is alias to cpumask_first() and
cpmkas_first_and().
This is useless given that we already export bpf_cpumask_first() and
bpf_cpumask_first_and(), so this patch replaces them with kfuncs that
call cpumask_any_distribute() and cpumask_any_and_distribute(), which
actually choose any CPU from the cpumask (or the AND of two cpumasks for
the latter).
Signed-off-by: David Vernet <void@manifault.com>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20230610035053.117605-3-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
We currently provide bpf_cpumask_first(), bpf_cpumask_any(), and
bpf_cpumask_any_and() kfuncs. bpf_cpumask_any() and
bpf_cpumask_any_and() are confusing misnomers in that they actually just
call cpumask_first() and cpumask_first_and() respectively.
We'll replace them with bpf_cpumask_any_distribute() and
bpf_cpumask_any_distribute_and() kfuncs in a subsequent patch, so let's
ensure feature parity by adding a bpf_cpumask_first_and() kfunc to
account for bpf_cpumask_any_and() being removed.
Signed-off-by: David Vernet <void@manifault.com>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20230610035053.117605-1-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Patch series "kexec: Fix kexec_file_load for llvm16 with PGO", v7.
When upreving llvm I realised that kexec stopped working on my test
platform.
The reason seems to be that due to PGO there are multiple .text sections
on the purgatory, and kexec does not supports that.
This patch (of 4):
Clang16 links the purgatory text in two sections when PGO is in use:
[ 1] .text PROGBITS 0000000000000000 00000040
00000000000011a1 0000000000000000 AX 0 0 16
[ 2] .rela.text RELA 0000000000000000 00003498
0000000000000648 0000000000000018 I 24 1 8
...
[17] .text.hot. PROGBITS 0000000000000000 00003220
000000000000020b 0000000000000000 AX 0 0 1
[18] .rela.text.hot. RELA 0000000000000000 00004428
0000000000000078 0000000000000018 I 24 17 8
And both of them have their range [sh_addr ... sh_addr+sh_size] on the
area pointed by `e_entry`.
This causes that image->start is calculated twice, once for .text and
another time for .text.hot. The second calculation leaves image->start
in a random location.
Because of this, the system crashes immediately after:
kexec_core: Starting new kernel
Link: https://lkml.kernel.org/r/20230321-kexec_clang16-v7-0-b05c520b7296@chromium.org
Link: https://lkml.kernel.org/r/20230321-kexec_clang16-v7-1-b05c520b7296@chromium.org
Fixes: 930457057a ("kernel/kexec_file.c: split up __kexec_load_puragory")
Signed-off-by: Ricardo Ribalda <ribalda@chromium.org>
Reviewed-by: Ross Zwisler <zwisler@google.com>
Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Reviewed-by: Philipp Rudo <prudo@redhat.com>
Cc: Albert Ou <aou@eecs.berkeley.edu>
Cc: Baoquan He <bhe@redhat.com>
Cc: Borislav Petkov (AMD) <bp@alien8.de>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nathan Chancellor <nathan@kernel.org>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Nick Desaulniers <ndesaulniers@google.com>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Palmer Dabbelt <palmer@rivosinc.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Simon Horman <horms@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tom Rix <trix@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
All uses in the kernel are currently already oriented around
suspend/resume. As some other parts of the kernel may also use these
messages in functions that could also be used outside of
suspend/resume, only enable in suspend/resume path.
Signed-off-by: Mario Limonciello <mario.limonciello@amd.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
We found a refcount UAF bug as follows:
refcount_t: addition on 0; use-after-free.
WARNING: CPU: 1 PID: 342 at lib/refcount.c:25 refcount_warn_saturate+0xa0/0x148
Workqueue: events cpuset_hotplug_workfn
Call trace:
refcount_warn_saturate+0xa0/0x148
__refcount_add.constprop.0+0x5c/0x80
css_task_iter_advance_css_set+0xd8/0x210
css_task_iter_advance+0xa8/0x120
css_task_iter_next+0x94/0x158
update_tasks_root_domain+0x58/0x98
rebuild_root_domains+0xa0/0x1b0
rebuild_sched_domains_locked+0x144/0x188
cpuset_hotplug_workfn+0x138/0x5a0
process_one_work+0x1e8/0x448
worker_thread+0x228/0x3e0
kthread+0xe0/0xf0
ret_from_fork+0x10/0x20
then a kernel panic will be triggered as below:
Unable to handle kernel paging request at virtual address 00000000c0000010
Call trace:
cgroup_apply_control_disable+0xa4/0x16c
rebind_subsystems+0x224/0x590
cgroup_destroy_root+0x64/0x2e0
css_free_rwork_fn+0x198/0x2a0
process_one_work+0x1d4/0x4bc
worker_thread+0x158/0x410
kthread+0x108/0x13c
ret_from_fork+0x10/0x18
The race that cause this bug can be shown as below:
(hotplug cpu) | (umount cpuset)
mutex_lock(&cpuset_mutex) | mutex_lock(&cgroup_mutex)
cpuset_hotplug_workfn |
rebuild_root_domains | rebind_subsystems
update_tasks_root_domain | spin_lock_irq(&css_set_lock)
css_task_iter_start | list_move_tail(&cset->e_cset_node[ss->id]
while(css_task_iter_next) | &dcgrp->e_csets[ss->id]);
css_task_iter_end | spin_unlock_irq(&css_set_lock)
mutex_unlock(&cpuset_mutex) | mutex_unlock(&cgroup_mutex)
Inside css_task_iter_start/next/end, css_set_lock is hold and then
released, so when iterating task(left side), the css_set may be moved to
another list(right side), then it->cset_head points to the old list head
and it->cset_pos->next points to the head node of new list, which can't
be used as struct css_set.
To fix this issue, switch from all css_sets to only scgrp's css_sets to
patch in-flight iterators to preserve correct iteration, and then
update it->cset_head as well.
Reported-by: Gaosheng Cui <cuigaosheng1@huawei.com>
Link: https://www.spinics.net/lists/cgroups/msg37935.html
Suggested-by: Michal Koutný <mkoutny@suse.com>
Link: https://lore.kernel.org/all/20230526114139.70274-1-xiujianfeng@huaweicloud.com/
Signed-off-by: Xiu Jianfeng <xiujianfeng@huawei.com>
Fixes: 2d8f243a5e ("cgroup: implement cgroup->e_csets[]")
Cc: stable@vger.kernel.org # v3.16+
Signed-off-by: Tejun Heo <tj@kernel.org>
This function is only used when CONFIG_BPF_JIT_ALWAYS_ON is disabled, but
CONFIG_BPF_SYSCALL is enabled. When both are turned off, the prototype is
missing but the unused function is still compiled, as seen from this W=1
warning:
[...]
kernel/bpf/core.c:2075:6: error: no previous prototype for 'bpf_patch_call_args' [-Werror=missing-prototypes]
[...]
Add a matching #ifdef for the definition to leave it out.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20230602135128.1498362-1-arnd@kernel.org
syzbot is again reporting circular locking dependency between
cpu_hotplug_lock and freezer_mutex. Do like what we did with
commit 57dcd64c7e ("cgroup,freezer: hold cpu_hotplug_lock
before freezer_mutex").
Reported-by: syzbot <syzbot+2ab700fe1829880a2ec6@syzkaller.appspotmail.com>
Closes: https://syzkaller.appspot.com/bug?extid=2ab700fe1829880a2ec6
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Tested-by: syzbot <syzbot+2ab700fe1829880a2ec6@syzkaller.appspotmail.com>
Fixes: f5d39b0208 ("freezer,sched: Rewrite core freezer logic")
Cc: stable@vger.kernel.org # v6.1+
Signed-off-by: Tejun Heo <tj@kernel.org>
The only overlap between the block open flags mapped into the fmode_t and
other uses of fmode_t are FMODE_READ and FMODE_WRITE. Define a new
blk_mode_t instead for use in blkdev_get_by_{dev,path}, ->open and
->ioctl and stop abusing fmode_t.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Jack Wang <jinpu.wang@ionos.com> [rnbd]
Reviewed-by: Hannes Reinecke <hare@suse.de>
Reviewed-by: Christian Brauner <brauner@kernel.org>
Link: https://lore.kernel.org/r/20230608110258.189493-28-hch@lst.de
Signed-off-by: Jens Axboe <axboe@kernel.dk>
The current interface for exclusive opens is rather confusing as it
requires both the FMODE_EXCL flag and a holder. Remove the need to pass
FMODE_EXCL and just key off the exclusive open off a non-NULL holder.
For blkdev_put this requires adding the holder argument, which provides
better debug checking that only the holder actually releases the hold,
but at the same time allows removing the now superfluous mode argument.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Hannes Reinecke <hare@suse.de>
Acked-by: Christian Brauner <brauner@kernel.org>
Acked-by: David Sterba <dsterba@suse.com> [btrfs]
Acked-by: Jack Wang <jinpu.wang@ionos.com> [rnbd]
Link: https://lore.kernel.org/r/20230608110258.189493-16-hch@lst.de
Signed-off-by: Jens Axboe <axboe@kernel.dk>
holder is just an on-stack pointer that can easily be reused by other calls,
replace it with a static variable that doesn't change.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Hannes Reinecke <hare@suse.de>
Acked-by: Rafael J. Wysocki <rafael@kernel.org>
Link: https://lore.kernel.org/r/20230608110258.189493-12-hch@lst.de
Signed-off-by: Jens Axboe <axboe@kernel.dk>
The sys_ni_posix_timers() definition causes a warning when the declaration
is missing, so this needs to be added along with the normal syscalls,
outside of the #ifdef.
kernel/time/posix-stubs.c:26:17: error: no previous prototype for 'sys_ni_posix_timers' [-Werror=missing-prototypes]
Link: https://lkml.kernel.org/r/20230607142925.3126422-1-arnd@kernel.org
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The crashk_low_res should be considered by /sys/kernel/kexec_crash_size
to support two crash kernel regions shrinking if existing.
While doing it, crashk_low_res will only be shrunk when the entire
crashk_res is empty; and if the crashk_res is empty and crahk_low_res
is not, change crashk_low_res to be crashk_res.
[bhe@redhat.com: redo changelog]
Link: https://lkml.kernel.org/r/20230527123439.772-7-thunder.leizhen@huawei.com
Signed-off-by: Zhen Lei <thunder.leizhen@huawei.com>
Acked-by: Baoquan He <bhe@redhat.com>
Cc: Cong Wang <amwang@redhat.com>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Michael Holzheu <holzheu@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
No functional change, in preparation for the next patch so that it is
easier to review.
[akpm@linux-foundation.org: make __crash_shrink_memory() static]
Link: https://lore.kernel.org/oe-kbuild-all/202305280717.Pw06aLkz-lkp@intel.com/
Link: https://lkml.kernel.org/r/20230527123439.772-6-thunder.leizhen@huawei.com
Signed-off-by: Zhen Lei <thunder.leizhen@huawei.com>
Acked-by: Baoquan He <bhe@redhat.com>
Cc: Cong Wang <amwang@redhat.com>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Michael Holzheu <holzheu@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The major adjustments are:
1. end = start + new_size.
The 'end' here is not an accurate representation, because it is not the
new end of crashk_res, but the start of ram_res, difference 1. So
eliminate it and replace it with ram_res->start.
2. Use 'ram_res->start' and 'ram_res->end' as arguments to
crash_free_reserved_phys_range() to indicate that the memory covered by
'ram_res' is released from the crashk. And keep it close to
insert_resource().
3. Replace 'if (start == end)' with 'if (!new_size)', clear indication that
all crashk memory will be shrunken.
No functional change.
Link: https://lkml.kernel.org/r/20230527123439.772-5-thunder.leizhen@huawei.com
Signed-off-by: Zhen Lei <thunder.leizhen@huawei.com>
Acked-by: Baoquan He <bhe@redhat.com>
Cc: Cong Wang <amwang@redhat.com>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Michael Holzheu <holzheu@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
If the resource of crashk_res has been released, it is better to clear
crashk_res.start and crashk_res.end. Because 'end = start - 1' is not
reasonable, and in some places the test is based on crashk_res.end, not
resource_size(&crashk_res).
Link: https://lkml.kernel.org/r/20230527123439.772-4-thunder.leizhen@huawei.com
Signed-off-by: Zhen Lei <thunder.leizhen@huawei.com>
Acked-by: Baoquan He <bhe@redhat.com>
Cc: Cong Wang <amwang@redhat.com>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Michael Holzheu <holzheu@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The check '(crashk_res.parent != NULL)' is added by commit e05bd3367b
("kexec: fix Oops in crash_shrink_memory()"), but it's stale now. Because
if 'crashk_res' is not reserved, it will be zero in size and will be
intercepted by the above 'if (new_size >= old_size)'.
Ago:
if (new_size >= end - start + 1)
Now:
old_size = (end == 0) ? 0 : end - start + 1;
if (new_size >= old_size)
Link: https://lkml.kernel.org/r/20230527123439.772-3-thunder.leizhen@huawei.com
Signed-off-by: Zhen Lei <thunder.leizhen@huawei.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Cong Wang <amwang@redhat.com>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Michael Holzheu <holzheu@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "kexec: enable kexec_crash_size to support two crash kernel
regions".
When crashkernel=X fails to reserve region under 4G, it will fall back to
reserve region above 4G and a region of the default size will also be
reserved under 4G. Unfortunately, /sys/kernel/kexec_crash_size only
supports one crash kernel region now, the user cannot sense the low memory
reserved by reading /sys/kernel/kexec_crash_size. Also, low memory cannot
be freed by writing this file.
For example:
resource_size(crashk_res) = 512M
resource_size(crashk_low_res) = 256M
The result of 'cat /sys/kernel/kexec_crash_size' is 512M, but it should be
768M. When we execute 'echo 0 > /sys/kernel/kexec_crash_size', the size
of crashk_res becomes 0 and resource_size(crashk_low_res) is still 256 MB,
which is incorrect.
