Commit Graph

19566 Commits

Author SHA1 Message Date
Pavankumar Kondeti fd3b1bc3c8 mm/madvise: fix madvise_pageout for private file mappings
When MADV_PAGEOUT is called on a private file mapping VMA region, we bail
out early if the process is neither owner nor write capable of the file. 
However, this VMA may have both private/shared clean pages and private
dirty pages.  The opportunity of paging out the private dirty pages (Anon
pages) is missed.  Fix this behavior by allowing private file mappings
pageout further and perform the file access check along with PageAnon()
during page walk.

We observe ~10% improvement in zram usage, thus leaving more available
memory on a 4GB RAM system running Android.

[quic_pkondeti@quicinc.com: v2]
  Link: https://lkml.kernel.org/r/1669962597-27724-1-git-send-email-quic_pkondeti@quicinc.com
Link: https://lkml.kernel.org/r/1667971116-12900-1-git-send-email-quic_pkondeti@quicinc.com
Signed-off-by: Pavankumar Kondeti <quic_pkondeti@quicinc.com>
Cc: Charan Teja Kalla <quic_charante@quicinc.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-12-11 18:12:09 -08:00
Gautam Menghani 4c9473e87e mm/khugepaged: add tracepoint to collapse_file()
"mm_khugepaged_collapse_file" for capturing is_shmem.
Currently, is_shmem is not being captured. Capturing is_shmem is useful
as it can indicate if tmpfs is being used as a backing store instead of
persistent storage. Add the tracepoint in collapse_file() named
"mm_khugepaged_collapse_file" for capturing is_shmem.

[gautammenghani201@gmail.com: swap is_shmem and addr to save space, per Steven Rostedt]
  Link: https://lkml.kernel.org/r/20221202201807.182829-1-gautammenghani201@gmail.com
Link: https://lkml.kernel.org/r/20221026052218.148234-1-gautammenghani201@gmail.com
Signed-off-by: Gautam Menghani <gautammenghani201@gmail.com>
Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org>	[tracing]
Cc: David Hildenbrand <david@redhat.com>
Cc: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Zach O'Keefe <zokeefe@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-12-11 18:12:09 -08:00
David Hildenbrand f7355e99d9 mm/gup: remove FOLL_MIGRATION
Fortunately, the last user (KSM) is gone, so let's just remove this rather
special code from generic GUP handling -- especially because KSM never
required the PMD handling as KSM only deals with individual base pages.

[akpm@linux-foundation.org: fix merge snafu]Link: https://lkml.kernel.org/r/20221021101141.84170-10-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Peter Xu <peterx@redhat.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-12-11 18:12:09 -08:00
David Hildenbrand d7c0e68dab mm/ksm: convert break_ksm() to use walk_page_range_vma()
FOLL_MIGRATION exists only for the purpose of break_ksm(), and actually,
there is not even the need to wait for the migration to finish, we only
want to know if we're dealing with a KSM page.

Using follow_page() just to identify a KSM page overcomplicates GUP code. 
Let's use walk_page_range_vma() instead, because we don't actually care
about the page itself, we only need to know a single property -- no need
to even grab a reference.

So, get rid of follow_page() usage such that we can get rid of
FOLL_MIGRATION now and eventually be able to get rid of follow_page() in
the future.

In my setup (AMD Ryzen 9 3900X), running the KSM selftest to test unmerge
performance on 2 GiB (taskset 0x8 ./ksm_tests -D -s 2048), this results in
a performance degradation of ~2% (old: ~5010 MiB/s, new: ~4900 MiB/s).  I
don't think we particularly care for now.

Interestingly, the benchmark reduction is due to the single callback. 
Adding a second callback (e.g., pud_entry()) reduces the benchmark by
another 100-200 MiB/s.

Link: https://lkml.kernel.org/r/20221021101141.84170-9-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Peter Xu <peterx@redhat.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-12-11 18:12:09 -08:00
David Hildenbrand e07cda5f23 mm/pagewalk: add walk_page_range_vma()
Let's add walk_page_range_vma(), which is similar to walk_page_vma(),
however, is only interested in a subset of the VMA range.

To be used in KSM code to stop using follow_page() next.

Link: https://lkml.kernel.org/r/20221021101141.84170-8-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Peter Xu <peterx@redhat.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-12-11 18:12:08 -08:00
David Hildenbrand 6cce3314b9 mm/ksm: fix KSM COW breaking with userfaultfd-wp via FAULT_FLAG_UNSHARE
Let's stop breaking COW via a fake write fault and let's use
FAULT_FLAG_UNSHARE instead.  This avoids any wrong side effects of the
fake write fault, such as mapping the PTE writable and marking the pte
dirty/softdirty.

Consequently, we will no longer trigger a fake write fault and break COW
without any such side-effects.

Also, this fixes KSM interaction with userfaultfd-wp: when we have a KSM
page that's write-protected by userfaultfd, break_ksm()->handle_mm_fault()
will fail with VM_FAULT_SIGBUS and will simply return in break_ksm() with
0 instead of actually breaking COW.

For now, the KSM unmerge tests can trigger that:
    $ sudo ./ksm_functional_tests
    TAP version 13
    1..3
    # [RUN] test_unmerge
    ok 1 Pages were unmerged
    # [RUN] test_unmerge_discarded
    ok 2 Pages were unmerged
    # [RUN] test_unmerge_uffd_wp
    not ok 3 Pages were unmerged
    Bail out! 1 out of 3 tests failed
    # Planned tests != run tests (2 != 3)
    # Totals: pass:2 fail:1 xfail:0 xpass:0 skip:0 error:0

The warning in dmesg also indicates this wrong handling:
    [  230.096368] FAULT_FLAG_ALLOW_RETRY missing 881
    [  230.100822] CPU: 1 PID: 1643 Comm: ksm-uffd-wp [...]
    [  230.110124] Hardware name: [...]
    [  230.117775] Call Trace:
    [  230.120227]  <TASK>
    [  230.122334]  dump_stack_lvl+0x44/0x5c
    [  230.126010]  handle_userfault.cold+0x14/0x19
    [  230.130281]  ? tlb_finish_mmu+0x65/0x170
    [  230.134207]  ? uffd_wp_range+0x65/0xa0
    [  230.137959]  ? _raw_spin_unlock+0x15/0x30
    [  230.141972]  ? do_wp_page+0x50/0x590
    [  230.145551]  __handle_mm_fault+0x9f5/0xf50
    [  230.149652]  ? mmput+0x1f/0x40
    [  230.152712]  handle_mm_fault+0xb9/0x2a0
    [  230.156550]  break_ksm+0x141/0x180
    [  230.159964]  unmerge_ksm_pages+0x60/0x90
    [  230.163890]  ksm_madvise+0x3c/0xb0
    [  230.167295]  do_madvise.part.0+0x10c/0xeb0
    [  230.171396]  ? do_syscall_64+0x67/0x80
    [  230.175157]  __x64_sys_madvise+0x5a/0x70
    [  230.179082]  do_syscall_64+0x58/0x80
    [  230.182661]  ? do_syscall_64+0x67/0x80
    [  230.186413]  entry_SYSCALL_64_after_hwframe+0x63/0xcd

This is primarily a fix for KSM+userfaultfd-wp, however, the fake write
fault was always questionable.  As this fix is not easy to backport and
it's not very critical, let's not cc stable.

Link: https://lkml.kernel.org/r/20221021101141.84170-6-david@redhat.com
Fixes: 529b930b87 ("userfaultfd: wp: hook userfault handler to write protection fault")
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Peter Xu <peterx@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-12-11 18:12:08 -08:00
David Hildenbrand cb8d863313 mm: remove VM_FAULT_WRITE
All users -- GUP and KSM -- are gone, let's just remove it.

Link: https://lkml.kernel.org/r/20221021101141.84170-4-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Peter Xu <peterx@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-12-11 18:12:08 -08:00
David Hildenbrand 58f595c665 mm/ksm: simplify break_ksm() to not rely on VM_FAULT_WRITE
Now that GUP no longer requires VM_FAULT_WRITE, break_ksm() is the sole
remaining user of VM_FAULT_WRITE.  As we also want to stop triggering a
fake write fault and instead use FAULT_FLAG_UNSHARE -- similar to
GUP-triggered unsharing when taking a R/O pin on a shared anonymous page
(including KSM pages), let's stop relying on VM_FAULT_WRITE.

Let's rework break_ksm() to not rely on the return value of
handle_mm_fault() anymore to figure out whether COW-breaking was
successful.  Simply perform another follow_page() lookup to verify the
result.

While this makes break_ksm() slightly less efficient, we can simplify
handle_mm_fault() a little and easily switch to FAULT_FLAG_UNSHARE without
introducing similar KSM-specific behavior for FAULT_FLAG_UNSHARE.

In my setup (AMD Ryzen 9 3900X), running the KSM selftest to test unmerge
performance on 2 GiB (taskset 0x8 ./ksm_tests -D -s 2048), this results in
a performance degradation of ~4% -- 5% (old: ~5250 MiB/s, new: ~5010
MiB/s).

I don't think that we particularly care about that performance drop when
unmerging.  If it ever turns out to be an actual performance issue, we can
think about a better alternative for FAULT_FLAG_UNSHARE -- let's just keep
it simple for now.

Link: https://lkml.kernel.org/r/20221021101141.84170-3-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Peter Xu <peterx@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-12-11 18:12:08 -08:00
David Hildenbrand c31783eeae mm/pagewalk: don't trigger test_walk() in walk_page_vma()
As Peter points out, the caller passes a single VMA and can just do that
check itself.

And in fact, no existing users rely on test_walk() getting called.  So
let's just remove it and make the implementation slightly more efficient.

Link: https://lkml.kernel.org/r/20221021101141.84170-7-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Peter Xu <peterx@redhat.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-12-11 18:12:07 -08:00
Linus Torvalds 4cee37b3a4 9 hotfixes. 6 for MM, 3 for other areas. Four of these patches address
post-6.0 issues.
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCY5Ur2AAKCRDdBJ7gKXxA
 jsGmAQDWSq6z9fVgk30XpMr/X7t5c6NTPw5GocVpdwG8iqch3gEAjEs5/Kcd/mx4
 d1dLaJFu1u3syessp8nJrNr1HANIog8=
 =L8zu
 -----END PGP SIGNATURE-----

Merge tag 'mm-hotfixes-stable-2022-12-10-1' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm

Pull misc fixes from Andrew Morton:
 "Nine hotfixes.

  Six for MM, three for other areas. Four of these patches address
  post-6.0 issues"

* tag 'mm-hotfixes-stable-2022-12-10-1' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm:
  memcg: fix possible use-after-free in memcg_write_event_control()
  MAINTAINERS: update Muchun Song's email
  mm/gup: fix gup_pud_range() for dax
  mmap: fix do_brk_flags() modifying obviously incorrect VMAs
  mm/swap: fix SWP_PFN_BITS with CONFIG_PHYS_ADDR_T_64BIT on 32bit
  tmpfs: fix data loss from failed fallocate
  kselftests: cgroup: update kmem test precision tolerance
  mm: do not BUG_ON missing brk mapping, because userspace can unmap it
  mailmap: update Matti Vaittinen's email address
2022-12-10 17:10:52 -08:00
Andrew Morton 3b91010500 Merge branch 'mm-hotfixes-stable' into mm-stable 2022-12-09 19:31:11 -08:00
Tejun Heo 4a7ba45b1a memcg: fix possible use-after-free in memcg_write_event_control()
memcg_write_event_control() accesses the dentry->d_name of the specified
control fd to route the write call.  As a cgroup interface file can't be
renamed, it's safe to access d_name as long as the specified file is a
regular cgroup file.  Also, as these cgroup interface files can't be
removed before the directory, it's safe to access the parent too.

Prior to 347c4a8747 ("memcg: remove cgroup_event->cft"), there was a
call to __file_cft() which verified that the specified file is a regular
cgroupfs file before further accesses.  The cftype pointer returned from
__file_cft() was no longer necessary and the commit inadvertently dropped
the file type check with it allowing any file to slip through.  With the
invarients broken, the d_name and parent accesses can now race against
renames and removals of arbitrary files and cause use-after-free's.

Fix the bug by resurrecting the file type check in __file_cft().  Now that
cgroupfs is implemented through kernfs, checking the file operations needs
to go through a layer of indirection.  Instead, let's check the superblock
and dentry type.

Link: https://lkml.kernel.org/r/Y5FRm/cfcKPGzWwl@slm.duckdns.org
Fixes: 347c4a8747 ("memcg: remove cgroup_event->cft")
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Jann Horn <jannh@google.com>
Acked-by: Roman Gushchin <roman.gushchin@linux.dev>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: <stable@vger.kernel.org>	[3.14+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-12-09 18:41:17 -08:00
John Starks fcd0ccd836 mm/gup: fix gup_pud_range() for dax
For dax pud, pud_huge() returns true on x86. So the function works as long
as hugetlb is configured. However, dax doesn't depend on hugetlb.
Commit 414fd080d1 ("mm/gup: fix gup_pmd_range() for dax") fixed
devmap-backed huge PMDs, but missed devmap-backed huge PUDs. Fix this as
well.

