It was scheduled for removal in kernel v5.18 commit 6c405b2409
("btrfs: deprecate BTRFS_IOC_BALANCE ioctl") thus its time has come.
Reviewed-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
There is a report that autodefrag is defragging single sector, which
is completely waste of IO, and no help for defragging:
btrfs-cleaner-808 defrag_one_locked_range: root=256 ino=651122 start=0 len=4096
[CAUSE]
In defrag_collect_targets(), we check if the current range (A) can be merged
with next one (B).
If mergeable, we will add range A into target for defrag.
However there is a catch for autodefrag, when checking mergeability
against range B, we intentionally pass 0 as @newer_than, hoping to get a
higher chance to merge with the next extent.
But in the next iteration, range B will looked up by defrag_lookup_extent(),
with non-zero @newer_than.
And if range B is not really newer, it will rejected directly, causing
only range A being defragged, while we expect to defrag both range A and
B.
[FIX]
Since the root cause is the difference in check condition of
defrag_check_next_extent() and defrag_collect_targets(), we fix it by:
1. Pass @newer_than to defrag_check_next_extent()
2. Pass @extent_thresh to defrag_check_next_extent()
This makes the check between defrag_collect_targets() and
defrag_check_next_extent() more consistent.
While there is still some minor difference, the remaining checks are
focus on runtime flags like writeback/delalloc, which are mostly
transient and safe to be checked only in defrag_collect_targets().
Link: https://github.com/btrfs/linux/issues/423#issuecomment-1066981856
CC: stable@vger.kernel.org # 5.16+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The implementation resembles direct I/O: we have to flush any ordered
extents, invalidate the page cache, and do the io tree/delalloc/extent
map/ordered extent dance. From there, we can reuse the compression code
with a minor modification to distinguish the write from writeback. This
also creates inline extents when possible.
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are 4 main cases:
1. Inline extents: we copy the data straight out of the extent buffer.
2. Hole/preallocated extents: we fill in zeroes.
3. Regular, uncompressed extents: we read the sectors we need directly
from disk.
4. Regular, compressed extents: we read the entire compressed extent
from disk and indicate what subset of the decompressed extent is in
the file.
This initial implementation simplifies a few things that can be improved
in the future:
- Cases 1, 3, and 4 allocate temporary memory to read into before
copying out to userspace.
- We don't do read repair, because it turns out that read repair is
currently broken for compressed data.
- We hold the inode lock during the operation.
Note that we don't need to hold the mmap lock. We may race with
btrfs_page_mkwrite() and read the old data from before the page was
dirtied:
btrfs_page_mkwrite btrfs_encoded_read
---------------------------------------------------
(enter) (enter)
btrfs_wait_ordered_range
lock_extent_bits
btrfs_page_set_dirty
unlock_extent_cached
(exit)
lock_extent_bits
read extent (dirty page hasn't been flushed,
so this is the old data)
unlock_extent_cached
(exit)
we read the old data from before the page was dirtied. But, that's true
even if we were to hold the mmap lock:
btrfs_page_mkwrite btrfs_encoded_read
-------------------------------------------------------------------
(enter) (enter)
btrfs_inode_lock(BTRFS_ILOCK_MMAP)
down_read(i_mmap_lock) (blocked)
btrfs_wait_ordered_range
lock_extent_bits
read extent (page hasn't been dirtied,
so this is the old data)
unlock_extent_cached
btrfs_inode_unlock(BTRFS_ILOCK_MMAP)
down_read(i_mmap_lock) returns
lock_extent_bits
btrfs_page_set_dirty
unlock_extent_cached
In other words, this is inherently racy, so it's fine that we return the
old data in this tiny window.
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The static_assert introduced in 6bab69c650 ("build_bug.h: add wrapper
for _Static_assert") has been supported by compilers for a long time
(gcc 4.6, clang 3.0) and can be used in header files. We don't need to
put BUILD_BUG_ON to random functions but rather keep it next to the
definition.
The exception here is the UAPI header btrfs_tree.h that could be
potentially included by userspace code and the static assert is not
defined (nor used in any other header).
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When we stop tracking metadata blocks all of snapshotting will break, so
disable it until I add the snapshot root and drop tree support.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Scrub depends on extent references for every block, and with extent tree
v2 we won't have that, so disable scrub until we can add back the proper
code to handle extent-tree-v2.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Device add, remove, and replace all require balance, which doesn't work
right now on extent tree v2, so disable these for now.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_ioctl extracts inode from file so we can pass that into the
callbacks.
Signed-off-by: Sahil Kang <sahil.kang@asilaycomputing.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_ioctl already contains pointers to the inode and btrfs_root
structs, so we can pass them into the subfunctions instead of the
toplevel struct file.
Signed-off-by: Sahil Kang <sahil.kang@asilaycomputing.com>
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmIY790ACgkQxWXV+ddt
WDvKxA//ctgUNhKEPOfJlmmaKAVRgrE6FfDgfk6c2v/PrpPFH0U9+frishcsImxu
XAObMCyPY7PfLDnk6I0Lmxm+8T56+NNGjbxq7/R1Uv0DJm75f51OJbr/H7NSjVfu
g6IyPmIft7jmt7Vp9lPyYcPNDTFyG+XARdWYS3AFtAfr2MfXgjx9AALxFjaytbLi
AevXP0qEkbLHv5npEG56pouhn44J/8GZKeUGM1crNNUDQoYpgreifZ2SHpLIfxP5
lvzrA1noaZSFS3Cth7NBPhHTFS2tiMb96bHFdF56A2EIq5vAXQF7w6IAUlvBEVoR
5XgWsxGfsv5FbdFmyrRIvOh6gGHwHw8BH5/ZRTRRVuRZAPKPY0oiJ9OJk5kIBCgo
LiYksqRTOs0Zp/e5wn/8d/UGp2A6mujxwqw7gLcOZBzfhKw7QIha6BM64BfJxBni
3dakBDCWZ/X+Kje+WaM4Sev7JUIyDVoKWClHrvzoLeEzdIgruNguMnQ+3yOZBFiG
4YRTPUeafAj0OspJ0LLG01X4NJVmnQVAFoKuFOsGbUsxeCaQ9vF3/IGTlhgkwehf
KjvE9nzl9DewpvRRd7AAirj5FncuwRw6KNci1gBBixxPaveBClCIuuyfx6lXPusK
sIF3eb7xcqKYLh0iYPd2XMZInXbWXIGuJoVG/Gu1IYm1OXAFQ5A=
=q/NS
-----END PGP SIGNATURE-----
Merge tag 'for-5.17-rc5-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
"This is a hopefully last batch of fixes for defrag that got broken in
5.16, all stable material.
The remaining reported problem is excessive IO with autodefrag due to
various conditions in the defrag code not met or missing"
* tag 'for-5.17-rc5-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: reduce extent threshold for autodefrag
btrfs: autodefrag: only scan one inode once
btrfs: defrag: don't use merged extent map for their generation check
btrfs: defrag: bring back the old file extent search behavior
btrfs: defrag: remove an ambiguous condition for rejection
btrfs: defrag: don't defrag extents which are already at max capacity
btrfs: defrag: don't try to merge regular extents with preallocated extents
btrfs: defrag: allow defrag_one_cluster() to skip large extent which is not a target
btrfs: prevent copying too big compressed lzo segment
For extent maps, if they are not compressed extents and are adjacent by
logical addresses and file offsets, they can be merged into one larger
extent map.
Such merged extent map will have the higher generation of all the
original ones.
But this brings a problem for autodefrag, as it relies on accurate
extent_map::generation to determine if one extent should be defragged.
For merged extent maps, their higher generation can mark some older
extents to be defragged while the original extent map doesn't meet the
minimal generation threshold.
Thus this will cause extra IO.
So solve the problem, here we introduce a new flag, EXTENT_FLAG_MERGED,
to indicate if the extent map is merged from one or more ems.
And for autodefrag, if we find a merged extent map, and its generation
meets the generation requirement, we just don't use this one, and go
back to defrag_get_extent() to read extent maps from subvolume trees.
This could cause more read IO, but should result less defrag data write,
so in the long run it should be a win for autodefrag.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
For defrag, we don't really want to use btrfs_get_extent() to iterate
all extent maps of an inode.
The reasons are:
- btrfs_get_extent() can merge extent maps
And the result em has the higher generation of the two, causing defrag
to mark unnecessary part of such merged large extent map.
This in fact can result extra IO for autodefrag in v5.16+ kernels.
However this patch is not going to completely solve the problem, as
one can still using read() to trigger extent map reading, and got
them merged.
The completely solution for the extent map merging generation problem
will come as an standalone fix.
- btrfs_get_extent() caches the extent map result
Normally it's fine, but for defrag the target range may not get
another read/write for a long long time.
Such cache would only increase the memory usage.
- btrfs_get_extent() doesn't skip older extent map
Unlike the old find_new_extent() which uses btrfs_search_forward() to
skip the older subtree, thus it will pick up unnecessary extent maps.
This patch will fix the regression by introducing defrag_get_extent() to
replace the btrfs_get_extent() call.
This helper will:
- Not cache the file extent we found
It will search the file extent and manually convert it to em.
- Use btrfs_search_forward() to skip entire ranges which is modified in
the past
This should reduce the IO for autodefrag.