Since crashk_res manages the memory with high address and crashk_low_res
manages the memory with low address, crashk_low_res is shrunken only when
all crashk_res is shrunken. And because when there is only one crash
kernel region, crashk_res is always used. Therefore, if all crashk_res is
shrunken and crashk_low_res still exists, swap them.
This patch (of 6):
If the value of parameter 'new_size' is in the semi-open and semi-closed
interval (crashk_res.end - KEXEC_CRASH_MEM_ALIGN + 1, crashk_res.end], the
calculation result of ram_res is:
ram_res->start = crashk_res.end + 1
ram_res->end = crashk_res.end
The operation of insert_resource() fails, and ram_res is not added to
iomem_resource. As a result, the memory of the control block ram_res is
leaked.
In fact, on all architectures, the start address and size of crashk_res
are already aligned by KEXEC_CRASH_MEM_ALIGN. Therefore, we do not need
to round up crashk_res.start again. Instead, we should round up
'new_size' in advance.
Link: https://lkml.kernel.org/r/20230527123439.772-1-thunder.leizhen@huawei.com
Link: https://lkml.kernel.org/r/20230527123439.772-2-thunder.leizhen@huawei.com
Fixes: 6480e5a092 ("kdump: add missing RAM resource in crash_shrink_memory()")
Fixes: 06a7f71124 ("kexec: premit reduction of the reserved memory size")
Signed-off-by: Zhen Lei <thunder.leizhen@huawei.com>
Acked-by: Baoquan He <bhe@redhat.com>
Cc: Cong Wang <amwang@redhat.com>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Michael Holzheu <holzheu@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Avoid calculating array size twice in kexec_purgatory_setup_sechdrs().
Once using array_size(), and once open-coded.
Flagged by Coccinelle:
.../kexec_file.c:881:8-25: WARNING: array_size is already used (line 877) to compute the same size
No functional change intended.
Compile tested only.
Link: https://lkml.kernel.org/r/20230525-kexec-array_size-v1-1-8b4bf4f7500a@kernel.org
Signed-off-by: Simon Horman <horms@kernel.org>
Acked-by: Baoquan He <bhe@redhat.com>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Zhen Lei <thunder.leizhen@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
When lockup_detector_init()->watchdog_hardlockup_probe(), PMU may be not
ready yet. E.g. on arm64, PMU is not ready until
device_initcall(armv8_pmu_driver_init). And it is deeply integrated with
the driver model and cpuhp. Hence it is hard to push this initialization
before smp_init().
But it is easy to take an opposite approach and try to initialize the
watchdog once again later. The delayed probe is called using workqueues.
It need to allocate memory and must be proceed in a normal context. The
delayed probe is able to use if watchdog_hardlockup_probe() returns
non-zero which means the return code returned when PMU is not ready yet.
Provide an API - lockup_detector_retry_init() for anyone who needs to
delayed init lockup detector if they had ever failed at
lockup_detector_init().
The original assumption is: nobody should use delayed probe after
lockup_detector_check() which has __init attribute. That is, anyone uses
this API must call between lockup_detector_init() and
lockup_detector_check(), and the caller must have __init attribute
Link: https://lkml.kernel.org/r/20230519101840.v5.16.If4ad5dd5d09fb1309cebf8bcead4b6a5a7758ca7@changeid
Reviewed-by: Petr Mladek <pmladek@suse.com>
Co-developed-by: Pingfan Liu <kernelfans@gmail.com>
Signed-off-by: Pingfan Liu <kernelfans@gmail.com>
Signed-off-by: Lecopzer Chen <lecopzer.chen@mediatek.com>
Signed-off-by: Douglas Anderson <dianders@chromium.org>
Suggested-by: Petr Mladek <pmladek@suse.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chen-Yu Tsai <wens@csie.org>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Colin Cross <ccross@android.com>
Cc: Daniel Thompson <daniel.thompson@linaro.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Guenter Roeck <groeck@chromium.org>
Cc: Ian Rogers <irogers@google.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Masayoshi Mizuma <msys.mizuma@gmail.com>
Cc: Matthias Kaehlcke <mka@chromium.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: "Ravi V. Shankar" <ravi.v.shankar@intel.com>
Cc: Ricardo Neri <ricardo.neri@intel.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Stephen Boyd <swboyd@chromium.org>
Cc: Sumit Garg <sumit.garg@linaro.org>
Cc: Tzung-Bi Shih <tzungbi@chromium.org>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
On arm64, NMI support needs to be detected at runtime. Add a weak
function to the perf hardlockup detector so that an architecture can
implement it to detect whether NMIs are available.
Link: https://lkml.kernel.org/r/20230519101840.v5.15.Ic55cb6f90ef5967d8aaa2b503a4e67c753f64d3a@changeid
Signed-off-by: Douglas Anderson <dianders@chromium.org>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chen-Yu Tsai <wens@csie.org>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Colin Cross <ccross@android.com>
Cc: Daniel Thompson <daniel.thompson@linaro.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Guenter Roeck <groeck@chromium.org>
Cc: Ian Rogers <irogers@google.com>
Cc: Lecopzer Chen <lecopzer.chen@mediatek.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Masayoshi Mizuma <msys.mizuma@gmail.com>
Cc: Matthias Kaehlcke <mka@chromium.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Pingfan Liu <kernelfans@gmail.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: "Ravi V. Shankar" <ravi.v.shankar@intel.com>
Cc: Ricardo Neri <ricardo.neri@intel.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Stephen Boyd <swboyd@chromium.org>
Cc: Sumit Garg <sumit.garg@linaro.org>
Cc: Tzung-Bi Shih <tzungbi@chromium.org>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Implement a hardlockup detector that doesn't doesn't need any extra
arch-specific support code to detect lockups. Instead of using something
arch-specific we will use the buddy system, where each CPU watches out for
another one. Specifically, each CPU will use its softlockup hrtimer to
check that the next CPU is processing hrtimer interrupts by verifying that
a counter is increasing.
NOTE: unlike the other hard lockup detectors, the buddy one can't easily
show what's happening on the CPU that locked up just by doing a simple
backtrace. It relies on some other mechanism in the system to get
information about the locked up CPUs. This could be support for NMI
backtraces like [1], it could be a mechanism for printing the PC of locked
CPUs at panic time like [2] / [3], or it could be something else. Even
though that means we still rely on arch-specific code, this arch-specific
code seems to often be implemented even on architectures that don't have a
hardlockup detector.
This style of hardlockup detector originated in some downstream Android
trees and has been rebased on / carried in ChromeOS trees for quite a long
time for use on arm and arm64 boards. Historically on these boards we've
leveraged mechanism [2] / [3] to get information about hung CPUs, but we
could move to [1].
Although the original motivation for the buddy system was for use on
systems without an arch-specific hardlockup detector, it can still be
useful to use even on systems that _do_ have an arch-specific hardlockup
detector. On x86, for instance, there is a 24-part patch series [4] in
progress switching the arch-specific hard lockup detector from a scarce
perf counter to a less-scarce hardware resource. Potentially the buddy
system could be a simpler alternative to free up the perf counter but
still get hard lockup detection.
Overall, pros (+) and cons (-) of the buddy system compared to an
arch-specific hardlockup detector (which might be implemented using
perf):
+ The buddy system is usable on systems that don't have an
arch-specific hardlockup detector, like arm32 and arm64 (though it's
being worked on for arm64 [5]).
+ The buddy system may free up scarce hardware resources.
+ If a CPU totally goes out to lunch (can't process NMIs) the buddy
system could still detect the problem (though it would be unlikely
to be able to get a stack trace).
+ The buddy system uses the same timer function to pet the hardlockup
detector on the running CPU as it uses to detect hardlockups on
other CPUs. Compared to other hardlockup detectors, this means it
generates fewer interrupts and thus is likely better able to let
CPUs stay idle longer.
- If all CPUs are hard locked up at the same time the buddy system
can't detect it.
- If we don't have SMP we can't use the buddy system.
- The buddy system needs an arch-specific mechanism (possibly NMI
backtrace) to get info about the locked up CPU.
[1] https://lore.kernel.org/r/20230419225604.21204-1-dianders@chromium.org
[2] https://issuetracker.google.com/172213129
[3] https://docs.kernel.org/trace/coresight/coresight-cpu-debug.html
[4] https://lore.kernel.org/lkml/20230301234753.28582-1-ricardo.neri-calderon@linux.intel.com/
[5] https://lore.kernel.org/linux-arm-kernel/20220903093415.15850-1-lecopzer.chen@mediatek.com/
Link: https://lkml.kernel.org/r/20230519101840.v5.14.I6bf789d21d0c3d75d382e7e51a804a7a51315f2c@changeid
Signed-off-by: Colin Cross <ccross@android.com>
Signed-off-by: Matthias Kaehlcke <mka@chromium.org>
Signed-off-by: Guenter Roeck <groeck@chromium.org>
Signed-off-by: Tzung-Bi Shih <tzungbi@chromium.org>
Signed-off-by: Douglas Anderson <dianders@chromium.org>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chen-Yu Tsai <wens@csie.org>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Daniel Thompson <daniel.thompson@linaro.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Ian Rogers <irogers@google.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Masayoshi Mizuma <msys.mizuma@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Pingfan Liu <kernelfans@gmail.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: "Ravi V. Shankar" <ravi.v.shankar@intel.com>
Cc: Ricardo Neri <ricardo.neri@intel.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Stephen Boyd <swboyd@chromium.org>
Cc: Sumit Garg <sumit.garg@linaro.org>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The fact that there watchdog_hardlockup_enable(),
watchdog_hardlockup_disable(), and watchdog_hardlockup_probe() are
declared __weak means that the configured hardlockup detector can define
non-weak versions of those functions if it needs to. Instead of doing
this, the perf hardlockup detector hooked itself into the default __weak
implementation, which was a bit awkward. Clean this up.
From comments, it looks as if the original design was done because the
__weak function were expected to implemented by the architecture and not
by the configured hardlockup detector. This got awkward when we tried to
add the buddy lockup detector which was not arch-specific but wanted to
hook into those same functions.
This is not expected to have any functional impact.
Link: https://lkml.kernel.org/r/20230519101840.v5.13.I847d9ec852449350997ba00401d2462a9cb4302b@changeid
Signed-off-by: Douglas Anderson <dianders@chromium.org>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chen-Yu Tsai <wens@csie.org>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Colin Cross <ccross@android.com>
Cc: Daniel Thompson <daniel.thompson@linaro.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Guenter Roeck <groeck@chromium.org>
Cc: Ian Rogers <irogers@google.com>
Cc: Lecopzer Chen <lecopzer.chen@mediatek.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Masayoshi Mizuma <msys.mizuma@gmail.com>
Cc: Matthias Kaehlcke <mka@chromium.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Pingfan Liu <kernelfans@gmail.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: "Ravi V. Shankar" <ravi.v.shankar@intel.com>
Cc: Ricardo Neri <ricardo.neri@intel.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Stephen Boyd <swboyd@chromium.org>
Cc: Sumit Garg <sumit.garg@linaro.org>
Cc: Tzung-Bi Shih <tzungbi@chromium.org>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Do a search and replace of:
- NMI_WATCHDOG_ENABLED => WATCHDOG_HARDLOCKUP_ENABLED
- SOFT_WATCHDOG_ENABLED => WATCHDOG_SOFTOCKUP_ENABLED
- watchdog_nmi_ => watchdog_hardlockup_
- nmi_watchdog_available => watchdog_hardlockup_available
- nmi_watchdog_user_enabled => watchdog_hardlockup_user_enabled
- soft_watchdog_user_enabled => watchdog_softlockup_user_enabled
- NMI_WATCHDOG_DEFAULT => WATCHDOG_HARDLOCKUP_DEFAULT
Then update a few comments near where names were changed.
This is specifically to make it less confusing when we want to introduce
the buddy hardlockup detector, which isn't using NMIs. As part of this,
we sanitized a few names for consistency.
[trix@redhat.com: make variables static]
Link: https://lkml.kernel.org/r/20230525162822.1.I0fb41d138d158c9230573eaa37dc56afa2fb14ee@changeid
Link: https://lkml.kernel.org/r/20230519101840.v5.12.I91f7277bab4bf8c0cb238732ed92e7ce7bbd71a6@changeid
Signed-off-by: Douglas Anderson <dianders@chromium.org>
Signed-off-by: Tom Rix <trix@redhat.com>
Reviewed-by: Tom Rix <trix@redhat.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chen-Yu Tsai <wens@csie.org>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Colin Cross <ccross@android.com>
Cc: Daniel Thompson <daniel.thompson@linaro.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Guenter Roeck <groeck@chromium.org>
Cc: Ian Rogers <irogers@google.com>
Cc: Lecopzer Chen <lecopzer.chen@mediatek.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Masayoshi Mizuma <msys.mizuma@gmail.com>
Cc: Matthias Kaehlcke <mka@chromium.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Pingfan Liu <kernelfans@gmail.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: "Ravi V. Shankar" <ravi.v.shankar@intel.com>
Cc: Ricardo Neri <ricardo.neri@intel.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Stephen Boyd <swboyd@chromium.org>
Cc: Sumit Garg <sumit.garg@linaro.org>
Cc: Tzung-Bi Shih <tzungbi@chromium.org>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
In preparation for the buddy hardlockup detector, which wants the same
petting logic as the current perf hardlockup detector, move the code to
watchdog.c. While doing this, rename the global variable to match others
nearby. As part of this change we have to change the code to account for
the fact that the CPU we're running on might be different than the one
we're checking.
Currently the code in watchdog.c is guarded by
CONFIG_HARDLOCKUP_DETECTOR_PERF, which makes this change seem silly.
