Commit Graph

4918 Commits

Author SHA1 Message Date
Omar Sandoval 1abfbcdf56 Btrfs: add helpers for read-only compat bits
We're finally going to add one of these for the free space tree, so
let's add the same nice helpers that we have for the incompat bits.
While we're add it, also add helpers to clear the bits.

Reviewed-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-12-17 12:16:46 -08:00
Omar Sandoval 0f3312295d Btrfs: add extent buffer bitmap sanity tests
Sanity test the extent buffer bitmap operations (test, set, and clear)
against the equivalent standard kernel operations.

Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-12-17 12:16:46 -08:00
Omar Sandoval 3e1e8bb770 Btrfs: add extent buffer bitmap operations
These are going to be used for the free space tree bitmap items.

Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-12-17 12:16:46 -08:00
Linus Torvalds 37902bc190 Merge branch 'for-linus-4.3' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs
Pull btrfs fixes from Chris Mason:
 "I have two more small fixes this week:

  Qu's fix avoids unneeded COW during fallocate, and Christian found a
  memory leak in the error handling of an earlier fix"

* 'for-linus-4.3' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
  btrfs: fix possible leak in btrfs_ioctl_balance()
  btrfs: Avoid truncate tailing page if fallocate range doesn't exceed inode size
2015-10-24 07:17:58 +09:00
Christian Engelmayer 0f89abf56a btrfs: fix possible leak in btrfs_ioctl_balance()
Commit 8eb934591f ("btrfs: check unsupported filters in balance
arguments") adds a jump to exit label out_bargs in case the argument
check fails. At this point in addition to the bargs memory, the
memory for struct btrfs_balance_control has already been allocated.
Ownership of bctl is passed to btrfs_balance() in the good case,
thus the memory is not freed due to the introduced jump. Make sure
that the memory gets freed in any case as necessary. Detected by
Coverity CID 1328378.

Signed-off-by: Christian Engelmayer <cengelma@gmx.at>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-10-21 18:10:02 -07:00
Qu Wenruo 0f6925fa29 btrfs: Avoid truncate tailing page if fallocate range doesn't exceed inode size
Current code will always truncate tailing page if its alloc_start is
smaller than inode size.

For example, the file extent layout is like:
0	4K	8K	16K	32K
|<-----Extent A---------------->|
|<--Inode size: 18K---------->|

But if calling fallocate even for range [0,4K), it will cause btrfs to
re-truncate the range [16,32K), causing COW and a new extent.

0	4K	8K	16K	32K
|///////|	<- Fallocate call range
|<-----Extent A-------->|<--B-->|

The cause is quite easy, just a careless btrfs_truncate_inode() in a
else branch without extra judgment.
Fix it by add judgment on whether the fallocate range is beyond isize.

Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-10-20 19:07:29 -07:00
Linus Torvalds 6aa8ca4df0 Merge branch 'for-linus-4.3' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs
Pull btrfs fixes from Chris Mason:
 "I have two more bug fixes for btrfs.

  My commit fixes a bug we hit last week at FB, a combination of lots of
  hard links and an admin command to resolve inode numbers.

  Dave is adding checks to make sure balance on current kernels ignores
  filters it doesn't understand.  The penalty for being wrong is just
  doing more work (not crashing etc), but it's a good fix"

* 'for-linus-4.3' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
  btrfs: fix use after free iterating extrefs
  btrfs: check unsupported filters in balance arguments
2015-10-16 12:55:34 -07:00
Chris Mason dc6c5fb3b5 btrfs: fix use after free iterating extrefs
The code for btrfs inode-resolve has never worked properly for
files with enough hard links to trigger extrefs.  It was trying to
get the leaf out of a path after freeing the path:

	btrfs_release_path(path);
	leaf = path->nodes[0];
	item_size = btrfs_item_size_nr(leaf, slot);

The fix here is to use the extent buffer we cloned just a little higher
up to avoid deadlocks caused by using the leaf in the path.

Signed-off-by: Chris Mason <clm@fb.com>
cc: stable@vger.kernel.org # v3.7+
cc: Mark Fasheh <mfasheh@suse.de>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Mark Fasheh <mfasheh@suse.de>
2015-10-13 18:54:44 -07:00
David Sterba 8eb934591f btrfs: check unsupported filters in balance arguments
We don't verify that all the balance filter arguments supplemented by
the flags are actually known to the kernel. Thus we let it silently pass
and do nothing.

At the moment this means only the 'limit' filter, but we're going to add
a few more soon so it's better to have that fixed. Also in older stable
kernels so that it works with newer userspace tools.

Cc: stable@vger.kernel.org # 3.16+
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-10-13 18:53:03 -07:00
Linus Torvalds 175d58cfed Merge branch 'for-linus-4.3' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs
Pull btrfs fixes from Chris Mason:
 "These are small and assorted.  Neil's is the oldest, I dropped the
  ball thinking he was going to send it in"

* 'for-linus-4.3' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
  Btrfs: support NFSv2 export
  Btrfs: open_ctree: Fix possible memory leak
  Btrfs: fix deadlock when finalizing block group creation
  Btrfs: update fix for read corruption of compressed and shared extents
  Btrfs: send, fix corner case for reference overwrite detection
2015-10-09 16:39:35 -07:00
NeilBrown 7d35199e15 BTRFS: support NFSv2 export
The "fh_len" passed to ->fh_to_* is not guaranteed to be that same as
that returned by encode_fh - it may be larger.

With NFSv2, the filehandle is fixed length, so it may appear longer
than expected and be zero-padded.

So we must test that fh_len is at least some value, not exactly equal
to it.

Signed-off-by: NeilBrown <neilb@suse.de>
Acked-by: David Sterba <dsterba@suse.cz>
2015-10-06 06:55:23 -07:00
chandan e5fffbac4a Btrfs: open_ctree: Fix possible memory leak
After reading one of chunk or tree root tree's root node from disk, if the
root node does not have EXTENT_BUFFER_UPTODATE flag set, we fail to release
the memory used by the root node. Fix this.

Signed-off-by: Chandan Rajendra <chandan@linux.vnet.ibm.com>
2015-10-06 06:55:22 -07:00
Filipe Manana d9a0540a79 Btrfs: fix deadlock when finalizing block group creation
Josef ran into a deadlock while a transaction handle was finalizing the
creation of its block groups, which produced the following trace:

  [260445.593112] fio             D ffff88022a9df468     0  8924   4518 0x00000084
  [260445.593119]  ffff88022a9df468 ffffffff81c134c0 ffff880429693c00 ffff88022a9df488
  [260445.593126]  ffff88022a9e0000 ffff8803490d7b00 ffff8803490d7b18 ffff88022a9df4b0
  [260445.593132]  ffff8803490d7af8 ffff88022a9df488 ffffffff8175a437 ffff8803490d7b00
  [260445.593137] Call Trace:
  [260445.593145]  [<ffffffff8175a437>] schedule+0x37/0x80
  [260445.593189]  [<ffffffffa0850f37>] btrfs_tree_lock+0xa7/0x1f0 [btrfs]
  [260445.593197]  [<ffffffff810db7c0>] ? prepare_to_wait_event+0xf0/0xf0
  [260445.593225]  [<ffffffffa07eac44>] btrfs_lock_root_node+0x34/0x50 [btrfs]
  [260445.593253]  [<ffffffffa07eff6b>] btrfs_search_slot+0x88b/0xa00 [btrfs]
  [260445.593295]  [<ffffffffa08389df>] ? free_extent_buffer+0x4f/0x90 [btrfs]
  [260445.593324]  [<ffffffffa07f1a06>] btrfs_insert_empty_items+0x66/0xc0 [btrfs]
  [260445.593351]  [<ffffffffa07ea94a>] ? btrfs_alloc_path+0x1a/0x20 [btrfs]
  [260445.593394]  [<ffffffffa08403b9>] btrfs_finish_chunk_alloc+0x1c9/0x570 [btrfs]
  [260445.593427]  [<ffffffffa08002ab>] btrfs_create_pending_block_groups+0x11b/0x200 [btrfs]
  [260445.593459]  [<ffffffffa0800964>] do_chunk_alloc+0x2a4/0x2e0 [btrfs]
  [260445.593491]  [<ffffffffa0803815>] find_free_extent+0xa55/0xd90 [btrfs]
  [260445.593524]  [<ffffffffa0803c22>] btrfs_reserve_extent+0xd2/0x220 [btrfs]
  [260445.593532]  [<ffffffff8119fe5d>] ? account_page_dirtied+0xdd/0x170
  [260445.593564]  [<ffffffffa0803e78>] btrfs_alloc_tree_block+0x108/0x4a0 [btrfs]
  [260445.593597]  [<ffffffffa080c9de>] ? btree_set_page_dirty+0xe/0x10 [btrfs]
  [260445.593626]  [<ffffffffa07eb5cd>] __btrfs_cow_block+0x12d/0x5b0 [btrfs]
  [260445.593654]  [<ffffffffa07ebbff>] btrfs_cow_block+0x11f/0x1c0 [btrfs]
  [260445.593682]  [<ffffffffa07ef8c7>] btrfs_search_slot+0x1e7/0xa00 [btrfs]
  [260445.593724]  [<ffffffffa08389df>] ? free_extent_buffer+0x4f/0x90 [btrfs]
  [260445.593752]  [<ffffffffa07f1a06>] btrfs_insert_empty_items+0x66/0xc0 [btrfs]
  [260445.593830]  [<ffffffffa07ea94a>] ? btrfs_alloc_path+0x1a/0x20 [btrfs]
  [260445.593905]  [<ffffffffa08403b9>] btrfs_finish_chunk_alloc+0x1c9/0x570 [btrfs]
  [260445.593946]  [<ffffffffa08002ab>] btrfs_create_pending_block_groups+0x11b/0x200 [btrfs]
  [260445.593990]  [<ffffffffa0815798>] btrfs_commit_transaction+0xa8/0xb40 [btrfs]
  [260445.594042]  [<ffffffffa085abcd>] ? btrfs_log_dentry_safe+0x6d/0x80 [btrfs]
  [260445.594089]  [<ffffffffa082bc84>] btrfs_sync_file+0x294/0x350 [btrfs]
  [260445.594115]  [<ffffffff8123e29b>] vfs_fsync_range+0x3b/0xa0
  [260445.594133]  [<ffffffff81023891>] ? syscall_trace_enter_phase1+0x131/0x180
  [260445.594149]  [<ffffffff8123e35d>] do_fsync+0x3d/0x70
  [260445.594169]  [<ffffffff81023bb8>] ? syscall_trace_leave+0xb8/0x110
  [260445.594187]  [<ffffffff8123e600>] SyS_fsync+0x10/0x20
  [260445.594204]  [<ffffffff8175de6e>] entry_SYSCALL_64_fastpath+0x12/0x71