Reported-by: Filipe Manana <fdmanana@suse.com>
Fixes: 7b508037d4 ("btrfs: defrag: use defrag_one_cluster() to implement btrfs_defrag_file()")
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
From the very beginning of btrfs defrag, there is a check to reject
extents which meet both conditions:
- Physically adjacent
We may want to defrag physically adjacent extents to reduce the number
of extents or the size of subvolume tree.
- Larger than 128K
This may be there for compressed extents, but unfortunately 128K is
exactly the max capacity for compressed extents.
And the check is > 128K, thus it never rejects compressed extents.
Furthermore, the compressed extent capacity bug is fixed by previous
patch, there is no reason for that check anymore.
The original check has a very small ranges to reject (the target extent
size is > 128K, and default extent threshold is 256K), and for
compressed extent it doesn't work at all.
So it's better just to remove the rejection, and allow us to defrag
physically adjacent extents.
CC: stable@vger.kernel.org # 5.16
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
For compressed extents, defrag ioctl will always try to defrag any
compressed extents, wasting not only IO but also CPU time to
compress/decompress:
mkfs.btrfs -f $DEV
mount -o compress $DEV $MNT
xfs_io -f -c "pwrite -S 0xab 0 128K" $MNT/foobar
sync
xfs_io -f -c "pwrite -S 0xcd 128K 128K" $MNT/foobar
sync
echo "=== before ==="
xfs_io -c "fiemap -v" $MNT/foobar
btrfs filesystem defrag $MNT/foobar
sync
echo "=== after ==="
xfs_io -c "fiemap -v" $MNT/foobar
Then it shows the 2 128K extents just get COW for no extra benefit, with
extra IO/CPU spent:
=== before ===
/mnt/btrfs/file1:
EXT: FILE-OFFSET BLOCK-RANGE TOTAL FLAGS
0: [0..255]: 26624..26879 256 0x8
1: [256..511]: 26632..26887 256 0x9
=== after ===
/mnt/btrfs/file1:
EXT: FILE-OFFSET BLOCK-RANGE TOTAL FLAGS
0: [0..255]: 26640..26895 256 0x8
1: [256..511]: 26648..26903 256 0x9
This affects not only v5.16 (after the defrag rework), but also v5.15
(before the defrag rework).
[CAUSE]
From the very beginning, btrfs defrag never checks if one extent is
already at its max capacity (128K for compressed extents, 128M
otherwise).
And the default extent size threshold is 256K, which is already beyond
the compressed extent max size.
This means, by default btrfs defrag ioctl will mark all compressed
extent which is not adjacent to a hole/preallocated range for defrag.
[FIX]
Introduce a helper to grab the maximum extent size, and then in
defrag_collect_targets() and defrag_check_next_extent(), reject extents
which are already at their max capacity.
Reported-by: Filipe Manana <fdmanana@suse.com>
CC: stable@vger.kernel.org # 5.16
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
With older kernels (before v5.16), btrfs will defrag preallocated extents.
While with newer kernels (v5.16 and newer) btrfs will not defrag
preallocated extents, but it will defrag the extent just before the
preallocated extent, even it's just a single sector.
This can be exposed by the following small script:
mkfs.btrfs -f $dev > /dev/null
mount $dev $mnt
xfs_io -f -c "pwrite 0 4k" -c sync -c "falloc 4k 16K" $mnt/file
xfs_io -c "fiemap -v" $mnt/file
btrfs fi defrag $mnt/file
sync
xfs_io -c "fiemap -v" $mnt/file
The output looks like this on older kernels:
/mnt/btrfs/file:
EXT: FILE-OFFSET BLOCK-RANGE TOTAL FLAGS
0: [0..7]: 26624..26631 8 0x0
1: [8..39]: 26632..26663 32 0x801
/mnt/btrfs/file:
EXT: FILE-OFFSET BLOCK-RANGE TOTAL FLAGS
0: [0..39]: 26664..26703 40 0x1
Which defrags the single sector along with the preallocated extent, and
replace them with an regular extent into a new location (caused by data
COW).
This wastes most of the data IO just for the preallocated range.
On the other hand, v5.16 is slightly better:
/mnt/btrfs/file:
EXT: FILE-OFFSET BLOCK-RANGE TOTAL FLAGS
0: [0..7]: 26624..26631 8 0x0
1: [8..39]: 26632..26663 32 0x801
/mnt/btrfs/file:
EXT: FILE-OFFSET BLOCK-RANGE TOTAL FLAGS
0: [0..7]: 26664..26671 8 0x0
1: [8..39]: 26632..26663 32 0x801
The preallocated range is not defragged, but the sector before it still
gets defragged, which has no need for it.
[CAUSE]
One of the function reused by the old and new behavior is
defrag_check_next_extent(), it will determine if we should defrag
current extent by checking the next one.
It only checks if the next extent is a hole or inlined, but it doesn't
check if it's preallocated.
On the other hand, out of the function, both old and new kernel will
reject preallocated extents.
Such inconsistent behavior causes above behavior.
[FIX]
- Also check if next extent is preallocated
If so, don't defrag current extent.
- Add comments for each branch why we reject the extent
This will reduce the IO caused by defrag ioctl and autodefrag.
CC: stable@vger.kernel.org # 5.16
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In the rework of btrfs_defrag_file(), we always call
defrag_one_cluster() and increase the offset by cluster size, which is
only 256K.
But there are cases where we have a large extent (e.g. 128M) which
doesn't need to be defragged at all.
Before the refactor, we can directly skip the range, but now we have to
scan that extent map again and again until the cluster moves after the
non-target extent.
Fix the problem by allow defrag_one_cluster() to increase
btrfs_defrag_ctrl::last_scanned to the end of an extent, if and only if
the last extent of the cluster is not a target.
The test script looks like this:
mkfs.btrfs -f $dev > /dev/null
mount $dev $mnt
# As btrfs ioctl uses 32M as extent_threshold
xfs_io -f -c "pwrite 0 64M" $mnt/file1
sync
# Some fragemented range to defrag
xfs_io -s -c "pwrite 65548k 4k" \
-c "pwrite 65544k 4k" \
-c "pwrite 65540k 4k" \
-c "pwrite 65536k 4k" \
$mnt/file1
sync
echo "=== before ==="
xfs_io -c "fiemap -v" $mnt/file1
echo "=== after ==="
btrfs fi defrag $mnt/file1
sync
xfs_io -c "fiemap -v" $mnt/file1
umount $mnt
With extra ftrace put into defrag_one_cluster(), before the patch it
would result tons of loops:
(As defrag_one_cluster() is inlined, the function name is its caller)
btrfs-126062 [005] ..... 4682.816026: btrfs_defrag_file: r/i=5/257 start=0 len=262144
btrfs-126062 [005] ..... 4682.816027: btrfs_defrag_file: r/i=5/257 start=262144 len=262144
btrfs-126062 [005] ..... 4682.816028: btrfs_defrag_file: r/i=5/257 start=524288 len=262144
btrfs-126062 [005] ..... 4682.816028: btrfs_defrag_file: r/i=5/257 start=786432 len=262144
btrfs-126062 [005] ..... 4682.816028: btrfs_defrag_file: r/i=5/257 start=1048576 len=262144
...
btrfs-126062 [005] ..... 4682.816043: btrfs_defrag_file: r/i=5/257 start=67108864 len=262144
But with this patch there will be just one loop, then directly to the
end of the extent:
btrfs-130471 [014] ..... 5434.029558: defrag_one_cluster: r/i=5/257 start=0 len=262144
btrfs-130471 [014] ..... 5434.029559: defrag_one_cluster: r/i=5/257 start=67108864 len=16384
CC: stable@vger.kernel.org # 5.16
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmILuxMACgkQxWXV+ddt
WDvhrA/9Hsyj2DdvvBVR3HudaER51RAJS6dtJCJdFZGWy2tEwtkxhIdbPn1nwJE7
mvZy2UN79JKwPAdX8inyJ68RCMtcifprkUMC2d7y2mVZcCG/a/iYGdDIVB/z4Pyx
NneBBgwdG0V505i7/sm07epLUaNI1MwXc9wNAs00zSXw4eYjLq09fp0lfl74RBhv
HvuYgawk2abY6hPbJnTu2MyyHEZI4oGH/fRurP48cvU/FbIm9en7aX3rEZ+T8yRW
TkEdFF/60Wce3xkyN87Xqma6L0smypJ888yzpwsJtlFOTr7iI58HYqUfx27Q5VQc
xy5fyuuplEb0ky4GBnscpsoutj5C241+4+YE4HGqf9ne5EYU1rzJATlEFUBk84hY
YwjdordS/nTScyFVCBG9yiTL30KsQ2SQc1TzIt/rIJiYIJexJyppOJMFmxbuN9By
WSrLB5/uN56dRe/A8LMGpuJdwTVrYr2SPXfSseAxCEONt5fppPnDaCGEgVKIdmHq
sQXbs/LMGHQ1lq2JsPFD12p8kQJ5Redxy0KIzDwmeBAL3HlXwpFiMia0AhvKOzPj
UFtU/KcOmtqWMMv3P0aHydmDmUid4c3612BtvbKOhIXTVzKodzcQhkyTw1ducAa1
GMkKIHCaPCzbsJwiogZGSBmIyDyMwitVvAybZIpRTR9i0xSA61A=
=AqU+
-----END PGP SIGNATURE-----
Merge tag 'for-5.17-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
- yield CPU more often when defragmenting a large file
- skip defragmenting extents already under writeback
- improve error message when send fails to write file data
- get rid of warning when mounted with 'flushoncommit'
* tag 'for-5.17-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: send: in case of IO error log it
btrfs: get rid of warning on transaction commit when using flushoncommit
btrfs: defrag: don't try to defrag extents which are under writeback
btrfs: don't hold CPU for too long when defragging a file
Once we start writeback (have called btrfs_run_delalloc_range()), we
allocate an extent, create an extent map point to that extent, with a
generation of (u64)-1, created the ordered extent and then clear the
DELALLOC bit from the range in the inode's io tree.