However, a future patch will change this.
Link: https://lkml.kernel.org/r/20230519101840.v5.11.I00dfd6386ee00da25bf26d140559a41339b53e57@changeid
Signed-off-by: Douglas Anderson <dianders@chromium.org>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chen-Yu Tsai <wens@csie.org>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Colin Cross <ccross@android.com>
Cc: Daniel Thompson <daniel.thompson@linaro.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Guenter Roeck <groeck@chromium.org>
Cc: Ian Rogers <irogers@google.com>
Cc: Lecopzer Chen <lecopzer.chen@mediatek.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Masayoshi Mizuma <msys.mizuma@gmail.com>
Cc: Matthias Kaehlcke <mka@chromium.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Pingfan Liu <kernelfans@gmail.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: "Ravi V. Shankar" <ravi.v.shankar@intel.com>
Cc: Ricardo Neri <ricardo.neri@intel.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Stephen Boyd <swboyd@chromium.org>
Cc: Sumit Garg <sumit.garg@linaro.org>
Cc: Tzung-Bi Shih <tzungbi@chromium.org>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
In preparation for the buddy hardlockup detector where the CPU checking
for lockup might not be the currently running CPU, add a "cpu" parameter
to watchdog_hardlockup_check().
As part of this change, make hrtimer_interrupts an atomic_t since now the
CPU incrementing the value and the CPU reading the value might be
different. Technially this could also be done with just READ_ONCE and
WRITE_ONCE, but atomic_t feels a little cleaner in this case.
While hrtimer_interrupts is made atomic_t, we change
hrtimer_interrupts_saved from "unsigned long" to "int". The "int" is
needed to match the data type backing atomic_t for hrtimer_interrupts.
Even if this changes us from 64-bits to 32-bits (which I don't think is
true for most compilers), it doesn't really matter. All we ever do is
increment it every few seconds and compare it to an old value so 32-bits
is fine (even 16-bits would be). The "signed" vs "unsigned" also doesn't
matter for simple equality comparisons.
hrtimer_interrupts_saved is _not_ switched to atomic_t nor even accessed
with READ_ONCE / WRITE_ONCE. The hrtimer_interrupts_saved is always
consistently accessed with the same CPU. NOTE: with the upcoming "buddy"
detector there is one special case. When a CPU goes offline/online then
we can change which CPU is the one to consistently access a given instance
of hrtimer_interrupts_saved. We still can't end up with a partially
updated hrtimer_interrupts_saved, however, because we end up petting all
affected CPUs to make sure the new and old CPU can't end up somehow
read/write hrtimer_interrupts_saved at the same time.
Link: https://lkml.kernel.org/r/20230519101840.v5.10.I3a7d4dd8c23ac30ee0b607d77feb6646b64825c0@changeid
Signed-off-by: Douglas Anderson <dianders@chromium.org>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chen-Yu Tsai <wens@csie.org>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Colin Cross <ccross@android.com>
Cc: Daniel Thompson <daniel.thompson@linaro.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Guenter Roeck <groeck@chromium.org>
Cc: Ian Rogers <irogers@google.com>
Cc: Lecopzer Chen <lecopzer.chen@mediatek.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Masayoshi Mizuma <msys.mizuma@gmail.com>
Cc: Matthias Kaehlcke <mka@chromium.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Pingfan Liu <kernelfans@gmail.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: "Ravi V. Shankar" <ravi.v.shankar@intel.com>
Cc: Ricardo Neri <ricardo.neri@intel.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Stephen Boyd <swboyd@chromium.org>
Cc: Sumit Garg <sumit.garg@linaro.org>
Cc: Tzung-Bi Shih <tzungbi@chromium.org>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
These are tiny style changes:
- Add a blank line before a "return".
- Renames two globals to use the "watchdog_hardlockup" prefix.
- Store processor id in "unsigned int" rather than "int".
- Minor comment rewording.
- Use "else" rather than extra returns since it seemed more symmetric.
Link: https://lkml.kernel.org/r/20230519101840.v5.9.I818492c326b632560b09f20d2608455ecf9d3650@changeid
Reviewed-by: Petr Mladek <pmladek@suse.com>
Signed-off-by: Douglas Anderson <dianders@chromium.org>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chen-Yu Tsai <wens@csie.org>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Colin Cross <ccross@android.com>
Cc: Daniel Thompson <daniel.thompson@linaro.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Guenter Roeck <groeck@chromium.org>
Cc: Ian Rogers <irogers@google.com>
Cc: Lecopzer Chen <lecopzer.chen@mediatek.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Masayoshi Mizuma <msys.mizuma@gmail.com>
Cc: Matthias Kaehlcke <mka@chromium.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Pingfan Liu <kernelfans@gmail.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: "Ravi V. Shankar" <ravi.v.shankar@intel.com>
Cc: Ricardo Neri <ricardo.neri@intel.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Stephen Boyd <swboyd@chromium.org>
Cc: Sumit Garg <sumit.garg@linaro.org>
Cc: Tzung-Bi Shih <tzungbi@chromium.org>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The perf hardlockup detector works by looking at interrupt counts and
seeing if they change from run to run. The interrupt counts are managed
by the common watchdog code via its watchdog_timer_fn().
Currently the API between the perf detector and the common code is a
function: is_hardlockup(). When the hard lockup detector sees that
function return true then it handles printing out debug info and inducing
a panic if necessary.
Let's change the API a little bit in preparation for the buddy hardlockup
detector. The buddy hardlockup detector wants to print nearly the same
debug info and have nearly the same panic behavior. That means we want to
move all that code to the common file. For now, the code in the common
file will only be there if the perf hardlockup detector is enabled, but
eventually it will be selected by a common config.
Right now, this _just_ moves the code from the perf detector file to the
common file and changes the names. It doesn't make the changes that the
buddy hardlockup detector will need and doesn't do any style cleanups. A
future patch will do cleanup to make it more obvious what changed.
With the above, we no longer have any callers of is_hardlockup() outside
of the "watchdog.c" file, so we can remove it from the header, make it
static, and move it to the same "#ifdef" block as our new
watchdog_hardlockup_check(). While doing this, it can be noted that even
if no hardlockup detectors were configured the existing code used to still
have the code for counting/checking "hrtimer_interrupts" even if the perf
hardlockup detector wasn't configured. We didn't need to do that, so move
all the "hrtimer_interrupts" counting to only be there if the perf
hardlockup detector is configured as well.
This change is expected to be a no-op.
Link: https://lkml.kernel.org/r/20230519101840.v5.8.Id4133d3183e798122dc3b6205e7852601f289071@changeid
Signed-off-by: Douglas Anderson <dianders@chromium.org>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chen-Yu Tsai <wens@csie.org>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Colin Cross <ccross@android.com>
Cc: Daniel Thompson <daniel.thompson@linaro.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Guenter Roeck <groeck@chromium.org>
Cc: Ian Rogers <irogers@google.com>
Cc: Lecopzer Chen <lecopzer.chen@mediatek.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Masayoshi Mizuma <msys.mizuma@gmail.com>
Cc: Matthias Kaehlcke <mka@chromium.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Pingfan Liu <kernelfans@gmail.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: "Ravi V. Shankar" <ravi.v.shankar@intel.com>
Cc: Ricardo Neri <ricardo.neri@intel.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Stephen Boyd <swboyd@chromium.org>
Cc: Sumit Garg <sumit.garg@linaro.org>
Cc: Tzung-Bi Shih <tzungbi@chromium.org>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The code currently in "watchdog_hld.c" is for detecting hardlockups using
perf, as evidenced by the line in the Makefile that only compiles this
file if CONFIG_HARDLOCKUP_DETECTOR_PERF is defined. Rename the file to
prepare for the buddy hardlockup detector, which doesn't use perf.
It could be argued that the new name makes it less obvious that this is a
hardlockup detector. While true, it's not hard to remember that the
"perf" detector is always a hardlockup detector and it's nice not to have
names that are too convoluted.
Link: https://lkml.kernel.org/r/20230519101840.v5.7.Ice803cb078d0e15fb2cbf49132f096ee2bd4199d@changeid
Signed-off-by: Douglas Anderson <dianders@chromium.org>
Acked-by: Nicholas Piggin <npiggin@gmail.com>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chen-Yu Tsai <wens@csie.org>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Colin Cross <ccross@android.com>
Cc: Daniel Thompson <daniel.thompson@linaro.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Guenter Roeck <groeck@chromium.org>
Cc: Ian Rogers <irogers@google.com>
Cc: Lecopzer Chen <lecopzer.chen@mediatek.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Masayoshi Mizuma <msys.mizuma@gmail.com>
Cc: Matthias Kaehlcke <mka@chromium.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Pingfan Liu <kernelfans@gmail.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: "Ravi V. Shankar" <ravi.v.shankar@intel.com>
Cc: Ricardo Neri <ricardo.neri@intel.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Stephen Boyd <swboyd@chromium.org>
Cc: Sumit Garg <sumit.garg@linaro.org>
Cc: Tzung-Bi Shih <tzungbi@chromium.org>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
hardlockup_detector_event_create() should create perf_event on the current
CPU. Preemption could not get disabled because
perf_event_create_kernel_counter() allocates memory. Instead, the CPU
locality is achieved by processing the code in a per-CPU bound kthread.
Add a check to prevent mistakes when calling the code in another code
path.
Link: https://lkml.kernel.org/r/20230519101840.v5.5.I654063e53782b11d53e736a8ad4897ffd207406a@changeid
Signed-off-by: Pingfan Liu <kernelfans@gmail.com>
Co-developed-by: Lecopzer Chen <lecopzer.chen@mediatek.com>
Signed-off-by: Lecopzer Chen <lecopzer.chen@mediatek.com>
Signed-off-by: Douglas Anderson <dianders@chromium.org>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chen-Yu Tsai <wens@csie.org>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Colin Cross <ccross@android.com>
Cc: Daniel Thompson <daniel.thompson@linaro.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Guenter Roeck <groeck@chromium.org>
Cc: Ian Rogers <irogers@google.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Masayoshi Mizuma <msys.mizuma@gmail.com>
Cc: Matthias Kaehlcke <mka@chromium.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: "Ravi V. Shankar" <ravi.v.shankar@intel.com>
Cc: Ricardo Neri <ricardo.neri@intel.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Stephen Boyd <swboyd@chromium.org>
Cc: Sumit Garg <sumit.garg@linaro.org>
Cc: Tzung-Bi Shih <tzungbi@chromium.org>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Currently, in the watchdog_overflow_callback() we first check to see if
the watchdog had been touched and _then_ we handle the workaround for
turbo mode. This order should be reversed.
Specifically, "touching" the hardlockup detector's watchdog should avoid
lockups being detected for one period that should be roughly the same
regardless of whether we're running turbo or not. That means that we
should do the extra accounting for turbo _before_ we look at (and clear)
the global indicating that we've been touched.
NOTE: this fix is made based on code inspection. I am not aware of any
reports where the old code would have generated false positives. That
being said, this order seems more correct and also makes it easier down
the line to share code with the "buddy" hardlockup detector.
Link: https://lkml.kernel.org/r/20230519101840.v5.2.I843b0d1de3e096ba111a179f3adb16d576bef5c7@changeid
Fixes: 7edaeb6841 ("kernel/watchdog: Prevent false positives with turbo modes")
Signed-off-by: Douglas Anderson <dianders@chromium.org>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chen-Yu Tsai <wens@csie.org>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Colin Cross <ccross@android.com>
Cc: Daniel Thompson <daniel.thompson@linaro.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Guenter Roeck <groeck@chromium.org>
Cc: Ian Rogers <irogers@google.com>
Cc: Lecopzer Chen <lecopzer.chen@mediatek.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Masayoshi Mizuma <msys.mizuma@gmail.com>
Cc: Matthias Kaehlcke <mka@chromium.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Pingfan Liu <kernelfans@gmail.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: "Ravi V. Shankar" <ravi.v.shankar@intel.com>
Cc: Ricardo Neri <ricardo.neri@intel.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Stephen Boyd <swboyd@chromium.org>
Cc: Sumit Garg <sumit.garg@linaro.org>
Cc: Tzung-Bi Shih <tzungbi@chromium.org>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
A number of internal functions in kcov are only called from generated code
and don't technically need a declaration, but 'make W=1' warns about
global symbols without a prototype:
kernel/kcov.c:199:14: error: no previous prototype for '__sanitizer_cov_trace_pc' [-Werror=missing-prototypes]
kernel/kcov.c:264:14: error: no previous prototype for '__sanitizer_cov_trace_cmp1' [-Werror=missing-prototypes]
kernel/kcov.c:270:14: error: no previous prototype for '__sanitizer_cov_trace_cmp2' [-Werror=missing-prototypes]
kernel/kcov.c:276:14: error: no previous prototype for '__sanitizer_cov_trace_cmp4' [-Werror=missing-prototypes]
kernel/kcov.c:282:14: error: no previous prototype for '__sanitizer_cov_trace_cmp8' [-Werror=missing-prototypes]
kernel/kcov.c:288:14: error: no previous prototype for '__sanitizer_cov_trace_const_cmp1' [-Werror=missing-prototypes]
kernel/kcov.c:295:14: error: no previous prototype for '__sanitizer_cov_trace_const_cmp2' [-Werror=missing-prototypes]
kernel/kcov.c:302:14: error: no previous prototype for '__sanitizer_cov_trace_const_cmp4' [-Werror=missing-prototypes]
kernel/kcov.c:309:14: error: no previous prototype for '__sanitizer_cov_trace_const_cmp8' [-Werror=missing-prototypes]
kernel/kcov.c:316:14: error: no previous prototype for '__sanitizer_cov_trace_switch' [-Werror=missing-prototypes]
Adding prototypes for these in a header solves that problem, but now there
is a mismatch between the built-in type and the prototype on 64-bit
architectures because they expect some functions to take a 64-bit
'unsigned long' argument rather than an 'unsigned long long' u64 type:
include/linux/kcov.h:84:6: error: conflicting types for built-in function '__sanitizer_cov_trace_switch'; expected 'void(long long unsigned int, void *)' [-Werror=builtin-declaration-mismatch]
84 | void __sanitizer_cov_trace_switch(u64 val, u64 *cases);
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~
Avoid this as well with a custom type definition.
