Commit Graph

144 Commits

Author SHA1 Message Date
Sebastian Andrzej Siewior 5d2295f3a9 hrtimer: Add a missing bracket and hide `migration_base' on !SMP
The recent change to avoid taking the expiry lock when a timer is currently
migrated missed to add a bracket at the end of the if statement leading to
compile errors.  Since that commit the variable `migration_base' is always
used but it is only available on SMP configuration thus leading to another
compile error.  The changelog says "The timer base and base->cpu_base
cannot be NULL in the code path", so it is safe to limit this check to SMP
configurations only.

Add the missing bracket to the if statement and hide `migration_base'
behind CONFIG_SMP bars.

[ tglx: Mark the functions inline ... ]

Fixes: 68b2c8c1e4 ("hrtimer: Don't take expiry_lock when timer is currently migrated")
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190904145527.eah7z56ntwobqm6j@linutronix.de
2019-09-05 10:39:06 +02:00
Julien Grall 68b2c8c1e4 hrtimer: Don't take expiry_lock when timer is currently migrated
migration_base is used as a placeholder when an hrtimer is migrated to a
different CPU. In the case that hrtimer_cancel_wait_running() hits a timer
which is currently migrated it would pointlessly acquire the expiry lock of
the migration base, which is even not initialized.

Surely it could be initialized, but there is absolutely no point in
acquiring this lock because the timer is guaranteed not to run it's
callback for which the caller waits to finish on that base. So it would
just do the inc/lock/dec/unlock dance for nothing.

As the base switch is short and non-preemptible, there is no issue when the
wait function returns immediately.

The timer base and base->cpu_base cannot be NULL in the code path which is
invoking that, so just replace those checks with a check whether base is
migration base.

[ tglx: Updated from RT patch. Massaged changelog. Added comment. ]

Signed-off-by: Julien Grall <julien.grall@arm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190821092409.13225-4-julien.grall@arm.com
2019-08-21 16:10:01 +02:00
Julien Grall dd2261ed45 hrtimer: Protect lockless access to timer->base
The update to timer->base is protected by the base->cpu_base->lock().
However, hrtimer_cancel_wait_running() does access it lockless.  So the
compiler is allowed to refetch timer->base which can cause havoc when the
timer base is changed concurrently.

Use READ_ONCE() to prevent this.

[ tglx: Adapted from a RT patch ]

Signed-off-by: Julien Grall <julien.grall@arm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190821092409.13225-2-julien.grall@arm.com
2019-08-21 16:10:01 +02:00
Frederic Weisbecker 0bee3b601b hrtimer: Improve comments on handling priority inversion against softirq kthread
The handling of a priority inversion between timer cancelling and a a not
well defined possible preemption of softirq kthread is not very clear.

Especially in the posix timers side it's unclear why there is a specific RT
wait callback.

All the nice explanations can be found in the initial changelog of
f61eff83ce (hrtimer: Prepare support for PREEMPT_RT").

Extract the detailed informations from there and put it into comments.

Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190820132656.GC2093@lenoir
2019-08-20 22:05:46 +02:00
Anna-Maria Gleixner f61eff83ce hrtimer: Prepare support for PREEMPT_RT
When PREEMPT_RT is enabled, the soft interrupt thread can be preempted.  If
the soft interrupt thread is preempted in the middle of a timer callback,
then calling hrtimer_cancel() can lead to two issues:

  - If the caller is on a remote CPU then it has to spin wait for the timer
    handler to complete. This can result in unbound priority inversion.

  - If the caller originates from the task which preempted the timer
    handler on the same CPU, then spin waiting for the timer handler to
    complete is never going to end.

To avoid these issues, add a new lock to the timer base which is held
around the execution of the timer callbacks. If hrtimer_cancel() detects
that the timer callback is currently running, it blocks on the expiry
lock. When the callback is finished, the expiry lock is dropped by the
softirq thread which wakes up the waiter and the system makes progress.

This addresses both the priority inversion and the life lock issues.

The same issue can happen in virtual machines when the vCPU which runs a
timer callback is scheduled out. If a second vCPU of the same guest calls
hrtimer_cancel() it will spin wait for the other vCPU to be scheduled back
in. The expiry lock mechanism would avoid that. It'd be trivial to enable
this when paravirt spinlocks are enabled in a guest, but it's not clear
whether this is an actual problem in the wild, so for now it's an RT only
mechanism.

[ tglx: Refactored it for mainline ]

Signed-off-by: Anna-Maria Gleixner <anna-maria@linutronix.de>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20190726185753.737767218@linutronix.de
2019-08-01 20:51:22 +02:00
Sebastian Andrzej Siewior 1842f5a427 hrtimer: Determine hard/soft expiry mode for hrtimer sleepers on RT
On PREEMPT_RT enabled kernels hrtimers which are not explicitely marked for
hard interrupt expiry mode are moved into soft interrupt context either for
latency reasons or because the hrtimer callback takes regular spinlocks or
invokes other functions which are not suitable for hard interrupt context
on PREEMPT_RT.

The hrtimer_sleeper callback is RT compatible in hard interrupt context,
but there is a latency concern: Untrusted userspace can spawn many threads
which arm timers for the same expiry time on the same CPU. On expiry that
causes a latency spike due to the wakeup of a gazillion threads.

OTOH, priviledged real-time user space applications rely on the low latency
of hard interrupt wakeups. These syscall related wakeups are all based on
hrtimer sleepers.

If the current task is in a real-time scheduling class, mark the mode for
hard interrupt expiry.