Such extent map can pass the first call of defrag_collect_targets(), as
its generation is (u64)-1, meets any possible minimal generation check.
And the range will not have DELALLOC bit, also passing the DELALLOC bit
check.
It will only be re-checked in the second call of
defrag_collect_targets(), which will wait for writeback.
But at that stage we have already spent our time waiting for some IO we
may or may not want to defrag.
Let's reject such extents early so we won't waste our time.
CC: stable@vger.kernel.org # 5.16
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There is a user report about "btrfs filesystem defrag" causing 120s
timeout problem.
For btrfs_defrag_file() it will iterate all file extents if called from
defrag ioctl, thus it can take a long time.
There is no reason not to release the CPU during such a long operation.
Add cond_resched() after defragged one cluster.
CC: stable@vger.kernel.org # 5.16
Link: https://lore.kernel.org/linux-btrfs/10e51417-2203-f0a4-2021-86c8511cc367@gmx.com
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmH9eUcACgkQxWXV+ddt
WDvCvQ//bANu7air/Og5r2Mn0ZYyrcQl+yDYE75UC/tzTZNNtP8guwGllwlcsA0v
RQPiuFFtvjKMgKP6Eo1mVeUPkpX83VQkT+sqFRsFEFxazIXnSvEJ+iHVcuiZvgj1
VkTjdt7/mLb573zSA0MLhJqK1BBuFhUTCCHFHlCLoiYeekPAui1pbUC4LAE/+ksU
veCn9YS+NGkDpIv/b9mcALVBe+XkZlmw1LON8ArEbpY4ToafRk0qZfhV7CvyRbSP
Y1zLUScNLHGoR2WA1WhwlwuMePdhgX/8neGNiXsiw3WnmZhFoUVX7oUa6IWnKkKk
dD+x5Z3Z2xBQGK8djyqxzUFJ2VAvz15xGIM452ofGa1BJFZgV9hjPA6Y4RFdWx63
4AZ6OJwhrXhgMtWBhRtM6mGeje56ljwaxku9qhe585z8H5V8ezUNwWVkjY0bLKsd
iT3bUHEReoYRWuyszI1ZSm1DbyzNY2943ly97p/j8qKp4SHX39/QYAKmnuuHdIup
TnTBJOh38rj4S8BfF873aKAo7EfLJcDbTcZ1ivbuX5FeByRuQB4F0c1RRi4usMLc
DL5mhDhT71U1l/LF3IANQ4ieUfZbeFHd+dAVkYsGkYzzaWL8E03L582l/fqaVGsp
RaVpiuKnh2cyDXUxob8IYT5mZ/saa96xBSK8VEqnwjNEQCzKEeU=
=5MJl
-----END PGP SIGNATURE-----
Merge tag 'for-5.17-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
"A few fixes and error handling improvements:
- fix deadlock between quota disable and qgroup rescan worker
- fix use-after-free after failure to create a snapshot
- skip warning on unmount after log cleanup failure
- don't start transaction for scrub if the fs is mounted read-only
- tree checker verifies item sizes"
* tag 'for-5.17-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: skip reserved bytes warning on unmount after log cleanup failure
btrfs: fix use of uninitialized variable at rm device ioctl
btrfs: fix use-after-free after failure to create a snapshot
btrfs: tree-checker: check item_size for dev_item
btrfs: tree-checker: check item_size for inode_item
btrfs: fix deadlock between quota disable and qgroup rescan worker
btrfs: don't start transaction for scrub if the fs is mounted read-only
Clang static analysis reports this problem
ioctl.c:3333:8: warning: 3rd function call argument is an
uninitialized value
ret = exclop_start_or_cancel_reloc(fs_info,
cancel is only set in one branch of an if-check and is always used. So
initialize to false.
Fixes: 1a15eb724a ("btrfs: use btrfs_get_dev_args_from_path in dev removal ioctls")
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Tom Rix <trix@redhat.com>
Signed-off-by: David Sterba <dsterba@suse.com>
At ioctl.c:create_snapshot(), we allocate a pending snapshot structure and
then attach it to the transaction's list of pending snapshots. After that
we call btrfs_commit_transaction(), and if that returns an error we jump
to 'fail' label, where we kfree() the pending snapshot structure. This can
result in a later use-after-free of the pending snapshot:
1) We allocated the pending snapshot and added it to the transaction's
list of pending snapshots;
2) We call btrfs_commit_transaction(), and it fails either at the first
call to btrfs_run_delayed_refs() or btrfs_start_dirty_block_groups().
In both cases, we don't abort the transaction and we release our
transaction handle. We jump to the 'fail' label and free the pending
snapshot structure. We return with the pending snapshot still in the
transaction's list;
3) Another task commits the transaction. This time there's no error at
all, and then during the transaction commit it accesses a pointer
to the pending snapshot structure that the snapshot creation task
has already freed, resulting in a user-after-free.
This issue could actually be detected by smatch, which produced the
following warning:
fs/btrfs/ioctl.c:843 create_snapshot() warn: '&pending_snapshot->list' not removed from list
So fix this by not having the snapshot creation ioctl directly add the
pending snapshot to the transaction's list. Instead add the pending
snapshot to the transaction handle, and then at btrfs_commit_transaction()
we add the snapshot to the list only when we can guarantee that any error
returned after that point will result in a transaction abort, in which
case the ioctl code can safely free the pending snapshot and no one can
access it anymore.
CC: stable@vger.kernel.org # 5.10+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQEzBAABCAAdFiEEq1nRK9aeMoq1VSgcnJ2qBz9kQNkFAmHz0QsACgkQnJ2qBz9k
QNkN+AgA6XqWHKYyElfgJFt1UqaoNMz/Faz9H/+PKiBNSTf6/+67D+V7DFz6jJrv
dDwHNzfDg9kR+pbAAPwhl2jfnQoUlsr019Hrqa5HpWlj5geVpbdunYUzS2WOkwqD
/m+brcLgPdKb2uIysj6wOh9B7wa8V9ksl3EjQvvwaHaU0p1YLUqidVXucYvs8DUo
bgXNaj9GmeysxnmU+aILotWuuXH2vOP4Q2Uk4qz3rN6xW9eEXtpQ4y7gWBp/GA8y
Ia8FtFdQdvlSDOJYMdPOTBu5RB7gY9ElrapvVaWNYtCWI/jRv666nZsLaERYNhLN
uUsG4MWjYbOqW5XqFDbSOwbDqvMh5Q==
=mEFA
-----END PGP SIGNATURE-----
Merge tag 'fsnotify_for_v5.17-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/jack/linux-fs
Pull fsnotify fixes from Jan Kara:
"Fixes for userspace breakage caused by fsnotify changes ~3 years ago
and one fanotify cleanup"
* tag 'fsnotify_for_v5.17-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/jack/linux-fs:
fsnotify: fix fsnotify hooks in pseudo filesystems
fsnotify: invalidate dcache before IN_DELETE event
fanotify: remove variable set but not used
When starting a defrag, we should update the writeback index of the
inode's mapping in case it currently has a value beyond the start of the
range we are defragging. This can help performance and often result in
getting less extents after writeback - for e.g., if the current value
of the writeback index sits somewhere in the middle of a range that
gets dirty by the defrag, then after writeback we can get two smaller
extents instead of a single, larger extent.
We used to have this before the refactoring in 5.16, but it was removed
without any reason to do so. Originally it was added in kernel 3.1, by
commit 2a0f7f5769 ("Btrfs: fix recursive auto-defrag"), in order to
fix a loop with autodefrag resulting in dirtying and writing pages over
and over, but some testing on current code did not show that happening,
at least with the test described in that commit.
So add back the behaviour, as at the very least it is a nice to have
optimization.
Fixes: 7b508037d4 ("btrfs: defrag: use defrag_one_cluster() to implement btrfs_defrag_file()")
CC: stable@vger.kernel.org # 5.16
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
A defrag operation can dirty a lot of pages, specially if operating on
the entire file or a large file range. Any task dirtying pages should
periodically call balance_dirty_pages_ratelimited(), as stated in that
function's comments, otherwise they can leave too many dirty pages in
the system. This is what we did before the refactoring in 5.16, and
it should have remained, just like in the buffered write path and
relocation. So restore that behaviour.
Fixes: 7b508037d4 ("btrfs: defrag: use defrag_one_cluster() to implement btrfs_defrag_file()")
CC: stable@vger.kernel.org # 5.16
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When defragging we can end up collecting a range for defrag that has
already pages under delalloc (dirty), as long as the respective extent
map for their range is not mapped to a hole, a prealloc extent or
the extent map is from an old generation.