This happened because the same transaction handle created a large number
of block groups and while finalizing their creation (inserting new items
and updating existing items in the chunk and device trees) a new metadata
extent had to be allocated and no free space was found in the current
metadata block groups, which made find_free_extent() attempt to allocate
a new block group via do_chunk_alloc(). However at do_chunk_alloc() we
ended up allocating a new system chunk too and exceeded the threshold
of 2Mb of reserved chunk bytes, which makes do_chunk_alloc() enter the
final part of block group creation again (at
btrfs_create_pending_block_groups()) and attempt to lock again the root
of the chunk tree when it's already write locked by the same task.

Similarly we can deadlock on extent tree nodes/leafs if while we are
running delayed references we end up creating a new metadata block group
in order to allocate a new node/leaf for the extent tree (as part of
a CoW operation or growing the tree), as btrfs_create_pending_block_groups
inserts items into the extent tree as well. In this case we get the
following trace:

  [14242.773581] fio             D ffff880428ca3418     0  3615   3100 0x00000084
  [14242.773588]  ffff880428ca3418 ffff88042d66b000 ffff88042a03c800 ffff880428ca3438
  [14242.773594]  ffff880428ca4000 ffff8803e4b20190 ffff8803e4b201a8 ffff880428ca3460
  [14242.773600]  ffff8803e4b20188 ffff880428ca3438 ffffffff8175a437 ffff8803e4b20190
  [14242.773606] Call Trace:
  [14242.773613]  [<ffffffff8175a437>] schedule+0x37/0x80
  [14242.773656]  [<ffffffffa057ff07>] btrfs_tree_lock+0xa7/0x1f0 [btrfs]
  [14242.773664]  [<ffffffff810db7c0>] ? prepare_to_wait_event+0xf0/0xf0
  [14242.773692]  [<ffffffffa0519c44>] btrfs_lock_root_node+0x34/0x50 [btrfs]
  [14242.773720]  [<ffffffffa051ef6b>] btrfs_search_slot+0x88b/0xa00 [btrfs]
  [14242.773750]  [<ffffffffa0520a06>] btrfs_insert_empty_items+0x66/0xc0 [btrfs]
  [14242.773758]  [<ffffffff811ef4a2>] ? kmem_cache_alloc+0x1d2/0x200
  [14242.773786]  [<ffffffffa0520ad1>] btrfs_insert_item+0x71/0xf0 [btrfs]
  [14242.773818]  [<ffffffffa052f292>] btrfs_create_pending_block_groups+0x102/0x200 [btrfs]
  [14242.773850]  [<ffffffffa052f96e>] do_chunk_alloc+0x2ae/0x2f0 [btrfs]
  [14242.773934]  [<ffffffffa0532825>] find_free_extent+0xa55/0xd90 [btrfs]
  [14242.773998]  [<ffffffffa0532c22>] btrfs_reserve_extent+0xc2/0x1d0 [btrfs]
  [14242.774041]  [<ffffffffa0532e38>] btrfs_alloc_tree_block+0x108/0x4a0 [btrfs]
  [14242.774078]  [<ffffffffa051a5cd>] __btrfs_cow_block+0x12d/0x5b0 [btrfs]
  [14242.774118]  [<ffffffffa051abff>] btrfs_cow_block+0x11f/0x1c0 [btrfs]
  [14242.774155]  [<ffffffffa051e8c7>] btrfs_search_slot+0x1e7/0xa00 [btrfs]
  [14242.774194]  [<ffffffffa0528021>] ? __btrfs_free_extent.isra.70+0x2e1/0xcb0 [btrfs]
  [14242.774235]  [<ffffffffa0520a06>] btrfs_insert_empty_items+0x66/0xc0 [btrfs]
  [14242.774274]  [<ffffffffa051994a>] ? btrfs_alloc_path+0x1a/0x20 [btrfs]
  [14242.774318]  [<ffffffffa052c433>] __btrfs_run_delayed_refs+0xbb3/0x1020 [btrfs]
  [14242.774358]  [<ffffffffa052f404>] btrfs_run_delayed_refs.part.78+0x74/0x280 [btrfs]
  [14242.774391]  [<ffffffffa052f627>] btrfs_run_delayed_refs+0x17/0x20 [btrfs]
  [14242.774432]  [<ffffffffa05be236>] commit_cowonly_roots+0x8d/0x2bd [btrfs]
  [14242.774474]  [<ffffffffa059d07f>] ? __btrfs_run_delayed_items+0x1cf/0x210 [btrfs]
  [14242.774516]  [<ffffffffa05adac3>] ? btrfs_qgroup_account_extents+0x83/0x130 [btrfs]
  [14242.774558]  [<ffffffffa0544c40>] btrfs_commit_transaction+0x590/0xb40 [btrfs]
  [14242.774599]  [<ffffffffa0589b9d>] ? btrfs_log_dentry_safe+0x6d/0x80 [btrfs]
  [14242.774642]  [<ffffffffa055ac54>] btrfs_sync_file+0x294/0x350 [btrfs]
  [14242.774650]  [<ffffffff8123e29b>] vfs_fsync_range+0x3b/0xa0
  [14242.774657]  [<ffffffff81023891>] ? syscall_trace_enter_phase1+0x131/0x180
  [14242.774663]  [<ffffffff8123e35d>] do_fsync+0x3d/0x70
  [14242.774669]  [<ffffffff81023bb8>] ? syscall_trace_leave+0xb8/0x110
  [14242.774675]  [<ffffffff8123e600>] SyS_fsync+0x10/0x20
  [14242.774681]  [<ffffffff8175de6e>] entry_SYSCALL_64_fastpath+0x12/0x71

Fix this by never recursing into the finalization phase of block group
creation and making sure we never trigger the finalization of block group
creation while running delayed references.

Reported-by: Josef Bacik <jbacik@fb.com>
Fixes: 00d80e342c ("Btrfs: fix quick exhaustion of the system array in the superblock")
Signed-off-by: Filipe Manana <fdmanana@suse.com>
2015-10-05 16:56:38 -07:00
Filipe Manana 808f80b467 Btrfs: update fix for read corruption of compressed and shared extents
My previous fix in commit 005efedf2c ("Btrfs: fix read corruption of
compressed and shared extents") was effective only if the compressed
extents cover a file range with a length that is not a multiple of 16
pages. That's because the detection of when we reached a different range
of the file that shares the same compressed extent as the previously
processed range was done at extent_io.c:__do_contiguous_readpages(),
which covers subranges with a length up to 16 pages, because
extent_readpages() groups the pages in clusters no larger than 16 pages.
So fix this by tracking the start of the previously processed file
range's extent map at extent_readpages().