This fixes the below kernel panic:

general protection fault, probably for non-canonical address 0x69e7c000cc478: 0000 [#1] SMP
	< snip >
Call Trace:
<TASK>
get_user_pages_fast+0x1f/0x40
iov_iter_get_pages+0xc6/0x3b0
? mempool_alloc+0x5d/0x170
bio_iov_iter_get_pages+0x82/0x4e0
? bvec_alloc+0x91/0xc0
? bio_alloc_bioset+0x19a/0x2a0
blkdev_direct_IO+0x282/0x480
? __io_complete_rw_common+0xc0/0xc0
? filemap_range_has_page+0x82/0xc0
generic_file_direct_write+0x9d/0x1a0
? inode_update_time+0x24/0x30
__generic_file_write_iter+0xbd/0x1e0
blkdev_write_iter+0xb4/0x150
? io_import_iovec+0x8d/0x340
io_write+0xf9/0x300
io_issue_sqe+0x3c3/0x1d30
? sysvec_reschedule_ipi+0x6c/0x80
__io_queue_sqe+0x33/0x240
? fget+0x76/0xa0
io_submit_sqes+0xe6a/0x18d0
? __fget_light+0xd1/0x100
__x64_sys_io_uring_enter+0x199/0x880
? __context_tracking_enter+0x1f/0x70
? irqentry_exit_to_user_mode+0x24/0x30
? irqentry_exit+0x1d/0x30
? __context_tracking_exit+0xe/0x70
do_syscall_64+0x3b/0x90
entry_SYSCALL_64_after_hwframe+0x61/0xcb
RIP: 0033:0x7fc97c11a7be
	< snip >
</TASK>
---[ end trace 48b2e0e67debcaeb ]---
RIP: 0010:internal_get_user_pages_fast+0x340/0x990
	< snip >
Kernel panic - not syncing: Fatal exception
Kernel Offset: disabled

Link: https://lkml.kernel.org/r/1670392853-28252-1-git-send-email-ssengar@linux.microsoft.com
Fixes: 414fd080d1 ("mm/gup: fix gup_pmd_range() for dax")
Signed-off-by: John Starks <jostarks@microsoft.com>
Signed-off-by: Saurabh Sengar <ssengar@linux.microsoft.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-12-09 18:41:17 -08:00
Liam Howlett 6c28ca6485 mmap: fix do_brk_flags() modifying obviously incorrect VMAs
Add more sanity checks to the VMA that do_brk_flags() will expand.  Ensure
the VMA matches basic merge requirements within the function before
calling can_vma_merge_after().

Drop the duplicate checks from vm_brk_flags() since they will be enforced
later.

The old code would expand file VMAs on brk(), which is functionally
wrong and also dangerous in terms of locking because the brk() path
isn't designed for file VMAs and therefore doesn't lock the file
mapping.  Checking can_vma_merge_after() ensures that new anonymous
VMAs can't be merged into file VMAs.

See https://lore.kernel.org/linux-mm/CAG48ez1tJZTOjS_FjRZhvtDA-STFmdw8PEizPDwMGFd_ui0Nrw@mail.gmail.com/

Link: https://lkml.kernel.org/r/20221205192304.1957418-1-Liam.Howlett@oracle.com
Fixes: 2e7ce7d354 ("mm/mmap: change do_brk_flags() to expand existing VMA and add do_brk_munmap()")
Signed-off-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Suggested-by: Jann Horn <jannh@google.com>
Cc: Jason A. Donenfeld <Jason@zx2c4.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: SeongJae Park <sj@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-12-09 18:41:16 -08:00
Hugh Dickins 44bcabd70c tmpfs: fix data loss from failed fallocate
Fix tmpfs data loss when the fallocate system call is interrupted by a
signal, or fails for some other reason.  The partial folio handling in
shmem_undo_range() forgot to consider this unfalloc case, and was liable
to erase or truncate out data which had already been committed earlier.

It turns out that none of the partial folio handling there is appropriate
for the unfalloc case, which just wants to proceed to removal of whole
folios: which find_get_entries() provides, even when partially covered.

Original patch by Rui Wang.

Link: https://lore.kernel.org/linux-mm/33b85d82.7764.1842e9ab207.Coremail.chenguoqic@163.com/
Link: https://lkml.kernel.org/r/a5dac112-cf4b-7af-a33-f386e347fd38@google.com
Fixes: b9a8a4195c ("truncate,shmem: Handle truncates that split large folios")
Signed-off-by: Hugh Dickins <hughd@google.com>
Reported-by: Guoqi Chen <chenguoqic@163.com>
  Link: https://lore.kernel.org/all/20221101032248.819360-1-kernel@hev.cc/
Cc: Rui Wang <kernel@hev.cc>
Cc: Huacai Chen <chenhuacai@loongson.cn>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Cc: <stable@vger.kernel.org>	[5.17+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-12-09 18:41:16 -08:00
Jason A. Donenfeld f5ad508340 mm: do not BUG_ON missing brk mapping, because userspace can unmap it
The following program will trigger the BUG_ON that this patch removes,
because the user can munmap() mm->brk:

  #include <sys/syscall.h>
  #include <sys/mman.h>
  #include <assert.h>
  #include <unistd.h>

  static void *brk_now(void)
  {
    return (void *)syscall(SYS_brk, 0);
  }

  static void brk_set(void *b)
  {
    assert(syscall(SYS_brk, b) != -1);
  }

  int main(int argc, char *argv[])
  {
    void *b = brk_now();
    brk_set(b + 4096);
    assert(munmap(b - 4096, 4096 * 2) == 0);
    brk_set(b);
    return 0;
  }

Compile that with musl, since glibc actually uses brk(), and then
execute it, and it'll hit this splat:

  kernel BUG at mm/mmap.c:229!
  invalid opcode: 0000 [#1] PREEMPT SMP
  CPU: 12 PID: 1379 Comm: a.out Tainted: G S   U             6.1.0-rc7+ #419
  RIP: 0010:__do_sys_brk+0x2fc/0x340
  Code: 00 00 4c 89 ef e8 04 d3 fe ff eb 9a be 01 00 00 00 4c 89 ff e8 35 e0 fe ff e9 6e ff ff ff 4d 89 a7 20>
  RSP: 0018:ffff888140bc7eb0 EFLAGS: 00010246
  RAX: 0000000000000000 RBX: 00000000007e7000 RCX: ffff8881020fe000
  RDX: ffff8881020fe001 RSI: ffff8881955c9b00 RDI: ffff8881955c9b08
  RBP: 0000000000000000 R08: ffff8881955c9b00 R09: 00007ffc77844000
  R10: 0000000000000000 R11: 0000000000000001 R12: 00000000007e8000
  R13: 00000000007e8000 R14: 00000000007e7000 R15: ffff8881020fe000
  FS:  0000000000604298(0000) GS:ffff88901f700000(0000) knlGS:0000000000000000
  CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  CR2: 0000000000603fe0 CR3: 000000015ba9a005 CR4: 0000000000770ee0
  PKRU: 55555554
  Call Trace:
   <TASK>
   do_syscall_64+0x2b/0x50
   entry_SYSCALL_64_after_hwframe+0x46/0xb0
  RIP: 0033:0x400678
  Code: 10 4c 8d 41 08 4c 89 44 24 10 4c 8b 01 8b 4c 24 08 83 f9 2f 77 0a 4c 8d 4c 24 20 4c 01 c9 eb 05 48 8b>
  RSP: 002b:00007ffc77863890 EFLAGS: 00000212 ORIG_RAX: 000000000000000c
  RAX: ffffffffffffffda RBX: 000000000040031b RCX: 0000000000400678
  RDX: 00000000004006a1 RSI: 00000000007e6000 RDI: 00000000007e7000
  RBP: 00007ffc77863900 R08: 0000000000000000 R09: 00000000007e6000
  R10: 00007ffc77863930 R11: 0000000000000212 R12: 00007ffc77863978
  R13: 00007ffc77863988 R14: 0000000000000000 R15: 0000000000000000
   </TASK>

Instead, just return the old brk value if the original mapping has been
removed.

[akpm@linux-foundation.org: fix changelog, per Liam]
Link: https://lkml.kernel.org/r/20221202162724.2009-1-Jason@zx2c4.com
Fixes: 2e7ce7d354 ("mm/mmap: change do_brk_flags() to expand existing VMA and add do_brk_munmap()")
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Reviewed-by: SeongJae Park <sj@kernel.org>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Jann Horn <jannh@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-12-09 18:41:16 -08:00
Jan Kara e26355e215 mm: export buffer_migrate_folio_norefs()
Ext4 needs this function to allow safe migration for journalled data
pages.

Signed-off-by: Jan Kara <jack@suse.cz>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Link: https://lore.kernel.org/r/20221207112722.22220-11-jack@suse.cz
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2022-12-08 21:49:25 -05:00
Tejun Heo fbf8321238 memcg: Fix possible use-after-free in memcg_write_event_control()
memcg_write_event_control() accesses the dentry->d_name of the specified
control fd to route the write call.  As a cgroup interface file can't be
renamed, it's safe to access d_name as long as the specified file is a
regular cgroup file.  Also, as these cgroup interface files can't be
removed before the directory, it's safe to access the parent too.

Prior to 347c4a8747 ("memcg: remove cgroup_event->cft"), there was a
call to __file_cft() which verified that the specified file is a regular
cgroupfs file before further accesses.  The cftype pointer returned from
__file_cft() was no longer necessary and the commit inadvertently
dropped the file type check with it allowing any file to slip through.
With the invarients broken, the d_name and parent accesses can now race
against renames and removals of arbitrary files and cause
use-after-free's.

Fix the bug by resurrecting the file type check in __file_cft().  Now
that cgroupfs is implemented through kernfs, checking the file
operations needs to go through a layer of indirection.  Instead, let's
check the superblock and dentry type.

Signed-off-by: Tejun Heo <tj@kernel.org>
Fixes: 347c4a8747 ("memcg: remove cgroup_event->cft")
Cc: stable@kernel.org # v3.14+
Reported-by: Jann Horn <jannh@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Roman Gushchin <roman.gushchin@linux.dev>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-12-08 10:40:58 -08:00
Linus Torvalds 0ba09b1733 Revert "mm: align larger anonymous mappings on THP boundaries"
This reverts commit f35b5d7d67.

It has been reported to cause huge performance regressions on some loads
(will-it-scale.per_process_ops, but also building the kernel with
clang).

The commit did speed up gcc builds by a small amount, so it's not an
unambiguous regression, but until the big regressions are understood,
let's revert it.

Reported-by: kernel test robot <yujie.liu@intel.com>
Link: https://lore.kernel.org/r/202210181535.7144dd15-yujie.liu@intel.com
Reported-by: Nathan Chancellor <nathan@kernel.org>
Link: https://lore.kernel.org/lkml/Y1DNQaoPWxE%2BrGce@dev-arch.thelio-3990X/
Cc: Huang, Ying <ying.huang@intel.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-12-04 12:51:59 -08:00
Linus Torvalds bdaa78c6aa 15 hotfixes. 11 marked cc:stable. Only three or four of the latter
address post-6.0 issues, which is hopefully a sign that things are
 converging.
 -----BEGIN PGP SIGNATURE-----
 
 iHUEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCY4pQpQAKCRDdBJ7gKXxA
 jquxAP9Lqif7CGDgdq8uWY2hHS/Ujc3k7Ohgyzs37olnCuU8KwEA6/J7SpjsBgtY
 OfzvnwxpCTh8Kfzu/oNckIHo/EEiIA8=
 =o6qT
 -----END PGP SIGNATURE-----

Merge tag 'mm-hotfixes-stable-2022-12-02' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm

Pull misc hotfixes from Andrew Morton:
 "15 hotfixes,  11 marked cc:stable.

  Only three or four of the latter address post-6.0 issues, which is
  hopefully a sign that things are converging"

* tag 'mm-hotfixes-stable-2022-12-02' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm:
  revert "kbuild: fix -Wimplicit-function-declaration in license_is_gpl_compatible"
  Kconfig.debug: provide a little extra FRAME_WARN leeway when KASAN is enabled
  drm/amdgpu: temporarily disable broken Clang builds due to blown stack-frame
  mm/khugepaged: invoke MMU notifiers in shmem/file collapse paths
  mm/khugepaged: fix GUP-fast interaction by sending IPI
  mm/khugepaged: take the right locks for page table retraction
  mm: migrate: fix THP's mapcount on isolation
  mm: introduce arch_has_hw_nonleaf_pmd_young()
  mm: add dummy pmd_young() for architectures not having it
  mm/damon/sysfs: fix wrong empty schemes assumption under online tuning in damon_sysfs_set_schemes()
  tools/vm/slabinfo-gnuplot: use "grep -E" instead of "egrep"
  nilfs2: fix NULL pointer dereference in nilfs_palloc_commit_free_entry()
  hugetlb: don't delete vma_lock in hugetlb MADV_DONTNEED processing
  madvise: use zap_page_range_single for madvise dontneed
  mm: replace VM_WARN_ON to pr_warn if the node is offline with __GFP_THISNODE
2022-12-02 13:39:38 -08:00
Ma Wupeng e0ff428042 mm/memory-failure.c: cleanup in unpoison_memory
If freeit is true, the value of ret must be zero, there is no need to
check the value of freeit after label unlock_mutex.

We can drop variable freeit to do this cleanup.

Link: https://lkml.kernel.org/r/20221125065444.3462681-1-mawupeng1@huawei.com
Signed-off-by: Ma Wupeng <mawupeng1@huawei.com>
Acked-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Reviewed-by: Miaohe Lin <linmiaohe@huawei.com>
Cc: zhenwei pi <pizhenwei@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-30 15:59:08 -08:00
Peter Xu e833bc5034 mm/thp: re-apply mkdirty for small pages after split
We used to have 624a2c94f5 (Partly revert "mm/thp: carry over dirty bit
when thp splits on pmd") fixing the regression reported here by Anatoly
Pugachev on sparc64:

https://lore.kernel.org/r/20221021160603.GA23307@u164.east.ru

Where we temporarily ignored the dirty bit for small pages.

Then, Hev also reported similar issue on loongarch:

(the original mail was private, but Anatoly copied the list here)

https://lore.kernel.org/r/CADxRZqxqb7f_WhMh=jweZP+ynf_JwGd-0VwbYgp4P+T0-AXosw@mail.gmail.com

Hev pointed out that the issue is having HW write bit set within the
pte_mkdirty() so the split pte can be written after split even if e.g. 
they were shared by more than one processes, causing data corrupt.

Hev also tried to explain why loongarch set HW write bit in mkdirty:

https://lore.kernel.org/r/CAHirt9itKO_K_HPboXh5AyJtt16Zf0cD73PtHvM=na39u_ztxA@mail.gmail.com

One way to fix it is as what Huacai proposed here for loongarch (then we
can re-apply the dirty bit in thp split):

https://lore.kernel.org/r/20221117042532.4064448-1-chenhuacai@loongson.cnn

We may need similar thing for sparc64, though.

For now since we've found the root cause of the dirty bit issue the
simpler solution (which won't lose the dirty bit for small) that will work
for both is we wr-protect after pte_mkdirty(), so the HW write bit can be
persistent after thp split.

Add a comment for wrprotect, so we will not mess up the ordering later.