Most of the time that is harmless from a functional perspective at
least, however it can result in a deadlock:
1) At defrag_collect_targets() we find an extent map that meets all
requirements but there's delalloc for the range it covers, and we add
its range to list of ranges to defrag;
2) The defrag_collect_targets() function is called at defrag_one_range(),
after it locked a range that overlaps the range of the extent map;
3) At defrag_one_range(), while the range is still locked, we call
defrag_one_locked_target() for the range associated to the extent
map we collected at step 1);
4) Then finally at defrag_one_locked_target() we do a call to
btrfs_delalloc_reserve_space(), which will reserve data and metadata
space. If the space reservations can not be satisfied right away, the
flusher might be kicked in and start flushing delalloc and wait for
the respective ordered extents to complete. If this happens we will
deadlock, because both flushing delalloc and finishing an ordered
extent, requires locking the range in the inode's io tree, which was
already locked at defrag_collect_targets().
So fix this by skipping extent maps for which there's already delalloc.
Fixes: eb793cf857 ("btrfs: defrag: introduce helper to collect target file extents")
CC: stable@vger.kernel.org # 5.16
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Apparently, there are some applications that use IN_DELETE event as an
invalidation mechanism and expect that if they try to open a file with
the name reported with the delete event, that it should not contain the
content of the deleted file.
Commit 49246466a9 ("fsnotify: move fsnotify_nameremove() hook out of
d_delete()") moved the fsnotify delete hook before d_delete() so fsnotify
will have access to a positive dentry.
This allowed a race where opening the deleted file via cached dentry
is now possible after receiving the IN_DELETE event.
To fix the regression, create a new hook fsnotify_delete() that takes
the unlinked inode as an argument and use a helper d_delete_notify() to
pin the inode, so we can pass it to fsnotify_delete() after d_delete().
Backporting hint: this regression is from v5.3. Although patch will
apply with only trivial conflicts to v5.4 and v5.10, it won't build,
because fsnotify_delete() implementation is different in each of those
versions (see fsnotify_link()).
A follow up patch will fix the fsnotify_unlink/rmdir() calls in pseudo
filesystem that do not need to call d_delete().
Link: https://lore.kernel.org/r/20220120215305.282577-1-amir73il@gmail.com
Reported-by: Ivan Delalande <colona@arista.com>
Link: https://lore.kernel.org/linux-fsdevel/YeNyzoDM5hP5LtGW@visor/
Fixes: 49246466a9 ("fsnotify: move fsnotify_nameremove() hook out of d_delete()")
Cc: stable@vger.kernel.org # v5.3+
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Jan Kara <jack@suse.cz>
[BUG]
After commit 7b508037d4 ("btrfs: defrag: use defrag_one_cluster() to
implement btrfs_defrag_file()") autodefrag no longer properly re-defrag
the file from previously finished location.
[CAUSE]
The recent refactoring of defrag only focuses on defrag ioctl subpage
support, doesn't take autodefrag into consideration.
There are two problems involved which prevents autodefrag to restart its
scan:
- No range.start update
Previously when one defrag target is found, range->start will be
updated to indicate where next search should start from.
But now btrfs_defrag_file() doesn't update it anymore, making all
autodefrag to rescan from file offset 0.
This would also make autodefrag to mark the same range dirty again and
again, causing extra IO.
- No proper quick exit for defrag_one_cluster()
Currently if we reached or exceed @max_sectors limit, we just exit
defrag_one_cluster(), and let next defrag_one_cluster() call to do a
quick exit.
This makes @cur increase, thus no way to properly know which range is
defragged and which range is skipped.
[FIX]
The fix involves two modifications:
- Update range->start to next cluster start
This is a little different from the old behavior.
Previously range->start is updated to the next defrag target.
But in the end, the behavior should still be pretty much the same,
as now we skip to next defrag target inside btrfs_defrag_file().
Thus if auto-defrag determines to re-scan, then we still do the skip,
just at a different timing.
- Make defrag_one_cluster() to return >0 to indicate a quick exit
So that btrfs_defrag_file() can also do a quick exit, without
increasing @cur to the range end, and re-use @cur to update
@range->start.
- Add comment for btrfs_defrag_file() to mention the range->start update
Currently only autodefrag utilize this behavior, as defrag ioctl won't
set @max_to_defrag parameter, thus unless interrupted it will always
try to defrag the whole range.
Reported-by: Filipe Manana <fdmanana@suse.com>
Fixes: 7b508037d4 ("btrfs: defrag: use defrag_one_cluster() to implement btrfs_defrag_file()")
Link: https://lore.kernel.org/linux-btrfs/0a269612-e43f-da22-c5bc-b34b1b56ebe8@mailbox.org/
CC: stable@vger.kernel.org # 5.16
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
There are users using autodefrag mount option reporting obvious increase
in IO:
> If I compare the write average (in total, I don't have it per process)
> when taking idle periods on the same machine:
> Linux 5.16:
> without autodefrag: ~ 10KiB/s
> with autodefrag: between 1 and 2MiB/s.
>
> Linux 5.15:
> with autodefrag:~ 10KiB/s (around the same as without
> autodefrag on 5.16)
[CAUSE]
When autodefrag mount option is enabled, btrfs_defrag_file() will be
called with @max_sectors = BTRFS_DEFRAG_BATCH (1024) to limit how many
sectors we can defrag in one try.
And then use the number of sectors defragged to determine if we need to
re-defrag.
But commit b18c3ab234 ("btrfs: defrag: introduce helper to defrag one
cluster") uses wrong unit to increase @sectors_defragged, which should
be in unit of sector, not byte.
This means, if we have defragged any sector, then @sectors_defragged
will be >= sectorsize (normally 4096), which is larger than
BTRFS_DEFRAG_BATCH.
This makes the @max_sectors check in defrag_one_cluster() to underflow,
rendering the whole @max_sectors check useless.
Thus causing way more IO for autodefrag mount options, as now there is
no limit on how many sectors can really be defragged.
[FIX]
Fix the problems by:
- Use sector as unit when increasing @sectors_defragged
- Include @sectors_defragged > @max_sectors case to break the loop
- Add extra comment on the return value of btrfs_defrag_file()
Reported-by: Anthony Ruhier <aruhier@mailbox.org>
Fixes: b18c3ab234 ("btrfs: defrag: introduce helper to defrag one cluster")
Link: https://lore.kernel.org/linux-btrfs/0a269612-e43f-da22-c5bc-b34b1b56ebe8@mailbox.org/
CC: stable@vger.kernel.org # 5.16
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
During defrag, at btrfs_defrag_file(), we have this loop that iterates
over a file range in steps no larger than 256K subranges. If the range
is too long, there's no way to interrupt it. So make the loop check in
each iteration if there's signal pending, and if there is, break and
return -AGAIN to userspace.
Before kernel 5.16, we used to allow defrag to be cancelled through a
signal, but that was lost with commit 7b508037d4 ("btrfs: defrag:
use defrag_one_cluster() to implement btrfs_defrag_file()").
This change adds back the possibility to cancel a defrag with a signal
and keeps the same semantics, returning -EAGAIN to user space (and not
the usually more expected -EINTR).
This is also motivated by a recent bug on 5.16 where defragging a 1 byte
file resulted in iterating from file range 0 to (u64)-1, as hitting the
bug triggered a too long loop, basically requiring one to reboot the
machine, as it was not possible to cancel defrag.
Fixes: 7b508037d4 ("btrfs: defrag: use defrag_one_cluster() to implement btrfs_defrag_file()")
CC: stable@vger.kernel.org # 5.16
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When attempting to defrag a file with a single byte, we can end up in a
too long loop, which is nearly infinite because at btrfs_defrag_file()
we end up with the variable last_byte assigned with a value of
18446744073709551615 (which is (u64)-1). The problem comes from the fact
we end up doing:
last_byte = round_up(last_byte, fs_info->sectorsize) - 1;
So if last_byte was assigned 0, which is i_size - 1, we underflow and
end up with the value 18446744073709551615.
This is trivial to reproduce and the following script triggers it:
$ cat test.sh
#!/bin/bash
DEV=/dev/sdj
MNT=/mnt/sdj
mkfs.btrfs -f $DEV
mount $DEV $MNT
echo -n "X" > $MNT/foobar
btrfs filesystem defragment $MNT/foobar
umount $MNT
So fix this by not decrementing last_byte by 1 before doing the sector
size round up. Also, to make it easier to follow, make the round up right
after computing last_byte.
Reported-by: Anthony Ruhier <aruhier@mailbox.org>
Fixes: 7b508037d4 ("btrfs: defrag: use defrag_one_cluster() to implement btrfs_defrag_file()")
Link: https://lore.kernel.org/linux-btrfs/0a269612-e43f-da22-c5bc-b34b1b56ebe8@mailbox.org/
CC: stable@vger.kernel.org # 5.16
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
At ioctl.c:create_subvol(), when we fail to create a subvolume we always
commit the transaction. In most cases this is a no-op, since all the error
paths, except for one, abort the transaction - the only exception is when
we fail to insert the new root item into the root tree, in that case we
don't abort the transaction because we didn't do anything that is
irreversible - however we end up committing the transaction which although
is not a functional problem, it adds unnecessary rotation of the backup
roots in the superblock and unnecessary work.