The following test case for fstests reproduces the issue:

  seq=`basename $0`
  seqres=$RESULT_DIR/$seq
  echo "QA output created by $seq"
  tmp=/tmp/$$
  status=1	# failure is the default!
  trap "_cleanup; exit \$status" 0 1 2 3 15

  _cleanup()
  {
      rm -f $tmp.*
  }

  # get standard environment, filters and checks
  . ./common/rc
  . ./common/filter

  # real QA test starts here
  _need_to_be_root
  _supported_fs btrfs
  _supported_os Linux
  _require_scratch
  _require_cloner

  rm -f $seqres.full

  test_clone_and_read_compressed_extent()
  {
      local mount_opts=$1

      _scratch_mkfs >>$seqres.full 2>&1
      _scratch_mount $mount_opts

      # Create our test file with a single extent of 64Kb that is going to
      # be compressed no matter which compression algo is used (zlib/lzo).
      $XFS_IO_PROG -f -c "pwrite -S 0xaa 0K 64K" \
          $SCRATCH_MNT/foo | _filter_xfs_io

      # Now clone the compressed extent into an adjacent file offset.
      $CLONER_PROG -s 0 -d $((64 * 1024)) -l $((64 * 1024)) \
          $SCRATCH_MNT/foo $SCRATCH_MNT/foo

      echo "File digest before unmount:"
      md5sum $SCRATCH_MNT/foo | _filter_scratch

      # Remount the fs or clear the page cache to trigger the bug in
      # btrfs. Because the extent has an uncompressed length that is a
      # multiple of 16 pages, all the pages belonging to the second range
      # of the file (64K to 128K), which points to the same extent as the
      # first range (0K to 64K), had their contents full of zeroes instead
      # of the byte 0xaa. This was a bug exclusively in the read path of
      # compressed extents, the correct data was stored on disk, btrfs
      # just failed to fill in the pages correctly.
      _scratch_remount

      echo "File digest after remount:"
      # Must match the digest we got before.
      md5sum $SCRATCH_MNT/foo | _filter_scratch
  }

  echo -e "\nTesting with zlib compression..."
  test_clone_and_read_compressed_extent "-o compress=zlib"

  _scratch_unmount

  echo -e "\nTesting with lzo compression..."
  test_clone_and_read_compressed_extent "-o compress=lzo"

  status=0
  exit

Cc: stable@vger.kernel.org
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Tested-by: Timofey Titovets <nefelim4ag@gmail.com>
2015-10-05 16:56:27 -07:00
Filipe Manana b786f16ac3 Btrfs: send, fix corner case for reference overwrite detection
When the inode given to did_overwrite_ref() matches the current progress
and has a reference that collides with the reference of other inode that
has the same number as the current progress, we were always telling our
caller that the inode's reference was overwritten, which is incorrect
because the other inode might be a new inode (different generation number)
in which case we must return false from did_overwrite_ref() so that its
callers don't use an orphanized path for the inode (as it will never be
orphanized, instead it will be unlinked and the new inode created later).

The following test case for fstests reproduces the issue:

  seq=`basename $0`
  seqres=$RESULT_DIR/$seq
  echo "QA output created by $seq"

  tmp=/tmp/$$
  status=1	# failure is the default!
  trap "_cleanup; exit \$status" 0 1 2 3 15

  _cleanup()
  {
      rm -fr $send_files_dir
      rm -f $tmp.*
  }

  # get standard environment, filters and checks
  . ./common/rc
  . ./common/filter

  # real QA test starts here
  _supported_fs btrfs
  _supported_os Linux
  _require_scratch
  _need_to_be_root

  send_files_dir=$TEST_DIR/btrfs-test-$seq

  rm -f $seqres.full
  rm -fr $send_files_dir
  mkdir $send_files_dir

  _scratch_mkfs >>$seqres.full 2>&1
  _scratch_mount

  # Create our test file with a single extent of 64K.
  mkdir -p $SCRATCH_MNT/foo
  $XFS_IO_PROG -f -c "pwrite -S 0xaa 0 64K" $SCRATCH_MNT/foo/bar \
      | _filter_xfs_io

  _run_btrfs_util_prog subvolume snapshot -r $SCRATCH_MNT \
      $SCRATCH_MNT/mysnap1
  _run_btrfs_util_prog subvolume snapshot $SCRATCH_MNT \
      $SCRATCH_MNT/mysnap2

  echo "File digest before being replaced:"
  md5sum $SCRATCH_MNT/mysnap1/foo/bar | _filter_scratch

  # Remove the file and then create a new one in the same location with
  # the same name but with different content. This new file ends up
  # getting the same inode number as the previous one, because that inode
  # number was the highest inode number used by the snapshot's root and
  # therefore when attempting to find the a new inode number for the new
  # file, we end up reusing the same inode number. This happens because
  # currently btrfs uses the highest inode number summed by 1 for the
  # first inode created once a snapshot's root is loaded (done at
  # fs/btrfs/inode-map.c:btrfs_find_free_objectid in the linux kernel
  # tree).
  # Having these two different files in the snapshots with the same inode
  # number (but different generation numbers) caused the btrfs send code
  # to emit an incorrect path for the file when issuing an unlink
  # operation because it failed to realize they were different files.
  rm -f $SCRATCH_MNT/mysnap2/foo/bar
  $XFS_IO_PROG -f -c "pwrite -S 0xbb 0 96K" \
      $SCRATCH_MNT/mysnap2/foo/bar | _filter_xfs_io

  _run_btrfs_util_prog subvolume snapshot -r $SCRATCH_MNT/mysnap2 \
      $SCRATCH_MNT/mysnap2_ro

  _run_btrfs_util_prog send $SCRATCH_MNT/mysnap1 -f $send_files_dir/1.snap
  _run_btrfs_util_prog send -p $SCRATCH_MNT/mysnap1 \
      $SCRATCH_MNT/mysnap2_ro -f $send_files_dir/2.snap

  echo "File digest in the original filesystem after being replaced:"
  md5sum $SCRATCH_MNT/mysnap2_ro/foo/bar | _filter_scratch

  # Now recreate the filesystem by receiving both send streams and verify
  # we get the same file contents that the original filesystem had.
  _scratch_unmount
  _scratch_mkfs >>$seqres.full 2>&1
  _scratch_mount

  _run_btrfs_util_prog receive -vv $SCRATCH_MNT -f $send_files_dir/1.snap
  _run_btrfs_util_prog receive -vv $SCRATCH_MNT -f $send_files_dir/2.snap

  echo "File digest in the new filesystem:"
  # Must match the digest from the new file.
  md5sum $SCRATCH_MNT/mysnap2_ro/foo/bar | _filter_scratch

  status=0
  exit

Reported-by: Martin Raiber <martin@urbackup.org>
Fixes: 8b191a6849 ("Btrfs: incremental send, check if orphanized dir inode needs delayed rename")
Signed-off-by: Filipe Manana <fdmanana@suse.com>
2015-10-05 16:56:27 -07:00
Linus Torvalds 03e8f64486 Merge branch 'for-linus-4.3' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs
Pull btrfs fixes from Chris Mason:
 "This is an assorted set I've been queuing up:

  Jeff Mahoney tracked down a tricky one where we ended up starting IO
  on the wrong mapping for special files in btrfs_evict_inode.  A few
  people reported this one on the list.

  Filipe found (and provided a test for) a difficult bug in reading
  compressed extents, and Josef fixed up some quota record keeping with
  snapshot deletion.  Chandan killed off an accounting bug during DIO
  that lead to WARN_ONs as we freed inodes"

* 'for-linus-4.3' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
  Btrfs: keep dropped roots in cache until transaction commit
  Btrfs: Direct I/O: Fix space accounting
  btrfs: skip waiting on ordered range for special files
  Btrfs: fix read corruption of compressed and shared extents
  Btrfs: remove unnecessary locking of cleaner_mutex to avoid deadlock
  Btrfs: don't initialize a space info as full to prevent ENOSPC
2015-09-25 12:08:41 -07:00
Josef Bacik 2b9dbef272 Btrfs: keep dropped roots in cache until transaction commit
When dropping a snapshot we need to account for the qgroup changes.  If we drop
the snapshot in all one go then the backref code will fail to find blocks from
the snapshot we dropped since it won't be able to find the root in the fs root
cache.  This can lead to us failing to find refs from other roots that pointed
at blocks in the now deleted root.  To handle this we need to not remove the fs
roots from the cache until after we process the qgroup operations.  Do this by
adding dropped roots to a list on the transaction, and letting the transaction
remove the roots at the same time it drops the commit roots.  This will keep all
of the backref searching code in sync properly, and fixes a problem Mark was
seeing with snapshot delete and qgroups.  Thanks,

Signed-off-by: Josef Bacik <jbacik@fb.com>
Tested-by: Holger Hoffstätte <holger.hoffstaette@googlemail.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-09-22 10:22:56 -07:00
chandan 50745b0a7f Btrfs: Direct I/O: Fix space accounting
The following call trace is seen when generic/095 test is executed,