With 624a2c94f5 (Partly revert "mm/thp: carry over dirty bit when thp
splits on pmd") this is not a fix anymore, but just brings back the dirty
bit for thp split safely, so we re-apply the optimization but in safe way.

Provide a Tested-by credit to Hev too (not the exact same patch but the
same outcome) for loongarch.

Link: https://lkml.kernel.org/r/20221125185857.3110155-1-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Tested-by: Hev <r@hev.cc> # loongarch
Cc: Anatoly Pugachev <matorola@gmail.com>
Cc: Raghavendra K T <raghavendra.kt@amd.com>
Cc: Thorsten Leemhuis <regressions@leemhuis.info>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-30 15:59:08 -08:00
Xu Panda 8ef9c32a12 mm: vmscan: use sysfs_emit() to instead of scnprintf()
Replace open-coded snprintf() with sysfs_emit() to simplify the code.

Link: https://lkml.kernel.org/r/202211241929015476424@zte.com.cn
Signed-off-by: Xu Panda <xu.panda@zte.com.cn>
Signed-off-by: Yang Yang <yang.yang29@zte.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-30 15:59:08 -08:00
Sergey Senozhatsky 8d9b63708d zswap: do not allocate from atomic pool
zswap_frontswap_load() should be called from preemptible context (we even
call mutex_lock() there) and it does not look like we need to do
GFP_ATOMIC allocaion for temp buffer.  The same applies to
zswap_writeback_entry().

Use GFP_KERNEL for temporary buffer allocation in both cases.

Link: https://lkml.kernel.org/r/Y3xCTr6ikbtcUr/y@google.com
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Nhat Pham <nphamcs@gmail.com>
Signed-off-by: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: Vitaly Wool <vitaly.wool@konsulko.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-30 15:59:07 -08:00
NARIBAYASHI Akira be21b32afe mm, compaction: fix fast_isolate_around() to stay within boundaries
Depending on the memory configuration, isolate_freepages_block() may scan
pages out of the target range and causes panic.

Panic can occur on systems with multiple zones in a single pageblock.

The reason it is rare is that it only happens in special
configurations.  Depending on how many similar systems there are, it
may be a good idea to fix this problem for older kernels as well.

The problem is that pfn as argument of fast_isolate_around() could be out
of the target range.  Therefore we should consider the case where pfn <
start_pfn, and also the case where end_pfn < pfn.

This problem should have been addressd by the commit 6e2b7044c1 ("mm,
compaction: make fast_isolate_freepages() stay within zone") but there was
an oversight.

 Case1: pfn < start_pfn

  <at memory compaction for node Y>
  |  node X's zone  | node Y's zone
  +-----------------+------------------------------...
   pageblock    ^   ^     ^
  +-----------+-----------+-----------+-----------+...
                ^   ^     ^
                ^   ^      end_pfn
                ^    start_pfn = cc->zone->zone_start_pfn
                 pfn
                <---------> scanned range by "Scan After"

 Case2: end_pfn < pfn

  <at memory compaction for node X>
  |  node X's zone  | node Y's zone
  +-----------------+------------------------------...
   pageblock  ^     ^   ^
  +-----------+-----------+-----------+-----------+...
              ^     ^   ^
              ^     ^    pfn
              ^      end_pfn
               start_pfn
              <---------> scanned range by "Scan Before"

It seems that there is no good reason to skip nr_isolated pages just after
given pfn.  So let perform simple scan from start to end instead of
dividing the scan into "Before" and "After".

Link: https://lkml.kernel.org/r/20221026112438.236336-1-a.naribayashi@fujitsu.com
Fixes: 6e2b7044c1 ("mm, compaction: make fast_isolate_freepages() stay within zone").
Signed-off-by: NARIBAYASHI Akira <a.naribayashi@fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-30 15:59:07 -08:00
Stefan Roesch ad3e6dabf6 mm: add /sys/class/bdi/<bdi>/min_ratio_fine knob
This adds the min_ratio_fine knob. The knob specifies the values not
based on 1 of 100, but instead 1 per million.

Link: https://lkml.kernel.org/r/20221119005215.3052436-20-shr@devkernel.io
Signed-off-by: Stefan Roesch <shr@devkernel.io>
Cc: Chris Mason <clm@meta.com>
Cc: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-30 15:59:06 -08:00
Stefan Roesch 2c44af4f2a mm: add bdi_set_min_ratio_no_scale() function
This introduces bdi_set_min_ratio_no_scale(). It uses the max
granularity for the ratio. This function by the new sysfs knob
min_ratio_fine.

Link: https://lkml.kernel.org/r/20221119005215.3052436-19-shr@devkernel.io
Signed-off-by: Stefan Roesch <shr@devkernel.io>
Cc: Chris Mason <clm@meta.com>
Cc: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-30 15:59:06 -08:00
Stefan Roesch bca52dcbad mm: add /sys/class/bdi/<bdi>/max_ratio_fine knob
This adds the max_ratio_fine knob. The knob specifies the values not
based on 1 of 100, but instead 1 per million.

Link: https://lkml.kernel.org/r/20221119005215.3052436-17-shr@devkernel.io
Signed-off-by: Stefan Roesch <shr@devkernel.io>
Cc: Chris Mason <clm@meta.com>
Cc: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-30 15:59:06 -08:00
Stefan Roesch 4e230b406e mm: add bdi_set_max_ratio_no_scale() function
This introduces bdi_set_max_ratio_no_scale(). It uses the max
granularity for the ratio. This function by the new sysfs knob
max_ratio_fine.

Link: https://lkml.kernel.org/r/20221119005215.3052436-16-shr@devkernel.io
Signed-off-by: Stefan Roesch <shr@devkernel.io>
Cc: Chris Mason <clm@meta.com>
Cc: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-30 15:59:06 -08:00
Stefan Roesch 9c84819bd6 mm: add /sys/class/bdi/<bdi>/min_bytes knob
bdi has two existing knobs to limit the amount of dirty memory:
min_ratio and max_ratio. However the granularity of the knobs is limited
and often it is more convenient to specify limits in terms of bytes.
This change adds the min_bytes knob.

It does not store the min_bytes value, instead it converts the max_bytes
value to a ratio. The value is therefore more an approximation than an
absolute value.

It also maintains the sum over all the bdi min_ratio values stored in
the variable bdi_min_ratio.

Link: https://lkml.kernel.org/r/20221119005215.3052436-14-shr@devkernel.io
Signed-off-by: Stefan Roesch <shr@devkernel.io>
Cc: Chris Mason <clm@meta.com>
Cc: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-30 15:59:05 -08:00
Stefan Roesch 803c980505 mm: add bdi_set_min_bytes() function
This introduces the bdi_set_min_bytes() function. The min_bytes function
does not store the min_bytes value. Instead it converts the min_bytes
value into the corresponding ratio value.

Link: https://lkml.kernel.org/r/20221119005215.3052436-13-shr@devkernel.io
Signed-off-by: Stefan Roesch <shr@devkernel.io>
Cc: Chris Mason <clm@meta.com>
Cc: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-30 15:59:05 -08:00
Stefan Roesch 8021fb3232 mm: split off __bdi_set_min_ratio() function
This splits off the __bdi_set_min_ratio() function from the
bdi_set_min_ratio() function. The __bdi_set_min_ratio() function will
also be called from the bdi_set_min_bytes() function, which will be
introduced in the next patch.

Link: https://lkml.kernel.org/r/20221119005215.3052436-12-shr@devkernel.io
Signed-off-by: Stefan Roesch <shr@devkernel.io>
Cc: Chris Mason <clm@meta.com>
Cc: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-30 15:59:05 -08:00
Stefan Roesch 712c00d66a mm: add bdi_get_min_bytes() function
This adds a function to return the specified value for min_bytes. It
converts the stored min_ratio of the bdi to the corresponding bytes
value. This is an approximation as it is based on the value that is
returned by global_dirty_limits(), which can change. The returned
value can be different than the value when the min_bytes value was set.

Link: https://lkml.kernel.org/r/20221119005215.3052436-11-shr@devkernel.io
Signed-off-by: Stefan Roesch <shr@devkernel.io>
Cc: Chris Mason <clm@meta.com>
Cc: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-30 15:59:05 -08:00
Stefan Roesch c56e049a5e mm: add knob /sys/class/bdi/<bdi>/max_bytes
This adds the new knob max_bytes to specify a dirty memory limit for the
corresponding bdi. The specified bytes value is converted to a ratio.

Link: https://lkml.kernel.org/r/20221119005215.3052436-9-shr@devkernel.io
Signed-off-by: Stefan Roesch <shr@devkernel.io>
Cc: Chris Mason <clm@meta.com>
Cc: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-30 15:59:04 -08:00
Stefan Roesch 1bf27e98d2 mm: add bdi_set_max_bytes() function
This introduces the bdi_set_max_bytes() function. The max_bytes function
does not store the max_bytes value. Instead it converts the max_bytes
value into the corresponding ratio value.

Link: https://lkml.kernel.org/r/20221119005215.3052436-8-shr@devkernel.io
Signed-off-by: Stefan Roesch <shr@devkernel.io>
Cc: Chris Mason <clm@meta.com>
Cc: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-30 15:59:04 -08:00
Stefan Roesch efc3e6ad53 mm: split off __bdi_set_max_ratio() function
This splits off __bdi_set_max_ratio() from bdi_set_max_ratio().
__bdi_set_max_ratio() will also be called from bdi_set_max_bytes(),
which will be introduced in the next patch.

Link: https://lkml.kernel.org/r/20221119005215.3052436-7-shr@devkernel.io
Signed-off-by: Stefan Roesch <shr@devkernel.io>
Cc: Chris Mason <clm@meta.com>
Cc: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-30 15:59:04 -08:00
Stefan Roesch 00df7d5126 mm: add bdi_get_max_bytes() function
This adds a function to return the specified value for max_bytes. It
converts the stored max_ratio of the bdi to the corresponding bytes
value. It introduces the bdi_get_bytes helper function to do the
conversion. This is an approximation as it is based on the value that is
returned by global_dirty_limits(), which can change. The helper function
will also be used by the min_bytes bdi knob.

Link: https://lkml.kernel.org/r/20221119005215.3052436-6-shr@devkernel.io
Signed-off-by: Stefan Roesch <shr@devkernel.io>
Cc: Chris Mason <clm@meta.com>
Cc: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-30 15:59:04 -08:00
Stefan Roesch ae82291e9c mm: use part per 1000000 for bdi ratios
To get finer granularity for ratio calculations use part per million
instead of percentiles. This is especially important if we want to
automatically convert byte values to ratios. Otherwise the values that
are actually used can be quite different. This is also important for
machines with more main memory (1% of 256GB is already 2.5GB).

Link: https://lkml.kernel.org/r/20221119005215.3052436-5-shr@devkernel.io
Signed-off-by: Stefan Roesch <shr@devkernel.io>
Cc: Chris Mason <clm@meta.com>
Cc: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-30 15:59:03 -08:00
Stefan Roesch 27bbe9d48d mm: add knob /sys/class/bdi/<bdi>/strict_limit
Add a new knob to /sys/class/bdi/<bdi>/strict_limit. This new knob
allows to set/unset the flag BDI_CAP_STRICTLIMIT in the bdi
capabilities.

Link: https://lkml.kernel.org/r/20221119005215.3052436-3-shr@devkernel.io
Signed-off-by: Stefan Roesch <shr@devkernel.io>
Cc: Chris Mason <clm@meta.com>
Cc: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-30 15:59:03 -08:00
Stefan Roesch 8e9d5ead86 mm: add bdi_set_strict_limit() function
Patch series "mm/block: add bdi sysfs knobs", v4.

At meta network block devices (nbd) are used to implement remote block
storage.  In testing and during production it has been observed that these
network block devices can consume a huge portion of the dirty writeback
cache and writeback can take a considerable time.

To be able to give stricter limits, I'm proposing the following changes:

1) introduce strictlimit knob

  Currently the max_ratio knob exists to limit the dirty_memory. However
  this knob only applies once (dirty_ratio + dirty_background_ratio) / 2
  has been reached.
  With the BDI_CAP_STRICTLIMIT flag, the max_ratio can be applied without
  reaching that limit. This change exposes that knob.

  This knob can also be useful for NFS, fuse filesystems and USB devices.

2) Use part of 1000000 internal calculation

  The max_ratio is based on percentage. With the current machine sizes
  percentage values can be very high (1% of a 256GB main memory is already
  2.5GB). This change uses part of 1000000 instead of percentages for the
  internal calculations.

3) Introduce two new sysfs knobs: min_bytes and max_bytes.

  Currently all calculations are based on ratio, but for a user it often
  more convenient to specify a limit in bytes. The new knobs will not
  store bytes values, instead they will translate the byte value to a
  corresponding ratio. As the internal values are now part of 1000, the
  ratio is closer to the specified value. However the value should be more
  seen as an approximation as it can fluctuate over time.


3) Introduce two new sysfs knobs: min_ratio_fine and max_ratio_fine.

  The granularity for the existing sysfs bdi knobs min_ratio and max_ratio
  is based on percentage values. The new sysfs bdi knobs min_ratio_fine
  and max_ratio_fine allow to specify the ratio as part of 1 million.


This patch (of 20):

This adds the bdi_set_strict_limit function to be able to set/unset the
BDI_CAP_STRICTLIMIT flag.

Link: https://lkml.kernel.org/r/20221119005215.3052436-1-shr@devkernel.io
Link: https://lkml.kernel.org/r/20221119005215.3052436-2-shr@devkernel.io
Signed-off-by: Stefan Roesch <shr@devkernel.io>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Chris Mason <clm@meta.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-30 15:59:03 -08:00
Alexander Potapenko f6fbb8b23b Revert "kmsan: unpoison @tlb in arch_tlb_gather_mmu()"
This reverts commit ac801e7e25.

The patch in question was picked to -mm from the KMSAN v6 patch series
(https://lore.kernel.org/linux-mm/20220905122452.2258262-1-glider@google.com/)
and sneaked into mainline despite its removal from the v7 series
(https://lore.kernel.org/linux-mm/20220915150417.722975-1-glider@google.com/)

Currently KMSAN does not warn about origin chains hitting the maximum
depth, so keeping @tlb poisoned won't result in any inconveniences.