[ tglx: Split out of a larger combo patch. Added changelog ]

Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20190726185753.645792403@linutronix.de
2019-08-01 20:51:22 +02:00
Sebastian Andrzej Siewior f5c2f0215e hrtimer: Move unmarked hrtimers to soft interrupt expiry on RT
On PREEMPT_RT not all hrtimers can be expired in hard interrupt context
even if that is perfectly fine on a PREEMPT_RT=n kernel, e.g. because they
take regular spinlocks. Also for latency reasons PREEMPT_RT tries to defer
most hrtimers' expiry into softirq context.

hrtimers marked with HRTIMER_MODE_HARD must be kept in hard interrupt
context expiry mode. Add the required logic.

No functional change for PREEMPT_RT=n kernels.

[ tglx: Split out of a larger combo patch. Added changelog ]

Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20190726185753.551967692@linutronix.de
2019-08-01 20:51:21 +02:00
Thomas Gleixner 0ab6a3ddba hrtimer: Make enqueue mode check work on RT
hrtimer_start_range_ns() has a WARN_ONCE() which verifies that a timer
which is marker for softirq expiry is not queued in the hard interrupt base
and vice versa.

When PREEMPT_RT is enabled, timers which are not explicitely marked to
expire in hard interrupt context are deferrred to the soft interrupt. So
the regular check would trigger.

Change the check, so when PREEMPT_RT is enabled, it is verified that the
timers marked for hard interrupt expiry are not tried to be queued for soft
interrupt expiry or any of the unmarked and softirq marked is tried to be
expired in hard interrupt context.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2019-08-01 20:51:19 +02:00
Thomas Gleixner 01656464fc hrtimer: Provide hrtimer_sleeper_start_expires()
hrtimer_sleepers will gain a scheduling class dependent treatment on
PREEMPT_RT. Create a wrapper around hrtimer_start_expires() to make that
possible.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2019-08-01 17:43:15 +02:00
Sebastian Andrzej Siewior dbc1625fc9 hrtimer: Consolidate hrtimer_init() + hrtimer_init_sleeper() calls
hrtimer_init_sleeper() calls require prior initialisation of the hrtimer
object which is embedded into the hrtimer_sleeper.

Combine the initialization and spare a function call. Fixup all call sites.

This is also a preparatory change for PREEMPT_RT to do hrtimer sleeper
specific initializations of the embedded hrtimer without modifying any of
the call sites.

No functional change.

[ anna-maria: Minor cleanups ]
[ tglx: Adopted to the removal of the task argument of
  	hrtimer_init_sleeper() and trivial polishing.
	Folded a fix from Stephen Rothwell for the vsoc code ]

Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Anna-Maria Gleixner <anna-maria@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20190726185752.887468908@linutronix.de
2019-08-01 17:43:15 +02:00
Thomas Gleixner b744948725 hrtimer: Remove task argument from hrtimer_init_sleeper()
All callers hand in 'current' and that's the only task pointer which
actually makes sense. Remove the task argument and set current in the
function.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20190726185752.791885290@linutronix.de
2019-07-30 23:57:51 +02:00
Mauro Carvalho Chehab 516337048f hrtimer: Use a bullet for the returns bullet list
That gets rid of this warning:

   ./kernel/time/hrtimer.c:1119: WARNING: Block quote ends without a blank line; unexpected unindent.

and displays nicely both at the source code and at the produced
documentation.

Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Linux Doc Mailing List <linux-doc@vger.kernel.org>
Cc: Mauro Carvalho Chehab <mchehab@infradead.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Link: https://lkml.kernel.org/r/74ddad7dac331b4e5ce4a90e15c8a49e3a16d2ac.1561372382.git.mchehab+samsung@kernel.org
2019-06-27 23:30:04 +02:00
Yangtao Li 0e5aa23282 hrtimer: Remove unused header include
seq_file.h does not need to be included, so remove it.

Signed-off-by: Yangtao Li <tiny.windzz@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190607174253.27403-1-tiny.windzz@gmail.com
2019-06-12 10:21:17 +02:00
Linus Torvalds b1b988a6a0 Merge branch 'timers-2038-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull year 2038 updates from Thomas Gleixner:
 "Another round of changes to make the kernel ready for 2038. After lots
  of preparatory work this is the first set of syscalls which are 2038
  safe:

    403 clock_gettime64
    404 clock_settime64
    405 clock_adjtime64
    406 clock_getres_time64
    407 clock_nanosleep_time64
    408 timer_gettime64
    409 timer_settime64
    410 timerfd_gettime64
    411 timerfd_settime64
    412 utimensat_time64
    413 pselect6_time64
    414 ppoll_time64
    416 io_pgetevents_time64
    417 recvmmsg_time64
    418 mq_timedsend_time64
    419 mq_timedreceiv_time64
    420 semtimedop_time64
    421 rt_sigtimedwait_time64
    422 futex_time64
    423 sched_rr_get_interval_time64

  The syscall numbers are identical all over the architectures"

* 'timers-2038-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (36 commits)
  riscv: Use latest system call ABI
  checksyscalls: fix up mq_timedreceive and stat exceptions
  unicore32: Fix __ARCH_WANT_STAT64 definition
  asm-generic: Make time32 syscall numbers optional
  asm-generic: Drop getrlimit and setrlimit syscalls from default list
  32-bit userspace ABI: introduce ARCH_32BIT_OFF_T config option
  compat ABI: use non-compat openat and open_by_handle_at variants
  y2038: add 64-bit time_t syscalls to all 32-bit architectures
  y2038: rename old time and utime syscalls
  y2038: remove struct definition redirects
  y2038: use time32 syscall names on 32-bit
  syscalls: remove obsolete __IGNORE_ macros
  y2038: syscalls: rename y2038 compat syscalls
  x86/x32: use time64 versions of sigtimedwait and recvmmsg
  timex: change syscalls to use struct __kernel_timex
  timex: use __kernel_timex internally
  sparc64: add custom adjtimex/clock_adjtime functions
  time: fix sys_timer_settime prototype
  time: Add struct __kernel_timex
  time: make adjtime compat handling available for 32 bit
  ...
2019-03-05 14:08:26 -08:00
Arnd Bergmann 8dabe7245b y2038: syscalls: rename y2038 compat syscalls
A lot of system calls that pass a time_t somewhere have an implementation
using a COMPAT_SYSCALL_DEFINEx() on 64-bit architectures, and have
been reworked so that this implementation can now be used on 32-bit
architectures as well.