So change that to commit a transaction only when no error happened,
otherwise just call btrfs_end_transaction() to release our reference on
the transaction.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently paused balance precludes adding a device since they are both
considered exclusive ops and we can have at most one running at a time.
This is problematic in case a filesystem encounters an ENOSPC situation
while balance is running, in this case the only thing the user can do
is mount the fs with "skip_balance" which pauses balance and delete some
data to free up space for balance. However, it should be possible to add
a new device when balance is paused.
Fix this by allowing device add to proceed when balance is paused.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This is needed to enable device add to work in cases when a file system
has been mounted with 'skip_balance' mount option.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Current set of exclusive operation states is not sufficient to handle
all practical use cases. In particular there is a need to be able to add
a device to a filesystem that have paused balance. Currently there is no
way to distinguish between a running and a paused balance. Fix this by
introducing BTRFS_EXCLOP_BALANCE_PAUSED which is going to be set in 2
occasions:
1. When a filesystem is mounted with skip_balance and there is an
unfinished balance it will now be into BALANCE_PAUSED instead of
simply BALANCE state.
2. When a running balance is paused.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently we do this awful thing where we get another ref on a trans
handle, async off that handle and commit the transaction from that work.
Because we do this we have to mess with current->journal_info and the
freeze counting stuff.
We already have an async thing to kick for the transaction commit, the
transaction kthread. Replace this work struct with a flag on the
fs_info to tell the kthread to go ahead and commit even if it's before
our timeout. Then we can drastically simplify the async transaction
commit path.
Note: this can be simplified and functionality based on the pending
operation COMMIT.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
[ add note ]
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that all call sites are using the slot number to modify item values,
rename the SETGET helpers to raw_item_*(), and then rework the _nr()
helpers to be the btrfs_item_*() btrfs_set_item_*() helpers, and then
rename all of the callers to the new helpers.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmG8+tEACgkQxWXV+ddt
WDuuGA/9E75ZMqsMLW5az7z8Rt5voBjPeweyRHmGCLZKpgfaj0QjrJRvu0CTKU/W
zCSQf+ShTTY2D3cmh1eEwKyX/waKQ71qBrMX/SgIeA0OjmlhK1UGB18MF5sAVGCB
mymVYJh7IntYJE7S7OiMUL/yILmIWZYrYT+iaPZlIc9M6h0b1gjMIsE0VEmxJMCN
X8RAQ4CfL9bpTTKItNehSyXx+J7TB5yamh5AspaiB/ivyN1DcUcsFf3AoaWXeh2D
YIBzq4WbGnDMfUdWXKE2rqDfQgaTXtN9ffGUvphJnegg8Tqfp29LyLZ1GU0qGSXc
/K8g5QNmM3nhubXq2MG5zfbHPJ1H2CgnvkDqiCcyeop+09yj/ugxTt+ULaIbJL76
pKSpcuIFXTmoW2Z7ZwijIEX4H5Dgk2l2DbE8SkJT4LjJybgpHfBT1KDQrj5iQdx+
XgmG/CbRELuGGltJNuldp0SqIyMNRgDuv6Rheg9N9H73m9epwfH5oiM0Fj/FYyQ6
lfgle6DQCP4xaDmk1zA9zrJHTUqi8Caeyg+tQYT6AbkoeCoXnvEAPgv9OOGe1M+C
Ks7zeAseWs3A/j/+wCdiCKombOfR+AY3RGkPzlodUJj4YYOTyXrigtb5yhTz6Zdv
ozVBZ71LUMMOf0NV45mGtqsiLqyfe3cnlqj1XtHQKaajyjgHvW8=
=G7CE
-----END PGP SIGNATURE-----
Merge tag 'for-5.16-rc5-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
"A few more fixes, almost all error handling one-liners and for stable.
- regression fix in directory logging items
- regression fix of extent buffer status bits handling after an error
- fix memory leak in error handling path in tree-log
- fix freeing invalid anon device number when handling errors during
subvolume creation
- fix warning when freeing leaf after subvolume creation failure
- fix missing blkdev put in device scan error handling
- fix invalid delayed ref after subvolume creation failure"
* tag 'for-5.16-rc5-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: fix missing blkdev_put() call in btrfs_scan_one_device()
btrfs: fix warning when freeing leaf after subvolume creation failure
btrfs: fix invalid delayed ref after subvolume creation failure
btrfs: check WRITE_ERR when trying to read an extent buffer
btrfs: fix missing last dir item offset update when logging directory
btrfs: fix double free of anon_dev after failure to create subvolume
btrfs: fix memory leak in __add_inode_ref()
When creating a subvolume, at ioctl.c:create_subvol(), if we fail to
insert the new root's root item into the root tree, we are freeing the
metadata extent we reserved for the new root to prevent a metadata
extent leak, as we don't abort the transaction at that point (since
there is nothing at that point that is irreversible).
However we allocated the metadata extent for the new root which we are
creating for the new subvolume, so its delayed reference refers to the
ID of this new root. But when we free the metadata extent we pass the
root of the subvolume where the new subvolume is located to
btrfs_free_tree_block() - this is incorrect because this will generate
a delayed reference that refers to the ID of the parent subvolume's root,
and not to ID of the new root.
This results in a failure when running delayed references that leads to
a transaction abort and a trace like the following:
[3868.738042] RIP: 0010:__btrfs_free_extent+0x709/0x950 [btrfs]
[3868.739857] Code: 68 0f 85 e6 fb ff (...)
[3868.742963] RSP: 0018:ffffb0e9045cf910 EFLAGS: 00010246
[3868.743908] RAX: 00000000fffffffe RBX: 00000000fffffffe RCX: 0000000000000002
[3868.745312] RDX: 00000000fffffffe RSI: 0000000000000002 RDI: ffff90b0cd793b88
[3868.746643] RBP: 000000000e5d8000 R08: 0000000000000000 R09: ffff90b0cd793b88
[3868.747979] R10: 0000000000000002 R11: 00014ded97944d68 R12: 0000000000000000
[3868.749373] R13: ffff90b09afe4a28 R14: 0000000000000000 R15: ffff90b0cd793b88
[3868.750725] FS: 00007f281c4a8b80(0000) GS:ffff90b3ada00000(0000) knlGS:0000000000000000
[3868.752275] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[3868.753515] CR2: 00007f281c6a5000 CR3: 0000000108a42006 CR4: 0000000000370ee0
[3868.754869] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[3868.756228] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[3868.757803] Call Trace:
[3868.758281] <TASK>
[3868.758655] ? btrfs_merge_delayed_refs+0x178/0x1c0 [btrfs]
[3868.759827] __btrfs_run_delayed_refs+0x2b1/0x1250 [btrfs]
[3868.761047] btrfs_run_delayed_refs+0x86/0x210 [btrfs]
[3868.762069] ? lock_acquired+0x19f/0x420
[3868.762829] btrfs_commit_transaction+0x69/0xb20 [btrfs]
[3868.763860] ? _raw_spin_unlock+0x29/0x40
[3868.764614] ? btrfs_block_rsv_release+0x1c2/0x1e0 [btrfs]
[3868.765870] create_subvol+0x1d8/0x9a0 [btrfs]
[3868.766766] btrfs_mksubvol+0x447/0x4c0 [btrfs]
[3868.767669] ? preempt_count_add+0x49/0xa0
[3868.768444] __btrfs_ioctl_snap_create+0x123/0x190 [btrfs]
[3868.769639] ? _copy_from_user+0x66/0xa0
[3868.770391] btrfs_ioctl_snap_create_v2+0xbb/0x140 [btrfs]
[3868.771495] btrfs_ioctl+0xd1e/0x35c0 [btrfs]
[3868.772364] ? __slab_free+0x10a/0x360
[3868.773198] ? rcu_read_lock_sched_held+0x12/0x60
[3868.774121] ? lock_release+0x223/0x4a0
[3868.774863] ? lock_acquired+0x19f/0x420
[3868.775634] ? rcu_read_lock_sched_held+0x12/0x60
[3868.776530] ? trace_hardirqs_on+0x1b/0xe0
[3868.777373] ? _raw_spin_unlock_irqrestore+0x3e/0x60
[3868.778280] ? kmem_cache_free+0x321/0x3c0
[3868.779011] ? __x64_sys_ioctl+0x83/0xb0
[3868.779718] __x64_sys_ioctl+0x83/0xb0
[3868.780387] do_syscall_64+0x3b/0xc0
[3868.781059] entry_SYSCALL_64_after_hwframe+0x44/0xae
[3868.781953] RIP: 0033:0x7f281c59e957
[3868.782585] Code: 3c 1c 48 f7 d8 4c (...)