Link: https://lkml.kernel.org/r/20221110113541.1844156-1-glider@google.com
Signed-off-by: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Eric Biggers <ebiggers@google.com>
Cc: Marco Elver <elver@google.com>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-30 15:59:02 -08:00
Vishal Moola (Oracle) 7438899b0b folio-compat: remove try_to_release_page()
There are no more callers of try_to_release_page(), so remove it.  This
saves 85 bytes of kernel text.

Link: https://lkml.kernel.org/r/20221118073055.55694-5-vishal.moola@gmail.com
Signed-off-by: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-30 15:59:02 -08:00
Vishal Moola (Oracle) ac5efa7820 memory-failure: convert truncate_error_page() to use folio
Replace try_to_release_page() with filemap_release_folio().  This change
is in preparation for the removal of the try_to_release_page() wrapper.

Link: https://lkml.kernel.org/r/20221118073055.55694-4-vishal.moola@gmail.com
Signed-off-by: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Acked-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-30 15:59:02 -08:00
Vishal Moola (Oracle) 64ab3195ea khugepage: replace try_to_release_page() with filemap_release_folio()
Replace some calls with their folio equivalents.  This change removes 4
calls to compound_head() and is in preparation for the removal of the
try_to_release_page() wrapper.

Link: https://lkml.kernel.org/r/20221118073055.55694-3-vishal.moola@gmail.com
Signed-off-by: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-30 15:59:02 -08:00
Mel Gorman a4bafffb5d mm/page_alloc: simplify locking during free_unref_page_list
While freeing a large list, the zone lock will be released and reacquired
to avoid long hold times since commit c24ad77d96 ("mm/page_alloc.c:
avoid excessive IRQ disabled times in free_unref_page_list()").  As
suggested by Vlastimil Babka, the lockrelease/reacquire logic can be
simplified by reusing the logic that acquires a different lock when
changing zones.

Link: https://lkml.kernel.org/r/20221122131229.5263-3-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-30 15:59:01 -08:00
Mel Gorman 5749077415 mm/page_alloc: leave IRQs enabled for per-cpu page allocations
The pcp_spin_lock_irqsave protecting the PCP lists is IRQ-safe as a task
allocating from the PCP must not re-enter the allocator from IRQ context. 
In each instance where IRQ-reentrancy is possible, the lock is acquired
using pcp_spin_trylock_irqsave() even though IRQs are disabled and
re-entrancy is impossible.

Demote the lock to pcp_spin_lock avoids an IRQ disable/enable in the
common case at the cost of some IRQ allocations taking a slower path.  If
the PCP lists need to be refilled, the zone lock still needs to disable
IRQs but that will only happen on PCP refill and drain.  If an IRQ is
raised when a PCP allocation is in progress, the trylock will fail and
fallback to using the buddy lists directly.  Note that this may not be a
universal win if an interrupt-intensive workload also allocates heavily
from interrupt context and contends heavily on the zone->lock as a result.

[mgorman@techsingularity.net: migratetype might be wrong if a PCP was locked]
  Link: https://lkml.kernel.org/r/20221122131229.5263-2-mgorman@techsingularity.net
[yuzhao@google.com: reported lockdep issue on IO completion from softirq]
[hughd@google.com: fix list corruption, lock improvements, micro-optimsations]
Link: https://lkml.kernel.org/r/20221118101714.19590-3-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-30 15:59:01 -08:00
Mel Gorman c3e58a7042 mm/page_alloc: always remove pages from temporary list
Patch series "Leave IRQs enabled for per-cpu page allocations", v3.


This patch (of 2):

free_unref_page_list() has neglected to remove pages properly from the
list of pages to free since forever.  It works by coincidence because
list_add happened to do the right thing adding the pages to just the PCP
lists.  However, a later patch added pages to either the PCP list or the
zone list but only properly deleted the page from the list in one path
leading to list corruption and a subsequent failure.  As a preparation
patch, always delete the pages from one list properly before adding to
another.  On its own, this fixes nothing although it adds a fractional
amount of overhead but is critical to the next patch.

Link: https://lkml.kernel.org/r/20221118101714.19590-1-mgorman@techsingularity.net
Link: https://lkml.kernel.org/r/20221118101714.19590-2-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reported-by: Hugh Dickins <hughd@google.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-30 15:59:01 -08:00
Yang Li 4c74b65f47 mm/migrate.c: stop using 0 as NULL pointer
mm/migrate.c:1198:24: warning: Using plain integer as NULL pointer

Link: https://bugzilla.openanolis.cn/show_bug.cgi?id=3080
Link: https://lkml.kernel.org/r/20221116012345.84870-1-yang.lee@linux.alibaba.com
Signed-off-by: Yang Li <yang.lee@linux.alibaba.com>
Reported-by: Abaci Robot <abaci@linux.alibaba.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-30 15:59:00 -08:00
Yu Zhao 931b6a8b36 mm: multi-gen LRU: remove NULL checks on NODE_DATA()
NODE_DATA() is preallocated for all possible nodes after commit
09f49dca57 ("mm: handle uninitialized numa nodes gracefully").  Checking
its return value against NULL is now unnecessary.

Link: https://lkml.kernel.org/r/20221116013808.3995280-2-yuzhao@google.com
Signed-off-by: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-30 15:59:00 -08:00
David Hildenbrand f347454d03 mm/gup: disallow FOLL_FORCE|FOLL_WRITE on hugetlb mappings
hugetlb does not support fake write-faults (write faults without write
permissions).  However, we are currently able to trigger a
FAULT_FLAG_WRITE fault on a VMA without VM_WRITE.

If we'd ever want to support FOLL_FORCE|FOLL_WRITE, we'd have to teach
hugetlb to:

(1) Leave the page mapped R/O after the fake write-fault, like
    maybe_mkwrite() does.
(2) Allow writing to an exclusive anon page that's mapped R/O when
    FOLL_FORCE is set, like can_follow_write_pte(). E.g.,
    __follow_hugetlb_must_fault() needs adjustment.

For now, it's not clear if that added complexity is really required. 
History tolds us that FOLL_FORCE is dangerous and that we better limit its
use to a bare minimum.

--------------------------------------------------------------------------
  #include <stdio.h>
  #include <stdlib.h>
  #include <fcntl.h>
  #include <unistd.h>
  #include <errno.h>
  #include <stdint.h>
  #include <sys/mman.h>
  #include <linux/mman.h>

  int main(int argc, char **argv)
  {
          char *map;
          int mem_fd;

          map = mmap(NULL, 2 * 1024 * 1024u, PROT_READ,
                     MAP_PRIVATE|MAP_ANON|MAP_HUGETLB|MAP_HUGE_2MB, -1, 0);
          if (map == MAP_FAILED) {
                  fprintf(stderr, "mmap() failed: %d\n", errno);
                  return 1;
          }

          mem_fd = open("/proc/self/mem", O_RDWR);
          if (mem_fd < 0) {
                  fprintf(stderr, "open(/proc/self/mem) failed: %d\n", errno);
                  return 1;
          }

          if (pwrite(mem_fd, "0", 1, (uintptr_t) map) == 1) {
                  fprintf(stderr, "write() succeeded, which is unexpected\n");
                  return 1;
          }

          printf("write() failed as expected: %d\n", errno);
          return 0;
  }
--------------------------------------------------------------------------

Fortunately, we have a sanity check in hugetlb_wp() in place ever since
commit 1d8d14641f ("mm/hugetlb: support write-faults in shared
mappings"), that bails out instead of silently mapping a page writable in
a !PROT_WRITE VMA.

Consequently, above reproducer triggers a warning, similar to the one
reported by szsbot:

------------[ cut here ]------------
WARNING: CPU: 1 PID: 3612 at mm/hugetlb.c:5313 hugetlb_wp+0x20a/0x1af0 mm/hugetlb.c:5313
Modules linked in:
CPU: 1 PID: 3612 Comm: syz-executor250 Not tainted 6.1.0-rc2-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/11/2022
RIP: 0010:hugetlb_wp+0x20a/0x1af0 mm/hugetlb.c:5313
Code: ea 03 80 3c 02 00 0f 85 31 14 00 00 49 8b 5f 20 31 ff 48 89 dd 83 e5 02 48 89 ee e8 70 ab b7 ff 48 85 ed 75 5b e8 76 ae b7 ff <0f> 0b 41 bd 40 00 00 00 e8 69 ae b7 ff 48 b8 00 00 00 00 00 fc ff
RSP: 0018:ffffc90003caf620 EFLAGS: 00010293
RAX: 0000000000000000 RBX: 0000000008640070 RCX: 0000000000000000
RDX: ffff88807b963a80 RSI: ffffffff81c4ed2a RDI: 0000000000000007
RBP: 0000000000000000 R08: 0000000000000007 R09: 0000000000000000
R10: 0000000000000000 R11: 000000000008c07e R12: ffff888023805800
R13: 0000000000000000 R14: ffffffff91217f38 R15: ffff88801d4b0360
FS:  0000555555bba300(0000) GS:ffff8880b9b00000(0000) knlGS:0000000000000000
CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fff7a47a1b8 CR3: 000000002378d000 CR4: 00000000003506e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
 <TASK>
 hugetlb_no_page mm/hugetlb.c:5755 [inline]
 hugetlb_fault+0x19cc/0x2060 mm/hugetlb.c:5874
 follow_hugetlb_page+0x3f3/0x1850 mm/hugetlb.c:6301
 __get_user_pages+0x2cb/0xf10 mm/gup.c:1202
 __get_user_pages_locked mm/gup.c:1434 [inline]
 __get_user_pages_remote+0x18f/0x830 mm/gup.c:2187
 get_user_pages_remote+0x84/0xc0 mm/gup.c:2260
 __access_remote_vm+0x287/0x6b0 mm/memory.c:5517
 ptrace_access_vm+0x181/0x1d0 kernel/ptrace.c:61
 generic_ptrace_pokedata kernel/ptrace.c:1323 [inline]
 ptrace_request+0xb46/0x10c0 kernel/ptrace.c:1046
 arch_ptrace+0x36/0x510 arch/x86/kernel/ptrace.c:828
 __do_sys_ptrace kernel/ptrace.c:1296 [inline]
 __se_sys_ptrace kernel/ptrace.c:1269 [inline]
 __x64_sys_ptrace+0x178/0x2a0 kernel/ptrace.c:1269
 do_syscall_x64 arch/x86/entry/common.c:50 [inline]
 do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80
 entry_SYSCALL_64_after_hwframe+0x63/0xcd
[...]

So let's silence that warning by teaching GUP code that FOLL_FORCE -- so
far -- does not apply to hugetlb.

Note that FOLL_FORCE for read-access seems to be working as expected.  The
assumption is that this has been broken forever, only ever since above
commit, we actually detect the wrong handling and WARN_ON_ONCE().

I assume this has been broken at least since 2014, when mm/gup.c came to
life.  I failed to come up with a suitable Fixes tag quickly.

Link: https://lkml.kernel.org/r/20221031152524.173644-1-david@redhat.com
Fixes: 1d8d14641f ("mm/hugetlb: support write-faults in shared mappings")
Signed-off-by: David Hildenbrand <david@redhat.com>
Reported-by: <syzbot+f0b97304ef90f0d0b1dc@syzkaller.appspotmail.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-30 15:59:00 -08:00
David Hildenbrand 84209e87c6 mm/gup: reliable R/O long-term pinning in COW mappings
We already support reliable R/O pinning of anonymous memory. However,
assume we end up pinning (R/O long-term) a pagecache page or the shared
zeropage inside a writable private ("COW") mapping. The next write access
will trigger a write-fault and replace the pinned page by an exclusive
anonymous page in the process page tables to break COW: the pinned page no
longer corresponds to the page mapped into the process' page table.

Now that FAULT_FLAG_UNSHARE can break COW on anything mapped into a
COW mapping, let's properly break COW first before R/O long-term
pinning something that's not an exclusive anon page inside a COW
mapping. FAULT_FLAG_UNSHARE will break COW and map an exclusive anon page
instead that can get pinned safely.

With this change, we can stop using FOLL_FORCE|FOLL_WRITE for reliable
R/O long-term pinning in COW mappings.

With this change, the new R/O long-term pinning tests for non-anonymous
memory succeed:
  # [RUN] R/O longterm GUP pin ... with shared zeropage
  ok 151 Longterm R/O pin is reliable
  # [RUN] R/O longterm GUP pin ... with memfd
  ok 152 Longterm R/O pin is reliable
  # [RUN] R/O longterm GUP pin ... with tmpfile
  ok 153 Longterm R/O pin is reliable
  # [RUN] R/O longterm GUP pin ... with huge zeropage
  ok 154 Longterm R/O pin is reliable
  # [RUN] R/O longterm GUP pin ... with memfd hugetlb (2048 kB)
  ok 155 Longterm R/O pin is reliable
  # [RUN] R/O longterm GUP pin ... with memfd hugetlb (1048576 kB)
  ok 156 Longterm R/O pin is reliable
  # [RUN] R/O longterm GUP-fast pin ... with shared zeropage
  ok 157 Longterm R/O pin is reliable
  # [RUN] R/O longterm GUP-fast pin ... with memfd
  ok 158 Longterm R/O pin is reliable
  # [RUN] R/O longterm GUP-fast pin ... with tmpfile
  ok 159 Longterm R/O pin is reliable
  # [RUN] R/O longterm GUP-fast pin ... with huge zeropage
  ok 160 Longterm R/O pin is reliable
  # [RUN] R/O longterm GUP-fast pin ... with memfd hugetlb (2048 kB)
  ok 161 Longterm R/O pin is reliable
  # [RUN] R/O longterm GUP-fast pin ... with memfd hugetlb (1048576 kB)
  ok 162 Longterm R/O pin is reliable

Note 1: We don't care about short-term R/O-pinning, because they have
snapshot semantics: they are not supposed to observe modifications that
happen after pinning.

As one example, assume we start direct I/O to read from a page and store
page content into a file: modifications to page content after starting
direct I/O are not guaranteed to end up in the file. So even if we'd pin
the shared zeropage, the end result would be as expected -- getting zeroes
stored to the file.