Link: https://lkml.kernel.org/r/20230517124944.929997-1-arnd@kernel.org
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Rong Tao <rongtao@cestc.cn>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Building with W=1 shows warnings about two functions that have no
declaration or caller in certain configurations:
kernel/panic.c:688:6: error: no previous prototype for 'warn_slowpath_fmt' [-Werror=missing-prototypes]
kernel/panic.c:710:6: error: no previous prototype for '__warn_printk' [-Werror=missing-prototypes]
Enclose the definition in the same #ifdef check as the declaration.
Link: https://lkml.kernel.org/r/20230517131102.934196-8-arnd@kernel.org
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Eric Paris <eparis@redhat.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Helge Deller <deller@gmx.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Paul Moore <paul@paul-moore.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rafael J. Wysocki <rafael@kernel.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Waiman Long <longman@redhat.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
lockevent_read() has a __weak definition and the only caller in
kernel/locking/lock_events.c, plus a strong definition in qspinlock_stat.h
that overrides it, but no other declaration. This causes a W=1 warning:
kernel/locking/lock_events.c:61:16: error: no previous prototype for 'lockevent_read' [-Werror=missing-prototypes]
Add shared prototype to avoid the warnings.
Link: https://lkml.kernel.org/r/20230517131102.934196-7-arnd@kernel.org
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Eric Paris <eparis@redhat.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Helge Deller <deller@gmx.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Paul Moore <paul@paul-moore.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rafael J. Wysocki <rafael@kernel.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Waiman Long <longman@redhat.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Since commit f1c1a9ee00 ("fork: Move memcg_charge_kernel_stack()
into CONFIG_VMAP_STACK"), memcg_charge_kernel_stack() has been moved
into CONFIG_VMAP_STACK block, so the CONFIG_VMAP_STACK check can be
removed.
Furthermore, memcg_charge_kernel_stack() is only invoked by
alloc_thread_stack_node() instead of dup_task_struct(). If
memcg_kmem_charge_page() fails, the uncharge process is handled in
memcg_charge_kernel_stack() itself instead of free_thread_stack(),
so remove the incorrect comments.
If memcg_charge_kernel_stack() fails to charge pages used by kernel
stack, only charged pages need to be uncharged. It's unnecessary to
uncharge those pages which memory cgroup pointer is NULL.
[akpm@linux-foundation.org: remove assertion that PAGE_SIZE is a multiple of 1k]
Link: https://lkml.kernel.org/r/20230508064458.32855-1-haifeng.xu@shopee.com
Signed-off-by: Haifeng Xu <haifeng.xu@shopee.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Daniel Bristot de Oliveira <bristot@kernel.org>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The only instances of get_user_pages_remote() invocations which used the
vmas parameter were for a single page which can instead simply look up the
VMA directly. In particular:-
- __update_ref_ctr() looked up the VMA but did nothing with it so we simply
remove it.
- __access_remote_vm() was already using vma_lookup() when the original
lookup failed so by doing the lookup directly this also de-duplicates the
code.
We are able to perform these VMA operations as we already hold the
mmap_lock in order to be able to call get_user_pages_remote().
As part of this work we add get_user_page_vma_remote() which abstracts the
VMA lookup, error handling and decrementing the page reference count should
the VMA lookup fail.
This forms part of a broader set of patches intended to eliminate the vmas
parameter altogether.
[akpm@linux-foundation.org: avoid passing NULL to PTR_ERR]
Link: https://lkml.kernel.org/r/d20128c849ecdbf4dd01cc828fcec32127ed939a.1684350871.git.lstoakes@gmail.com
Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> (for arm64)
Acked-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Janosch Frank <frankja@linux.ibm.com> (for s390)
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: Christian König <christian.koenig@amd.com>
Cc: Dennis Dalessandro <dennis.dalessandro@cornelisnetworks.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Jarkko Sakkinen <jarkko@kernel.org>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Sakari Ailus <sakari.ailus@linux.intel.com>
Cc: Sean Christopherson <seanjc@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
No invocation of pin_user_pages_remote() uses the vmas parameter, so
remove it. This forms part of a larger patch set eliminating the use of
the vmas parameters altogether.
Link: https://lkml.kernel.org/r/28f000beb81e45bf538a2aaa77c90f5482b67a32.1684350871.git.lstoakes@gmail.com
Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com>
Acked-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian König <christian.koenig@amd.com>
Cc: Dennis Dalessandro <dennis.dalessandro@cornelisnetworks.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Janosch Frank <frankja@linux.ibm.com>
Cc: Jarkko Sakkinen <jarkko@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Sakari Ailus <sakari.ailus@linux.intel.com>
Cc: Sean Christopherson <seanjc@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
This moves all page alloc related sysctls to its own file, as part of the
kernel/sysctl.c spring cleaning, also move some functions declarations
from mm.h into internal.h.
Link: https://lkml.kernel.org/r/20230516063821.121844-13-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Iurii Zaikin <yzaikin@google.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Len Brown <len.brown@intel.com>
Cc: Luis Chamberlain <mcgrof@kernel.org>
Cc: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Rafael J. Wysocki <rafael@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
pm_restrict_gfp_mask()/pm_restore_gfp_mask() only used in power, let's
move them out of page_alloc.c.
Adding a general gfp_has_io_fs() function which return true if gfp with
both __GFP_IO and __GFP_FS flags, then use it inside of
pm_suspended_storage(), also the pm_suspended_storage() is moved into
suspend.h.
Link: https://lkml.kernel.org/r/20230516063821.121844-11-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Iurii Zaikin <yzaikin@google.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Len Brown <len.brown@intel.com>
Cc: Luis Chamberlain <mcgrof@kernel.org>
Cc: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Rafael J. Wysocki <rafael@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The mark_free_page() is only used in kernel/power/snapshot.c, move it out
to reduce a bit of page_alloc.c
Link: https://lkml.kernel.org/r/20230516063821.121844-10-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Iurii Zaikin <yzaikin@google.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Len Brown <len.brown@intel.com>
Cc: Luis Chamberlain <mcgrof@kernel.org>
Cc: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Rafael J. Wysocki <rafael@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
There is currently no good way to query the page cache state of large file
sets and directory trees. There is mincore(), but it scales poorly: the
kernel writes out a lot of bitmap data that userspace has to aggregate,
when the user really doesn not care about per-page information in that
case. The user also needs to mmap and unmap each file as it goes along,
which can be quite slow as well.
Some use cases where this information could come in handy:
* Allowing database to decide whether to perform an index scan or
direct table queries based on the in-memory cache state of the
index.
* Visibility into the writeback algorithm, for performance issues
diagnostic.
* Workload-aware writeback pacing: estimating IO fulfilled by page
cache (and IO to be done) within a range of a file, allowing for
more frequent syncing when and where there is IO capacity, and
batching when there is not.
* Computing memory usage of large files/directory trees, analogous to
the du tool for disk usage.
More information about these use cases could be found in the following
thread:
https://lore.kernel.org/lkml/20230315170934.GA97793@cmpxchg.org/
This patch implements a new syscall that queries cache state of a file and
summarizes the number of cached pages, number of dirty pages, number of
pages marked for writeback, number of (recently) evicted pages, etc. in a
given range. Currently, the syscall is only wired in for x86
architecture.
NAME
cachestat - query the page cache statistics of a file.
SYNOPSIS
#include <sys/mman.h>
struct cachestat_range {
__u64 off;
__u64 len;
};
struct cachestat {
__u64 nr_cache;
__u64 nr_dirty;
__u64 nr_writeback;
__u64 nr_evicted;
__u64 nr_recently_evicted;
};
int cachestat(unsigned int fd, struct cachestat_range *cstat_range,
struct cachestat *cstat, unsigned int flags);
DESCRIPTION
cachestat() queries the number of cached pages, number of dirty
pages, number of pages marked for writeback, number of evicted
pages, number of recently evicted pages, in the bytes range given by
`off` and `len`.
An evicted page is a page that is previously in the page cache but
has been evicted since. A page is recently evicted if its last
eviction was recent enough that its reentry to the cache would
indicate that it is actively being used by the system, and that
there is memory pressure on the system.
These values are returned in a cachestat struct, whose address is
given by the `cstat` argument.
The `off` and `len` arguments must be non-negative integers. If
`len` > 0, the queried range is [`off`, `off` + `len`]. If `len` ==
0, we will query in the range from `off` to the end of the file.
The `flags` argument is unused for now, but is included for future
extensibility. User should pass 0 (i.e no flag specified).
Currently, hugetlbfs is not supported.
Because the status of a page can change after cachestat() checks it
but before it returns to the application, the returned values may
contain stale information.
RETURN VALUE
On success, cachestat returns 0. On error, -1 is returned, and errno
is set to indicate the error.
ERRORS
EFAULT cstat or cstat_args points to an invalid address.
EINVAL invalid flags.
EBADF invalid file descriptor.
EOPNOTSUPP file descriptor is of a hugetlbfs file
[nphamcs@gmail.com: replace rounddown logic with the existing helper]
Link: https://lkml.kernel.org/r/20230504022044.3675469-1-nphamcs@gmail.com
Link: https://lkml.kernel.org/r/20230503013608.2431726-3-nphamcs@gmail.com
Signed-off-by: Nhat Pham <nphamcs@gmail.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Brian Foster <bfoster@redhat.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Previous patches removed the only caller of cgroup_rstat_flush_atomic().
Remove the function and simplify the code.
Link: https://lkml.kernel.org/r/20230421174020.2994750-6-yosryahmed@google.com
Signed-off-by: Yosry Ahmed <yosryahmed@google.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Jan Kara <jack@suse.cz>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Michal Koutný <mkoutny@suse.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
A bunch of fixes all over the place
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
-----BEGIN PGP SIGNATURE-----
iQFDBAABCAAtFiEEXQn9CHHI+FuUyooNKB8NuNKNVGkFAmSDUGkPHG1zdEByZWRo
YXQuY29tAAoJECgfDbjSjVRpw6gH+wbopniPKDrxNwTpDFx3jix3QDTzVMY4Bq4k
QdwPfjAZ1aDZXYHV1CdFXeKTA+ZkWHIREZSr+E/2/jeI55Exc2AeFptZrUesSg29
jMN1MPs00CCy8Qi9BiCZIQkFkIKHNA2PY8wIA0oIXhIaG7pBtYQ14CnAFqn41ev5
II20h389KMthe0lwm4ni/qHVZzG/2qP/JXLKf35proDEnU5WWM1rQZ1666EFMaIR
6QExqwbPubxfv44Kl3mMkanGj6MmtLtFa2XlMLbEfLrU5/Xz+CywqSFHTUerrh3I
eTNyqz4Oyj6UpRq264rqQBJmpSn8LWFBZXQlJ6Y+ef/h8Mhdewk=
=G8CT
-----END PGP SIGNATURE-----
Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
Pull virtio bug fixes from Michael Tsirkin:
"A bunch of fixes all over the place"
* tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost:
tools/virtio: use canonical ftrace path
vhost_vdpa: support PACKED when setting-getting vring_base
vhost: support PACKED when setting-getting vring_base
vhost: Fix worker hangs due to missed wake up calls
vhost: Fix crash during early vhost_transport_send_pkt calls
vhost_net: revert upend_idx only on retriable error
vhost_vdpa: tell vqs about the negotiated
vdpa/mlx5: Fix hang when cvq commands are triggered during device unregister
tools/virtio: Add .gitignore for ringtest
tools/virtio: Fix arm64 ringtest compilation error
vduse: avoid empty string for dev name
vhost: use kzalloc() instead of kmalloc() followed by memset()
Activating KCSAN on a 32 bits architecture leads to the following
link-time failure:
LD .tmp_vmlinux.kallsyms1
powerpc64-linux-ld: kernel/kcsan/core.o: in function `__tsan_atomic64_load':
kernel/kcsan/core.c:1273: undefined reference to `__atomic_load_8'
powerpc64-linux-ld: kernel/kcsan/core.o: in function `__tsan_atomic64_store':
kernel/kcsan/core.c:1273: undefined reference to `__atomic_store_8'
powerpc64-linux-ld: kernel/kcsan/core.o: in function `__tsan_atomic64_exchange':
kernel/kcsan/core.c:1273: undefined reference to `__atomic_exchange_8'
powerpc64-linux-ld: kernel/kcsan/core.o: in function `__tsan_atomic64_fetch_add':
kernel/kcsan/core.c:1273: undefined reference to `__atomic_fetch_add_8'
powerpc64-linux-ld: kernel/kcsan/core.o: in function `__tsan_atomic64_fetch_sub':
kernel/kcsan/core.c:1273: undefined reference to `__atomic_fetch_sub_8'
powerpc64-linux-ld: kernel/kcsan/core.o: in function `__tsan_atomic64_fetch_and':
kernel/kcsan/core.c:1273: undefined reference to `__atomic_fetch_and_8'
powerpc64-linux-ld: kernel/kcsan/core.o: in function `__tsan_atomic64_fetch_or':
kernel/kcsan/core.c:1273: undefined reference to `__atomic_fetch_or_8'
powerpc64-linux-ld: kernel/kcsan/core.o: in function `__tsan_atomic64_fetch_xor':
kernel/kcsan/core.c:1273: undefined reference to `__atomic_fetch_xor_8'
powerpc64-linux-ld: kernel/kcsan/core.o: in function `__tsan_atomic64_fetch_nand':
kernel/kcsan/core.c:1273: undefined reference to `__atomic_fetch_nand_8'
powerpc64-linux-ld: kernel/kcsan/core.o: in function `__tsan_atomic64_compare_exchange_strong':
kernel/kcsan/core.c:1273: undefined reference to `__atomic_compare_exchange_8'
powerpc64-linux-ld: kernel/kcsan/core.o: in function `__tsan_atomic64_compare_exchange_weak':
kernel/kcsan/core.c:1273: undefined reference to `__atomic_compare_exchange_8'
powerpc64-linux-ld: kernel/kcsan/core.o: in function `__tsan_atomic64_compare_exchange_val':
kernel/kcsan/core.c:1273: undefined reference to `__atomic_compare_exchange_8'
32 bits architectures don't have 64 bits atomic builtins. Only
include DEFINE_TSAN_ATOMIC_OPS(64) on 64 bits architectures.