The missing step is to redefine them using the regular SYSCALL_DEFINEx()
to get them out of the compat namespace and make it possible to build them
on 32-bit architectures.

Any system call that ends in 'time' gets a '32' suffix on its name for
that version, while the others get a '_time32' suffix, to distinguish
them from the normal version, which takes a 64-bit time argument in the
future.

In this step, only 64-bit architectures are changed, doing this rename
first lets us avoid touching the 32-bit architectures twice.

Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2019-02-07 00:13:27 +01:00
Gustavo A. R. Silva 75b710af71 timers: Mark expected switch fall-throughs
In preparation to enabling -Wimplicit-fallthrough, mark switch cases
where fall through is indeed expected.

Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Stephen Boyd <sboyd@kernel.org>
Link: https://lkml.kernel.org/r/20190123081413.GA3949@embeddedor
2019-01-29 20:08:42 +01:00
Thomas Gleixner f49c174b5f hrtimers/tick/clockevents: Remove sloppy license references
"For licencing details see kernel-base/COPYING" and similar license
references have no value over the SPDX identifier. Remove them.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Kees Cook <keescook@chromium.org>
Acked-by: Ingo Molnar <mingo@kernel.org>
Acked-by: John Stultz <john.stultz@linaro.org>
Acked-by: Corey Minyard <cminyard@mvista.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Kate Stewart <kstewart@linuxfoundation.org>
Cc: Philippe Ombredanne <pombredanne@nexb.com>
Cc: Peter Anvin <hpa@zytor.com>
Cc: Russell King <rmk+kernel@armlinux.org.uk>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Cc: Nicolas Pitre <nicolas.pitre@linaro.org>
Cc: David Riley <davidriley@chromium.org>
Cc: Colin Cross <ccross@android.com>
Cc: Mark Brown <broonie@kernel.org>
Link: https://lkml.kernel.org/r/20181031182252.963632760@linutronix.de
2018-11-23 11:51:21 +01:00
Thomas Gleixner 35728b8209 time: Add SPDX license identifiers
Update the time(r) core files files with the correct SPDX license
identifier based on the license text in the file itself. The SPDX
identifier is a legally binding shorthand, which can be used instead of the
full boiler plate text.

This work is based on a script and data from Philippe Ombredanne, Kate
Stewart and myself. The data has been created with two independent license
scanners and manual inspection.

The following files do not contain any direct license information and have
been omitted from the big initial SPDX changes:

  timeconst.bc: The .bc files were not touched
  time.c, timer.c, timekeeping.c: Licence was deduced from EXPORT_SYMBOL_GPL

As those files do not contain direct license references they fall under the
project license, i.e. GPL V2 only.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Kees Cook <keescook@chromium.org>
Acked-by: Ingo Molnar <mingo@kernel.org>
Acked-by: John Stultz <john.stultz@linaro.org>
Acked-by: Corey Minyard <cminyard@mvista.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Kate Stewart <kstewart@linuxfoundation.org>
Cc: Philippe Ombredanne <pombredanne@nexb.com>
Cc: Russell King <rmk+kernel@armlinux.org.uk>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: Nicolas Pitre <nicolas.pitre@linaro.org>
Cc: David Riley <davidriley@chromium.org>
Cc: Colin Cross <ccross@android.com>
Cc: Mark Brown <broonie@kernel.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Link: https://lkml.kernel.org/r/20181031182252.879109557@linutronix.de
2018-11-23 11:51:20 +01:00
Thomas Gleixner 58c5fc2b96 time: Remove useless filenames in top level comments
Remove the pointless filenames in the top level comments. They have no
value at all and just occupy space. While at it tidy up some of the
comments and remove a stale one.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Nicolas Pitre <nico@linaro.org>
Acked-by: Kees Cook <keescook@chromium.org>
Acked-by: Ingo Molnar <mingo@kernel.org>
Acked-by: John Stultz <john.stultz@linaro.org>
Acked-by: Corey Minyard <cminyard@mvista.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Kate Stewart <kstewart@linuxfoundation.org>
Cc: Philippe Ombredanne <pombredanne@nexb.com>
Cc: Peter Anvin <hpa@zytor.com>
Cc: Russell King <rmk+kernel@armlinux.org.uk>
Cc: Richard Cochran <richardcochran@gmail.com>
Cc: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Cc: David Riley <davidriley@chromium.org>
Cc: Colin Cross <ccross@android.com>
Cc: Mark Brown <broonie@kernel.org>
Link: https://lkml.kernel.org/r/20181031182252.794898238@linutronix.de
2018-11-23 11:51:20 +01:00
Arnd Bergmann 9afc5eee65 y2038: globally rename compat_time to old_time32
Christoph Hellwig suggested a slightly different path for handling
backwards compatibility with the 32-bit time_t based system calls:

Rather than simply reusing the compat_sys_* entry points on 32-bit
architectures unchanged, we get rid of those entry points and the
compat_time types by renaming them to something that makes more sense
on 32-bit architectures (which don't have a compat mode otherwise),
and then share the entry points under the new name with the 64-bit
architectures that use them for implementing the compatibility.