Note 2: For shared mappings we'll now always fallback to the slow path to
lookup the VMA when R/O long-term pining. While that's the necessary price
we have to pay right now, it's actually not that bad in practice: most
FOLL_LONGTERM users already specify FOLL_WRITE, for example, along with
FOLL_FORCE because they tried dealing with COW mappings correctly ...

Note 3: For users that use FOLL_LONGTERM right now without FOLL_WRITE,
such as VFIO, we'd now no longer pin the shared zeropage. Instead, we'd
populate exclusive anon pages that we can pin. There was a concern that
this could affect the memlock limit of existing setups.

For example, a VM running with VFIO could run into the memlock limit and
fail to run. However, we essentially had the same behavior already in
commit 17839856fd ("gup: document and work around "COW can break either
way" issue") which got merged into some enterprise distros, and there were
not any such complaints. So most probably, we're fine.

Link: https://lkml.kernel.org/r/20221116102659.70287-10-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Daniel Vetter <daniel.vetter@ffwll.ch>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-30 15:58:58 -08:00
David Hildenbrand 8d6a0ac09a mm: extend FAULT_FLAG_UNSHARE support to anything in a COW mapping
Extend FAULT_FLAG_UNSHARE to break COW on anything mapped into a
COW (i.e., private writable) mapping and adjust the documentation
accordingly.

FAULT_FLAG_UNSHARE will now also break COW when encountering the shared
zeropage, a pagecache page, a PFNMAP, ... inside a COW mapping, by
properly replacing the mapped page/pfn by a private copy (an exclusive
anonymous page).

Note that only do_wp_page() needs care: hugetlb_wp() already handles
FAULT_FLAG_UNSHARE correctly. wp_huge_pmd()/wp_huge_pud() also handles it
correctly, for example, splitting the huge zeropage on FAULT_FLAG_UNSHARE
such that we can handle FAULT_FLAG_UNSHARE on the PTE level.

This change is a requirement for reliable long-term R/O pinning in
COW mappings.

Link: https://lkml.kernel.org/r/20221116102659.70287-9-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-30 15:58:58 -08:00
David Hildenbrand aea06577a9 mm: don't call vm_ops->huge_fault() in wp_huge_pmd()/wp_huge_pud() for private mappings
If we already have a PMD/PUD mapped write-protected in a private mapping
and we want to break COW either due to FAULT_FLAG_WRITE or
FAULT_FLAG_UNSHARE, there is no need to inform the file system just like on
the PTE path.

Let's just split (->zap) + fallback in that case.

This is a preparation for more generic FAULT_FLAG_UNSHARE support in
COW mappings.

Link: https://lkml.kernel.org/r/20221116102659.70287-8-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-30 15:58:58 -08:00
David Hildenbrand b9086fde6d mm: rework handling in do_wp_page() based on private vs. shared mappings
We want to extent FAULT_FLAG_UNSHARE support to anything mapped into a
COW mapping (pagecache page, zeropage, PFN, ...), not just anonymous pages.
Let's prepare for that by handling shared mappings first such that we can
handle private mappings last.

While at it, use folio-based functions instead of page-based functions
where we touch the code either way.

Link: https://lkml.kernel.org/r/20221116102659.70287-7-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-30 15:58:57 -08:00
David Hildenbrand 79881fed60 mm: add early FAULT_FLAG_WRITE consistency checks
Let's catch abuse of FAULT_FLAG_WRITE early, such that we don't have to
care in all other handlers and might get "surprises" if we forget to do
so.

Write faults without VM_MAYWRITE don't make any sense, and our
maybe_mkwrite() logic could have hidden such abuse for now.

Write faults without VM_WRITE on something that is not a COW mapping is
similarly broken, and e.g., do_wp_page() could end up placing an
anonymous page into a shared mapping, which would be bad.

This is a preparation for reliable R/O long-term pinning of pages in
private mappings, whereby we want to make sure that we will never break
COW in a read-only private mapping.

Link: https://lkml.kernel.org/r/20221116102659.70287-6-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-30 15:58:57 -08:00
David Hildenbrand cdc5021cda mm: add early FAULT_FLAG_UNSHARE consistency checks
For now, FAULT_FLAG_UNSHARE only applies to anonymous pages, which
implies a COW mapping. Let's hide FAULT_FLAG_UNSHARE early if we're not
dealing with a COW mapping, such that we treat it like a read fault as
documented and don't have to worry about the flag throughout all fault
handlers.

While at it, centralize the check for mutual exclusion of
FAULT_FLAG_UNSHARE and FAULT_FLAG_WRITE and just drop the check that
either flag is set in the WP handler.

Link: https://lkml.kernel.org/r/20221116102659.70287-5-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-30 15:58:57 -08:00
Lukas Bulwahn 749477244b mm: Kconfig: make config SECRETMEM visible with EXPERT
Commit 6a108a14fa ("kconfig: rename CONFIG_EMBEDDED to CONFIG_EXPERT")
introduces CONFIG_EXPERT to carry the previous intent of CONFIG_EMBEDDED
and just gives that intent a much better name.  That has been clearly a
good and long overdue renaming, and it is clearly an improvement to the
kernel build configuration that has shown to help managing the kernel
build configuration in the last decade.

However, rather than bravely and radically just deleting CONFIG_EMBEDDED,
this commit gives CONFIG_EMBEDDED a new intended semantics, but keeps it
open for future contributors to implement that intended semantics:

    A new CONFIG_EMBEDDED option is added that automatically selects
    CONFIG_EXPERT when enabled and can be used in the future to isolate
    options that should only be considered for embedded systems (RISC
    architectures, SLOB, etc).

Since then, this CONFIG_EMBEDDED implicitly had two purposes:

  - It can make even more options visible beyond what CONFIG_EXPERT makes
    visible. In other words, it may introduce another level of enabling the
    visibility of configuration options: always visible, visible with
    CONFIG_EXPERT and visible with CONFIG_EMBEDDED.

  - Set certain default values of some configurations differently,
    following the assumption that configuring a kernel build for an
    embedded system generally starts with a different set of default values
    compared to kernel builds for all other kind of systems.

Considering the second purpose, note that already probably arguing that a
kernel build for an embedded system would choose some values differently
is already tricky: the set of embedded systems with Linux kernels is
already quite diverse.  Many embedded system have powerful CPUs and it
would not be clear that all embedded systems just optimize towards one
specific aspect, e.g., a smaller kernel image size.  So, it is unclear if
starting with "one set of default configuration" that is induced by
CONFIG_EMBEDDED is a good offer for developers configuring their kernels.

Also, the differences of needed user-space features in an embedded system
compared to a non-embedded system are probably difficult or even
impossible to name in some generic way.

So it is not surprising that in the last decade hardly anyone has
contributed changes to make something default differently in case of
CONFIG_EMBEDDED=y.

Currently, in v6.0-rc4, SECRETMEM is the only config switched off if
CONFIG_EMBEDDED=y.

As long as that is actually the only option that currently is selected or
deselected, it is better to just make SECRETMEM configurable at build time
by experts using menuconfig instead.

Make SECRETMEM configurable when EXPERT is set and otherwise default to
yes.  Further, SECRETMEM needs ARCH_HAS_SET_DIRECT_MAP.

This allows us to remove CONFIG_EMBEDDED in the close future.

Link: https://lkml.kernel.org/r/20221116131922.25533-1-lukas.bulwahn@gmail.com
Signed-off-by: Lukas Bulwahn <lukas.bulwahn@gmail.com>
Acked-by: Mike Rapoport <rppt@linux.ibm.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Masahiro Yamada <masahiroy@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-30 15:58:56 -08:00
Jason Gunthorpe 53b2d09bdd mm/gup: remove the restriction on locked with FOLL_LONGTERM
This restriction was created because FOLL_LONGTERM used to scan the vma
list, so it could not tolerate becoming unlocked.  That was fixed in
commit 52650c8b46 ("mm/gup: remove the vma allocation from
gup_longterm_locked()") and the restriction on !vma was removed.

However, the locked restriction remained, even though it isn't necessary
anymore.

Adjust __gup_longterm_locked() so it can handle the mmap_read_lock()
becoming unlocked while it is looping for migration.  Migration does not
require the mmap_read_sem because it is only handling struct pages.  If we
had to unlock then ensure the whole thing returns unlocked.

Remove __get_user_pages_remote() and __gup_longterm_unlocked().  These
cases can now just directly call other functions.

Link: https://lkml.kernel.org/r/0-v1-b9ae39aa8884+14dbb-gup_longterm_locked_jgg@nvidia.com
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-30 15:58:56 -08:00
Jan Kara e83b39d6bb mm: make drop_caches keep reclaiming on all nodes
Currently, drop_caches are reclaiming node-by-node, looping on each node
until reclaim could not make progress.  This can however leave quite some
slab entries (such as filesystem inodes) unreclaimed if objects say on
node 1 keep objects on node 0 pinned.  So move the "loop until no
progress" loop to the node-by-node iteration to retry reclaim also on
other nodes if reclaim on some nodes made progress.  This fixes problem
when drop_caches was not reclaiming lots of otherwise perfectly fine to
reclaim inodes.

Link: https://lkml.kernel.org/r/20221115123255.12559-1-jack@suse.cz
Signed-off-by: Jan Kara <jack@suse.cz>
Reported-by: You Zhou <you.zhou@intel.com>
Reported-by: Pengfei Xu <pengfei.xu@intel.com>
Tested-by: Pengfei Xu <pengfei.xu@intel.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-30 15:58:55 -08:00
Pasha Tatashin d09e8ca6cb mm: anonymous shared memory naming
Since commit 9a10064f56 ("mm: add a field to store names for private
anonymous memory"), name for private anonymous memory, but not shared
anonymous, can be set.  However, naming shared anonymous memory just as
useful for tracking purposes.

Extend the functionality to be able to set names for shared anon.

There are two ways to create anonymous shared memory, using memfd or
directly via mmap():
1. fd = memfd_create(...)
   mem = mmap(..., MAP_SHARED, fd, ...)
2. mem = mmap(..., MAP_SHARED | MAP_ANONYMOUS, -1, ...)

In both cases the anonymous shared memory is created the same way by
mapping an unlinked file on tmpfs.

The memfd way allows to give a name for anonymous shared memory, but
not useful when parts of shared memory require to have distinct names.

Example use case: The VMM maps VM memory as anonymous shared memory (not
private because VMM is sandboxed and drivers are running in their own
processes).  However, the VM tells back to the VMM how parts of the memory
are actually used by the guest, how each of the segments should be backed
(i.e.  4K pages, 2M pages), and some other information about the segments.
The naming allows us to monitor the effective memory footprint for each
of these segments from the host without looking inside the guest.

Sample output:
  /* Create shared anonymous segmenet */
  anon_shmem = mmap(NULL, SIZE, PROT_READ | PROT_WRITE,
                    MAP_SHARED | MAP_ANONYMOUS, -1, 0);
  /* Name the segment: "MY-NAME" */
  rv = prctl(PR_SET_VMA, PR_SET_VMA_ANON_NAME,
             anon_shmem, SIZE, "MY-NAME");

cat /proc/<pid>/maps (and smaps):
7fc8e2b4c000-7fc8f2b4c000 rw-s 00000000 00:01 1024 [anon_shmem:MY-NAME]

If the segment is not named, the output is:
7fc8e2b4c000-7fc8f2b4c000 rw-s 00000000 00:01 1024 /dev/zero (deleted)

Link: https://lkml.kernel.org/r/20221115020602.804224-1-pasha.tatashin@soleen.com
Signed-off-by: Pasha Tatashin <pasha.tatashin@soleen.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Bagas Sanjaya <bagasdotme@gmail.com>
Cc: Colin Cross <ccross@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: "Kirill A . Shutemov" <kirill@shutemov.name>
Cc: Liam Howlett <liam.howlett@oracle.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Sean Christopherson <seanjc@google.com>
Cc: Vincent Whitchurch <vincent.whitchurch@axis.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: xu xin <cgel.zte@gmail.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-30 15:58:55 -08:00
Mike Kravetz 369258ce41 hugetlb: remove duplicate mmu notifications
The common hugetlb unmap routine __unmap_hugepage_range performs mmu
notification calls.  However, in the case where __unmap_hugepage_range is
called via __unmap_hugepage_range_final, mmu notification calls are
performed earlier in other calling routines.

Remove mmu notification calls from __unmap_hugepage_range.  Add
notification calls to the only other caller: unmap_hugepage_range. 
unmap_hugepage_range is called for truncation and hole punch, so change
notification type from UNMAP to CLEAR as this is more appropriate.

Link: https://lkml.kernel.org/r/20221114235507.294320-4-mike.kravetz@oracle.com
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Suggested-by: Peter Xu <peterx@redhat.com>
Cc: Wei Chen <harperchen1110@gmail.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mina Almasry <almasrymina@google.com>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev>
Cc: Rik van Riel <riel@surriel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-30 15:58:55 -08:00
Yixuan Cao 25e9fa22fb mm/kmemleak.c: fix a comment
I noticed a typo in a code comment and I fixed it.

Link: https://lkml.kernel.org/r/20221114171426.91745-1-caoyixuan2019@email.szu.edu.cn
Signed-off-by: Yixuan Cao <caoyixuan2019@email.szu.edu.cn>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-30 15:58:54 -08:00
Miaoqian Lin 4a625ceee8 mm/demotion: fix NULL vs IS_ERR checking in memory_tier_init
alloc_memory_type() returns error pointers on error instead of NULL.  Use
IS_ERR() to check the return value to fix this.

Link: https://lkml.kernel.org/r/20221110030751.1627266-1-linmq006@gmail.com
Fixes: 7b88bda376 ("mm/demotion/dax/kmem: set node's abstract distance to MEMTIER_DEFAULT_DAX_ADISTANCE")
Signed-off-by: Miaoqian Lin <linmq006@gmail.com>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Wei Xu <weixugc@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-30 15:58:54 -08:00
Huang Ying eaec4e639f migrate: convert migrate_pages() to use folios
Quite straightforward, the page functions are converted to corresponding
folio functions.  Same for comments.

THP specific code are converted to be large folio.

Link: https://lkml.kernel.org/r/20221109012348.93849-3-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Tested-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-30 15:58:54 -08:00
Huang Ying 49f5185922 migrate: convert unmap_and_move() to use folios
Patch series "migrate: convert migrate_pages()/unmap_and_move() to use
folios", v2.