Fixes: 0f8ad5f2e9 ("kcsan: Add support for atomic builtins")
Suggested-by: Marco Elver <elver@google.com>
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Reviewed-by: Marco Elver <elver@google.com>
Acked-by: Marco Elver <elver@google.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://msgid.link/d9c6afc28d0855240171a4e0ad9ffcdb9d07fceb.1683892665.git.christophe.leroy@csgroup.eu
* Fix css_set reference leaks on fork failures.
* Fix CPU hotplug locking in cgroup_transfer_tasks() which is used by
cgroup1 cpuset.
* Doc update.
-----BEGIN PGP SIGNATURE-----
iIQEABYIACwWIQTfIjM1kS57o3GsC/uxYfJx3gVYGQUCZIJ5bQ4cdGpAa2VybmVs
Lm9yZwAKCRCxYfJx3gVYGc/CAQCmE2cKGBWN45xbzIA5S7+zq8QCv85BYlnAgqpR
jgF8GQD/fFXdmKL0wTzjTf1YOvEi9UxJqhDvHSRtV53fzPedbg4=
=s+u8
-----END PGP SIGNATURE-----
Merge tag 'cgroup-for-6.4-rc5-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup
Pull cgroup fixes from Tejun Heo:
- Fix css_set reference leaks on fork failures
- Fix CPU hotplug locking in cgroup_transfer_tasks() which is used by
cgroup1 cpuset
- Doc update
* tag 'cgroup-for-6.4-rc5-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup:
cgroup: Documentation: Clarify usage of memory limits
cgroup: always put cset in cgroup_css_set_put_fork
cgroup: fix missing cpus_read_{lock,unlock}() in cgroup_transfer_tasks()
The security keys sysctls are already declared on its own file,
just move the sysctl registration to its own file to help avoid
merge conflicts on sysctls.c, and help with clearing up sysctl.c
further.
This creates a small penalty of 23 bytes:
./scripts/bloat-o-meter vmlinux.1 vmlinux.2
add/remove: 2/0 grow/shrink: 0/1 up/down: 49/-26 (23)
Function old new delta
init_security_keys_sysctls - 33 +33
__pfx_init_security_keys_sysctls - 16 +16
sysctl_init_bases 85 59 -26
Total: Before=21256937, After=21256960, chg +0.00%
But soon we'll be saving tons of bytes anyway, as we modify the
sysctl registrations to use ARRAY_SIZE and so we get rid of all the
empty array elements so let's just clean this up now.
Reviewed-by: Paul Moore <paul@paul-moore.com>
Acked-by: Jarkko Sakkinen <jarkko@kernel.org>
Acked-by: David Howells <dhowells@redhat.com>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
Move the umh sysctl registration to its own file, the array is
already there. We do this to remove the clutter out of kernel/sysctl.c
to avoid merge conflicts.
This also lets the sysctls not be built at all now when CONFIG_SYSCTL
is not enabled.
This has a small penalty of 23 bytes but soon we'll be removing
all the empty entries on sysctl arrays so just do this cleanup
now:
./scripts/bloat-o-meter vmlinux.base vmlinux.1
add/remove: 2/0 grow/shrink: 0/1 up/down: 49/-26 (23)
Function old new delta
init_umh_sysctls - 33 +33
__pfx_init_umh_sysctls - 16 +16
sysctl_init_bases 111 85 -26
Total: Before=21256914, After=21256937, chg +0.00%
Acked-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
We can race where we have added work to the work_list, but
vhost_task_fn has passed that check but not yet set us into
TASK_INTERRUPTIBLE. wake_up_process will see us in TASK_RUNNING and
just return.
This bug was intoduced in commit f9010dbdce ("fork, vhost: Use
CLONE_THREAD to fix freezer/ps regression") when I moved the setting
of TASK_INTERRUPTIBLE to simplfy the code and avoid get_signal from
logging warnings about being in the wrong state. This moves the setting
of TASK_INTERRUPTIBLE back to before we test if we need to stop the
task to avoid a possible race there as well. We then have vhost_worker
set TASK_RUNNING if it finds work similar to before.
Fixes: f9010dbdce ("fork, vhost: Use CLONE_THREAD to fix freezer/ps regression")
Signed-off-by: Mike Christie <michael.christie@oracle.com>
Message-Id: <20230607192338.6041-3-michael.christie@oracle.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
This change makes function kallsyms_show_value() as
generic function without dependency on CONFIG_KALLSYMS.
Now module address will be displayed with lsmod and /proc/modules.
Earlier:
=======
/ # insmod test.ko
/ # lsmod
test 12288 0 - Live 0x0000000000000000 (O) // No Module Load address
/ #
With change:
==========
/ # insmod test.ko
/ # lsmod
test 12288 0 - Live 0xffff800000fc0000 (O) // Module address
/ # cat /proc/modules
test 12288 0 - Live 0xffff800000fc0000 (O)
Co-developed-by: Onkarnath <onkarnath.1@samsung.com>
Signed-off-by: Onkarnath <onkarnath.1@samsung.com>
Signed-off-by: Maninder Singh <maninder1.s@samsung.com>
Reviewed-by: Zhen Lei <thunder.leizhen@huawei.com>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
function kallsyms_show_value() is used by other parts
like modules_open(), kprobes_read() etc. which can work in case of
!KALLSYMS also.
e.g. as of now lsmod do not show module address if KALLSYMS is disabled.
since kallsyms_show_value() defination is not present, it returns false
in !KALLSYMS.
/ # lsmod
test 12288 0 - Live 0x0000000000000000 (O)
So kallsyms_show_value() can be made generic
without dependency on KALLSYMS.
Thus moving out function to a new file ksyms_common.c.
With this patch code is just moved to new file
and no functional change.
Co-developed-by: Onkarnath <onkarnath.1@samsung.com>
Signed-off-by: Onkarnath <onkarnath.1@samsung.com>
Signed-off-by: Maninder Singh <maninder1.s@samsung.com>
Reviewed-by: Zhen Lei <thunder.leizhen@huawei.com>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
Cross-merge networking fixes after downstream PR.
Conflicts:
net/sched/sch_taprio.c
d636fc5dd6 ("net: sched: add rcu annotations around qdisc->qdisc_sleeping")
dced11ef84 ("net/sched: taprio: don't overwrite "sch" variable in taprio_dump_class_stats()")
net/ipv4/sysctl_net_ipv4.c
e209fee411 ("net/ipv4: ping_group_range: allow GID from 2147483648 to 4294967294")
ccce324dab ("tcp: make the first N SYN RTO backoffs linear")
https://lore.kernel.org/all/20230605100816.08d41a7b@canb.auug.org.au/
No adjacent changes.
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
This patch add two riscv-specific prctls, to allow usespace control the
use of vector unit:
* PR_RISCV_V_SET_CONTROL: control the permission to use Vector at next,
or all following execve for a thread. Turning off a thread's Vector
live is not possible since libraries may have registered ifunc that
may execute Vector instructions.
* PR_RISCV_V_GET_CONTROL: get the same permission setting for the
current thread, and the setting for following execve(s).
Signed-off-by: Andy Chiu <andy.chiu@sifive.com>
Reviewed-by: Greentime Hu <greentime.hu@sifive.com>
Reviewed-by: Vincent Chen <vincent.chen@sifive.com>
Link: https://lore.kernel.org/r/20230605110724.21391-22-andy.chiu@sifive.com
Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
The following scenario describes a bug in the verifier where it
incorrectly concludes about equivalent scalar IDs which could lead to
verifier bypass in privileged mode:
1. Prepare a 32-bit rogue number.
2. Put the rogue number into the upper half of a 64-bit register, and
roll a random (unknown to the verifier) bit in the lower half. The
rest of the bits should be zero (although variations are possible).
3. Assign an ID to the register by MOVing it to another arbitrary
register.
4. Perform a 32-bit spill of the register, then perform a 32-bit fill to
another register. Due to a bug in the verifier, the ID will be
preserved, although the new register will contain only the lower 32
bits, i.e. all zeros except one random bit.
At this point there are two registers with different values but the same
ID, which means the integrity of the verifier state has been corrupted.
5. Compare the new 32-bit register with 0. In the branch where it's
equal to 0, the verifier will believe that the original 64-bit
register is also 0, because it has the same ID, but its actual value
still contains the rogue number in the upper half.
Some optimizations of the verifier prevent the actual bypass, so
extra care is needed: the comparison must be between two registers,
and both branches must be reachable (this is why one random bit is
needed). Both branches are still suitable for the bypass.
6. Right shift the original register by 32 bits to pop the rogue number.
7. Use the rogue number as an offset with any pointer. The verifier will
believe that the offset is 0, while in reality it's the given number.
The fix is similar to the 32-bit BPF_MOV handling in check_alu_op for
SCALAR_VALUE. If the spill is narrowing the actual register value, don't
keep the ID, make sure it's reset to 0.
Fixes: 354e8f1970 ("bpf: Support <8-byte scalar spill and refill")
Signed-off-by: Maxim Mikityanskiy <maxim@isovalent.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Tested-by: Andrii Nakryiko <andrii@kernel.org> # Checked veristat delta
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20230607123951.558971-2-maxtram95@gmail.com
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQTFp0I1jqZrAX+hPRXbK58LschIgwUCZIDxUwAKCRDbK58LschI
g5hDAQD7ukrniCvMRNIm2yUZIGSxE4RvGiXptO4a0NfLck5R/wEAsfN2KUsPcPhW
HS37lVfx7VVXfj42+REf7lWLu4TXpwk=
=6mS/
-----END PGP SIGNATURE-----
Merge tag 'for-netdev' of https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf
Daniel Borkmann says:
====================
pull-request: bpf 2023-06-07
We've added 7 non-merge commits during the last 7 day(s) which contain
a total of 12 files changed, 112 insertions(+), 7 deletions(-).
The main changes are:
1) Fix a use-after-free in BPF's task local storage, from KP Singh.
2) Make struct path handling more robust in bpf_d_path, from Jiri Olsa.
3) Fix a syzbot NULL-pointer dereference in sockmap, from Eric Dumazet.
4) UAPI fix for BPF_NETFILTER before final kernel ships,
from Florian Westphal.
5) Fix map-in-map array_map_gen_lookup code generation where elem_size was
not being set for inner maps, from Rhys Rustad-Elliott.
6) Fix sockopt_sk selftest's NETLINK_LIST_MEMBERSHIPS assertion,
from Yonghong Song.
* tag 'for-netdev' of https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf:
bpf: Add extra path pointer check to d_path helper
selftests/bpf: Fix sockopt_sk selftest
bpf: netfilter: Add BPF_NETFILTER bpf_attach_type
selftests/bpf: Add access_inner_map selftest
bpf: Fix elem_size not being set for inner maps
bpf: Fix UAF in task local storage
bpf, sockmap: Avoid potential NULL dereference in sk_psock_verdict_data_ready()
====================
Link: https://lore.kernel.org/r/20230607220514.29698-1-daniel@iogearbox.net
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
If DEBUG_FS is enabled, the cost of keeping an exact number of total
used slabs is already paid. In this case, there is no reason to use an
inexact number for statistics and kernel messages.
Signed-off-by: Petr Tesarik <petr.tesarik.ext@huawei.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
If dma_direct_alloc() alloc memory in size of 64MB, the inner function
dma_common_contiguous_remap() will allocate 128KB memory by invoking
the function kmalloc_array(). and the kmalloc_array seems to fail to try to
allocate 128KB mem.
Call trace:
[14977.928623] qcrosvm: page allocation failure: order:5, mode:0x40cc0
[14977.928638] dump_backtrace.cfi_jt+0x0/0x8
[14977.928647] dump_stack_lvl+0x80/0xb8
[14977.928652] warn_alloc+0x164/0x200
[14977.928657] __alloc_pages_slowpath+0x9f0/0xb4c
[14977.928660] __alloc_pages+0x21c/0x39c
[14977.928662] kmalloc_order+0x48/0x108
[14977.928666] kmalloc_order_trace+0x34/0x154
[14977.928668] __kmalloc+0x548/0x7e4
[14977.928673] dma_direct_alloc+0x11c/0x4f8
[14977.928678] dma_alloc_attrs+0xf4/0x138
[14977.928680] gh_vm_ioctl_set_fw_name+0x3c4/0x610 [gunyah]
[14977.928698] gh_vm_ioctl+0x90/0x14c [gunyah]
[14977.928705] __arm64_sys_ioctl+0x184/0x210
work around by doing kvmalloc_array instead.
Signed-off-by: Gao Xu <gaoxu2@hihonor.com>
Reviewed-by: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Anastasios reported crash on stable 5.15 kernel with following
BPF attached to lsm hook:
SEC("lsm.s/bprm_creds_for_exec")
int BPF_PROG(bprm_creds_for_exec, struct linux_binprm *bprm)
{
struct path *path = &bprm->executable->f_path;
char p[128] = { 0 };
bpf_d_path(path, p, 128);
return 0;
}
But bprm->executable can be NULL, so bpf_d_path call will crash:
BUG: kernel NULL pointer dereference, address: 0000000000000018
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 0 P4D 0
Oops: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC NOPTI
...