[3868.785867] RSP: 002b:00007ffe1f83e2b8 EFLAGS: 00000202 ORIG_RAX: 0000000000000010
[3868.787198] RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f281c59e957
[3868.788450] RDX: 00007ffe1f83e2c0 RSI: 0000000050009418 RDI: 0000000000000003
[3868.789748] RBP: 00007ffe1f83f300 R08: 0000000000000000 R09: 00007ffe1f83fe36
[3868.791214] R10: 0000000000000000 R11: 0000000000000202 R12: 0000000000000003
[3868.792468] R13: 0000000000000003 R14: 00007ffe1f83e2c0 R15: 00000000000003cc
[3868.793765] </TASK>
[3868.794037] irq event stamp: 0
[3868.794548] hardirqs last enabled at (0): [<0000000000000000>] 0x0
[3868.795670] hardirqs last disabled at (0): [<ffffffff98294214>] copy_process+0x934/0x2040
[3868.797086] softirqs last enabled at (0): [<ffffffff98294214>] copy_process+0x934/0x2040
[3868.798309] softirqs last disabled at (0): [<0000000000000000>] 0x0
[3868.799284] ---[ end trace be24c7002fe27747 ]---
[3868.799928] BTRFS info (device dm-0): leaf 241188864 gen 1268 total ptrs 214 free space 469 owner 2
[3868.801133] BTRFS info (device dm-0): refs 2 lock_owner 225627 current 225627
[3868.802056] item 0 key (237436928 169 0) itemoff 16250 itemsize 33
[3868.802863] extent refs 1 gen 1265 flags 2
[3868.803447] ref#0: tree block backref root 1610
(...)
[3869.064354] item 114 key (241008640 169 0) itemoff 12488 itemsize 33
[3869.065421] extent refs 1 gen 1268 flags 2
[3869.066115] ref#0: tree block backref root 1689
(...)
[3869.403834] BTRFS error (device dm-0): unable to find ref byte nr 241008640 parent 0 root 1622 owner 0 offset 0
[3869.405641] BTRFS: error (device dm-0) in __btrfs_free_extent:3076: errno=-2 No such entry
[3869.407138] BTRFS: error (device dm-0) in btrfs_run_delayed_refs:2159: errno=-2 No such entry
Fix this by passing the new subvolume's root ID to btrfs_free_tree_block().
This requires changing the root argument of btrfs_free_tree_block() from
struct btrfs_root * to a u64, since at this point during the subvolume
creation we have not yet created the struct btrfs_root for the new
subvolume, and btrfs_free_tree_block() only needs a root ID and nothing
else from a struct btrfs_root.
This was triggered by test case generic/475 from fstests.
Fixes: 67addf2900 ("btrfs: fix metadata extent leak after failure to create subvolume")
CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmGwxl8ACgkQxWXV+ddt
WDvSeQ//T+mv4o7ucldQZCVdN0TTVCkQUhia+ZdMwBcPty2/ZEdap+KEIVmfCV/v
OLRmSNkIPDhHcIc/O3zJ1/AY0DFbb9brYGkMD/qidgPbRArhDZSrDIr+xnrKJ0iq
HFxM01B54l8hJe6GWIGFuuOz+nXUP1o9SfiDOwMDTkqgzz1JSvPec70RKMxG8pTC
4plVrGaUXkKTC8WyBXnSvkP2gvjfJxqnEKv2Ru1eP1t7Bq65aed0+Z32Mogzl2ip
ZSHVlRergeB03xF9YErWSfgofVWLEIXgLCh/Wfq73sMnHUHUGM/dpEKxP911MI00
A5TuTl3I25cVnDv3qMayBPECMCCGZc2vUyXTLCWUNYLb/vEUTI36QBu/KglRURmO
Zx20B+3/7Yu9pFeZ23S+nlNdGDADmjkOfvZIZDoYDzqBAKWM6kZ/9oWiib21Uwi6
ql5oZNl7G6UXLPvgJoq8dqZIj/HYeLEHeqwf/tepSVQLXYzQyWYDMp686z958XI1
K/A/TKaKk19nn1Dhsz4KJeb3xhMFlFN30K7BNjdH3XRH1RrwJP6pLF/WUduJq2qn
rAvJoODLHkby1D9+HqSKW/RToeR5NbBYYdfB0Q8zpy9zF/gZX7wgFc21/4B7qtib
hkKfNSfAVjedOJJWTFCUDnZwwrqtcrKxYzUpdcls/O1AjifK7+U=
=Mh19
-----END PGP SIGNATURE-----
Merge tag 'for-5.16-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
"A few more regression fixes and stable patches, mostly one-liners.
Regression fixes:
- fix pointer/ERR_PTR mismatch returned from memdup_user
- reset dedicated zoned mode relocation block group to avoid using it
and filling it without any recourse
Fixes:
- handle a case to FITRIM range (also to make fstests/generic/260
work)
- fix warning when extent buffer state and pages get out of sync
after an IO error
- fix transaction abort when syncing due to missing mapping error set
on metadata inode after inlining a compressed file
- fix transaction abort due to tree-log and zoned mode interacting in
an unexpected way
- fix memory leak of additional extent data when qgroup reservation
fails
- do proper handling of slot search call when deleting root refs"
* tag 'for-5.16-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: replace the BUG_ON in btrfs_del_root_ref with proper error handling
btrfs: zoned: clear data relocation bg on zone finish
btrfs: free exchange changeset on failures
btrfs: fix re-dirty process of tree-log nodes
btrfs: call mapping_set_error() on btree inode with a write error
btrfs: clear extent buffer uptodate when we fail to write it
btrfs: fail if fstrim_range->start == U64_MAX
btrfs: fix error pointer dereference in btrfs_ioctl_rm_dev_v2()
If memdup_user() fails the error handing will crash when it tries
to kfree() an error pointer. Just return directly because there is
no cleanup required.
Fixes: 1a15eb724a ("btrfs: use btrfs_get_dev_args_from_path in dev removal ioctls")
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmGWiSAACgkQxWXV+ddt
WDtKiA//VFrxg5I1yrTyyVvc2RqcPg0aCopO6wIAgcHV1yzseJ7AyP7two1p5dg8
3DPDKaXFvONZYXl8j9ZuzFiryKPGJxp1KSagKyt6EKDRYm50HOreTC1Qt2ZvLJHn
wHohwHX96yv+4gyKvpCBZVpp3dSIDbsbCxlpz3mm7kZv//wHxA5l0chZpHbTqUF6
JloRSrOIGlSeQYPog1Lnu1c92qoGzLL5n47aXS3s5afpkqqkOlKZLsyb90N4uJx4
M1htsl4ga7b3OB8jbR95wlbd/qXsB+dvaBUQHgDm4hafW6ma5ft9NhuePQnQlaVH
ub/rlfNTsKl6jly9eNJ6wGpqi/OBlhA4qCmQVbVDE+HhWUJbdUiQ5UgxoOrQlkOP
Pd3NvW+95qg+Lj/egUA/Mrtz1v/6oSKcf3gQVKMNIrnk6lOUVZWtQhBe5YS3qHih
PzxrCp4ThlvmVeemHS7783akiwkI49wUn7a6dUD87x81ghemUHJzC83/mgs1rl/0
7Q1QLetgfrZpko3W4GzS2J3WwKTB0tvBXxsZ8gU5gI0FNkx90bR8+xI0fVF8IGJo
QglHn9gepb6si7BCxyKDTlQNMt23s7GFH5/4hHtkomtlR6vpRbPJAq5mpOrqsLgJ
VGc/SwCJPSmynqRAxuCn+DqlfaMZZaqtvgVVWnhJl9ylKyUAQKU=
=ze0L
-----END PGP SIGNATURE-----
Merge tag 'for-5.16-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
"Several xes and one old ioctl deprecation. Namely there's fix for
crashes/warnings with lzo compression that was suspected to be caused
by first pull merge resolution, but it was a different bug.
Summary:
- regression fix for a crash in lzo due to missing boundary checks of
the page array
- fix crashes on ARM64 due to missing barriers when synchronizing
status bits between work queues
- silence lockdep when reading chunk tree during mount
- fix false positive warning in integrity checker on devices with
disabled write caching
- fix signedness of bitfields in scrub
- start deprecation of balance v1 ioctl"
* tag 'for-5.16-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: deprecate BTRFS_IOC_BALANCE ioctl
btrfs: make 1-bit bit-fields of scrub_page unsigned int
btrfs: check-integrity: fix a warning on write caching disabled disk
btrfs: silence lockdep when reading chunk tree during mount
btrfs: fix memory ordering between normal and ordered work functions
btrfs: fix a out-of-bound access in copy_compressed_data_to_page()
The v2 balance ioctl has been introduced more than 9 years ago. Users of
the old v1 ioctl should have long been migrated to it. It's time we
deprecate it and eventually remove it.
The only known user is in btrfs-progs that tries v1 as a fallback in
case v2 is not supported. This is not necessary anymore.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Functions gfs2_file_read_iter and gfs2_file_write_iter are both
accessing the user buffer to write to or read from while holding the
inode glock. In the most basic scenario, that buffer will not be
resident and it will be mapped to the same file. Accessing the buffer
will trigger a page fault, and gfs2 will deadlock trying to take the
same inode glock again while trying to handle that fault.
Fix that and similar, more complex scenarios by disabling page faults
while accessing user buffers. To make this work, introduce a small
amount of new infrastructure and fix some bugs that didn't trigger so
far, with page faults enabled.