The following types and interfaces are renamed here, and moved
from linux/compat_time.h to linux/time32.h:

old				new
---				---
compat_time_t			old_time32_t
struct compat_timeval		struct old_timeval32
struct compat_timespec		struct old_timespec32
struct compat_itimerspec	struct old_itimerspec32
ns_to_compat_timeval()		ns_to_old_timeval32()
get_compat_itimerspec64()	get_old_itimerspec32()
put_compat_itimerspec64()	put_old_itimerspec32()
compat_get_timespec64()		get_old_timespec32()
compat_put_timespec64()		put_old_timespec32()

As we already have aliases in place, this patch addresses only the
instances that are relevant to the system call interface in particular,
not those that occur in device drivers and other modules. Those
will get handled separately, while providing the 64-bit version
of the respective interfaces.

I'm not renaming the timex, rusage and itimerval structures, as we are
still debating what the new interface will look like, and whether we
will need a replacement at all.

This also doesn't change the names of the syscall entry points, which can
be done more easily when we actually switch over the 32-bit architectures
to use them, at that point we need to change COMPAT_SYSCALL_DEFINEx to
SYSCALL_DEFINEx with a new name, e.g. with a _time32 suffix.

Suggested-by: Christoph Hellwig <hch@infradead.org>
Link: https://lore.kernel.org/lkml/20180705222110.GA5698@infradead.org/
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2018-08-27 14:48:48 +02:00
Thomas Gleixner c6bb11147e Merge branch 'fortglx/4.19/time' of https://git.linaro.org/people/john.stultz/linux into timers/core
Pull timekeeping updates from John Stultz:

  - Make the timekeeping update more precise when NTP frequency is set
    directly by updating the multiplier.

  - Adjust selftests
2018-07-12 22:19:58 +02:00
Geert Uytterhoeven 7a6e55375d hrtimer: Improve kernel message printing
- Join split message for easier grepping,
  - Use pr_*() instead of printk*(),
  - Use %u to format unsigned cpu numbers.

Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20180712144118.8819-1-geert+renesas@glider.be
2018-07-12 21:29:30 +02:00
Arnd Bergmann 0fe2795516 posix-timers: Fix nanosleep_copyout() for CONFIG_COMPAT_32BIT_TIME
Commit b5793b0d92 added support for building the nanosleep compat system
call on 32-bit architectures, but missed one change in nanosleep_copyout(),
which would trigger a BUG() as soon as any architecture is switched over to
use it.

Use the proper config symbol to enable the code path.

Fixes: Commit b5793b0d92 ("posix-timers: Make compat syscalls depend on CONFIG_COMPAT_32BIT_TIME")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: y2038@lists.linaro.org
Cc: Anna-Maria Gleixner <anna-maria@linutronix.de>
Cc: Deepa Dinamani <deepa.kernel@gmail.com>
Cc: "Rafael J. Wysocki" <rafael.j.wysocki@intel.com>
Link: https://lkml.kernel.org/r/20180618140811.2998503-1-arnd@arndb.de
2018-06-19 09:23:19 +02:00
Thomas Gleixner 604a98f1df Merge branch 'timers/urgent' into timers/core
Pick up urgent fixes to apply dependent cleanup patch
2018-05-02 16:11:12 +02:00
Thomas Gleixner a3ed0e4393 Revert: Unify CLOCK_MONOTONIC and CLOCK_BOOTTIME
Revert commits

92af4dcb4e ("tracing: Unify the "boot" and "mono" tracing clocks")
127bfa5f43 ("hrtimer: Unify MONOTONIC and BOOTTIME clock behavior")
7250a4047a ("posix-timers: Unify MONOTONIC and BOOTTIME clock behavior")
d6c7270e91 ("timekeeping: Remove boot time specific code")
f2d6fdbfd2 ("Input: Evdev - unify MONOTONIC and BOOTTIME clock behavior")
d6ed449afd ("timekeeping: Make the MONOTONIC clock behave like the BOOTTIME clock")
72199320d4 ("timekeeping: Add the new CLOCK_MONOTONIC_ACTIVE clock")

As stated in the pull request for the unification of CLOCK_MONOTONIC and
CLOCK_BOOTTIME, it was clear that we might have to revert the change.

As reported by several folks systemd and other applications rely on the
documented behaviour of CLOCK_MONOTONIC on Linux and break with the above
changes. After resume daemons time out and other timeout related issues are
observed. Rafael compiled this list:

* systemd kills daemons on resume, after >WatchdogSec seconds
  of suspending (Genki Sky).  [Verified that that's because systemd uses
  CLOCK_MONOTONIC and expects it to not include the suspend time.]

* systemd-journald misbehaves after resume:
  systemd-journald[7266]: File /var/log/journal/016627c3c4784cd4812d4b7e96a34226/system.journal
corrupted or uncleanly shut down, renaming and replacing.
  (Mike Galbraith).

* NetworkManager reports "networking disabled" and networking is broken
  after resume 50% of the time (Pavel).  [May be because of systemd.]

* MATE desktop dims the display and starts the screensaver right after
  system resume (Pavel).

* Full system hang during resume (me).  [May be due to systemd or NM or both.]

That happens on debian and open suse systems.

It's sad, that these problems were neither catched in -next nor by those
folks who expressed interest in this change.

Reported-by: Rafael J. Wysocki <rjw@rjwysocki.net>
Reported-by: Genki Sky <sky@genki.is>,
Reported-by: Pavel Machek <pavel@ucw.cz>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Dmitry Torokhov <dmitry.torokhov@gmail.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Kevin Easton <kevin@guarana.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mark Salyzyn <salyzyn@android.com>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
2018-04-26 14:53:32 +02:00
Deepa Dinamani 01909974b4 time: Change nanosleep to safe __kernel_* types
Change over clock_nanosleep syscalls to use y2038 safe
__kernel_timespec times. This will enable changing over
of these syscalls to use new y2038 safe syscalls when
the architectures define the CONFIG_64BIT_TIME.