RIP: 0010:d_path+0x22/0x280
...
Call Trace:
<TASK>
bpf_d_path+0x21/0x60
bpf_prog_db9cf176e84498d9_bprm_creds_for_exec+0x94/0x99
bpf_trampoline_6442506293_0+0x55/0x1000
bpf_lsm_bprm_creds_for_exec+0x5/0x10
security_bprm_creds_for_exec+0x29/0x40
bprm_execve+0x1c1/0x900
do_execveat_common.isra.0+0x1af/0x260
__x64_sys_execve+0x32/0x40
It's problem for all stable trees with bpf_d_path helper, which was
added in 5.9.
This issue is fixed in current bpf code, where we identify and mark
trusted pointers, so the above code would fail even to load.
For the sake of the stable trees and to workaround potentially broken
verifier in the future, adding the code that reads the path object from
the passed pointer and verifies it's valid in kernel space.
Fixes: 6e22ab9da7 ("bpf: Add d_path helper")
Reported-by: Anastasios Papagiannis <tasos.papagiannnis@gmail.com>
Suggested-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Stanislav Fomichev <sdf@google.com>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20230606181714.532998-1-jolsa@kernel.org
Check the target function has non-void retval type and set the correct
fetch type if user doesn't specify it.
If the function returns void, $retval is rejected as below;
# echo 'f unregister_kprobes%return $retval' >> dynamic_events
sh: write error: No such file or directory
# cat error_log
[ 37.488397] trace_fprobe: error: This function returns 'void' type
Command: f unregister_kprobes%return $retval
^
Link: https://lore.kernel.org/all/168507476195.913472.16290308831790216609.stgit@mhiramat.roam.corp.google.com/
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Add the '$arg*' meta fetch argument for function-entry probe events. This
will be expanded to the all arguments of the function and the tracepoint
using BTF function argument information.
e.g.
# echo 'p vfs_read $arg*' >> dynamic_events
# echo 'f vfs_write $arg*' >> dynamic_events
# echo 't sched_overutilized_tp $arg*' >> dynamic_events
# cat dynamic_events
p:kprobes/p_vfs_read_0 vfs_read file=file buf=buf count=count pos=pos
f:fprobes/vfs_write__entry vfs_write file=file buf=buf count=count pos=pos
t:tracepoints/sched_overutilized_tp sched_overutilized_tp rd=rd overutilized=overutilized
Also, single '$arg[0-9]*' will be converted to the BTF function argument.
NOTE: This seems like a wildcard, but a fake one at this moment. This
is just for telling user that this can be expanded to several arguments.
And it is not like other $-vars, you can not use this $arg* as a part of
fetch args, e.g. specifying name "foo=$arg*" and using it in dereferences
"+0($arg*)" will lead a parse error.
Link: https://lore.kernel.org/all/168507475126.913472.18329684401466211816.stgit@mhiramat.roam.corp.google.com/
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Support function or tracepoint parameters by name if BTF support is enabled
and the event is for function entry (this feature can be used with kprobe-
events, fprobe-events and tracepoint probe events.)
Note that the BTF variable syntax does not require a prefix. If it starts
with an alphabetic character or an underscore ('_') without a prefix like
'$' and '%', it is considered as a BTF variable.
If you specify only the BTF variable name, the argument name will also
be the same name instead of 'arg*'.
# echo 'p vfs_read count pos' >> dynamic_events
# echo 'f vfs_write count pos' >> dynamic_events
# echo 't sched_overutilized_tp rd overutilized' >> dynamic_events
# cat dynamic_events
p:kprobes/p_vfs_read_0 vfs_read count=count pos=pos
f:fprobes/vfs_write__entry vfs_write count=count pos=pos
t:tracepoints/sched_overutilized_tp sched_overutilized_tp rd=rd overutilized=overutilized
Link: https://lore.kernel.org/all/168507474014.913472.16963996883278039183.stgit@mhiramat.roam.corp.google.com/
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Reviewed-by: Alan Maguire <alan.maguire@oracle.com>
Tested-by: Alan Maguire <alan.maguire@oracle.com>
Allow fprobe_events to trace raw tracepoints so that user can trace
tracepoints which don't have traceevent wrappers. This new event is
always available if the fprobe_events is enabled (thus no kconfig),
because the fprobe_events depends on the trace-event and traceporint.
e.g.
# echo 't sched_overutilized_tp' >> dynamic_events
# echo 't 9p_client_req' >> dynamic_events
# cat dynamic_events
t:tracepoints/sched_overutilized_tp sched_overutilized_tp
t:tracepoints/_9p_client_req 9p_client_req
The event name is based on the tracepoint name, but if it is started
with digit character, an underscore '_' will be added.
NOTE: to avoid further confusion, this renames TPARG_FL_TPOINT to
TPARG_FL_TEVENT because this flag is used for eprobe (trace-event probe).
And reuse TPARG_FL_TPOINT for this raw tracepoint probe.
Link: https://lore.kernel.org/all/168507471874.913472.17214624519622959593.stgit@mhiramat.roam.corp.google.com/
Reported-by: kernel test robot <lkp@intel.com>
Link: https://lore.kernel.org/oe-kbuild-all/202305020453.afTJ3VVp-lkp@intel.com/
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Add fprobe events for tracing function entry and exit instead of kprobe
events. With this change, we can continue to trace function entry/exit
even if the CONFIG_KPROBES_ON_FTRACE is not available. Since
CONFIG_KPROBES_ON_FTRACE requires the CONFIG_DYNAMIC_FTRACE_WITH_REGS,
it is not available if the architecture only supports
CONFIG_DYNAMIC_FTRACE_WITH_ARGS. And that means kprobe events can not
probe function entry/exit effectively on such architecture.
But this can be solved if the dynamic events supports fprobe events.
The fprobe event is a new dynamic events which is only for the function
(symbol) entry and exit. This event accepts non register fetch arguments
so that user can trace the function arguments and return values.
The fprobe events syntax is here;
f[:[GRP/][EVENT]] FUNCTION [FETCHARGS]
f[MAXACTIVE][:[GRP/][EVENT]] FUNCTION%return [FETCHARGS]
E.g.
# echo 'f vfs_read $arg1' >> dynamic_events
# echo 'f vfs_read%return $retval' >> dynamic_events
# cat dynamic_events
f:fprobes/vfs_read__entry vfs_read arg1=$arg1
f:fprobes/vfs_read__exit vfs_read%return arg1=$retval
# echo 1 > events/fprobes/enable
# head -n 20 trace | tail
# TASK-PID CPU# ||||| TIMESTAMP FUNCTION
# | | | ||||| | |
sh-142 [005] ...1. 448.386420: vfs_read__entry: (vfs_read+0x4/0x340) arg1=0xffff888007f7c540
sh-142 [005] ..... 448.386436: vfs_read__exit: (ksys_read+0x75/0x100 <- vfs_read) arg1=0x1
sh-142 [005] ...1. 448.386451: vfs_read__entry: (vfs_read+0x4/0x340) arg1=0xffff888007f7c540
sh-142 [005] ..... 448.386458: vfs_read__exit: (ksys_read+0x75/0x100 <- vfs_read) arg1=0x1
sh-142 [005] ...1. 448.386469: vfs_read__entry: (vfs_read+0x4/0x340) arg1=0xffff888007f7c540
sh-142 [005] ..... 448.386476: vfs_read__exit: (ksys_read+0x75/0x100 <- vfs_read) arg1=0x1
sh-142 [005] ...1. 448.602073: vfs_read__entry: (vfs_read+0x4/0x340) arg1=0xffff888007f7c540
sh-142 [005] ..... 448.602089: vfs_read__exit: (ksys_read+0x75/0x100 <- vfs_read) arg1=0x1
Link: https://lore.kernel.org/all/168507469754.913472.6112857614708350210.stgit@mhiramat.roam.corp.google.com/
Reported-by: kernel test robot <lkp@intel.com>
Link: https://lore.kernel.org/all/202302011530.7vm4O8Ro-lkp@intel.com/
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
When parsing a kprobe event, the return probe always sets both
TPARG_FL_RETURN and TPARG_FL_FENTRY, but this is not useful because
some fetchargs are only for return probe and some others only for
function entry. Make it obviously mutual exclusive.
Link: https://lore.kernel.org/all/168507468731.913472.11354553441385410734.stgit@mhiramat.roam.corp.google.com/
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
NULL the dangling pipe reference while clearing watch_queue.
If not done, a reference to a freed pipe remains in the watch_queue,
as this function is called before freeing a pipe in free_pipe_info()
(see line 834 of fs/pipe.c).
The sole use of wqueue->defunct is for checking if the watch queue has
been cleared, but wqueue->pipe is also NULLed while clearing.
Thus, wqueue->defunct is superfluous, as wqueue->pipe can be checked
for NULL. Hence, the former can be removed.
Tested with keyutils testsuite.
Cc: stable@vger.kernel.org # 6.1
Signed-off-by: Siddh Raman Pant <code@siddh.me>
Acked-by: David Howells <dhowells@redhat.com>
Message-Id: <20230605143616.640517-1-code@siddh.me>
Signed-off-by: Christian Brauner <brauner@kernel.org>
Full revert of commit 9551fbb64d ("perf/core: Remove pmu linear
searching code").
Some architectures (notably arm/arm64) still relied on the linear
search in order to find the PMU that consumes
PERF_TYPE_{HARDWARE,HW_CACHE,RAW}.
This will need a more thorought audit and cleanup.
Reported-by: Nathan Chancellor <nathan@kernel.org>
Reported-by: Krzysztof Kozlowski <krzysztof.kozlowski@linaro.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20230605101401.GL38236@hirez.programming.kicks-ass.net
Andrii Nakryiko writes:
And we currently don't have an attach type for NETLINK BPF link.
Thankfully it's not too late to add it. I see that link_create() in
kernel/bpf/syscall.c just bypasses attach_type check. We shouldn't
have done that. Instead we need to add BPF_NETLINK attach type to enum
bpf_attach_type. And wire all that properly throughout the kernel and
libbpf itself.
This adds BPF_NETFILTER and uses it. This breaks uabi but this
wasn't in any non-rc release yet, so it should be fine.
v2: check link_attack prog type in link_create too
Fixes: 84601d6ee6 ("bpf: add bpf_link support for BPF_NETFILTER programs")
Suggested-by: Andrii Nakryiko <andrii.nakryiko@gmail.com>
Signed-off-by: Florian Westphal <fw@strlen.de>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/CAEf4BzZ69YgrQW7DHCJUT_X+GqMq_ZQQPBwopaJJVGFD5=d5Vg@mail.gmail.com/
Link: https://lore.kernel.org/bpf/20230605131445.32016-1-fw@strlen.de
In reg_type_not_null(), we currently assume that a pointer may be NULL
if it has the PTR_MAYBE_NULL modifier, or if it doesn't belong to one of
several base type of pointers that are never NULL-able. For example,
PTR_TO_CTX, PTR_TO_MAP_VALUE, etc.
It turns out that in some cases, PTR_TO_BTF_ID can never be NULL as
well, though we currently don't specify it. For example, if you had the
following program:
SEC("tc")
long example_refcnt_fail(void *ctx)
{
struct bpf_cpumask *mask1, *mask2;
mask1 = bpf_cpumask_create();
mask2 = bpf_cpumask_create();
if (!mask1 || !mask2)
goto error_release;
bpf_cpumask_test_cpu(0, (const struct cpumask *)mask1);
bpf_cpumask_test_cpu(0, (const struct cpumask *)mask2);
error_release:
if (mask1)
bpf_cpumask_release(mask1);
if (mask2)
bpf_cpumask_release(mask2);
return ret;
}
The verifier will incorrectly fail to load the program, thinking
(unintuitively) that we have a possibly-unreleased reference if the mask
is NULL, because we (correctly) don't issue a bpf_cpumask_release() on
the NULL path.
The reason the verifier gets confused is due to the fact that we don't
explicitly tell the verifier that trusted PTR_TO_BTF_ID pointers can
never be NULL. Basically, if we successfully get past the if check
(meaning both pointers go from ptr_or_null_bpf_cpumask to
ptr_bpf_cpumask), the verifier will correctly assume that the references
need to be dropped on any possible branch that leads to program exit.
However, it will _incorrectly_ think that the ptr == NULL branch is
possible, and will erroneously detect it as a branch on which we failed
to drop the reference.
The solution is of course to teach the verifier that trusted
PTR_TO_BTF_ID pointers can never be NULL, so that it doesn't incorrectly
think it's possible for the reference to be present on the ptr == NULL
branch.
A follow-on patch will add a selftest that verifies this behavior.
Signed-off-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20230602150112.1494194-1-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
>From commit 282de143ea ("bpf: Introduce allocated objects support"),
With this allocated object with BPF program, (PTR_TO_BTF_ID | MEM_ALLOC)
has been a way of indicating to check the type is the allocated object.
commit d8939cb0a0 ("bpf: Loosen alloc obj test in verifier's
reg_btf_record")
>From the commit, there has been helper function for checking this, named
type_is_ptr_alloc_obj(). But still, some of the code use open code to
retrieve this info. This commit replaces the open code with the
type_is_alloc(), and the type_is_ptr_alloc_obj() function.
Signed-off-by: Daniel T. Lee <danieltimlee@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20230527122706.59315-1-danieltimlee@gmail.com
This patch fixes an incorrect assumption made in the original
bpf_refcount series [0], specifically that the BPF program calling
bpf_refcount_acquire on some node can always guarantee that the node is
alive. In that series, the patch adding failure behavior to rbtree_add
and list_push_{front, back} breaks this assumption for non-owning
references.