WARNING: CPU: 3 PID: 2769 at /home/chandan/code/repos/linux/fs/btrfs/inode.c:8967 btrfs_destroy_inode+0x284/0x2a0()
Modules linked in:
CPU: 3 PID: 2769 Comm: umount Not tainted 4.2.0-rc5+ #31
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.7.5-20150306_163512-brownie 04/01/2014
 ffffffff81c08150 ffff8802ec9cbce8 ffffffff81984058 ffff8802ffd8feb0
 0000000000000000 ffff8802ec9cbd28 ffffffff81050385 ffff8802ec9cbd38
 ffff8802d12f8588 ffff8802d12f8588 ffff8802f15ab000 ffff8800bb96c0b0
Call Trace:
 [<ffffffff81984058>] dump_stack+0x45/0x57
 [<ffffffff81050385>] warn_slowpath_common+0x85/0xc0
 [<ffffffff81050465>] warn_slowpath_null+0x15/0x20
 [<ffffffff81340294>] btrfs_destroy_inode+0x284/0x2a0
 [<ffffffff8117ce07>] destroy_inode+0x37/0x60
 [<ffffffff8117cf39>] evict+0x109/0x170
 [<ffffffff8117cfd5>] dispose_list+0x35/0x50
 [<ffffffff8117dd3a>] evict_inodes+0xaa/0x100
 [<ffffffff81165667>] generic_shutdown_super+0x47/0xf0
 [<ffffffff81165951>] kill_anon_super+0x11/0x20
 [<ffffffff81302093>] btrfs_kill_super+0x13/0x110
 [<ffffffff81165c99>] deactivate_locked_super+0x39/0x70
 [<ffffffff811660cf>] deactivate_super+0x5f/0x70
 [<ffffffff81180e1e>] cleanup_mnt+0x3e/0x90
 [<ffffffff81180ebd>] __cleanup_mnt+0xd/0x10
 [<ffffffff81069c06>] task_work_run+0x96/0xb0
 [<ffffffff81003a3d>] do_notify_resume+0x3d/0x50
 [<ffffffff8198cbc2>] int_signal+0x12/0x17

This means that the inode had non-zero "outstanding extents" during
eviction. This occurs because, during direct I/O a task which successfully
used up its reserved data space would set BTRFS_INODE_DIO_READY bit and does
not clear the bit after finishing the DIO write. A future DIO write could
actually fail and the unused reserve space won't be freed because of the
previously set BTRFS_INODE_DIO_READY bit.

Clearing the BTRFS_INODE_DIO_READY bit in btrfs_direct_IO() caused the
following issue,
|-----------------------------------+-------------------------------------|
| Task A                            | Task B                              |
|-----------------------------------+-------------------------------------|
| Start direct i/o write on inode X.|                                     |
| reserve space                     |                                     |
| Allocate ordered extent           |                                     |
| release reserved space            |                                     |
| Set BTRFS_INODE_DIO_READY bit.    |                                     |
|                                   | splice()                            |
|                                   | Transfer data from pipe buffer to   |
|                                   | destination file.                   |
|                                   | - kmap(pipe buffer page)            |
|                                   | - Start direct i/o write on         |
|                                   |   inode X.                          |
|                                   |   - reserve space                   |
|                                   |   - dio_refill_pages()              |
|                                   |     - sdio->blocks_available == 0   |
|                                   |     - Since a kernel address is     |
|                                   |       being passed instead of a     |
|                                   |       user space address,           |
|                                   |       iov_iter_get_pages() returns  |
|                                   |       -EFAULT.                      |
|                                   |   - Since BTRFS_INODE_DIO_READY is  |
|                                   |     set, we don't release reserved  |
|                                   |     space.                          |
|                                   |   - Clear BTRFS_INODE_DIO_READY bit.|
| -EIOCBQUEUED is returned.         |                                     |
|-----------------------------------+-------------------------------------|

Hence this commit introduces "struct btrfs_dio_data" to track the usage of
reserved data space. The remaining unused "reserve space" can now be freed
reliably.

Signed-off-by: Chandan Rajendra <chandan@linux.vnet.ibm.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-09-21 13:47:55 -07:00
Jeff Mahoney a30e577c96 btrfs: skip waiting on ordered range for special files
In btrfs_evict_inode, we properly truncate the page cache for evicted
inodes but then we call btrfs_wait_ordered_range for every inode as well.
It's the right thing to do for regular files but results in incorrect
behavior for device inodes for block devices.

filemap_fdatawrite_range gets called with inode->i_mapping which gets
resolved to the block device inode before getting passed to
wbc_attach_fdatawrite_inode and ultimately to inode_to_bdi.  What happens
next depends on whether there's an open file handle associated with the
inode.  If there is, we write to the block device, which is unexpected
behavior.  If there isn't, we through normally and inode->i_data is used.
We can also end up racing against open/close which can result in crashes
when i_mapping points to a block device inode that has been closed.

Since there can't be any page cache associated with special file inodes,
it's safe to skip the btrfs_wait_ordered_range call entirely and avoid
the problem.

Cc: <stable@vger.kernel.org>
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=100911
Tested-by: Christoph Biedl <linux-kernel.bfrz@manchmal.in-ulm.de>
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
2015-09-15 02:21:08 +01:00
Filipe Manana 005efedf2c Btrfs: fix read corruption of compressed and shared extents
If a file has a range pointing to a compressed extent, followed by
another range that points to the same compressed extent and a read
operation attempts to read both ranges (either completely or part of
them), the pages that correspond to the second range are incorrectly
filled with zeroes.

Consider the following example:

  File layout
  [0 - 8K]                      [8K - 24K]
      |                             |
      |                             |
   points to extent X,         points to extent X,
   offset 4K, length of 8K     offset 0, length 16K

  [extent X, compressed length = 4K uncompressed length = 16K]

If a readpages() call spans the 2 ranges, a single bio to read the extent
is submitted - extent_io.c:submit_extent_page() would only create a new
bio to cover the second range pointing to the extent if the extent it
points to had a different logical address than the extent associated with
the first range. This has a consequence of the compressed read end io
handler (compression.c:end_compressed_bio_read()) finish once the extent
is decompressed into the pages covering the first range, leaving the
remaining pages (belonging to the second range) filled with zeroes (done
by compression.c:btrfs_clear_biovec_end()).

So fix this by submitting the current bio whenever we find a range
pointing to a compressed extent that was preceded by a range with a
different extent map. This is the simplest solution for this corner
case. Making the end io callback populate both ranges (or more, if we
have multiple pointing to the same extent) is a much more complex
solution since each bio is tightly coupled with a single extent map and
the extent maps associated to the ranges pointing to the shared extent
can have different offsets and lengths.

The following test case for fstests triggers the issue:

  seq=`basename $0`
  seqres=$RESULT_DIR/$seq
  echo "QA output created by $seq"
  tmp=/tmp/$$
  status=1	# failure is the default!
  trap "_cleanup; exit \$status" 0 1 2 3 15

  _cleanup()
  {
      rm -f $tmp.*
  }

  # get standard environment, filters and checks
  . ./common/rc
  . ./common/filter

  # real QA test starts here
  _need_to_be_root
  _supported_fs btrfs
  _supported_os Linux
  _require_scratch
  _require_cloner

  rm -f $seqres.full

  test_clone_and_read_compressed_extent()
  {
      local mount_opts=$1

      _scratch_mkfs >>$seqres.full 2>&1
      _scratch_mount $mount_opts

      # Create a test file with a single extent that is compressed (the
      # data we write into it is highly compressible no matter which
      # compression algorithm is used, zlib or lzo).
      $XFS_IO_PROG -f -c "pwrite -S 0xaa 0K 4K"        \
                      -c "pwrite -S 0xbb 4K 8K"        \
                      -c "pwrite -S 0xcc 12K 4K"       \
                      $SCRATCH_MNT/foo | _filter_xfs_io

      # Now clone our extent into an adjacent offset.
      $CLONER_PROG -s $((4 * 1024)) -d $((16 * 1024)) -l $((8 * 1024)) \
          $SCRATCH_MNT/foo $SCRATCH_MNT/foo

      # Same as before but for this file we clone the extent into a lower
      # file offset.
      $XFS_IO_PROG -f -c "pwrite -S 0xaa 8K 4K"         \
                      -c "pwrite -S 0xbb 12K 8K"        \
                      -c "pwrite -S 0xcc 20K 4K"        \
                      $SCRATCH_MNT/bar | _filter_xfs_io

      $CLONER_PROG -s $((12 * 1024)) -d 0 -l $((8 * 1024)) \
          $SCRATCH_MNT/bar $SCRATCH_MNT/bar

      echo "File digests before unmounting filesystem:"
      md5sum $SCRATCH_MNT/foo | _filter_scratch
      md5sum $SCRATCH_MNT/bar | _filter_scratch

      # Evicting the inode or clearing the page cache before reading
      # again the file would also trigger the bug - reads were returning
      # all bytes in the range corresponding to the second reference to
      # the extent with a value of 0, but the correct data was persisted
      # (it was a bug exclusively in the read path). The issue happened
      # only if the same readpages() call targeted pages belonging to the
      # first and second ranges that point to the same compressed extent.
      _scratch_remount

      echo "File digests after mounting filesystem again:"
      # Must match the same digests we got before.
      md5sum $SCRATCH_MNT/foo | _filter_scratch
      md5sum $SCRATCH_MNT/bar | _filter_scratch
  }

  echo -e "\nTesting with zlib compression..."
  test_clone_and_read_compressed_extent "-o compress=zlib"

  _scratch_unmount

  echo -e "\nTesting with lzo compression..."
  test_clone_and_read_compressed_extent "-o compress=lzo"

  status=0
  exit

Cc: stable@vger.kernel.org
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Qu Wenruo<quwenruo@cn.fujitsu.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
2015-09-15 00:59:31 +01:00
Linus Torvalds e91eb6204f Merge branch 'for-linus-4.3' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs
Pull btrfs cleanups and fixes from Chris Mason:
 "These are small cleanups, and also some fixes for our async worker
  thread initialization.