Note that nanosleep syscall is deprecated and does not have a
plan for making it y2038 safe. But, the syscall should work as
before on 64 bit machines and on 32 bit machines, the syscall
works correctly until y2038 as before using the existing compat
syscall version. There is no new syscall for supporting 64 bit
time_t on 32 bit architectures.

Cc: linux-api@vger.kernel.org
Signed-off-by: Deepa Dinamani <deepa.kernel@gmail.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2018-04-19 13:32:03 +02:00
Deepa Dinamani b5793b0d92 posix-timers: Make compat syscalls depend on CONFIG_COMPAT_32BIT_TIME
clock_gettime, clock_settime, clock_getres and clock_nanosleep
compat syscalls are also repurposed to provide backward compatibility
to support 32 bit time_t on 32 bit systems.

Note that nanosleep compat syscall will also be treated the same way
as the above syscalls as it shares common handler functions with
clock_nanosleep. But, there is no plan to provide y2038 safe solution
for nanosleep.

Signed-off-by: Deepa Dinamani <deepa.kernel@gmail.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2018-04-19 13:30:58 +02:00
Rafael J. Wysocki 51798deaff Merge branches 'pm-cpuidle' and 'pm-qos'
* pm-cpuidle:
  tick-sched: avoid a maybe-uninitialized warning
  cpuidle: Add definition of residency to sysfs documentation
  time: hrtimer: Use timerqueue_iterate_next() to get to the next timer
  nohz: Avoid duplication of code related to got_idle_tick
  nohz: Gather tick_sched booleans under a common flag field
  cpuidle: menu: Avoid selecting shallow states with stopped tick
  cpuidle: menu: Refine idle state selection for running tick
  sched: idle: Select idle state before stopping the tick
  time: hrtimer: Introduce hrtimer_next_event_without()
  time: tick-sched: Split tick_nohz_stop_sched_tick()
  cpuidle: Return nohz hint from cpuidle_select()
  jiffies: Introduce USER_TICK_USEC and redefine TICK_USEC
  sched: idle: Do not stop the tick before cpuidle_idle_call()
  sched: idle: Do not stop the tick upfront in the idle loop
  time: tick-sched: Reorganize idle tick management code

* pm-qos:
  PM / QoS: mark expected switch fall-throughs
2018-04-11 13:22:46 +02:00
Rafael J. Wysocki 7d2f6abb40 time: hrtimer: Use timerqueue_iterate_next() to get to the next timer
Use timerqueue_iterate_next() to get to the next timer in
__hrtimer_next_event_base() without browsing the timerqueue
details diredctly.

No intentional changes in functionality.

Suggested-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2018-04-09 11:54:57 +02:00
Rafael J. Wysocki a59855cd8c time: hrtimer: Introduce hrtimer_next_event_without()
The next set of changes will need to compute the time to the next
hrtimer event over all hrtimers except for the scheduler tick one.

To that end introduce a new helper function,
hrtimer_next_event_without(), for computing the time until the next
hrtimer event over all timers except for one and modify the underlying
code in __hrtimer_next_event_base() to prepare it for being called by
that new function.

No intentional changes in functionality.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
2018-04-07 18:49:54 +02:00
Thomas Gleixner 127bfa5f43 hrtimer: Unify MONOTONIC and BOOTTIME clock behavior
Now that th MONOTONIC and BOOTTIME clocks are indentical remove all the special
casing.

The user space visible interfaces still support both clocks, but their behavior
is identical.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Dmitry Torokhov <dmitry.torokhov@gmail.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Kevin Easton <kevin@guarana.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mark Salyzyn <salyzyn@android.com>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/20180301165150.410218515@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-03-13 07:34:23 +01:00
Sergey Senozhatsky 64fce87b62 hrtimer: remove unneeded kallsyms include
hrtimer does not seem to use any of kallsyms functions/defines.

Link: http://lkml.kernel.org/r/20171208025616.16267-9-sergey.senozhatsky@gmail.com
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-02-06 18:32:47 -08:00
Thomas Gleixner 303c146df1 Merge branch 'timers/urgent' into timers/core
Pick up urgent bug fix and resolve the conflict.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2018-01-27 15:35:29 +01:00
Thomas Gleixner d5421ea43d hrtimer: Reset hrtimer cpu base proper on CPU hotplug
The hrtimer interrupt code contains a hang detection and mitigation
mechanism, which prevents that a long delayed hrtimer interrupt causes a
continous retriggering of interrupts which prevent the system from making
progress. If a hang is detected then the timer hardware is programmed with
a certain delay into the future and a flag is set in the hrtimer cpu base
which prevents newly enqueued timers from reprogramming the timer hardware
prior to the chosen delay. The subsequent hrtimer interrupt after the delay
clears the flag and resumes normal operation.

If such a hang happens in the last hrtimer interrupt before a CPU is
unplugged then the hang_detected flag is set and stays that way when the
CPU is plugged in again. At that point the timer hardware is not armed and
it cannot be armed because the hang_detected flag is still active, so
nothing clears that flag. As a consequence the CPU does not receive hrtimer
interrupts and no timers expire on that CPU which results in RCU stalls and
other malfunctions.

Clear the flag along with some other less critical members of the hrtimer
cpu base to ensure starting from a clean state when a CPU is plugged in.

Thanks to Paul, Sebastian and Anna-Maria for their help to get down to the
root cause of that hard to reproduce heisenbug. Once understood it's
trivial and certainly justifies a brown paperbag.