The conversion is quite straightforward, just replace the page API to the
corresponding folio API.  migrate_pages() and unmap_and_move() mostly work
with folios (head pages) only.


This patch (of 2):

Quite straightforward, the page functions are converted to corresponding
folio functions.  Same for comments.

Link: https://lkml.kernel.org/r/20221109012348.93849-1-ying.huang@intel.com
Link: https://lkml.kernel.org/r/20221109012348.93849-2-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Oscar Salvador <osalvador@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-30 15:58:54 -08:00
Baolin Wang 16fd6b31dd Revert "mm: migration: fix the FOLL_GET failure on following huge page"
Revert commit 8315682148 ("mm: migration: fix the FOLL_GET failure on
following huge page"), since after commit 1a6baaa0db ("s390/hugetlb:
switch to generic version of follow_huge_pud()") and commit 57a196a584
("hugetlb: simplify hugetlb handling in follow_page_mask") were merged,
now all the following huge page routines can support FOLL_GET operation.

Link: https://lkml.kernel.org/r/496786039852aba90ffa68f10d0df3f4236a990b.1667983080.git.baolin.wang@linux.alibaba.com
Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Acked-by: Haiyue Wang <haiyue.wang@intel.com>
Cc: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-30 15:58:53 -08:00
Pavankumar Kondeti c66b6ead74 mm/kfence: remove hung_task cruft
commit fdf756f712 ("sched: Fix more TASK_state comparisons") makes
hung_task not to monitor TASK_IDLE tasks.  The special handling to
workaround hung_task warnings is not required anymore.

Link: https://lkml.kernel.org/r/1667986006-25420-1-git-send-email-quic_pkondeti@quicinc.com
Signed-off-by: Pavankumar Kondeti <quic_pkondeti@quicinc.com>
Reviewed-by: Marco Elver <elver@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-30 15:58:53 -08:00
Alexey Romanov 7c2af309ab zram: add size class equals check into recompression
It makes no sense for us to recompress the object if it will be in the
same size class.  We anyway don't get any memory gain.  But, at the same
time, we get a CPU time overhead when inserting this object into zspage
and decompressing it afterwards.

[senozhatsky: rebased and fixed conflicts]
Link: https://lkml.kernel.org/r/20221109115047.2921851-9-senozhatsky@chromium.org
Signed-off-by: Alexey Romanov <avromanov@sberdevices.ru>
Signed-off-by: Sergey Senozhatsky <senozhatsky@chromium.org>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Suleiman Souhlal <suleiman@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-30 15:58:52 -08:00
Alexander Gordeev f036c8184f mm: mmu_gather: do not expose delayed_rmap flag
Flag delayed_rmap of 'struct mmu_gather' is rather a private member, but
it is still accessed directly.  Instead, let the TLB gather code access
the flag.

Link: https://lkml.kernel.org/r/Y3SWCu6NRaMQ5dbD@li-4a3a4a4c-28e5-11b2-a85c-a8d192c6f089.ibm.com
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-30 15:58:50 -08:00
Linus Torvalds 5df397dec7 mm: delay page_remove_rmap() until after the TLB has been flushed
When we remove a page table entry, we are very careful to only free the
page after we have flushed the TLB, because other CPUs could still be
using the page through stale TLB entries until after the flush.

However, we have removed the rmap entry for that page early, which means
that functions like folio_mkclean() would end up not serializing with the
page table lock because the page had already been made invisible to rmap.

And that is a problem, because while the TLB entry exists, we could end up
with the following situation:

 (a) one CPU could come in and clean it, never seeing our mapping of the
     page

 (b) another CPU could continue to use the stale and dirty TLB entry and
     continue to write to said page

resulting in a page that has been dirtied, but then marked clean again,
all while another CPU might have dirtied it some more.

End result: possibly lost dirty data.

This extends our current TLB gather infrastructure to optionally track a
"should I do a delayed page_remove_rmap() for this page after flushing the
TLB".  It uses the newly introduced 'encoded page pointer' to do that
without having to keep separate data around.

Note, this is complicated by a couple of issues:

 - we want to delay the rmap removal, but not past the page table lock,
   because that simplifies the memcg accounting

 - only SMP configurations want to delay TLB flushing, since on UP
   there are obviously no remote TLBs to worry about, and the page
   table lock means there are no preemption issues either

 - s390 has its own mmu_gather model that doesn't delay TLB flushing,
   and as a result also does not want the delayed rmap. As such, we can
   treat S390 like the UP case and use a common fallback for the "no
   delays" case.

 - we can track an enormous number of pages in our mmu_gather structure,
   with MAX_GATHER_BATCH_COUNT batches of MAX_TABLE_BATCH pages each,
   all set up to be approximately 10k pending pages.

   We do not want to have a huge number of batched pages that we then
   need to check for delayed rmap handling inside the page table lock.

Particularly that last point results in a noteworthy detail, where the
normal page batch gathering is limited once we have delayed rmaps pending,
in such a way that only the last batch (the so-called "active batch") in
the mmu_gather structure can have any delayed entries.

NOTE!  While the "possibly lost dirty data" sounds catastrophic, for this
all to happen you need to have a user thread doing either madvise() with
MADV_DONTNEED or a full re-mmap() of the area concurrently with another
thread continuing to use said mapping.

So arguably this is about user space doing crazy things, but from a VM
consistency standpoint it's better if we track the dirty bit properly even
when user space goes off the rails.

[akpm@linux-foundation.org: fix UP build, per Linus]
Link: https://lore.kernel.org/all/B88D3073-440A-41C7-95F4-895D3F657EF2@gmail.com/
Link: https://lkml.kernel.org/r/20221109203051.1835763-4-torvalds@linux-foundation.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Hugh Dickins <hughd@google.com>
Reported-by: Nadav Amit <nadav.amit@gmail.com>
Tested-by: Nadav Amit <nadav.amit@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-30 15:58:50 -08:00
Linus Torvalds 7cc8f9c714 mm: mmu_gather: prepare to gather encoded page pointers with flags
This is purely a preparatory patch that makes all the data structures
ready for encoding flags with the mmu_gather page pointers.

The code currently always sets the flag to zero and doesn't use it yet,
but now it's tracking the type state along.  The next step will be to
actually start using it.

Link: https://lkml.kernel.org/r/20221109203051.1835763-3-torvalds@linux-foundation.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-30 15:58:50 -08:00
Linus Torvalds 449c796768 mm: teach release_pages() to take an array of encoded page pointers too
release_pages() already could take either an array of page pointers, or an
array of folio pointers.  Expand it to also accept an array of encoded
page pointers, which is what both the existing mlock() use and the
upcoming mmu_gather use of encoded page pointers wants.

Note that release_pages() won't actually use, or react to, any extra
encoded bits.  Instead, this is very much a case of "I have walked the
array of encoded pages and done everything the extra bits tell me to do,
now release it all".

Also, while the "either page or folio pointers" dual use was handled with
a cast of the pointer in "release_folios()", this takes a slightly
different approach and uses the "transparent union" attribute to describe
the set of arguments to the function:

  https://gcc.gnu.org/onlinedocs/gcc/Common-Type-Attributes.html

which has been supported by gcc forever, but the kernel hasn't used
before.

That allows us to avoid using various wrappers with casts, and just use
the same function regardless of use.

Link: https://lkml.kernel.org/r/20221109203051.1835763-2-torvalds@linux-foundation.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-30 15:58:50 -08:00
David Hildenbrand d6379159f4 mm: remove unused savedwrite infrastructure
NUMA hinting no longer uses savedwrite, let's rip it out.

... and while at it, drop __pte_write() and __pmd_write() on ppc64.

Link: https://lkml.kernel.org/r/20221108174652.198904-7-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Nadav Amit <namit@vmware.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-30 15:58:49 -08:00
David Hildenbrand 6a56ccbcf6 mm/autonuma: use can_change_(pte|pmd)_writable() to replace savedwrite
commit b191f9b106 ("mm: numa: preserve PTE write permissions across a
NUMA hinting fault") added remembering write permissions using ordinary
pte_write() for PROT_NONE mapped pages to avoid write faults when
remapping the page !PROT_NONE on NUMA hinting faults.

That commit noted:

    The patch looks hacky but the alternatives looked worse. The tidest was
    to rewalk the page tables after a hinting fault but it was more complex
    than this approach and the performance was worse. It's not generally
    safe to just mark the page writable during the fault if it's a write
    fault as it may have been read-only for COW so that approach was
    discarded.

Later, commit 288bc54949 ("mm/autonuma: let architecture override how
the write bit should be stashed in a protnone pte.") introduced a family
of savedwrite PTE functions that didn't necessarily improve the whole
situation.

One confusing thing is that nowadays, if a page is pte_protnone()
and pte_savedwrite() then also pte_write() is true. Another source of
confusion is that there is only a single pte_mk_savedwrite() call in the
kernel. All other write-protection code seems to silently rely on
pte_wrprotect().

Ever since PageAnonExclusive was introduced and we started using it in
mprotect context via commit 64fe24a3e0 ("mm/mprotect: try avoiding write
faults for exclusive anonymous pages when changing protection"), we do
have machinery in place to avoid write faults when changing protection,
which is exactly what we want to do here.

Let's similarly do what ordinary mprotect() does nowadays when upgrading
write permissions and reuse can_change_pte_writable() and
can_change_pmd_writable() to detect if we can upgrade PTE permissions to be
writable.

For anonymous pages there should be absolutely no change: if an
anonymous page is not exclusive, it could not have been mapped writable --
because only exclusive anonymous pages can be mapped writable.

However, there *might* be a change for writable shared mappings that
require writenotify: if they are not dirty, we cannot map them writable.
While it might not matter in practice, we'd need a different way to
identify whether writenotify is actually required -- and ordinary mprotect
would benefit from that as well.

Note that we don't optimize for the actual migration case:
(1) When migration succeeds the new PTE will not be writable because the
    source PTE was not writable (protnone); in the future we
    might just optimize that case similarly by reusing
    can_change_pte_writable()/can_change_pmd_writable() when removing
    migration PTEs.
(2) When migration fails, we'd have to recalculate the "writable" flag
    because we temporarily dropped the PT lock; for now keep it simple and
    set "writable=false".

We'll remove all savedwrite leftovers next.

Link: https://lkml.kernel.org/r/20221108174652.198904-6-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Nadav Amit <namit@vmware.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-30 15:58:49 -08:00
David Hildenbrand eb309ec899 mm/mprotect: factor out check whether manual PTE write upgrades are required
Let's factor the check out into vma_wants_manual_pte_write_upgrade(), to be
reused in NUMA hinting fault context soon.

Link: https://lkml.kernel.org/r/20221108174652.198904-5-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Nadav Amit <namit@vmware.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-30 15:58:49 -08:00
David Hildenbrand c27f479ef5 mm/huge_memory: try avoiding write faults when changing PMD protection
Let's replicate what we have for PTEs in can_change_pte_writable() also
for PMDs.

While this might look like a pure performance improvement, we'll us this to
get rid of savedwrite handling in do_huge_pmd_numa_page() next. Place
do_huge_pmd_numa_page() strategically good for that purpose.

Note that MM_CP_TRY_CHANGE_WRITABLE is currently only set when we come
via mprotect_fixup().

Link: https://lkml.kernel.org/r/20221108174652.198904-4-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Nadav Amit <namit@vmware.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-30 15:58:49 -08:00
David Hildenbrand 7ea7e33384 mm/mprotect: minor can_change_pte_writable() cleanups
We want to replicate this code for handling PMDs soon.

(1) No need to crash the kernel, warning and rejecting is good enough. As
    this will no longer get optimized out, drop the pte_write() check: no
    harm would be done.

(2) Add a comment why PROT_NONE mapped pages are excluded.

(3) Add a comment regarding MAP_SHARED handling and why we rely on the
    dirty bit in the PTE.

Link: https://lkml.kernel.org/r/20221108174652.198904-3-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Nadav Amit <namit@vmware.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-30 15:58:48 -08:00
Nadav Amit d84887739d mm/mprotect: allow clean exclusive anon pages to be writable
Patch series "mm/autonuma: replace savedwrite infrastructure", v2.

As discussed in my talk at LPC, we can reuse the same mechanism for
deciding whether to map a pte writable when upgrading permissions via
mprotect() -- e.g., PROT_READ -> PROT_READ|PROT_WRITE -- to replace the
savedwrite infrastructure used for NUMA hinting faults (e.g., PROT_NONE ->
PROT_READ|PROT_WRITE).

Instead of maintaining previous write permissions for a pte/pmd, we
re-determine if the pte/pmd can be writable.  The big benefit is that we
have a common logic for deciding whether we can map a pte/pmd writable on
protection changes.

For private mappings, there should be no difference -- from what I
understand, that is what autonuma benchmarks care about.

I ran autonumabench for v1 on a system with 2 NUMA nodes, 96 GiB each via:
	perf stat --null --repeat 10
The numa01 benchmark is quite noisy in my environment and I failed to
reduce the noise so far.

numa01:
	mm-unstable:   146.88 +- 6.54 seconds time elapsed  ( +-  4.45% )
	mm-unstable++: 147.45 +- 13.39 seconds time elapsed  ( +-  9.08% )

numa02:
	mm-unstable:   16.0300 +- 0.0624 seconds time elapsed  ( +-  0.39% )
	mm-unstable++: 16.1281 +- 0.0945 seconds time elapsed  ( +-  0.59% )

It is worth noting that for shared writable mappings that require
writenotify, we will only avoid write faults if the pte/pmd is dirty
(inherited from the older mprotect logic).  If we ever care about
optimizing that further, we'd need a different mechanism to identify
whether the FS still needs to get notified on the next write access.

In any case, such an optimization will then not be autonuma-specific, but
mprotect() permission upgrades would similarly benefit from it.


This patch (of 7):

Anonymous pages might have the dirty bit clear, but this should not
prevent mprotect from making them writable if they are exclusive. 
Therefore, skip the test whether the page is dirty in this case.

Note that there are already other ways to get a writable PTE mapping an
anonymous page that is clean: for example, via MADV_FREE.  In an ideal
world, we'd have a different indication from the FS whether writenotify is
still required.