-----BEGIN PGP SIGNATURE-----
iQJIBAABCAAyFiEEJZs3krPW0xkhLMTc1b+f6wMTZToFAmGBPisUHGFncnVlbmJh
QHJlZGhhdC5jb20ACgkQ1b+f6wMTZTpE6A/7BezUnGuNJxJrR8pC+vcLYA7xAgUU
6STQ6IN7w5UHRlSkNzZxZ2XPxW4uVQ4SxSEeaLqBsHZihepjcLNFZ/8MhQ6UPSD0
8noHOi7CoIcp6IuWQtCpxRM/xjjm2SlMt2XbVJZaiJcdzCV9gB6TU9EkBRq7Zm/X
9WFBbv1xZF0skn9ISCJvNtiiI+VyWKgMDUKxJUiTQjmJcklyyqHcVGmQi9BjqPz4
4s3F+WH6CoGbDKlmNk/6Y9wZ/2+sbvGswVscUxPwJVPoZWsR1xBBUdAeAmEMD1P4
BgE/Y1J8JXyVPYtyvZKq70XUhKdQkxB7RfX87YasOk9mY4Kjd5rIIGEykh+o2vC9
kDhCHvf2Mnw5I6Rum3B7UXyB1vemY+fECIHsXhgBnS+ztabRtcAdpCuWoqb43ymw
yEX1KwXyU4FpRYbrRvdZT42Fmh6ty8TW+N4swg8S2TrffirvgAi5yrcHZ4mPupYv
lyzvsCW7Wv8hPXn/twNObX+okRgJnsxcCdBXARdCnRXfA8tH23xmu88u8RA1Vdxh
nzTvv6Dx2EowwojuDWMx29Mw3fA2IqIfbOV+4FaRU7NZ2ZKtknL8yGl27qQUsMoJ
vYsHTmagasjQr+NDJ3vQRLCw+JQ6B1hENpdkmixFD9moo7X1ZFW3HBi/UL973Bv6
5CmgeXto8FRUFjI=
=WeNd
-----END PGP SIGNATURE-----
Merge tag 'gfs2-v5.15-rc5-mmap-fault' of git://git.kernel.org/pub/scm/linux/kernel/git/gfs2/linux-gfs2
Pull gfs2 mmap + page fault deadlocks fixes from Andreas Gruenbacher:
"Functions gfs2_file_read_iter and gfs2_file_write_iter are both
accessing the user buffer to write to or read from while holding the
inode glock.
In the most basic deadlock scenario, that buffer will not be resident
and it will be mapped to the same file. Accessing the buffer will
trigger a page fault, and gfs2 will deadlock trying to take the same
inode glock again while trying to handle that fault.
Fix that and similar, more complex scenarios by disabling page faults
while accessing user buffers. To make this work, introduce a small
amount of new infrastructure and fix some bugs that didn't trigger so
far, with page faults enabled"
* tag 'gfs2-v5.15-rc5-mmap-fault' of git://git.kernel.org/pub/scm/linux/kernel/git/gfs2/linux-gfs2:
gfs2: Fix mmap + page fault deadlocks for direct I/O
iov_iter: Introduce nofault flag to disable page faults
gup: Introduce FOLL_NOFAULT flag to disable page faults
iomap: Add done_before argument to iomap_dio_rw
iomap: Support partial direct I/O on user copy failures
iomap: Fix iomap_dio_rw return value for user copies
gfs2: Fix mmap + page fault deadlocks for buffered I/O
gfs2: Eliminate ip->i_gh
gfs2: Move the inode glock locking to gfs2_file_buffered_write
gfs2: Introduce flag for glock holder auto-demotion
gfs2: Clean up function may_grant
gfs2: Add wrapper for iomap_file_buffered_write
iov_iter: Introduce fault_in_iov_iter_writeable
iov_iter: Turn iov_iter_fault_in_readable into fault_in_iov_iter_readable
gup: Turn fault_in_pages_{readable,writeable} into fault_in_{readable,writeable}
powerpc/kvm: Fix kvm_use_magic_page
iov_iter: Fix iov_iter_get_pages{,_alloc} page fault return value
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmF/7PAACgkQxWXV+ddt
WDtp6A//SbVYeuHWpsXkhBiOpJt2PpS1K8VY5LIJc3brua5EZm8IarlR57X9IqYu
89ZlWnuANrw4d5RRiIO+NYhc+DR6+ydxHesJG+I2B+o5OnR0Ynb06gLhsP1tSK6y
lYZORQFJZP051ODU/uEc8A0KZN7DySIUmqezAibfyxepF6oPEap0nFp17/B80tWp
sKdMp2TBN5ymZwsdSK1nZ7ws1ZL57HgkFDPqp8m8CuPTkneG4CtNol6yUpuPExpL
QzvQsqTygmiFoy0uNTG7Rg7IlKqEuhbR7lwfkmcBZCV66JmhFco5QhxN13QIn42s
+YSug52SMWc8YVHIEj16xtBgHEqZXWYey8d2ewhc0tDSGDm0HmXCNjcn1vYr0NJr
5bW/7/3bpkHYejasy1wDEK5P8Uo2xsgpRyAvuEReGoRi8ze66EohahvP3o7YJi/Q
o0pROXdCT89JbM/T4MTvN/5MUlCSM7rnexXZ39ldGNacPgn9FAUCPw6KtzKKyVRe
DF19nPOUXSg6SLECbVkRQUwcOjxOTFP+T0Jx61Um8bomFskYJJnmr4SD3pqlzgp7
NxV5ad0+r7zU0x9MADkyqboObo0ROAfD4hthcZiRN+0UIK+Gq5nATTD5ur6/nwsT
0PJGOXDPz7cmfqUdmvpA0ctRxbFEqpaz6sDh7nq/iUSmaGITcUM=
=HvYu
-----END PGP SIGNATURE-----
Merge tag 'for-5.16-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs updates from David Sterba:
"The updates this time are more under the hood and enhancing existing
features (subpage with compression and zoned namespaces).
Performance related:
- misc small inode logging improvements (+3% throughput, -11% latency
on sample dbench workload)
- more efficient directory logging: bulk item insertion, less tree
searches and locking
- speed up bulk insertion of items into a b-tree, which is used when
logging directories, when running delayed items for directories
(fsync and transaction commits) and when running the slow path
(full sync) of an fsync (bulk creation run time -4%, deletion -12%)
Core:
- continued subpage support
- make defragmentation work
- make compression write work
- zoned mode
- support ZNS (zoned namespaces), zone capacity is number of
usable blocks in each zone
- add dedicated block group (zoned) for relocation, to prevent
out of order writes in some cases
- greedy block group reclaim, pick the ones with least usable
space first
- preparatory work for send protocol updates
- error handling improvements
- cleanups and refactoring
Fixes:
- lockdep warnings
- in show_devname callback, on seeding device
- device delete on loop device due to conversions to workqueues
- fix deadlock between chunk allocation and chunk btree modifications
- fix tracking of missing device count and status"
* tag 'for-5.16-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: (140 commits)
btrfs: remove root argument from check_item_in_log()
btrfs: remove root argument from add_link()
btrfs: remove root argument from btrfs_unlink_inode()
btrfs: remove root argument from drop_one_dir_item()
btrfs: clear MISSING device status bit in btrfs_close_one_device
btrfs: call btrfs_check_rw_degradable only if there is a missing device
btrfs: send: prepare for v2 protocol
btrfs: fix comment about sector sizes supported in 64K systems
btrfs: update device path inode time instead of bd_inode
fs: export an inode_update_time helper
btrfs: fix deadlock when defragging transparent huge pages
btrfs: sysfs: convert scnprintf and snprintf to sysfs_emit
btrfs: make btrfs_super_block size match BTRFS_SUPER_INFO_SIZE
btrfs: update comments for chunk allocation -ENOSPC cases
btrfs: fix deadlock between chunk allocation and chunk btree modifications
btrfs: zoned: use greedy gc for auto reclaim
btrfs: check-integrity: stop storing the block device name in btrfsic_dev_state
btrfs: use btrfs_get_dev_args_from_path in dev removal ioctls
btrfs: add a btrfs_get_dev_args_from_path helper
btrfs: handle device lookup with btrfs_dev_lookup_args
...
This is preparatory work for send protocol update to version 2 and
higher.
We have many pending protocol update requests but still don't have the
basic protocol rev in place, the first thing that must happen is to do
the actual versioning support.
The protocol version is u32 and is a new member in the send ioctl
struct. Validity of the version field is backed by a new flag bit. Old
kernels would fail when a higher version is requested. Version protocol
0 will pick the highest supported version, BTRFS_SEND_STREAM_VERSION,
that's also exported in sysfs.