Consider the following program:
n = bpf_kptr_xchg(&mapval, NULL);
/* skip error checking */
bpf_spin_lock(&l);
if(bpf_rbtree_add(&t, &n->rb, less)) {
bpf_refcount_acquire(n);
/* Failed to add, do something else with the node */
}
bpf_spin_unlock(&l);
It's incorrect to assume that bpf_refcount_acquire will always succeed in this
scenario. bpf_refcount_acquire is being called in a critical section
here, but the lock being held is associated with rbtree t, which isn't
necessarily the lock associated with the tree that the node is already
in. So after bpf_rbtree_add fails to add the node and calls bpf_obj_drop
in it, the program has no ownership of the node's lifetime. Therefore
the node's refcount can be decr'd to 0 at any time after the failing
rbtree_add. If this happens before the refcount_acquire above, the node
might be free'd, and regardless refcount_acquire will be incrementing a
0 refcount.
Later patches in the series exercise this scenario, resulting in the
expected complaint from the kernel (without this patch's changes):
refcount_t: addition on 0; use-after-free.
WARNING: CPU: 1 PID: 207 at lib/refcount.c:25 refcount_warn_saturate+0xbc/0x110
Modules linked in: bpf_testmod(O)
CPU: 1 PID: 207 Comm: test_progs Tainted: G O 6.3.0-rc7-02231-g723de1a718a2-dirty #371
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.15.0-0-g2dd4b9b3f840-prebuilt.qemu.org 04/01/2014
RIP: 0010:refcount_warn_saturate+0xbc/0x110
Code: 6f 64 f6 02 01 e8 84 a3 5c ff 0f 0b eb 9d 80 3d 5e 64 f6 02 00 75 94 48 c7 c7 e0 13 d2 82 c6 05 4e 64 f6 02 01 e8 64 a3 5c ff <0f> 0b e9 7a ff ff ff 80 3d 38 64 f6 02 00 0f 85 6d ff ff ff 48 c7
RSP: 0018:ffff88810b9179b0 EFLAGS: 00010082
RAX: 0000000000000000 RBX: 0000000000000002 RCX: 0000000000000000
RDX: 0000000000000202 RSI: 0000000000000008 RDI: ffffffff857c3680
RBP: ffff88810027d3c0 R08: ffffffff8125f2a4 R09: ffff88810b9176e7
R10: ffffed1021722edc R11: 746e756f63666572 R12: ffff88810027d388
R13: ffff88810027d3c0 R14: ffffc900005fe030 R15: ffffc900005fe048
FS: 00007fee0584a700(0000) GS:ffff88811b280000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00005634a96f6c58 CR3: 0000000108ce9002 CR4: 0000000000770ee0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
PKRU: 55555554
Call Trace:
<TASK>
bpf_refcount_acquire_impl+0xb5/0xc0
(rest of output snipped)
The patch addresses this by changing bpf_refcount_acquire_impl to use
refcount_inc_not_zero instead of refcount_inc and marking
bpf_refcount_acquire KF_RET_NULL.
For owning references, though, we know the above scenario is not possible
and thus that bpf_refcount_acquire will always succeed. Some verifier
bookkeeping is added to track "is input owning ref?" for bpf_refcount_acquire
calls and return false from is_kfunc_ret_null for bpf_refcount_acquire on
owning refs despite it being marked KF_RET_NULL.
Existing selftests using bpf_refcount_acquire are modified where
necessary to NULL-check its return value.
[0]: https://lore.kernel.org/bpf/20230415201811.343116-1-davemarchevsky@fb.com/
Fixes: d2dcc67df9 ("bpf: Migrate bpf_rbtree_add and bpf_list_push_{front,back} to possibly fail")
Reported-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230602022647.1571784-5-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Given the pointer to struct bpf_{rb,list}_node within a local kptr and
the byte offset of that field within the kptr struct, the calculation changed
by this patch is meant to find the beginning of the kptr so that it can
be passed to bpf_obj_drop.
Unfortunately instead of doing
ptr_to_kptr = ptr_to_node_field - offset_bytes
the calculation is erroneously doing
ptr_to_ktpr = ptr_to_node_field - (offset_bytes * sizeof(struct bpf_rb_node))
or the bpf_list_node equivalent.
This patch fixes the calculation.
Fixes: d2dcc67df9 ("bpf: Migrate bpf_rbtree_add and bpf_list_push_{front,back} to possibly fail")
Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230602022647.1571784-4-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
In verifier.c, fixup_kfunc_call uses struct bpf_insn_aux_data's
kptr_struct_meta field to pass information about local kptr types to
various helpers and kfuncs at runtime. The recent bpf_refcount series
added a few functions to the set that need this information:
* bpf_refcount_acquire
* Needs to know where the refcount field is in order to increment
* Graph collection insert kfuncs: bpf_rbtree_add, bpf_list_push_{front,back}
* Were migrated to possibly fail by the bpf_refcount series. If
insert fails, the input node is bpf_obj_drop'd. bpf_obj_drop needs
the kptr_struct_meta in order to decr refcount and properly free
special fields.
Unfortunately the verifier handling of collection insert kfuncs was not
modified to actually populate kptr_struct_meta. Accordingly, when the
node input to those kfuncs is passed to bpf_obj_drop, it is done so
without the information necessary to decr refcount.
This patch fixes the issue by populating kptr_struct_meta for those
kfuncs.
Fixes: d2dcc67df9 ("bpf: Migrate bpf_rbtree_add and bpf_list_push_{front,back} to possibly fail")
Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230602022647.1571784-3-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Fix all kernel-doc warnings in rdmacg:
kernel/cgroup/rdma.c:209: warning: Function parameter or member 'cg'
not described in 'rdmacg_uncharge_hierarchy'
kernel/cgroup/rdma.c:230: warning: Function parameter or member 'cg'
not described in 'rdmacg_uncharge'
Signed-off-by: Gaosheng Cui <cuigaosheng1@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
We will release the refcnt of cgroup via cgroup_put, for example
in the cgroup_lock_and_drain_offline function, so replace css_get
with the cgroup_get function for better readability.
Signed-off-by: Gaosheng Cui <cuigaosheng1@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
for_each_e_css() is unused now. Remove it.
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: Yosry Ahmed <yosryahmed@google.com>
Reviewed-by: Michal Koutný <mkoutny@suse.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
The responsiveness of the Per Entity Load Tracking (PELT) util_avg in
mobile devices is still considered too low for utilization changes
during task ramp-up.
In Android this manifests in the fact that the first frames of a UI
activity are very prone to be jankframes (a frame which doesn't meet
the required frame rendering time, e.g. 16ms@60Hz) since the CPU
frequency is normally low at this point and has to ramp up quickly.
The beginning of an UI activity is also characterized by the occurrence
of CPU contention, especially on little CPUs. Current little CPUs can
have an original CPU capacity of only ~ 150 which means that the actual
CPU capacity at lower frequency can even be much smaller.
Schedutil maps CPU util_avg into CPU frequency request via:
util = effective_cpu_util(..., cpu_util_cfs(cpu), ...) ->
util = map_util_perf(util) -> freq = map_util_freq(util, ...)
CPU contention for CFS tasks can be detected by 'CPU runnable > CPU
utililization' in cpu_util_cfs_boost() -> cpu_util(..., boost = 1).
Schedutil uses 'runnable boosting' by calling cpu_util_cfs_boost().
To be in sync with schedutil's CPU frequency selection, Energy Aware
Scheduling (EAS) also calls cpu_util(..., boost = 1) during max util
detection.
Moreover, 'runnable boosting' is also used in load-balance for busiest
CPU selection when the migration type is 'migrate_util', i.e. only at
sched domains which don't have the SD_SHARE_PKG_RESOURCES flag set.
Suggested-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20230515115735.296329-3-dietmar.eggemann@arm.com
There is a lot of code duplication in cpu_util_next() & cpu_util_cfs().
Remove this by allowing cpu_util_next() to be called with p = NULL.
Rename cpu_util_next() to cpu_util() since the '_next' suffix is no
longer necessary to distinct cpu utilization related functions.
Implement cpu_util_cfs(cpu) as cpu_util(cpu, p = NULL, -1).
This will allow to code future related cpu util changes only in one
place, namely in cpu_util().
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20230515115735.296329-2-dietmar.eggemann@arm.com
Now that all ARCH_WANTS_NO_INSTR architectures (arm64, loongarch,
s390, x86) provide sched_clock_noinstr(), use this to provide
local_clock_noinstr().
This local_clock_noinstr() will be safe to use from noinstr code with
the assumption that any such noinstr code is non-preemptible (it had
better be, entry code will have IRQs disabled while __cpuidle must
have preemption disabled).
Specifically, preempt_enable_notrace(), a common part of many a
sched_clock() implementation calls out to schedule() -- even though,
per the above, it will never trigger -- which frustrates noinstr
validation.
vmlinux.o: warning: objtool: local_clock+0xb5: call to preempt_schedule_notrace_thunk() leaves .noinstr.text section
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com> # Hyper-V
Link: https://lore.kernel.org/r/20230519102715.978624636@infradead.org
With the intent to provide local_clock_noinstr(), a variant of
local_clock() that's safe to be called from noinstr code (with the
assumption that any such code will already be non-preemptible),
prepare for things by providing a noinstr sched_clock_noinstr() function.
Specifically, preempt_enable_*() calls out to schedule(), which upsets
noinstr validation efforts.
As such, pull out the preempt_{dis,en}able_notrace() requirements from
the sched_clock_read() implementations by explicitly providing it in
the sched_clock() function.
This further requires said sched_clock_read() functions to be noinstr
themselves, for ARCH_WANTS_NO_INSTR users. See the next few patches.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com> # Hyper-V
Link: https://lore.kernel.org/r/20230519102715.302350330@infradead.org
The read side of seqcount_latch consists of:
do {
seq = raw_read_seqcount_latch(&latch->seq);
...
} while (read_seqcount_latch_retry(&latch->seq, seq));
which is asymmetric in the raw_ department, and sure enough,
read_seqcount_latch_retry() includes (explicit) instrumentation where
raw_read_seqcount_latch() does not.
This inconsistency becomes a problem when trying to use it from
noinstr code. As such, fix it by renaming and re-implementing
raw_read_seqcount_latch_retry() without the instrumentation.
Specifically the instrumentation in question is kcsan_atomic_next(0)
in do___read_seqcount_retry(). Loosing this annotation is not a
problem because raw_read_seqcount_latch() does not pass through
kcsan_atomic_next(KCSAN_SEQLOCK_REGION_MAX).
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Tested-by: Michael Kelley <mikelley@microsoft.com> # Hyper-V
Link: https://lore.kernel.org/r/20230519102715.233598176@infradead.org
With the introduction of task_struct::saved_state in commit
5f220be214 ("sched/wakeup: Prepare for RT sleeping spin/rwlocks")
matching the task state has gotten more complicated. That same commit
changed try_to_wake_up() to consider both states, but
wait_task_inactive() has been neglected.
Sebastian noted that the wait_task_inactive() usage in
ptrace_check_attach() can misbehave when ptrace_stop() is blocked on
the tasklist_lock after it sets TASK_TRACED.
Therefore extract a common helper from ttwu_state_match() and use that
to teach wait_task_inactive() about the PREEMPT_RT locks.
Originally-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Link: https://lkml.kernel.org/r/20230601091234.GW83892@hirez.programming.kicks-ass.net
While modifying wait_task_inactive() for PREEMPT_RT; the build robot
noted that UP got broken. This led to audit and consideration of the
UP implementation of wait_task_inactive().
It looks like the UP implementation is also broken for PREEMPT;
consider task_current_syscall() getting preempted between the two
calls to wait_task_inactive().
Therefore move the wait_task_inactive() implementation out of
CONFIG_SMP and unconditionally use it.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20230602103731.GA630648%40hirez.programming.kicks-ass.net
We've run into the case that the balancer tries to balance a migration
disabled task and trigger the warning in set_task_cpu() like below:
------------[ cut here ]------------
WARNING: CPU: 7 PID: 0 at kernel/sched/core.c:3115 set_task_cpu+0x188/0x240
Modules linked in: hclgevf xt_CHECKSUM ipt_REJECT nf_reject_ipv4 <...snip>
CPU: 7 PID: 0 Comm: swapper/7 Kdump: loaded Tainted: G O 6.1.0-rc4+ #1
Hardware name: Huawei TaiShan 2280 V2/BC82AMDC, BIOS 2280-V2 CS V5.B221.01 12/09/2021
pstate: 604000c9 (nZCv daIF +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : set_task_cpu+0x188/0x240
lr : load_balance+0x5d0/0xc60
sp : ffff80000803bc70
x29: ffff80000803bc70 x28: ffff004089e190e8 x27: ffff004089e19040
x26: ffff007effcabc38 x25: 0000000000000000 x24: 0000000000000001
x23: ffff80000803be84 x22: 000000000000000c x21: ffffb093e79e2a78
x20: 000000000000000c x19: ffff004089e19040 x18: 0000000000000000
x17: 0000000000001fad x16: 0000000000000030 x15: 0000000000000000
x14: 0000000000000003 x13: 0000000000000000 x12: 0000000000000000
x11: 0000000000000001 x10: 0000000000000400 x9 : ffffb093e4cee530
x8 : 00000000fffffffe x7 : 0000000000ce168a x6 : 000000000000013e
x5 : 00000000ffffffe1 x4 : 0000000000000001 x3 : 0000000000000b2a
x2 : 0000000000000b2a x1 : ffffb093e6d6c510 x0 : 0000000000000001
Call trace:
set_task_cpu+0x188/0x240
load_balance+0x5d0/0xc60
rebalance_domains+0x26c/0x380
_nohz_idle_balance.isra.0+0x1e0/0x370
run_rebalance_domains+0x6c/0x80
__do_softirq+0x128/0x3d8
____do_softirq+0x18/0x24
call_on_irq_stack+0x2c/0x38
do_softirq_own_stack+0x24/0x3c
__irq_exit_rcu+0xcc/0xf4
irq_exit_rcu+0x18/0x24
el1_interrupt+0x4c/0xe4
el1h_64_irq_handler+0x18/0x2c
el1h_64_irq+0x74/0x78
arch_cpu_idle+0x18/0x4c
default_idle_call+0x58/0x194
do_idle+0x244/0x2b0
cpu_startup_entry+0x30/0x3c
secondary_start_kernel+0x14c/0x190
__secondary_switched+0xb0/0xb4
---[ end trace 0000000000000000 ]---
Further investigation shows that the warning is superfluous, the migration
disabled task is just going to be migrated to its current running CPU.