  I was having some trouble testing these, but it ended up being a
  combination of changing around my test servers and a shiny new
  schedule while atomic from the new start/finish_plug in
  writeback_sb_inodes().

  That one only hits on btrfs raid5/6 or MD raid10, and if I wasn't
  changing a bunch of things in my test setup at once it would have been
  really clear.  Fix for writeback_sb_inodes() on the way as well"

* 'for-linus-4.3' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
  Btrfs: cleanup: remove unnecessary check before btrfs_free_path is called
  btrfs: async_thread: Fix workqueue 'max_active' value when initializing
  btrfs: Add raid56 support for updating  num_tolerated_disk_barrier_failures in btrfs_balance
  btrfs: Cleanup for btrfs_calc_num_tolerated_disk_barrier_failures
  btrfs: Remove noused chunk_tree and chunk_objectid from scrub_enumerate_chunks and scrub_chunk
  btrfs: Update out-of-date "skip parity stripe" comment
2015-09-11 12:38:25 -07:00
Filipe Manana 85e0a0f21a Btrfs: remove unnecessary locking of cleaner_mutex to avoid deadlock
After commmit e44163e177 ("btrfs: explictly delete unused block groups
in close_ctree and ro-remount"), added in the 4.3 merge window, we have
calls to btrfs_delete_unused_bgs() while holding the cleaner_mutex.
This can cause a deadlock with a concurrent block group relocation (when
a filesystem balance or shrink operation is in progress for example)
because btrfs_delete_unused_bgs() locks delete_unused_bgs_mutex and the
relocation path locks first delete_unused_bgs_mutex and then it locks
cleaner_mutex, resulting in a classic ABBA deadlock:

         CPU 0                                        CPU 1

lock fs_info->cleaner_mutex

                                           __btrfs_balance() || btrfs_shrink_device()
                                             lock fs_info->delete_unused_bgs_mutex
                                             btrfs_relocate_chunk()
                                               btrfs_relocate_block_group()
                                                 lock fs_info->cleaner_mutex
btrfs_delete_unused_bgs()
  lock fs_info->delete_unused_bgs_mutex

Fix this by not taking the cleaner_mutex before calling
btrfs_delete_unused_bgs() because it's no longer needed after
commit 67c5e7d464 ("Btrfs: fix race between balance and unused block
group deletion"). The mutex fs_info->delete_unused_bgs_mutex, the
spinlock fs_info->unused_bgs_lock and a block group's spinlock are
enough to get correct serialization between tasks running relocation
and unused block group deletion (as well as between multiple tasks
concurrently calling btrfs_delete_unused_bgs()).

This issue was discussed (in the mailing list) during the review of
the patch titled "btrfs: explictly delete unused block groups in
close_ctree and ro-remount" and it was agreed that acquiring the
cleaner mutex had to be dropped after the patch titled
"Btrfs: fix race between balance and unused block group deletion"
got merged (both patches were submitted at about the same time, but
one landed in kernel 4.2 and the other in the 4.3 merge window).

Signed-off-by: Filipe Manana <fdmanana@suse.com>
2015-09-10 11:27:57 +01:00
Filipe Manana 6af3e3adca Btrfs: don't initialize a space info as full to prevent ENOSPC
Commit 2e6e518335 ("Btrfs: fix block group ->space_info null pointer
dereference") accidently marked a space info as full when initializing
it with a value of 0 total bytes. This introduces an ENOSPC problem when
writing file data if we mount a filesystem that has no data block groups
allocated, because the data space info is initialized with 0 total bytes,
marked as full, and it never gets its total bytes incremented by a
(positive) value to unmark it as full (because there are no data block
groups loaded when the fs is mounted).
For metadata and system spaces this issue can never happen since we always
have at least one metadata block group and one system block group (even
for an empty filesystem).

So fix this by just not initializing a space info as full, reverting the
offending part of the commit mentioned above.

The following test case for fstests reproduces the issue:

  seq=`basename $0`
  seqres=$RESULT_DIR/$seq
  echo "QA output created by $seq"
  tmp=/tmp/$$
  status=1	# failure is the default!
  trap "_cleanup; exit \$status" 0 1 2 3 15

  _cleanup()
  {
      rm -f $tmp.*
  }

  # get standard environment, filters and checks
  . ./common/rc
  . ./common/filter

  # real QA test starts here
  _need_to_be_root
  _supported_fs btrfs
  _supported_os Linux
  _require_scratch

  rm -f $seqres.full

  _scratch_mkfs >>$seqres.full 2>&1

  # Mount our filesystem without space caches enabled so that we do not
  # get any space used from the initial data block group that mkfs creates
  # (space caches used space from data block groups).
  _scratch_mount "-o nospace_cache"

  # Need an fs with at least 2Gb to make sure mkfs.btrfs does not create
  # an fs using mixed block groups (used both for data and metadata). We
  # really need to have dedicated block groups for data to reproduce the
  # issue and mkfs.btrfs defaults to mixed block groups only for small
  # filesystems (up to 1Gb).
  _require_fs_space $SCRATCH_MNT $((2 * 1024 * 1024))

  # Run balance with the purpose of deleting the unused data block group
  # that mkfs created. We could also wait for the background kthread to
  # automatically delete the unused block group, but we do not have a way
  # to make it run and wait for it to complete, so just do a balance
  # instead of some unreliable sleep
  _run_btrfs_util_prog balance start -dusage=0 $SCRATCH_MNT

  # Now unmount the filesystem, mount it again (either with or with space
  # caches enabled, it does not matter to trigger the problem) and attempt
  # to create a file with some data - this used to fail with ENOSPC
  # because there were no data block groups when the filesystem was
  # mounted and the data space info object was marked as full when
  # initialized (because it had 0 total bytes), which prevented the file
  # write path from attempting to allocate a data block group and fail
  # immediately with ENOSPC.
  _scratch_remount
  echo "hello world" > $SCRATCH_MNT/foobar

  echo "Silence is golden"
  status=0
  exit

Signed-off-by: Filipe Manana <fdmanana@suse.com>
2015-09-08 03:25:10 +01:00
Linus Torvalds 7d9071a095 Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull vfs updates from Al Viro:
 "In this one:

   - d_move fixes (Eric Biederman)

   - UFS fixes (me; locking is mostly sane now, a bunch of bugs in error
     handling ought to be fixed)

   - switch of sb_writers to percpu rwsem (Oleg Nesterov)

   - superblock scalability (Josef Bacik and Dave Chinner)

   - swapon(2) race fix (Hugh Dickins)"

* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (65 commits)
  vfs: Test for and handle paths that are unreachable from their mnt_root
  dcache: Reduce the scope of i_lock in d_splice_alias
  dcache: Handle escaped paths in prepend_path
  mm: fix potential data race in SyS_swapon
  inode: don't softlockup when evicting inodes
  inode: rename i_wb_list to i_io_list
  sync: serialise per-superblock sync operations
  inode: convert inode_sb_list_lock to per-sb
  inode: add hlist_fake to avoid the inode hash lock in evict
  writeback: plug writeback at a high level
  change sb_writers to use percpu_rw_semaphore
  shift percpu_counter_destroy() into destroy_super_work()
  percpu-rwsem: kill CONFIG_PERCPU_RWSEM
  percpu-rwsem: introduce percpu_rwsem_release() and percpu_rwsem_acquire()
  percpu-rwsem: introduce percpu_down_read_trylock()
  document rwsem_release() in sb_wait_write()
  fix the broken lockdep logic in __sb_start_write()
  introduce __sb_writers_{acquired,release}() helpers
  ufs_inode_get{frag,block}(): get rid of 'phys' argument
  ufs_getfrag_block(): tidy up a bit
  ...
2015-09-05 20:34:28 -07:00
Linus Torvalds 22365979ab Merge branch 'for-linus-4.3' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs
Pull btrfs updates from Chris Mason:
 "This has Jeff Mahoney's long standing trim patch that fixes corners
  where trims were missing.  Omar has some raid5/6 fixes, especially for
  using scrub and device replace when devices are missing.

  Zhao Lie continues cleaning and fixing things, this series fixes some
  really hard to hit corners in xfstests.  I had to pull it last merge
  window due to some deadlocks, but those are now resolved.