Fixes: 41d2e49493 ("hrtimer: Tune hrtimer_interrupt hang logic")
Reported-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sebastian Sewior <bigeasy@linutronix.de>
Cc: Anna-Maria Gleixner <anna-maria@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/alpine.DEB.2.20.1801261447590.2067@nanos
2018-01-27 15:12:22 +01:00
Anna-Maria Gleixner 42f42da41b hrtimer: Implement SOFT/HARD clock base selection
All prerequisites to handle hrtimers for expiry in either hard or soft
interrupt context are in place.

Add the missing bit in hrtimer_init() which associates the timer to the
hard or the softirq clock base.

Signed-off-by: Anna-Maria Gleixner <anna-maria@linutronix.de>
Cc: Christoph Hellwig <hch@lst.de>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: keescook@chromium.org
Link: http://lkml.kernel.org/r/20171221104205.7269-30-anna-maria@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-01-16 09:51:22 +01:00
Anna-Maria Gleixner 5da7016046 hrtimer: Implement support for softirq based hrtimers
hrtimer callbacks are always invoked in hard interrupt context. Several
users in tree require soft interrupt context for their callbacks and
achieve this by combining a hrtimer with a tasklet. The hrtimer schedules
the tasklet in hard interrupt context and the tasklet callback gets invoked
in softirq context later.

That's suboptimal and aside of that the real-time patch moves most of the
hrtimers into softirq context. So adding native support for hrtimers
expiring in softirq context is a valuable extension for both mainline and
the RT patch set.

Each valid hrtimer clock id has two associated hrtimer clock bases: one for
timers expiring in hardirq context and one for timers expiring in softirq
context.

Implement the functionality to associate a hrtimer with the hard or softirq
related clock bases and update the relevant functions to take them into
account when the next expiry time needs to be evaluated.

Add a check into the hard interrupt context handler functions to check
whether the first expiring softirq based timer has expired. If it's expired
the softirq is raised and the accounting of softirq based timers to
evaluate the next expiry time for programming the timer hardware is skipped
until the softirq processing has finished. At the end of the softirq
processing the regular processing is resumed.

Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Anna-Maria Gleixner <anna-maria@linutronix.de>
Cc: Christoph Hellwig <hch@lst.de>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: keescook@chromium.org
Link: http://lkml.kernel.org/r/20171221104205.7269-29-anna-maria@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-01-16 09:51:22 +01:00
Anna-Maria Gleixner c458b1d102 hrtimer: Prepare handling of hard and softirq based hrtimers
The softirq based hrtimer can utilize most of the existing hrtimers
functions, but need to operate on a different data set.

Add an 'active_mask' parameter to various functions so the hard and soft bases
can be selected. Fixup the existing callers and hand in the ACTIVE_HARD
mask.

Signed-off-by: Anna-Maria Gleixner <anna-maria@linutronix.de>
Cc: Christoph Hellwig <hch@lst.de>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: keescook@chromium.org
Link: http://lkml.kernel.org/r/20171221104205.7269-28-anna-maria@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-01-16 03:01:20 +01:00
Anna-Maria Gleixner 98ecadd430 hrtimer: Add clock bases and hrtimer mode for softirq context
Currently hrtimer callback functions are always executed in hard interrupt
context. Users of hrtimers, which need their timer function to be executed
in soft interrupt context, make use of tasklets to get the proper context.

Add additional hrtimer clock bases for timers which must expire in softirq
context, so the detour via the tasklet can be avoided. This is also
required for RT, where the majority of hrtimer is moved into softirq
hrtimer context.

The selection of the expiry mode happens via a mode bit. Introduce
HRTIMER_MODE_SOFT and the matching combinations with the ABS/REL/PINNED
bits and update the decoding of hrtimer_mode in tracepoints.

Signed-off-by: Anna-Maria Gleixner <anna-maria@linutronix.de>
Cc: Christoph Hellwig <hch@lst.de>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: keescook@chromium.org
Link: http://lkml.kernel.org/r/20171221104205.7269-27-anna-maria@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-01-16 03:00:50 +01:00
Anna-Maria Gleixner dd934aa8ad hrtimer: Use irqsave/irqrestore around __run_hrtimer()
__run_hrtimer() is called with the hrtimer_cpu_base.lock held and
interrupts disabled. Before invoking the timer callback the base lock is
dropped, but interrupts stay disabled.

The upcoming support for softirq based hrtimers requires that interrupts
are enabled before the timer callback is invoked.

To avoid code duplication, take hrtimer_cpu_base.lock with
raw_spin_lock_irqsave(flags) at the call site and hand in the flags as
a parameter. So raw_spin_unlock_irqrestore() before the callback invocation
will either keep interrupts disabled in interrupt context or restore to
interrupt enabled state when called from softirq context.

Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Anna-Maria Gleixner <anna-maria@linutronix.de>
Cc: Christoph Hellwig <hch@lst.de>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: keescook@chromium.org
Link: http://lkml.kernel.org/r/20171221104205.7269-26-anna-maria@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-01-16 03:00:47 +01:00
Anna-Maria Gleixner ad38f596d8 hrtimer: Factor out __hrtimer_next_event_base()
Preparatory patch for softirq based hrtimers to avoid code duplication.

No functional change.

Signed-off-by: Anna-Maria Gleixner <anna-maria@linutronix.de>
Cc: Christoph Hellwig <hch@lst.de>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: keescook@chromium.org
Link: http://lkml.kernel.org/r/20171221104205.7269-25-anna-maria@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-01-16 03:00:43 +01:00
Anna-Maria Gleixner 138a6b7ae4 hrtimer: Factor out __hrtimer_start_range_ns()
Preparatory patch for softirq based hrtimers to avoid code duplication,
factor out the __hrtimer_start_range_ns() function from hrtimer_start_range_ns().

No functional change.