[david@redhat.com: return directly; update description]
Link: https://lkml.kernel.org/r/20221108174652.198904-1-david@redhat.com
Link: https://lkml.kernel.org/r/20221108174652.198904-2-david@redhat.com
Signed-off-by: Nadav Amit <namit@vmware.com>
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-30 15:58:48 -08:00
Hugh Dickins 96d82deb74 mm,thp,rmap: clean up the end of __split_huge_pmd_locked()
It's hard to add a page_add_anon_rmap() into __split_huge_pmd_locked()'s
HPAGE_PMD_NR set_pte_at() loop, without wincing at the "freeze" case's
HPAGE_PMD_NR page_remove_rmap() loop below it.

It's just a mistake to add rmaps in the "freeze" (insert migration entries
prior to splitting huge page) case: the pmd_migration case already avoids
doing that, so just follow its lead.  page_add_ref() versus put_page()
likewise.  But why is one more put_page() needed in the "freeze" case? 
Because it's removing the pmd rmap, already removed when pmd_migration
(and freeze and pmd_migration are mutually exclusive cases).

Link: https://lkml.kernel.org/r/d43748aa-fece-e0b9-c4ab-f23c9ebc9011@google.com
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Dan Carpenter <error27@gmail.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: James Houghton <jthoughton@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mina Almasry <almasrymina@google.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev>
Cc: Peter Xu <peterx@redhat.com>
Cc: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Zach O'Keefe <zokeefe@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-30 15:58:48 -08:00
Hugh Dickins 4b51634cd1 mm,thp,rmap: subpages_mapcount COMPOUND_MAPPED if PMD-mapped
Can the lock_compound_mapcount() bit_spin_lock apparatus be removed now? 
Yes.  Not by atomic64_t or cmpxchg games, those get difficult on 32-bit;
but if we slightly abuse subpages_mapcount by additionally demanding that
one bit be set there when the compound page is PMD-mapped, then a cascade
of two atomic ops is able to maintain the stats without bit_spin_lock.

This is harder to reason about than when bit_spin_locked, but I believe
safe; and no drift in stats detected when testing.  When there are racing
removes and adds, of course the sequence of operations is less well-
defined; but each operation on subpages_mapcount is atomically good.  What
might be disastrous, is if subpages_mapcount could ever fleetingly appear
negative: but the pte lock (or pmd lock) these rmap functions are called
under, ensures that a last remove cannot race ahead of a first add.

Continue to make an exception for hugetlb (PageHuge) pages, though that
exception can be easily removed by a further commit if necessary: leave
subpages_mapcount 0, don't bother with COMPOUND_MAPPED in its case, just
carry on checking compound_mapcount too in folio_mapped(), page_mapped().

Evidence is that this way goes slightly faster than the previous
implementation in all cases (pmds after ptes now taking around 103ms); and
relieves us of worrying about contention on the bit_spin_lock.

Link: https://lkml.kernel.org/r/3978f3ca-5473-55a7-4e14-efea5968d892@google.com
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Dan Carpenter <error27@gmail.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: James Houghton <jthoughton@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mina Almasry <almasrymina@google.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev>
Cc: Peter Xu <peterx@redhat.com>
Cc: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Zach O'Keefe <zokeefe@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-30 15:58:48 -08:00
Hugh Dickins be5ef2d9b0 mm,thp,rmap: subpages_mapcount of PTE-mapped subpages
Patch series "mm,thp,rmap: rework the use of subpages_mapcount", v2.


This patch (of 3):

Following suggestion from Linus, instead of counting every PTE map of a
compound page in subpages_mapcount, just count how many of its subpages
are PTE-mapped: this yields the exact number needed for NR_ANON_MAPPED and
NR_FILE_MAPPED stats, without any need for a locked scan of subpages; and
requires updating the count less often.

This does then revert total_mapcount() and folio_mapcount() to needing a
scan of subpages; but they are inherently racy, and need no locking, so
Linus is right that the scans are much better done there.  Plus (unlike in
6.1 and previous) subpages_mapcount lets us avoid the scan in the common
case of no PTE maps.  And page_mapped() and folio_mapped() remain scanless
and just as efficient with the new meaning of subpages_mapcount: those are
the functions which I most wanted to remove the scan from.

The updated page_dup_compound_rmap() is no longer suitable for use by anon
THP's __split_huge_pmd_locked(); but page_add_anon_rmap() can be used for
that, so long as its VM_BUG_ON_PAGE(!PageLocked) is deleted.

Evidence is that this way goes slightly faster than the previous
implementation for most cases; but significantly faster in the (now
scanless) pmds after ptes case, which started out at 870ms and was brought
down to 495ms by the previous series, now takes around 105ms.

Link: https://lkml.kernel.org/r/a5849eca-22f1-3517-bf29-95d982242742@google.com
Link: https://lkml.kernel.org/r/eec17e16-4e1-7c59-f1bc-5bca90dac919@google.com
Signed-off-by: Hugh Dickins <hughd@google.com>
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Dan Carpenter <error27@gmail.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: James Houghton <jthoughton@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mina Almasry <almasrymina@google.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev>
Cc: Peter Xu <peterx@redhat.com>
Cc: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Zach O'Keefe <zokeefe@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-30 15:58:47 -08:00
Joao Martins 11aad2631b mm/hugetlb_vmemmap: remap head page to newly allocated page
Today with `hugetlb_free_vmemmap=on` the struct page memory that is freed
back to page allocator is as following: for a 2M hugetlb page it will reuse
the first 4K vmemmap page to remap the remaining 7 vmemmap pages, and for a
1G hugetlb it will remap the remaining 4095 vmemmap pages. Essentially,
that means that it breaks the first 4K of a potentially contiguous chunk of
memory of 32K (for 2M hugetlb pages) or 16M (for 1G hugetlb pages). For
this reason the memory that it's free back to page allocator cannot be used
for hugetlb to allocate huge pages of the same size, but rather only of a
smaller huge page size:

Trying to assign a 64G node to hugetlb (on a 128G 2node guest, each node
having 64G):

* Before allocation:
Free pages count per migrate type at order       0      1      2      3
4      5      6      7      8      9     10
...
Node    0, zone   Normal, type      Movable    340    100     32     15
1      2      0      0      0      1  15558

$ echo 32768 > /sys/devices/system/node/node0/hugepages/hugepages-2048kB/nr_hugepages
$ cat /sys/devices/system/node/node0/hugepages/hugepages-2048kB/nr_hugepages
 31987

* After:

Node    0, zone   Normal, type      Movable  30893  32006  31515      7
0      0      0      0      0      0      0

Notice how the memory freed back are put back into 4K / 8K / 16K page
pools. And it allocates a total of 31987 pages (63974M).

To fix this behaviour rather than remapping second vmemmap page (thus
breaking the contiguous block of memory backing the struct pages)
repopulate the first vmemmap page with a new one. We allocate and copy
from the currently mapped vmemmap page, and then remap it later on.
The same algorithm works if there's a pre initialized walk::reuse_page
and the head page doesn't need to be skipped and instead we remap it
when the @addr being changed is the @reuse_addr.

The new head page is allocated in vmemmap_remap_free() given that on
restore there's no need for functional change. Note that, because right
now one hugepage is remapped at a time, thus only one free 4K page at a
time is needed to remap the head page. Should it fail to allocate said
new page, it reuses the one that's already mapped just like before. As a
result, for every 64G of contiguous hugepages it can give back 1G more
of contiguous memory per 64G, while needing in total 128M new 4K pages
(for 2M hugetlb) or 256k (for 1G hugetlb).

After the changes, try to assign a 64G node to hugetlb (on a 128G 2node
guest, each node with 64G):

* Before allocation
Free pages count per migrate type at order       0      1      2      3
4      5      6      7      8      9     10
...
Node    0, zone   Normal, type      Movable      1      1      1      0
0      1      0      0      1      1  15564

$ echo 32768  > /sys/devices/system/node/node0/hugepages/hugepages-2048kB/nr_hugepages
$ cat /sys/devices/system/node/node0/hugepages/hugepages-2048kB/nr_hugepages
32394

* After:

Node    0, zone   Normal, type      Movable      0     50     97    108
96     81     70     46     18      0      0

In the example above, 407 more hugeltb 2M pages are allocated i.e. 814M out
of the 32394 (64788M) allocated. So the memory freed back is indeed being
used back in hugetlb and there's no massive order-0..order-2 pages
accumulated unused.

[joao.m.martins@oracle.com: v3]
  Link: https://lkml.kernel.org/r/20221109200623.96867-1-joao.m.martins@oracle.com
[joao.m.martins@oracle.com: add smp_wmb() to ensure page contents are visible prior to PTE write]
  Link: https://lkml.kernel.org/r/20221110121214.6297-1-joao.m.martins@oracle.com
Link: https://lkml.kernel.org/r/20221107153922.77094-1-joao.m.martins@oracle.com
Signed-off-by: Joao Martins <joao.m.martins@oracle.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-30 15:58:47 -08:00
Hugh Dickins d8dd5e979d mm,thp,rmap: handle the normal !PageCompound case first
Commit ("mm,thp,rmap: lock_compound_mapcounts() on THP mapcounts")
propagated the "if (compound) {lock} else if (PageCompound) {lock} else
{atomic}" pattern throughout; but Linus hated the way that gives primacy
to the uncommon case: switch to "if (!PageCompound) {atomic} else if
(compound) {lock} else {lock}" throughout.  Linus has a bigger idea for
how to improve it all, but here just make that rearrangement.

Link: https://lkml.kernel.org/r/fca2f694-2098-b0ef-d4e-f1d8b94d318c@google.com
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: James Houghton <jthoughton@google.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mina Almasry <almasrymina@google.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev>
Cc: Peter Xu <peterx@redhat.com>
Cc: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Zach O'Keefe <zokeefe@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-30 15:58:47 -08:00
Hugh Dickins 9bd3155ed8 mm,thp,rmap: lock_compound_mapcounts() on THP mapcounts
Fix the races in maintaining compound_mapcount, subpages_mapcount and
subpage _mapcount by using PG_locked in the first tail of any compound
page for a bit_spin_lock() on such modifications; skipping the usual
atomic operations on those fields in this case.

Bring page_remove_file_rmap() and page_remove_anon_compound_rmap() back
into page_remove_rmap() itself.  Rearrange page_add_anon_rmap() and
page_add_file_rmap() and page_remove_rmap() to follow the same "if
(compound) {lock} else if (PageCompound) {lock} else {atomic}" pattern
(with a PageTransHuge in the compound test, like before, to avoid BUG_ONs
and optimize away that block when THP is not configured).  Move all the
stats updates outside, after the bit_spin_locked section, so that it is
sure to be a leaf lock.

Add page_dup_compound_rmap() to manage compound locking versus atomics in
sync with the rest.  In particular, hugetlb pages are still using the
atomics: to avoid unnecessary interference there, and because they never
have subpage mappings; but this exception can easily be changed. 
Conveniently, page_dup_compound_rmap() turns out to suit an anon THP's
__split_huge_pmd_locked() too.

bit_spin_lock() is not popular with PREEMPT_RT folks: but PREEMPT_RT
sensibly excludes TRANSPARENT_HUGEPAGE already, so its only exposure is to
the non-hugetlb non-THP pte-mapped compound pages (with large folios being
currently dependent on TRANSPARENT_HUGEPAGE).  There is never any scan of
subpages in this case; but we have chosen to use PageCompound tests rather
than PageTransCompound tests to gate the use of lock_compound_mapcounts(),
so that page_mapped() is correct on all compound pages, whether or not
TRANSPARENT_HUGEPAGE is enabled: could that be a problem for PREEMPT_RT,
when there is contention on the lock - under heavy concurrent forking for
example?  If so, then it can be turned into a sleeping lock (like
folio_lock()) when PREEMPT_RT.

A simple 100 X munmap(mmap(2GB, MAP_SHARED|MAP_POPULATE, tmpfs), 2GB) took
18 seconds on small pages, and used to take 1 second on huge pages, but
now takes 115 milliseconds on huge pages.  Mapping by pmds a second time
used to take 860ms and now takes 86ms; mapping by pmds after mapping by
ptes (when the scan is needed) used to take 870ms and now takes 495ms. 
Mapping huge pages by ptes is largely unaffected but variable: between 5%
faster and 5% slower in what I've recorded.  Contention on the lock is
likely to behave worse than contention on the atomics behaved.

Link: https://lkml.kernel.org/r/1b42bd1a-8223-e827-602f-d466c2db7d3c@google.com
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: James Houghton <jthoughton@google.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mina Almasry <almasrymina@google.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev>
Cc: Peter Xu <peterx@redhat.com>
Cc: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Zach O'Keefe <zokeefe@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-30 15:58:47 -08:00
Hugh Dickins cb67f4282b mm,thp,rmap: simplify compound page mapcount handling
Compound page (folio) mapcount calculations have been different for anon
and file (or shmem) THPs, and involved the obscure PageDoubleMap flag. 
And each huge mapping and unmapping of a file (or shmem) THP involved
atomically incrementing and decrementing the mapcount of every subpage of
that huge page, dirtying many struct page cachelines.

Add subpages_mapcount field to the struct folio and first tail page, so
that the total of subpage mapcounts is available in one place near the
head: then page_mapcount() and total_mapcount() and page_mapped(), and
their folio equivalents, are so quick that anon and file and hugetlb don't
need to be optimized differently.  Delete the unloved PageDoubleMap.

page_add and page_remove rmap functions must now maintain the
subpages_mapcount as well as the subpage _mapcount, when dealing with pte
mappings of huge pages; and correct maintenance of NR_ANON_MAPPED and
NR_FILE_MAPPED statistics still needs reading through the subpages, using
nr_subpages_unmapped() - but only when first or last pmd mapping finds
subpages_mapcount raised (double-map case, not the common case).

But are those counts (used to decide when to split an anon THP, and in
vmscan's pagecache_reclaimable heuristic) correctly maintained?  Not
quite: since page_remove_rmap() (and also split_huge_pmd()) is often
called without page lock, there can be races when a subpage pte mapcount
0<->1 while compound pmd mapcount 0<->1 is scanning - races which the
previous implementation had prevented.  The statistics might become
inaccurate, and even drift down until they underflow through 0.  That is
not good enough, but is better dealt with in a followup patch.