  I added support for Tejun's new blkio controllers.  It seems to work
  well for single devices, we'll expand to multi-device as well"

* 'for-linus-4.3' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (47 commits)
  btrfs: fix compile when block cgroups are not enabled
  Btrfs: fix file read corruption after extent cloning and fsync
  Btrfs: check if previous transaction aborted to avoid fs corruption
  btrfs: use __GFP_NOFAIL in alloc_btrfs_bio
  btrfs: Prevent from early transaction abort
  btrfs: Remove unused arguments in tree-log.c
  btrfs: Remove useless condition in start_log_trans()
  Btrfs: add support for blkio controllers
  Btrfs: remove unused mutex from struct 'btrfs_fs_info'
  Btrfs: fix parity scrub of RAID 5/6 with missing device
  Btrfs: fix device replace of a missing RAID 5/6 device
  Btrfs: add RAID 5/6 BTRFS_RBIO_REBUILD_MISSING operation
  Btrfs: count devices correctly in readahead during RAID 5/6 replace
  Btrfs: remove misleading handling of missing device scrub
  btrfs: fix clone / extent-same deadlocks
  Btrfs: fix defrag to merge tail file extent
  Btrfs: fix warning in backref walking
  btrfs: Add WARN_ON() for double lock in btrfs_tree_lock()
  btrfs: Remove root argument in extent_data_ref_count()
  btrfs: Fix wrong comment of btrfs_alloc_tree_block()
  ...
2015-09-05 15:14:43 -07:00
Linus Torvalds 1081230b74 Merge branch 'for-4.3/core' of git://git.kernel.dk/linux-block
Pull core block updates from Jens Axboe:
 "This first core part of the block IO changes contains:

   - Cleanup of the bio IO error signaling from Christoph.  We used to
     rely on the uptodate bit and passing around of an error, now we
     store the error in the bio itself.

   - Improvement of the above from myself, by shrinking the bio size
     down again to fit in two cachelines on x86-64.

   - Revert of the max_hw_sectors cap removal from a revision again,
     from Jeff Moyer.  This caused performance regressions in various
     tests.  Reinstate the limit, bump it to a more reasonable size
     instead.

   - Make /sys/block/<dev>/queue/discard_max_bytes writeable, by me.
     Most devices have huge trim limits, which can cause nasty latencies
     when deleting files.  Enable the admin to configure the size down.
     We will look into having a more sane default instead of UINT_MAX
     sectors.

   - Improvement of the SGP gaps logic from Keith Busch.

   - Enable the block core to handle arbitrarily sized bios, which
     enables a nice simplification of bio_add_page() (which is an IO hot
     path).  From Kent.

   - Improvements to the partition io stats accounting, making it
     faster.  From Ming Lei.

   - Also from Ming Lei, a basic fixup for overflow of the sysfs pending
     file in blk-mq, as well as a fix for a blk-mq timeout race
     condition.

   - Ming Lin has been carrying Kents above mentioned patches forward
     for a while, and testing them.  Ming also did a few fixes around
     that.

   - Sasha Levin found and fixed a use-after-free problem introduced by
     the bio->bi_error changes from Christoph.

   - Small blk cgroup cleanup from Viresh Kumar"

* 'for-4.3/core' of git://git.kernel.dk/linux-block: (26 commits)
  blk: Fix bio_io_vec index when checking bvec gaps
  block: Replace SG_GAPS with new queue limits mask
  block: bump BLK_DEF_MAX_SECTORS to 2560
  Revert "block: remove artifical max_hw_sectors cap"
  blk-mq: fix race between timeout and freeing request
  blk-mq: fix buffer overflow when reading sysfs file of 'pending'
  Documentation: update notes in biovecs about arbitrarily sized bios
  block: remove bio_get_nr_vecs()
  fs: use helper bio_add_page() instead of open coding on bi_io_vec
  block: kill merge_bvec_fn() completely
  md/raid5: get rid of bio_fits_rdev()
  md/raid5: split bio for chunk_aligned_read
  block: remove split code in blkdev_issue_{discard,write_same}
  btrfs: remove bio splitting and merge_bvec_fn() calls
  bcache: remove driver private bio splitting code
  block: simplify bio_add_page()
  block: make generic_make_request handle arbitrarily sized bios
  blk-cgroup: Drop unlikely before IS_ERR(_OR_NULL)
  block: don't access bio->bi_error after bio_put()
  block: shrink struct bio down to 2 cache lines again
  ...
2015-09-02 13:10:25 -07:00
Linus Torvalds 089b669506 Merge branch 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial
Pull trivial tree updates from Jiri Kosina:
 "The usual stuff from trivial tree for 4.3 (kerneldoc updates, printk()
  fixes, Documentation and MAINTAINERS updates)"

* 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial: (28 commits)
  MAINTAINERS: update my e-mail address
  mod_devicetable: add space before */
  scsi: a100u2w: trivial typo in printk
  i2c: Fix typo in i2c-bfin-twi.c
  treewide: fix typos in comment blocks
  Doc: fix trivial typo in SubmittingPatches
  proportions: Spelling s/consitent/consistent/
  dm: Spelling s/consitent/consistent/
  aic7xxx: Fix typo in error message
  pcmcia: Fix typo in locking documentation
  scsi/arcmsr: Fix typos in error log
  drm/nouveau/gr: Fix typo in nv10.c
  [SCSI] Fix printk typos in drivers/scsi
  staging: comedi: Grammar s/Enable support a/Enable support for a/
  Btrfs: Spelling s/consitent/consistent/
  README: GTK+ is a acronym
  ASoC: omap: Fix typo in config option description
  mm: tlb.c: Fix error message
  ntfs: super.c: Fix error log
  fix typo in Documentation/SubmittingPatches
  ...
2015-09-01 18:46:42 -07:00
Tsutomu Itoh 527afb4493 Btrfs: cleanup: remove unnecessary check before btrfs_free_path is called
We need not check path before btrfs_free_path() is called because
path is checked in btrfs_free_path().

Signed-off-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com>
Reviewed-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-08-31 11:46:41 -07:00
Qu Wenruo c6dd6ea557 btrfs: async_thread: Fix workqueue 'max_active' value when initializing
At initializing time, for threshold-able workqueue, it's max_active
of kernel workqueue should be 1 and grow if it hits threshold.

But due to the bad naming, there is both 'max_active' for kernel
workqueue and btrfs workqueue.
So wrong value is given at workqueue initialization.

This patch fixes it, and to avoid further misunderstanding, change the
member name of btrfs_workqueue to 'current_active' and 'limit_active'.

Also corresponding comment is added for readability.

Reported-by: Alex Lyakas <alex.btrfs@zadarastorage.com>
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-08-31 11:46:40 -07:00
Zhao Lei 943c6e9925 btrfs: Add raid56 support for updating
num_tolerated_disk_barrier_failures in btrfs_balance

Code for updating fs_info->num_tolerated_disk_barrier_failures in
btrfs_balance() lacks raid56 support.

Reason:
 Above code was wroten in 2012-08-01, together with
 btrfs_calc_num_tolerated_disk_barrier_failures()'s first version.

 Then, btrfs_calc_num_tolerated_disk_barrier_failures() got updated
 later to support raid56, but code in btrfs_balance() was not
 updated together.

Fix:
 Merge above similar code to a common function:
 btrfs_get_num_tolerated_disk_barrier_failures()
 and make it support both case.

 It can fix this bug with a bonus of cleanup, and make these code
 never in above no-sync state from now on.

Suggested-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-08-31 11:45:48 -07:00
Zhao Lei 2c4580454f btrfs: Cleanup for btrfs_calc_num_tolerated_disk_barrier_failures
1: Use ARRAY_SIZE(types) to replace a static-value variant:
   int num_types = 4;

2: Use 'continue' on condition to reduce one level tab
   if (!XXX) {
       code;
       ...
   }
   ->
   if (XXX)
       continue;
   code;
   ...

3: Put setting 'num_tolerated_disk_barrier_failures = 2' to
   (num_tolerated_disk_barrier_failures > 2) condition to make
   make logic neat.
   if (num_tolerated_disk_barrier_failures > 0 && XXX)
       num_tolerated_disk_barrier_failures = 0;
   else if (num_tolerated_disk_barrier_failures > 1) {
       if (XXX)
           num_tolerated_disk_barrier_failures = 1;
       else if (XXX)
           num_tolerated_disk_barrier_failures = 2;
   ->
   if (num_tolerated_disk_barrier_failures > 0 && XXX)
       num_tolerated_disk_barrier_failures = 0;
   if (num_tolerated_disk_barrier_failures > 1 && XXX)
       num_tolerated_disk_barrier_failures = ;
   if (num_tolerated_disk_barrier_failures > 2 && XXX)
       num_tolerated_disk_barrier_failures = 2;

4: Remove comment of:
   num_mirrors - 1: if RAID1 or RAID10 is configured and more
   than 2 mirrors are used.
   which is not fit with code.

Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-08-31 11:45:47 -07:00
Zhao Lei 8c204c9657 btrfs: Remove noused chunk_tree and chunk_objectid from scrub_enumerate_chunks and scrub_chunk
These variables are not used from introduced version, remove them.

Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-08-31 11:45:46 -07:00
Zhao Lei 7955323bdc btrfs: Update out-of-date "skip parity stripe" comment
Because btrfs support scrub raid56 parity stripe now.

Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-08-31 11:45:45 -07:00
Chris Mason 3a9508b022 btrfs: fix compile when block cgroups are not enabled
bio->bi_css and bio->bi_ioc don't exist when block cgroups are not on.
This adds an ifdef around them.  It's not perfect, but our
use of bi_ioc is being removed in the 4.3 merge window.

The bi_css usage really should go into bio_clone, but I want to make
sure that doesn't introduce problems for other bio_clone use cases.