Signed-off-by: Anna-Maria Gleixner <anna-maria@linutronix.de>
Cc: Christoph Hellwig <hch@lst.de>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: keescook@chromium.org
Link: http://lkml.kernel.org/r/20171221104205.7269-24-anna-maria@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-01-16 02:53:59 +01:00
Anna-Maria Gleixner 3ec7a3ee9f hrtimer: Remove the 'base' parameter from hrtimer_reprogram()
hrtimer_reprogram() must have access to the hrtimer_clock_base of the new
first expiring timer to access hrtimer_clock_base.offset for adjusting the
expiry time to CLOCK_MONOTONIC. This is required to evaluate whether the
new left most timer in the hrtimer_clock_base is the first expiring timer
of all clock bases in a hrtimer_cpu_base.

The only user of hrtimer_reprogram() is hrtimer_start_range_ns(), which has
a pointer to hrtimer_clock_base() already and hands it in as a parameter. But
hrtimer_start_range_ns() will be split for the upcoming support for softirq
based hrtimers to avoid code duplication and will lose the direct access to
the clock base pointer.

Instead of handing in timer and timer->base as a parameter remove the base
parameter from hrtimer_reprogram() instead and retrieve the clock base internally.

Signed-off-by: Anna-Maria Gleixner <anna-maria@linutronix.de>
Cc: Christoph Hellwig <hch@lst.de>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: keescook@chromium.org
Link: http://lkml.kernel.org/r/20171221104205.7269-23-anna-maria@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-01-16 02:53:59 +01:00
Anna-Maria Gleixner 2ac2dccce9 hrtimer: Make remote enqueue decision less restrictive
The current decision whether a timer can be queued on a remote CPU checks
for timer->expiry <= remote_cpu_base.expires_next.

This is too restrictive because a timer with the same expiry time as an
existing timer will be enqueued on right-hand size of the existing timer
inside the rbtree, i.e. behind the first expiring timer.

So its safe to allow enqueuing timers with the same expiry time as the
first expiring timer on a remote CPU base.

Signed-off-by: Anna-Maria Gleixner <anna-maria@linutronix.de>
Cc: Christoph Hellwig <hch@lst.de>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: keescook@chromium.org
Link: http://lkml.kernel.org/r/20171221104205.7269-22-anna-maria@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-01-16 02:53:58 +01:00
Anna-Maria Gleixner 14c803419d hrtimer: Unify remote enqueue handling
hrtimer_reprogram() is conditionally invoked from hrtimer_start_range_ns()
when hrtimer_cpu_base.hres_active is true.

In the !hres_active case there is a special condition for the nohz_active
case:

  If the newly enqueued timer expires before the first expiring timer on a
  remote CPU then the remote CPU needs to be notified and woken up from a
  NOHZ idle sleep to take the new first expiring timer into account.

Previous changes have already established the prerequisites to make the
remote enqueue behaviour the same whether high resolution mode is active or
not:

  If the to be enqueued timer expires before the first expiring timer on a
  remote CPU, then it cannot be enqueued there.

This was done for the high resolution mode because there is no way to
access the remote CPU timer hardware. The same is true for NOHZ, but was
handled differently by unconditionally enqueuing the timer and waking up
the remote CPU so it can reprogram its timer. Again there is no compelling
reason for this difference.

hrtimer_check_target(), which makes the 'can remote enqueue' decision is
already unconditional, but not yet functional because nothing updates
hrtimer_cpu_base.expires_next in the !hres_active case.

To unify this the following changes are required:

 1) Make the store of the new first expiry time unconditonal in
    hrtimer_reprogram() and check __hrtimer_hres_active() before proceeding
    to the actual hardware access. This check also lets the compiler
    eliminate the rest of the function in case of CONFIG_HIGH_RES_TIMERS=n.

 2) Invoke hrtimer_reprogram() unconditionally from
    hrtimer_start_range_ns()

 3) Remove the remote wakeup special case for the !high_res && nohz_active
    case.

Confine the timers_nohz_active static key to timer.c which is the only user
now.

Signed-off-by: Anna-Maria Gleixner <anna-maria@linutronix.de>
Cc: Christoph Hellwig <hch@lst.de>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: keescook@chromium.org
Link: http://lkml.kernel.org/r/20171221104205.7269-21-anna-maria@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-01-16 02:53:58 +01:00
Anna-Maria Gleixner 61bb4bcb79 hrtimer: Unify hrtimer removal handling
When the first hrtimer on the current CPU is removed,
hrtimer_force_reprogram() is invoked but only when
CONFIG_HIGH_RES_TIMERS=y and hrtimer_cpu_base.hres_active is set.

hrtimer_force_reprogram() updates hrtimer_cpu_base.expires_next and
reprograms the clock event device. When CONFIG_HIGH_RES_TIMERS=y and
hrtimer_cpu_base.hres_active is set, a pointless hrtimer interrupt can be
prevented.

hrtimer_check_target() makes the 'can remote enqueue' decision. As soon as
hrtimer_check_target() is unconditionally available and
hrtimer_cpu_base.expires_next is updated by hrtimer_reprogram(),
hrtimer_force_reprogram() needs to be available unconditionally as well to
prevent the following scenario with CONFIG_HIGH_RES_TIMERS=n:

- the first hrtimer on this CPU is removed and hrtimer_force_reprogram() is
  not executed

- CPU goes idle (next timer is calculated and hrtimers are taken into
  account)

- a hrtimer is enqueued remote on the idle CPU: hrtimer_check_target()
  compares expiry value and hrtimer_cpu_base.expires_next. The expiry value
  is after expires_next, so the hrtimer is enqueued. This timer will fire
  late, if it expires before the effective first hrtimer on this CPU and
  the comparison was with an outdated expires_next value.