Update a few comments on first and second tail page overlaid fields. 
hugepage_add_new_anon_rmap() has to "increment" compound_mapcount, but
subpages_mapcount and compound_pincount are already correctly at 0, so
delete its reinitialization of compound_pincount.

A simple 100 X munmap(mmap(2GB, MAP_SHARED|MAP_POPULATE, tmpfs), 2GB) took
18 seconds on small pages, and used to take 1 second on huge pages, but
now takes 119 milliseconds on huge pages.  Mapping by pmds a second time
used to take 860ms and now takes 92ms; mapping by pmds after mapping by
ptes (when the scan is needed) used to take 870ms and now takes 495ms. 
But there might be some benchmarks which would show a slowdown, because
tail struct pages now fall out of cache until final freeing checks them.

Link: https://lkml.kernel.org/r/47ad693-717-79c8-e1ba-46c3a6602e48@google.com
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: James Houghton <jthoughton@google.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mina Almasry <almasrymina@google.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev>
Cc: Peter Xu <peterx@redhat.com>
Cc: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Zach O'Keefe <zokeefe@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-30 15:58:46 -08:00
Hugh Dickins dad6a5eb55 mm,hugetlb: use folio fields in second tail page
Patch series "mm,huge,rmap: unify and speed up compound mapcounts".


This patch (of 3):

We want to declare one more int in the first tail of a compound page: that
first tail page being valuable property, since every compound page has a
first tail, but perhaps no more than that.

No problem on 64-bit: there is already space for it.  No problem with
32-bit THPs: 5.18 commit 5232c63f46 ("mm: Make compound_pincount always
available") kindly cleared the space for it, apparently not realizing that
only 64-bit architectures enable CONFIG_THP_SWAP (whose use of tail
page->private might conflict) - but make sure of that in its Kconfig.

But hugetlb pages use tail page->private of the first tail page for a
subpool pointer, which will conflict; and they also use page->private of
the 2nd, 3rd and 4th tails.

Undo "mm: add private field of first tail to struct page and struct
folio"'s recent addition of private_1 to the folio tail: instead add
hugetlb_subpool, hugetlb_cgroup, hugetlb_cgroup_rsvd, hugetlb_hwpoison to
a second tail page of the folio: THP has long been using several fields of
that tail, so make better use of it for hugetlb too.  This is not how a
generic folio should be declared in future, but it is an effective
transitional way to make use of it.

Delete the SUBPAGE_INDEX stuff, but keep __NR_USED_SUBPAGE: now 3.

[hughd@google.com: prefix folio's page_1 and page_2 with double underscore,
  give folio's _flags_2 and _head_2 a line documentation each]
  Link: https://lkml.kernel.org/r/9e2cb6b-5b58-d3f2-b5ee-5f8a14e8f10@google.com
Link: https://lkml.kernel.org/r/5f52de70-975-e94f-f141-543765736181@google.com
Link: https://lkml.kernel.org/r/3818cc9a-9999-d064-d778-9c94c5911e6@google.com
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: James Houghton <jthoughton@google.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mina Almasry <almasrymina@google.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev>
Cc: Peter Xu <peterx@redhat.com>
Cc: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Zach O'Keefe <zokeefe@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-30 15:58:46 -08:00
Deming Wang 65917b538b zsmalloc: replace IS_ERR() with IS_ERR_VALUE()
Avoid typecasts that are needed for IS_ERR() and use IS_ERR_VALUE()
instead.

Link: https://lkml.kernel.org/r/20221104023818.1728-1-wangdeming@inspur.com
Signed-off-by: Deming Wang <wangdeming@inspur.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-30 15:58:46 -08:00
Peter Xu 15520a3f04 mm: use pte markers for swap errors
PTE markers are ideal mechanism for things like SWP_SWAPIN_ERROR.  Using a
whole swap entry type for this purpose can be an overkill, especially if
we already have PTE markers.  Define a new bit for swapin error and
replace it with pte markers.  Then we can safely drop SWP_SWAPIN_ERROR and
give one device slot back to swap.

We used to have SWP_SWAPIN_ERROR taking the page pfn as part of the swap
entry, but it's never used.  Neither do I see how it can be useful because
normally the swapin failure should not be caused by a bad page but bad
swap device.  Drop it alongside.

Link: https://lkml.kernel.org/r/20221030214151.402274-3-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Huang Ying <ying.huang@intel.com>
Reviewed-by: Miaohe Lin <linmiaohe@huawei.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-30 15:58:46 -08:00
Peter Xu ca92ea3dc5 mm: always compile in pte markers
Patch series "mm: Use pte marker for swapin errors".

This series uses the pte marker to replace the swapin error swap entry,
then we save one more swap entry slot for swap devices.  A new pte marker
bit is defined.


This patch (of 2):

The PTE markers code is tiny and now it's enabled for most of the
distributions.  It's fine to keep it as-is, but to make a broader use of
it (e.g.  replacing read error swap entry) it needs to be there always
otherwise we need special code path to take care of !PTE_MARKER case.

It'll be easier just make pte marker always exist.  Use this chance to
extend its usage to anonymous too by simply touching up some of the old
comments, because it'll be used for anonymous pages in the follow up
patches.

Link: https://lkml.kernel.org/r/20221030214151.402274-1-peterx@redhat.com
Link: https://lkml.kernel.org/r/20221030214151.402274-2-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Huang Ying <ying.huang@intel.com>
Reviewed-by: Miaohe Lin <linmiaohe@huawei.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Peter Xu <peterx@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-30 15:58:45 -08:00
Christophe JAILLET f15be1b8d4 mm: use kstrtobool() instead of strtobool()
strtobool() is the same as kstrtobool().  However, the latter is more used
within the kernel.

In order to remove strtobool() and slightly simplify kstrtox.h, switch to
the other function name.

While at it, include the corresponding header file (<linux/kstrtox.h>)

Link: https://lkml.kernel.org/r/03f9401a6c8b87a1c786a2138d16b048f8d0eb53.1667336095.git.christophe.jaillet@wanadoo.fr
Signed-off-by: Christophe JAILLET <christophe.jaillet@wanadoo.fr>
Acked-by: Pasha Tatashin <pasha.tatashin@soleen.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-30 15:58:45 -08:00
Christophe JAILLET e6aff38b2e mm/damon: use kstrtobool() instead of strtobool()
strtobool() is the same as kstrtobool().  However, the latter is more used
within the kernel.

In order to remove strtobool() and slightly simplify kstrtox.h, switch to
the other function name.

While at it, include the corresponding header file (<linux/kstrtox.h>)

Link: https://lkml.kernel.org/r/ed2b46489a513988688decb53850339cc228940c.1667336095.git.christophe.jaillet@wanadoo.fr
Signed-off-by: Christophe JAILLET <christophe.jaillet@wanadoo.fr>
Reviewed-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-30 15:58:45 -08:00
SeongJae Park 772c15e5ad mm/damon/sysfs-schemes: implement DAMOS-tried regions clear command
When there are huge number of DAMON regions that specific scheme actions
are tried to be applied, directories and files under 'tried_regions'
scheme directory could waste some memory.  Add another special input
keyword ('clear_schemes_tried_regions') for 'state' file of each kdamond
sysfs directory that can be used for cleanup of the 'tried_regions'
sub-directories.

[sj@kernel.org: skip regions clearing if the scheme directory was removed]
  Link: https://lkml.kernel.org/r/20221114182954.4745-3-sj@kernel.org
Link: https://lkml.kernel.org/r/20221101220328.95765-6-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-30 15:58:44 -08:00
SeongJae Park f1d13cacab mm/damon/sysfs: implement DAMOS tried regions update command
Implement the code for filling the data of 'tried_regions' DAMON sysfs
directory.  With this commit, DAMON sysfs interface users can write a
special keyword, 'update_schemes_tried_regions' to the corresponding
'state' file of the kdamond.  Then, DAMON sysfs interface will collect the
tried regions information using the 'before_damos_apply()' callback for
one aggregation interval and populate scheme region directories with the
values.

[sj@kernel.org: skip tried regions update if the scheme directory was removed]
  Link: https://lkml.kernel.org/r/20221114182954.4745-2-sj@kernel.org
Link: https://lkml.kernel.org/r/20221101220328.95765-5-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-30 15:58:44 -08:00
SeongJae Park 9277d0367b mm/damon/sysfs-schemes: implement scheme region directory
Implement region directories under 'tried_regions' directory of each
scheme DAMON sysfs directory.  This directory will provide the address
range, the monitored access frequency ('nr_accesses'), and the age of each
DAMON region that corresponding DAMON-based operation scheme has tried to
be applied.  Note that this commit doesn't implement the code for filling
the data but only the sysfs directory.

Link: https://lkml.kernel.org/r/20221101220328.95765-4-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-30 15:58:44 -08:00
SeongJae Park 5181b75f43 mm/damon/sysfs-schemes: implement schemes/tried_regions directory
For efficient and simple query-like DAMON monitoring results readings and
deep level investigations of DAMOS, DAMON kernel API
(include/linux/damon.h) users can use 'before_damos_apply' DAMON callback.
However, DAMON sysfs interface users don't have such option.

Add a directory, namely 'tried_regions', under each scheme directory to
use it as the interface for the purpose.  Note that this commit is
implementing only the directory but the data filling.

After the data filling change is made, users will be able to signal DAMON
to fill the directory with the regions that corresponding scheme has tried
to be applied.  By setting the access pattern of the scheme, users could
do the efficient query-like monitoring.

Link: https://lkml.kernel.org/r/20221101220328.95765-3-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-30 15:58:44 -08:00
SeongJae Park 44467bbb7e mm/damon/core: add a callback for scheme target regions check
Patch series "efficiently expose damos action tried regions information".

DAMON users can retrieve the monitoring results via 'after_aggregation'
callbacks if the user is using the kernel API, or 'damon_aggregated'
tracepoint if the user is in the user space.  Those are useful if full
monitoring results are necessary.  However, if the user has interest in
only a snapshot of the results for some regions having specific access
pattern, the interfaces could be inefficient.  For example, some users
only want to know which memory regions are not accessed for more than a
specific time at the moment.

Also, some DAMOS users would want to know exactly to what memory regions
the schemes' actions tried to be applied, for a debugging or a tuning.  As
DAMOS has its internal mechanism for quota and regions prioritization, the
users would need to simulate DAMOS' mechanism against the monitoring
results.  That's unnecessarily complex.

This patchset implements DAMON kernel API callbacks and sysfs directory
for efficient exposure of the information for the use cases.  The new
callback will be called for each region when a DAMOS action is gonna tried
to be applied to it.  The sysfs directory will be called 'tried_regions'
and placed under each scheme sysfs directory.  Users can write a special
keyworkd, 'update_schemes_regions', to the 'state' file of a kdamond sysfs
directory.  Then, DAMON sysfs interface will fill the directory with the
information of regions that corresponding scheme action was tried to be
applied for next one aggregation interval.

Patches Sequence
----------------

The first one (patch 1) implements the callback for the kernel space
users.  Following two patches (patches 2 and 3) implements sysfs
directories for the information and its sub directories.  Two patches
(patches 4 and 5) for implementing the special keywords for filling the
data to and cleaning up the directories follow.  Patch 6 adds a selftest
for the new sysfs directory.  Finally, two patches (patches 7 and 8)
document the new feature in the administrator guide and the ABI document.


This patch (of 8):

Getting DAMON monitoring results of only specific access pattern (e.g.,
getting address ranges of memory that not accessed at all for two minutes)
can be useful for efficient monitoring of the system.  The information can
also be helpful for deep level investigation of DAMON-based operation
schemes.

For that, users need to record (in case of the user space users) or
iterate (in case of the kernel space users) full monitoring results and
filter it out for the specific access pattern.  In case of the DAMOS
investigation, users will even need to simulate DAMOS' quota and
prioritization mechanisms.  It's inefficient and complex.

Add a new DAMON callback that will be called before each scheme is applied
to each region.  DAMON kernel API users will be able to do the query-like
monitoring results collection, or DAMOS investigation in an efficient and
simple way using it.

Commits for providing the capability to the user space users will follow.

Link: https://lkml.kernel.org/r/20221101220328.95765-1-sj@kernel.org
Link: https://lkml.kernel.org/r/20221101220328.95765-2-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-30 15:58:43 -08:00
Sidhartha Kumar 345c62d163 mm/hugetlb: convert move_hugetlb_state() to folios
Clean up unmap_and_move_huge_page() by converting move_hugetlb_state() to
take in folios.

[akpm@linux-foundation.org: fix CONFIG_HUGETLB_PAGE=n build]
Link: https://lkml.kernel.org/r/20221101223059.460937-10-sidhartha.kumar@oracle.com
Signed-off-by: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Bui Quang Minh <minhquangbui99@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-30 15:58:43 -08:00
Sidhartha Kumar 541b7c7b3e mm/hugeltb_cgroup: convert hugetlb_cgroup_commit_charge*() to folios
Convert hugetlb_cgroup_commit_charge*() to internally use folios to clean
up the code after __set_hugetlb_cgroup() was changed to take a folio.

Link: https://lkml.kernel.org/r/20221101223059.460937-9-sidhartha.kumar@oracle.com
Signed-off-by: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Bui Quang Minh <minhquangbui99@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-30 15:58:43 -08:00
Sidhartha Kumar d4ab0316cc mm/hugetlb_cgroup: convert hugetlb_cgroup_uncharge_page() to folios
Continue to use a folio inside free_huge_page() by converting
hugetlb_cgroup_uncharge_page*() to folios.

Link: https://lkml.kernel.org/r/20221101223059.460937-8-sidhartha.kumar@oracle.com
Signed-off-by: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Bui Quang Minh <minhquangbui99@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-30 15:58:43 -08:00
Sidhartha Kumar 0356c4b96f mm/hugetlb: convert free_huge_page to folios
Use folios inside free_huge_page(), this is in preparation for converting
hugetlb_cgroup_uncharge_page() to take in a folio.

Link: https://lkml.kernel.org/r/20221101223059.460937-7-sidhartha.kumar@oracle.com
Signed-off-by: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Bui Quang Minh <minhquangbui99@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Mina Almasry <almasrymina@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-11-30 15:58:43 -08:00