The version is still unchanged and will be increased once we have new
incompatible commands or stream updates.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Attempting to defragment a Btrfs file containing a transparent huge page
immediately deadlocks with the following stack trace:
#0 context_switch (kernel/sched/core.c:4940:2)
#1 __schedule (kernel/sched/core.c:6287:8)
#2 schedule (kernel/sched/core.c:6366:3)
#3 io_schedule (kernel/sched/core.c:8389:2)
#4 wait_on_page_bit_common (mm/filemap.c:1356:4)
#5 __lock_page (mm/filemap.c:1648:2)
#6 lock_page (./include/linux/pagemap.h:625:3)
#7 pagecache_get_page (mm/filemap.c:1910:4)
#8 find_or_create_page (./include/linux/pagemap.h:420:9)
#9 defrag_prepare_one_page (fs/btrfs/ioctl.c:1068:9)
#10 defrag_one_range (fs/btrfs/ioctl.c:1326:14)
#11 defrag_one_cluster (fs/btrfs/ioctl.c:1421:9)
#12 btrfs_defrag_file (fs/btrfs/ioctl.c:1523:9)
#13 btrfs_ioctl_defrag (fs/btrfs/ioctl.c:3117:9)
#14 btrfs_ioctl (fs/btrfs/ioctl.c:4872:10)
#15 vfs_ioctl (fs/ioctl.c:51:10)
#16 __do_sys_ioctl (fs/ioctl.c:874:11)
#17 __se_sys_ioctl (fs/ioctl.c:860:1)
#18 __x64_sys_ioctl (fs/ioctl.c:860:1)
#19 do_syscall_x64 (arch/x86/entry/common.c:50:14)
#20 do_syscall_64 (arch/x86/entry/common.c:80:7)
#21 entry_SYSCALL_64+0x7c/0x15b (arch/x86/entry/entry_64.S:113)
A huge page is represented by a compound page, which consists of a
struct page for each PAGE_SIZE page within the huge page. The first
struct page is the "head page", and the remaining are "tail pages".
Defragmentation attempts to lock each page in the range. However,
lock_page() on a tail page actually locks the corresponding head page.
So, if defragmentation tries to lock more than one struct page in a
compound page, it tries to lock the same head page twice and deadlocks
with itself.
Ideally, we should be able to defragment transparent huge pages.
However, THP for filesystems is currently read-only, so a lot of code is
not ready to use huge pages for I/O. For now, let's just return
ETXTBUSY.
This can be reproduced with the following on a kernel with
CONFIG_READ_ONLY_THP_FOR_FS=y:
$ cat create_thp_file.c
#include <fcntl.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/mman.h>
static const char zeroes[1024 * 1024];
static const size_t FILE_SIZE = 2 * 1024 * 1024;
int main(int argc, char **argv)
{
if (argc != 2) {
fprintf(stderr, "usage: %s PATH\n", argv[0]);
return EXIT_FAILURE;
}
int fd = creat(argv[1], 0777);
if (fd == -1) {
perror("creat");
return EXIT_FAILURE;
}
size_t written = 0;
while (written < FILE_SIZE) {
ssize_t ret = write(fd, zeroes,
sizeof(zeroes) < FILE_SIZE - written ?
sizeof(zeroes) : FILE_SIZE - written);
if (ret < 0) {
perror("write");
return EXIT_FAILURE;
}
written += ret;
}
close(fd);
fd = open(argv[1], O_RDONLY);
if (fd == -1) {
perror("open");
return EXIT_FAILURE;
}
/*
* Reserve some address space so that we can align the file mapping to
* the huge page size.
*/
void *placeholder_map = mmap(NULL, FILE_SIZE * 2, PROT_NONE,
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
if (placeholder_map == MAP_FAILED) {
perror("mmap (placeholder)");
return EXIT_FAILURE;
}
void *aligned_address =
(void *)(((uintptr_t)placeholder_map + FILE_SIZE - 1) & ~(FILE_SIZE - 1));
void *map = mmap(aligned_address, FILE_SIZE, PROT_READ | PROT_EXEC,
MAP_SHARED | MAP_FIXED, fd, 0);
if (map == MAP_FAILED) {
perror("mmap");
return EXIT_FAILURE;
}
if (madvise(map, FILE_SIZE, MADV_HUGEPAGE) < 0) {
perror("madvise");
return EXIT_FAILURE;
}
char *line = NULL;
size_t line_capacity = 0;
FILE *smaps_file = fopen("/proc/self/smaps", "r");
if (!smaps_file) {
perror("fopen");
return EXIT_FAILURE;
}
for (;;) {
for (size_t off = 0; off < FILE_SIZE; off += 4096)
((volatile char *)map)[off];
ssize_t ret;
bool this_mapping = false;
while ((ret = getline(&line, &line_capacity, smaps_file)) > 0) {
unsigned long start, end, huge;
if (sscanf(line, "%lx-%lx", &start, &end) == 2) {
this_mapping = (start <= (uintptr_t)map &&
(uintptr_t)map < end);
} else if (this_mapping &&
sscanf(line, "FilePmdMapped: %ld", &huge) == 1 &&
huge > 0) {
return EXIT_SUCCESS;
}
}
sleep(6);
rewind(smaps_file);
fflush(smaps_file);
}
}
$ ./create_thp_file huge
$ btrfs fi defrag -czstd ./huge
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
For device removal and replace we call btrfs_find_device_by_devspec,
which if we give it a device path and nothing else will call
btrfs_get_dev_args_from_path, which opens the block device and reads the
super block and then looks up our device based on that.
However at this point we're holding the sb write "lock", so reading the
block device pulls in the dependency of ->open_mutex, which produces the
following lockdep splat
======================================================
WARNING: possible circular locking dependency detected
5.14.0-rc2+ #405 Not tainted
------------------------------------------------------
losetup/11576 is trying to acquire lock:
ffff9bbe8cded938 ((wq_completion)loop0){+.+.}-{0:0}, at: flush_workqueue+0x67/0x5e0
but task is already holding lock:
ffff9bbe88e4fc68 (&lo->lo_mutex){+.+.}-{3:3}, at: __loop_clr_fd+0x41/0x660 [loop]
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #4 (&lo->lo_mutex){+.+.}-{3:3}:
__mutex_lock+0x7d/0x750
lo_open+0x28/0x60 [loop]
blkdev_get_whole+0x25/0xf0
blkdev_get_by_dev.part.0+0x168/0x3c0
blkdev_open+0xd2/0xe0
do_dentry_open+0x161/0x390
path_openat+0x3cc/0xa20
do_filp_open+0x96/0x120
do_sys_openat2+0x7b/0x130
__x64_sys_openat+0x46/0x70
do_syscall_64+0x38/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xae
-> #3 (&disk->open_mutex){+.+.}-{3:3}:
__mutex_lock+0x7d/0x750
blkdev_get_by_dev.part.0+0x56/0x3c0
blkdev_get_by_path+0x98/0xa0
btrfs_get_bdev_and_sb+0x1b/0xb0
btrfs_find_device_by_devspec+0x12b/0x1c0
btrfs_rm_device+0x127/0x610
btrfs_ioctl+0x2a31/0x2e70
__x64_sys_ioctl+0x80/0xb0
do_syscall_64+0x38/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xae
-> #2 (sb_writers#12){.+.+}-{0:0}:
lo_write_bvec+0xc2/0x240 [loop]
loop_process_work+0x238/0xd00 [loop]
process_one_work+0x26b/0x560
worker_thread+0x55/0x3c0
kthread+0x140/0x160
ret_from_fork+0x1f/0x30
-> #1 ((work_completion)(&lo->rootcg_work)){+.+.}-{0:0}:
process_one_work+0x245/0x560
worker_thread+0x55/0x3c0
kthread+0x140/0x160
ret_from_fork+0x1f/0x30
-> #0 ((wq_completion)loop0){+.+.}-{0:0}:
__lock_acquire+0x10ea/0x1d90
lock_acquire+0xb5/0x2b0
flush_workqueue+0x91/0x5e0
drain_workqueue+0xa0/0x110
destroy_workqueue+0x36/0x250
__loop_clr_fd+0x9a/0x660 [loop]
block_ioctl+0x3f/0x50
__x64_sys_ioctl+0x80/0xb0
do_syscall_64+0x38/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xae
other info that might help us debug this:
Chain exists of:
(wq_completion)loop0 --> &disk->open_mutex --> &lo->lo_mutex
Possible unsafe locking scenario:
CPU0 CPU1
---- ----
lock(&lo->lo_mutex);
lock(&disk->open_mutex);
lock(&lo->lo_mutex);
lock((wq_completion)loop0);
*** DEADLOCK ***
1 lock held by losetup/11576:
#0: ffff9bbe88e4fc68 (&lo->lo_mutex){+.+.}-{3:3}, at: __loop_clr_fd+0x41/0x660 [loop]
stack backtrace:
CPU: 0 PID: 11576 Comm: losetup Not tainted 5.14.0-rc2+ #405
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014
Call Trace:
dump_stack_lvl+0x57/0x72
check_noncircular+0xcf/0xf0
? stack_trace_save+0x3b/0x50
__lock_acquire+0x10ea/0x1d90
lock_acquire+0xb5/0x2b0
? flush_workqueue+0x67/0x5e0
? lockdep_init_map_type+0x47/0x220
flush_workqueue+0x91/0x5e0
? flush_workqueue+0x67/0x5e0
? verify_cpu+0xf0/0x100
drain_workqueue+0xa0/0x110
destroy_workqueue+0x36/0x250
__loop_clr_fd+0x9a/0x660 [loop]
? blkdev_ioctl+0x8d/0x2a0
block_ioctl+0x3f/0x50
__x64_sys_ioctl+0x80/0xb0
do_syscall_64+0x38/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xae
RIP: 0033:0x7f31b02404cb
Instead what we want to do is populate our device lookup args before we
grab any locks, and then pass these args into btrfs_rm_device(). From
there we can find the device and do the appropriate removal.
Suggested-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>