To prevent this scenario, make hrtimer_force_reprogram() unconditional
except the effective reprogramming part, which gets eliminated by the
compiler in the CONFIG_HIGH_RES_TIMERS=n case.

Signed-off-by: Anna-Maria Gleixner <anna-maria@linutronix.de>
Cc: Christoph Hellwig <hch@lst.de>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: keescook@chromium.org
Link: http://lkml.kernel.org/r/20171221104205.7269-20-anna-maria@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-01-16 02:53:58 +01:00
Anna-Maria Gleixner ebba2c723f hrtimer: Make hrtimer_force_reprogramm() unconditionally available
hrtimer_force_reprogram() needs to be available unconditionally for softirq
based hrtimers. Move the function and all required struct members out of
the CONFIG_HIGH_RES_TIMERS #ifdef.

There is no functional change because hrtimer_force_reprogram() is only
invoked when hrtimer_cpu_base.hres_active is true and
CONFIG_HIGH_RES_TIMERS=y.

Making it unconditional increases the text size for the
CONFIG_HIGH_RES_TIMERS=n case slightly, but avoids replication of that code
for the upcoming softirq based hrtimers support. Most of the code gets
eliminated in the CONFIG_HIGH_RES_TIMERS=n case by the compiler.

Signed-off-by: Anna-Maria Gleixner <anna-maria@linutronix.de>
Cc: Christoph Hellwig <hch@lst.de>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: keescook@chromium.org
Link: http://lkml.kernel.org/r/20171221104205.7269-19-anna-maria@linutronix.de
[ Made it build on !CONFIG_HIGH_RES_TIMERS ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-01-16 02:53:28 +01:00
Anna-Maria Gleixner 11a9fe069e hrtimer: Make hrtimer_reprogramm() unconditional
hrtimer_reprogram() needs to be available unconditionally for softirq based
hrtimers. Move the function and all required struct members out of the
CONFIG_HIGH_RES_TIMERS #ifdef.

There is no functional change because hrtimer_reprogram() is only invoked
when hrtimer_cpu_base.hres_active is true. Making it unconditional
increases the text size for the CONFIG_HIGH_RES_TIMERS=n case, but avoids
replication of that code for the upcoming softirq based hrtimers support.

Signed-off-by: Anna-Maria Gleixner <anna-maria@linutronix.de>
Cc: Christoph Hellwig <hch@lst.de>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: keescook@chromium.org
Link: http://lkml.kernel.org/r/20171221104205.7269-18-anna-maria@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-01-16 02:35:47 +01:00
Anna-Maria Gleixner eb27926ba0 hrtimer: Make hrtimer_cpu_base.next_timer handling unconditional
hrtimer_cpu_base.next_timer stores the pointer to the next expiring timer
in a CPU base.

This pointer cannot be dereferenced and is solely used to check whether a
hrtimer which is removed is the hrtimer which is the first to expire in the
CPU base. If this is the case, then the timer hardware needs to be
reprogrammed to avoid an extra interrupt for nothing.

Again, this is conditional functionality, but there is no compelling reason
to make this conditional. As a preparation, hrtimer_cpu_base.next_timer
needs to be available unconditonally.

Aside of that the upcoming support for softirq based hrtimers requires access
to this pointer unconditionally as well, so our motivation is not entirely
simplicity based.

Make the update of hrtimer_cpu_base.next_timer unconditional and remove the
#ifdef cruft. The impact on CONFIG_HIGH_RES_TIMERS=n && CONFIG_NOHZ=n is
marginal as it's just a store on an already dirtied cacheline.

No functional change.

Signed-off-by: Anna-Maria Gleixner <anna-maria@linutronix.de>
Cc: Christoph Hellwig <hch@lst.de>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: keescook@chromium.org
Link: http://lkml.kernel.org/r/20171221104205.7269-17-anna-maria@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-01-16 02:35:47 +01:00
Anna-Maria Gleixner 07a9a7eae8 hrtimer: Make the remote enqueue check unconditional
hrtimer_cpu_base.expires_next is used to cache the next event armed in the
timer hardware. The value is used to check whether an hrtimer can be
enqueued remotely. If the new hrtimer is expiring before expires_next, then
remote enqueue is not possible as the remote hrtimer hardware cannot be
accessed for reprogramming to an earlier expiry time.

The remote enqueue check is currently conditional on
CONFIG_HIGH_RES_TIMERS=y and hrtimer_cpu_base.hres_active. There is no
compelling reason to make this conditional.

Move hrtimer_cpu_base.expires_next out of the CONFIG_HIGH_RES_TIMERS=y
guarded area and remove the conditionals in hrtimer_check_target().

The check is currently a NOOP for the CONFIG_HIGH_RES_TIMERS=n and the
!hrtimer_cpu_base.hres_active case because in these cases nothing updates
hrtimer_cpu_base.expires_next yet. This will be changed with later patches
which further reduce the #ifdef zoo in this code.

Signed-off-by: Anna-Maria Gleixner <anna-maria@linutronix.de>
Cc: Christoph Hellwig <hch@lst.de>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: keescook@chromium.org
Link: http://lkml.kernel.org/r/20171221104205.7269-16-anna-maria@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-01-16 02:35:47 +01:00
Anna-Maria Gleixner 851cff8caf hrtimer: Use accesor functions instead of direct access
__hrtimer_hres_active() is now available unconditionally, so replace open
coded direct accesses to hrtimer_cpu_base.hres_active.

No functional change.

Signed-off-by: Anna-Maria Gleixner <anna-maria@linutronix.de>
Cc: Christoph Hellwig <hch@lst.de>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: keescook@chromium.org
Link: http://lkml.kernel.org/r/20171221104205.7269-15-anna-maria@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-01-16 02:35:47 +01:00