This is because that on load balance if the dst_cpu is not allowed by the
task, we'll re-select a new_dst_cpu as a candidate. If no task can be
balanced to dst_cpu we'll try to balance the task to the new_dst_cpu
instead. In this case when the migration disabled task is not on CPU it
only allows to run on its current CPU, load balance will select its
current CPU as new_dst_cpu and later triggers the warning above.
The new_dst_cpu is chosen from the env->dst_grpmask. Currently it
contains CPUs in sched_group_span() and if we have overlapped groups it's
possible to run into this case. This patch makes env->dst_grpmask of
group_balance_mask() which exclude any CPUs from the busiest group and
solve the issue. For balancing in a domain with no overlapped groups
the behaviour keeps same as before.
Suggested-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Yicong Yang <yangyicong@hisilicon.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20230530082507.10444-1-yangyicong@huawei.com
resume_store is a sysfs attribute written during normal kernel runtime,
and it should not use the early_lookup_bdev API that bypasses all normal
path based permission checking, and might cause problems with certain
container environments renaming devices.
Switch to lookup_bdev, which does a normal path lookup instead, and fall
back to trying to parse a numeric dev_t just like early_lookup_bdev did.
Note that this strictly speaking changes the kernel ABI as the PARTUUID=
and PARTLABEL= style syntax is now not available during a running
systems. They never were intended for that, but this breaks things
we'll have to figure out a way to make them available again. But if
avoidable in any way I'd rather avoid that.
Fixes: 421a5fa1a6 ("PM / hibernate: use name_to_dev_t to parse resume")
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Rafael J. Wysocki <rafael@kernel.org>
Link: https://lore.kernel.org/r/20230531125535.676098-22-hch@lst.de
Signed-off-by: Jens Axboe <axboe@kernel.dk>
name_to_dev_t has a very misleading name, that doesn't make clear
it should only be used by the early init code, and also has a bad
calling convention that doesn't allow returning different kinds of
errors. Rename it to early_lookup_bdev to make the use case clear,
and return an errno, where -EINVAL means the string could not be
parsed, and -ENODEV means it the string was valid, but there was
no device found for it.
Also stub out the whole call for !CONFIG_BLOCK as all the non-block
root cases are always covered in the caller.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Link: https://lore.kernel.org/r/20230531125535.676098-14-hch@lst.de
Signed-off-by: Jens Axboe <axboe@kernel.dk>
software_resume can be called either from an init call in the boot code,
or from sysfs once the system has finished booting, and the two
invocation methods this can't race with each other.
For the latter case we did just parse the suspend device manually, while
the former might not have one. Split software_resume so that the search
only happens for the boot case, which also means the special lockdep
nesting annotation can go away as the system transition mutex can be
taken a little later and doesn't have the sysfs locking nest inside it.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Rafael J. Wysocki <rafael@kernel.org>
Link: https://lore.kernel.org/r/20230531125535.676098-5-hch@lst.de
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Passing call dependent variable in global variables is a huge
antipattern. Fix it up.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Rafael J. Wysocki <rafael@kernel.org>
Link: https://lore.kernel.org/r/20230531125535.676098-4-hch@lst.de
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Split the logic to find the resume device out software_resume and into
a separate helper to start unwindig the convoluted goto logic.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Rafael J. Wysocki <rafael@kernel.org>
Link: https://lore.kernel.org/r/20230531125535.676098-3-hch@lst.de
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Add a new blk_holder_ops structure, which is passed to blkdev_get_by_* and
installed in the block_device for exclusive claims. It will be used to
allow the block layer to call back into the user of the block device for
thing like notification of a removed device or a device resize.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jan Kara <jack@suse.cz>
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Link: https://lore.kernel.org/r/20230601094459.1350643-10-hch@lst.de
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Now that we have raw_atomic*_<op>() definitions, there's no need to use
arch_atomic*_<op>() definitions outside of the low-level atomic
definitions.
Move treewide users of arch_atomic*_<op>() over to the equivalent
raw_atomic*_<op>().
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20230605070124.3741859-19-mark.rutland@arm.com
- Return NULL if the trace_probe list on trace_probe_event is empty.
- selftests/ftrace: Choose testing symbol name for filtering feature
from sample data instead of fixed symbol.
-----BEGIN PGP SIGNATURE-----
iQEzBAABCgAdFiEEh7BulGwFlgAOi5DV2/sHvwUrPxsFAmR640AACgkQ2/sHvwUr
PxugGgf/YwwocmUqiEtTukTB7fzoAjYyQXr0YaJM+DjeZXMqAJ4dl9tV1/AmAL4j
iWtZd53aolTym/3P2VADfSc4xiyWjFdkYv7zRPjpqfMg3XsELJgshwz+12dmmMdx
0uco1l2/Ge3JNPK6BuWaO3V44QjoPSgiRsmxxKLh5K7M9V5swL7fadoLtins1B0r
TVVqdyEHQkZLTByexg7wHYd/ro+4lexv1yhvyP4rEmYRPDoR56eOF2zwcQMHPvaY
qstdP2ce6m5rG0gp4TsY7oRkezb64y903hNQuumoU6VR9nI3IK4PZjuX5/xns2By
G9mRaOqb02+UmP+HhX4QGmr92G9Vyw==
=o07w
-----END PGP SIGNATURE-----
Merge tag 'probes-fixes-6.4-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace
Pull probes fixes from Masami Hiramatsu:
- Return NULL if the trace_probe list on trace_probe_event is empty
- selftests/ftrace: Choose testing symbol name for filtering feature
from sample data instead of fixed symbol
* tag 'probes-fixes-6.4-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace:
selftests/ftrace: Choose target function for filter test from samples
tracing/probe: trace_probe_primary_from_call(): checked list_first_entry
Commit d937bc3449 ("bpf: make uniform use of array->elem_size
everywhere in arraymap.c") changed array_map_gen_lookup to use
array->elem_size instead of round_up(map->value_size, 8) as the element
size when generating code to access a value in an array map.
array->elem_size, however, is not set by bpf_map_meta_alloc when
initializing an BPF_MAP_TYPE_ARRAY_OF_MAPS or BPF_MAP_TYPE_HASH_OF_MAPS.
This results in array_map_gen_lookup incorrectly outputting code that
always accesses index 0 in the array (as the index will be calculated
via a multiplication with the element size, which is incorrectly set to
0).
Set elem_size on the bpf_array object when allocating an array or hash
of maps to fix this.
Fixes: d937bc3449 ("bpf: make uniform use of array->elem_size everywhere in arraymap.c")
Signed-off-by: Rhys Rustad-Elliott <me@rhysre.net>
Link: https://lore.kernel.org/r/20230602190110.47068-2-me@rhysre.net
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
When task local storage was generalized for tracing programs, the
bpf_task_local_storage callback was moved from a BPF LSM hook
callback for security_task_free LSM hook to it's own callback. But a
failure case in bad_fork_cleanup_security was missed which, when
triggered, led to a dangling task owner pointer and a subsequent
use-after-free. Move the bpf_task_storage_free to the very end of
free_task to handle all failure cases.
This issue was noticed when a BPF LSM program was attached to the
task_alloc hook on a kernel with KASAN enabled. The program used
bpf_task_storage_get to copy the task local storage from the current
task to the new task being created.
Fixes: a10787e6d5 ("bpf: Enable task local storage for tracing programs")
Reported-by: Kuba Piecuch <jpiecuch@google.com>
Signed-off-by: KP Singh <kpsingh@kernel.org>
Acked-by: Song Liu <song@kernel.org>
Link: https://lore.kernel.org/r/20230602002612.1117381-1-kpsingh@kernel.org
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
A zstd fix by lucas as he tested zstd decompression support
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAwFiEENnNq2KuOejlQLZofziMdCjCSiKcFAmR5D8USHG1jZ3JvZkBr
ZXJuZWwub3JnAAoJEM4jHQowkoingK8P/3XmCG83G1JULOgFso657i1qdsVbqQek
Qzo7t9IniifEYZPu8+BTplrtwP3G7x9xlci94JWSftaDvRCWh7kULJ2EMYe61aQk
eEiYu79AYQYDAYx2mUacvf8QeSWoJmxY7DyUHt9eZQTJ90VN6/svKThxLk2HbQvR
LtDryHVJqVnH2iSdkP3GA/kVulvLfrQ4+entVhr609kFsvZz21WICtnPU5/xu3PJ
/Cb8T5FvTjQO6+nCjKMWlBM5sfXSQDxMqcnppZO/sed0yPP47hGzljJM2tlWNkK7
qb7IrXYW4SowjcIGzQIFHbPSBRM+02hhIF0iSK66kGVrDHocJ1u2pKhhzgsnZdfk
Wjr1R1CHAthjr1e1S4sFAnl3VTXBCPtC2L2SdCR3aGb1EB2bEjPmZTex6HWWNeCV
iBVLdJxyt0K6NQTlFe4b5ZE5j0JB2h/uDSpY9OrwMwkVA4BptKRlkUt+4EliPeaf
lBNABLFDSK82x7bL9MSurzJhLOumj/9CMpl/WkwJYsT5RK5zkfcLpmh6YuRQlA/1
xR4NKlJn3pVGjXrmAl2t6VJrSa/wCQjkUzd1xyilLI/oxk4uxelGFJiofCyl4zSF
+A0MHbvrL6N8x6conbfWkQ4cFgSGLSneB5UgVe9myl2b/P3n6PCgyghulo7F9JYj
G65Ty9CqKJRm
=FVHd
-----END PGP SIGNATURE-----
Merge tag 'modules-6.4-rc5-second-pull' of git://git.kernel.org/pub/scm/linux/kernel/git/mcgrof/linux
Pull modules fix from Luis Chamberlain:
"A zstd fix by lucas as he tested zstd decompression support"
* tag 'modules-6.4-rc5-second-pull' of git://git.kernel.org/pub/scm/linux/kernel/git/mcgrof/linux:
module/decompress: Fix error checking on zstd decompression
While implementing support for in-kernel decompression in kmod,
finit_module() was returning a very suspicious value:
finit_module(3, "", MODULE_INIT_COMPRESSED_FILE) = 18446744072717407296
It turns out the check for module_get_next_page() failing is wrong,
and hence the decompression was not really taking place. Invert
the condition to fix it.
Fixes: 169a58ad82 ("module/decompress: Support zstd in-kernel decompression")
Cc: stable@kernel.org
Cc: Luis Chamberlain <mcgrof@kernel.org>
Cc: Dmitry Torokhov <dmitry.torokhov@gmail.com>
Cc: Stephen Boyd <swboyd@chromium.org>
Signed-off-by: Lucas De Marchi <lucas.demarchi@intel.com>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
When switching from kthreads to vhost_tasks two bugs were added:
1. The vhost worker tasks's now show up as processes so scripts doing
ps or ps a would not incorrectly detect the vhost task as another
process. 2. kthreads disabled freeze by setting PF_NOFREEZE, but
vhost tasks's didn't disable or add support for them.
To fix both bugs, this switches the vhost task to be thread in the
process that does the VHOST_SET_OWNER ioctl, and has vhost_worker call
get_signal to support SIGKILL/SIGSTOP and freeze signals. Note that
SIGKILL/STOP support is required because CLONE_THREAD requires
CLONE_SIGHAND which requires those 2 signals to be supported.
This is a modified version of the patch written by Mike Christie
<michael.christie@oracle.com> which was a modified version of patch
originally written by Linus.
Much of what depended upon PF_IO_WORKER now depends on PF_USER_WORKER.
Including ignoring signals, setting up the register state, and having
get_signal return instead of calling do_group_exit.
Tidied up the vhost_task abstraction so that the definition of
vhost_task only needs to be visible inside of vhost_task.c. Making
it easier to review the code and tell what needs to be done where.
As part of this the main loop has been moved from vhost_worker into
vhost_task_fn. vhost_worker now returns true if work was done.
The main loop has been updated to call get_signal which handles
SIGSTOP, freezing, and collects the message that tells the thread to
exit as part of process exit. This collection clears
__fatal_signal_pending. This collection is not guaranteed to
clear signal_pending() so clear that explicitly so the schedule()
sleeps.
For now the vhost thread continues to exist and run work until the
last file descriptor is closed and the release function is called as
part of freeing struct file. To avoid hangs in the coredump
rendezvous and when killing threads in a multi-threaded exec. The
coredump code and de_thread have been modified to ignore vhost threads.
Remvoing the special case for exec appears to require teaching
vhost_dev_flush how to directly complete transactions in case
the vhost thread is no longer running.
Removing the special case for coredump rendezvous requires either the
above fix needed for exec or moving the coredump rendezvous into
get_signal.
Fixes: 6e890c5d50 ("vhost: use vhost_tasks for worker threads")
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Co-developed-by: Mike Christie <michael.christie@oracle.com>
Signed-off-by: Mike Christie <michael.christie@oracle.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>