Signed-off-by: Chris Mason <clm@fb.com>
2015-08-21 10:08:13 -07:00
Filipe Manana b84b8390d6 Btrfs: fix file read corruption after extent cloning and fsync
If we partially clone one extent of a file into a lower offset of the
file, fsync the file, power fail and then mount the fs to trigger log
replay, we can get multiple checksum items in the csum tree that overlap
each other and result in checksum lookup failures later. Those failures
can make file data read requests assume a checksum value of 0, but they
will not return an error (-EIO for example) to userspace exactly because
the expected checksum value 0 is a special value that makes the read bio
endio callback return success and set all the bytes of the corresponding
page with the value 0x01 (at fs/btrfs/inode.c:__readpage_endio_check()).
From a userspace perspective this is equivalent to file corruption
because we are not returning what was written to the file.

Details about how this can happen, and why, are included inline in the
following reproducer test case for fstests and the comment added to
tree-log.c.

  seq=`basename $0`
  seqres=$RESULT_DIR/$seq
  echo "QA output created by $seq"
  tmp=/tmp/$$
  status=1	# failure is the default!
  trap "_cleanup; exit \$status" 0 1 2 3 15

  _cleanup()
  {
      _cleanup_flakey
      rm -f $tmp.*
  }

  # get standard environment, filters and checks
  . ./common/rc
  . ./common/filter
  . ./common/dmflakey

  # real QA test starts here
  _need_to_be_root
  _supported_fs btrfs
  _supported_os Linux
  _require_scratch
  _require_dm_flakey
  _require_cloner
  _require_metadata_journaling $SCRATCH_DEV

  rm -f $seqres.full

  _scratch_mkfs >>$seqres.full 2>&1
  _init_flakey
  _mount_flakey

  # Create our test file with a single 100K extent starting at file
  # offset 800K. We fsync the file here to make the fsync log tree gets
  # a single csum item that covers the whole 100K extent, which causes
  # the second fsync, done after the cloning operation below, to not
  # leave in the log tree two csum items covering two sub-ranges
  # ([0, 20K[ and [20K, 100K[)) of our extent.
  $XFS_IO_PROG -f -c "pwrite -S 0xaa 800K 100K"  \
                  -c "fsync"                     \
                   $SCRATCH_MNT/foo | _filter_xfs_io

  # Now clone part of our extent into file offset 400K. This adds a file
  # extent item to our inode's metadata that points to the 100K extent
  # we created before, using a data offset of 20K and a data length of
  # 20K, so that it refers to the sub-range [20K, 40K[ of our original
  # extent.
  $CLONER_PROG -s $((800 * 1024 + 20 * 1024)) -d $((400 * 1024)) \
      -l $((20 * 1024)) $SCRATCH_MNT/foo $SCRATCH_MNT/foo

  # Now fsync our file to make sure the extent cloning is durably
  # persisted. This fsync will not add a second csum item to the log
  # tree containing the checksums for the blocks in the sub-range
  # [20K, 40K[ of our extent, because there was already a csum item in
  # the log tree covering the whole extent, added by the first fsync
  # we did before.
  $XFS_IO_PROG -c "fsync" $SCRATCH_MNT/foo

  echo "File digest before power failure:"
  md5sum $SCRATCH_MNT/foo | _filter_scratch

  # Silently drop all writes and ummount to simulate a crash/power
  # failure.
  _load_flakey_table $FLAKEY_DROP_WRITES
  _unmount_flakey

  # Allow writes again, mount to trigger log replay and validate file
  # contents.
  # The fsync log replay first processes the file extent item
  # corresponding to the file offset 400K (the one which refers to the
  # [20K, 40K[ sub-range of our 100K extent) and then processes the file
  # extent item for file offset 800K. It used to happen that when
  # processing the later, it erroneously left in the csum tree 2 csum
  # items that overlapped each other, 1 for the sub-range [20K, 40K[ and
  # 1 for the whole range of our extent. This introduced a problem where
  # subsequent lookups for the checksums of blocks within the range
  # [40K, 100K[ of our extent would not find anything because lookups in
  # the csum tree ended up looking only at the smaller csum item, the
  # one covering the subrange [20K, 40K[. This made read requests assume
  # an expected checksum with a value of 0 for those blocks, which caused
  # checksum verification failure when the read operations finished.
  # However those checksum failure did not result in read requests
  # returning an error to user space (like -EIO for e.g.) because the
  # expected checksum value had the special value 0, and in that case
  # btrfs set all bytes of the corresponding pages with the value 0x01
  # and produce the following warning in dmesg/syslog:
  #
  #  "BTRFS warning (device dm-0): csum failed ino 257 off 917504 csum\
  #   1322675045 expected csum 0"
  #
  _load_flakey_table $FLAKEY_ALLOW_WRITES
  _mount_flakey

  echo "File digest after log replay:"
  # Must match the same digest he had after cloning the extent and
  # before the power failure happened.
  md5sum $SCRATCH_MNT/foo | _filter_scratch

  _unmount_flakey

  status=0
  exit

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-08-19 14:27:46 -07:00
Filipe Manana 1f9b8c8fbc Btrfs: check if previous transaction aborted to avoid fs corruption
While we are committing a transaction, it's possible the previous one is
still finishing its commit and therefore we wait for it to finish first.
However we were not checking if that previous transaction ended up getting
aborted after we waited for it to commit, so we ended up committing the
current transaction which can lead to fs corruption because the new
superblock can point to trees that have had one or more nodes/leafs that
were never durably persisted.
The following sequence diagram exemplifies how this is possible:

          CPU 0                                                        CPU 1

  transaction N starts

  (...)

  btrfs_commit_transaction(N)

    cur_trans->state = TRANS_STATE_COMMIT_START;
    (...)
    cur_trans->state = TRANS_STATE_COMMIT_DOING;
    (...)

    cur_trans->state = TRANS_STATE_UNBLOCKED;
    root->fs_info->running_transaction = NULL;

                                                              btrfs_start_transaction()
                                                                 --> starts transaction N + 1

    btrfs_write_and_wait_transaction(trans, root);
      --> starts writing all new or COWed ebs created
          at transaction N

                                                              creates some new ebs, COWs some
                                                              existing ebs but doesn't COW or
                                                              deletes eb X

                                                              btrfs_commit_transaction(N + 1)
                                                                (...)
                                                                cur_trans->state = TRANS_STATE_COMMIT_START;
                                                                (...)
                                                                wait_for_commit(root, prev_trans);
                                                                  --> prev_trans == transaction N

    btrfs_write_and_wait_transaction() continues
    writing ebs
       --> fails writing eb X, we abort transaction N
           and set bit BTRFS_FS_STATE_ERROR on
           fs_info->fs_state, so no new transactions
           can start after setting that bit

       cleanup_transaction()
         btrfs_cleanup_one_transaction()
           wakes up task at CPU 1

                                                                continues, doesn't abort because
                                                                cur_trans->aborted (transaction N + 1)
                                                                is zero, and no checks for bit
                                                                BTRFS_FS_STATE_ERROR in fs_info->fs_state
                                                                are made

                                                                btrfs_write_and_wait_transaction(trans, root);
                                                                  --> succeeds, no errors during writeback

                                                                write_ctree_super(trans, root, 0);
                                                                  --> succeeds
                                                                  --> we have now a superblock that points us
                                                                      to some root that uses eb X, which was
                                                                      never written to disk

In this scenario future attempts to read eb X from disk results in an
error message like "parent transid verify failed on X wanted Y found Z".

So fix this by aborting the current transaction if after waiting for the
previous transaction we verify that it was aborted.

Cc: stable@vger.kernel.org
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Josef Bacik <jbacik@fb.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-08-19 14:27:31 -07:00
Michal Hocko 277fb5fc17 btrfs: use __GFP_NOFAIL in alloc_btrfs_bio
alloc_btrfs_bio relies on GFP_NOFS allocation when committing the
transaction but this allocation context is rather weak wrt. reclaim
capabilities. The page allocator currently tries hard to not fail these
allocations if they are small (<=PAGE_ALLOC_COSTLY_ORDER) but it can
still fail if the _current_ process is the OOM killer victim. Moreover
there is an attempt to move away from the default no-fail behavior and
allow these allocation to fail more eagerly. This would lead to:

[   37.928625] kernel BUG at fs/btrfs/extent_io.c:4045

which is clearly undesirable and the nofail behavior should be explicit
if the allocation failure cannot be tolerated.

Signed-off-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-08-19 14:25:15 -07:00
Michal Hocko d1b5c5671d btrfs: Prevent from early transaction abort
Btrfs relies on GFP_NOFS allocation when committing the transaction but
this allocation context is rather weak wrt. reclaim capabilities. The
page allocator currently tries hard to not fail these allocations if
they are small (<=PAGE_ALLOC_COSTLY_ORDER) so this is not a problem
currently but there is an attempt to move away from the default no-fail
behavior and allow these allocation to fail more eagerly. And this would
lead to a pre-mature transaction abort as follows:

[   55.328093] Call Trace:
[   55.328890]  [<ffffffff8154e6f0>] dump_stack+0x4f/0x7b
[   55.330518]  [<ffffffff8108fa28>] ? console_unlock+0x334/0x363
[   55.332738]  [<ffffffff8110873e>] __alloc_pages_nodemask+0x81d/0x8d4
[   55.334910]  [<ffffffff81100752>] pagecache_get_page+0x10e/0x20c
[   55.336844]  [<ffffffffa007d916>] alloc_extent_buffer+0xd0/0x350 [btrfs]
[   55.338973]  [<ffffffffa0059d8c>] btrfs_find_create_tree_block+0x15/0x17 [btrfs]
[   55.341329]  [<ffffffffa004f728>] btrfs_alloc_tree_block+0x18c/0x405 [btrfs]
[   55.343566]  [<ffffffffa003fa34>] split_leaf+0x1e4/0x6a6 [btrfs]
[   55.345577]  [<ffffffffa0040567>] btrfs_search_slot+0x671/0x831 [btrfs]
[   55.347679]  [<ffffffff810682d7>] ? get_parent_ip+0xe/0x3e
[   55.349434]  [<ffffffffa0041cb2>] btrfs_insert_empty_items+0x5d/0xa8 [btrfs]
[   55.351681]  [<ffffffffa004ecfb>] __btrfs_run_delayed_refs+0x7a6/0xf35 [btrfs]
[   55.353979]  [<ffffffffa00512ea>] btrfs_run_delayed_refs+0x6e/0x226 [btrfs]
[   55.356212]  [<ffffffffa0060e21>] ? start_transaction+0x192/0x534 [btrfs]
[   55.358378]  [<ffffffffa0060e21>] ? start_transaction+0x192/0x534 [btrfs]
[   55.360626]  [<ffffffffa0060221>] btrfs_commit_transaction+0x4c/0xaba [btrfs]
[   55.362894]  [<ffffffffa0060e21>] ? start_transaction+0x192/0x534 [btrfs]
[   55.365221]  [<ffffffffa0073428>] btrfs_sync_file+0x29c/0x310 [btrfs]
[   55.367273]  [<ffffffff81186808>] vfs_fsync_range+0x8f/0x9e
[   55.369047]  [<ffffffff81186833>] vfs_fsync+0x1c/0x1e
[   55.370654]  [<ffffffff81186869>] do_fsync+0x34/0x4e
[   55.372246]  [<ffffffff81186ab3>] SyS_fsync+0x10/0x14
[   55.373851]  [<ffffffff81554f97>] system_call_fastpath+0x12/0x6f
[   55.381070] BTRFS: error (device hdb1) in btrfs_run_delayed_refs:2821: errno=-12 Out of memory
[   55.382431] BTRFS warning (device hdb1): Skipping commit of aborted transaction.
[   55.382433] BTRFS warning (device hdb1): cleanup_transaction:1692: Aborting unused transaction(IO failure).
[   55.384280] ------------[ cut here ]------------
[   55.384312] WARNING: CPU: 0 PID: 3010 at fs/btrfs/delayed-ref.c:438 btrfs_select_ref_head+0xd9/0xfe [btrfs]()
[...]
[   55.384337] Call Trace:
[   55.384353]  [<ffffffff8154e6f0>] dump_stack+0x4f/0x7b
[   55.384357]  [<ffffffff8107f717>] ? down_trylock+0x2d/0x37
[   55.384359]  [<ffffffff81046977>] warn_slowpath_common+0xa1/0xbb
[   55.384398]  [<ffffffffa00a1d6b>] ? btrfs_select_ref_head+0xd9/0xfe [btrfs]
[   55.384400]  [<ffffffff81046a34>] warn_slowpath_null+0x1a/0x1c
[   55.384423]  [<ffffffffa00a1d6b>] btrfs_select_ref_head+0xd9/0xfe [btrfs]
[   55.384446]  [<ffffffffa004e5f7>] ? __btrfs_run_delayed_refs+0xa2/0xf35 [btrfs]
[   55.384455]  [<ffffffffa004e600>] __btrfs_run_delayed_refs+0xab/0xf35 [btrfs]
[   55.384476]  [<ffffffffa00512ea>] btrfs_run_delayed_refs+0x6e/0x226 [btrfs]
[   55.384499]  [<ffffffffa0060e21>] ? start_transaction+0x192/0x534 [btrfs]
[   55.384521]  [<ffffffffa0060e21>] ? start_transaction+0x192/0x534 [btrfs]
[   55.384543]  [<ffffffffa0060221>] btrfs_commit_transaction+0x4c/0xaba [btrfs]
[   55.384565]  [<ffffffffa0060e21>] ? start_transaction+0x192/0x534 [btrfs]
[   55.384588]  [<ffffffffa0073428>] btrfs_sync_file+0x29c/0x310 [btrfs]
[   55.384591]  [<ffffffff81186808>] vfs_fsync_range+0x8f/0x9e
[   55.384592]  [<ffffffff81186833>] vfs_fsync+0x1c/0x1e
[   55.384593]  [<ffffffff81186869>] do_fsync+0x34/0x4e
[   55.384594]  [<ffffffff81186ab3>] SyS_fsync+0x10/0x14
[   55.384595]  [<ffffffff81554f97>] system_call_fastpath+0x12/0x6f
[...]
[   55.384608] ---[ end trace c29799da1d4dd621 ]---
[   55.437323] BTRFS info (device hdb1): forced readonly
[   55.438815] BTRFS info (device hdb1): delayed_refs has NO entry

Fix this by being explicit about the no-fail behavior of this allocation
path and use __GFP_NOFAIL.

Signed-off-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-08-19 14:25:15 -07:00
Zhaolei 60d53eb310 btrfs: Remove unused arguments in tree-log.c
Following arguments are not used in tree-log.c:
 insert_one_name(): path, type
 wait_log_commit(): trans
 wait_for_writer(): trans

This patch remove them.

Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-08-19 14:25:15 -07:00
Zhaolei 34eb2a5249 btrfs: Remove useless condition in start_log_trans()
Dan Carpenter <dan.carpenter@oracle.com> reported a smatch warning
for start_log_trans():
 fs/btrfs/tree-log.c:178 start_log_trans()
 warn: we tested 'root->log_root' before and it was 'false'

 fs/btrfs/tree-log.c
 147          if (root->log_root) {
 We test "root->log_root" here.
 ...

Reason:
 Condition of:
 fs/btrfs/tree-log.c:178: if (!root->log_root) {
 is not necessary after commit: 7237f1833

 It caused a smatch warning, and no functionally error.

Fix:
 Deleting above condition will make smatch shut up,
 but a better way is to do cleanup for start_log_trans()
 to remove duplicated code and make code more readable.

Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-08-19 14:24:49 -07:00
Oleg Nesterov bee9182d95 introduce __sb_writers_{acquired,release}() helpers
Preparation to hide the sb->s_writers internals from xfs and btrfs.
Add 2 trivial define's they can use rather than play with ->s_writers
directly. No changes in btrfs/transaction.o and xfs/xfs_aops.o.

Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Reviewed-by: Jan Kara <jack@suse.com>
2015-08-15 13:52:08 +02:00
Kent Overstreet b54ffb73ca block: remove bio_get_nr_vecs()
We can always fill up the bio now, no need to estimate the possible
size based on queue parameters.

Acked-by: Steven Whitehouse <swhiteho@redhat.com>
Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
[hch: rebased and wrote a changelog]
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ming Lin <ming.l@ssi.samsung.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
2015-08-13 12:32:04 -06:00
Kent Overstreet 0e28997ec4 btrfs: remove bio splitting and merge_bvec_fn() calls
Btrfs has been doing bio splitting from btrfs_map_bio(), by checking
device limits as well as calling ->merge_bvec_fn() etc. That is not
necessary any more, because generic_make_request() is now able to
handle arbitrarily sized bios. So clean up unnecessary code paths.

Cc: Chris Mason <clm@fb.com>
Cc: Josef Bacik <jbacik@fb.com>
Cc: linux-btrfs@vger.kernel.org
Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com>
Signed-off-by: Chris Mason <clm@fb.com>
[dpark: add more description in commit message]
Signed-off-by: Dongsu Park <dpark@posteo.net>
Signed-off-by: Ming Lin <ming.l@ssi.samsung.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
2015-08-13 12:31:43 -06:00
Greg Kroah-Hartman 5d44f4b348 Merge 4.2-rc6 into char-misc-next
We want the fixes in Linus's tree in here as well.

Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-08-09 16:28:09 -07:00
Chris Mason 46cd28555f Merge branch 'jeffm-discard-4.3' into for-linus-4.3 2015-08-09 07:35:33 -07:00
Chris Mason da2f0f74cf Btrfs: add support for blkio controllers
This attaches accounting information to bios as we submit them so the
new blkio controllers can throttle on btrfs filesystems.

Not much is required, we're just associating bios with blkcgs during clone,
calling wbc_init_bio()/wbc_account_io() during writepages submission,
and attaching the bios to the current context during direct IO.

Finally if we are splitting bios during btrfs_map_bio, this attaches
accounting information to the split.

The end result is able to throttle nicely on single disk filesystems.  A
little more work is required for multi-device filesystems.

Signed-off-by: Chris Mason <clm@fb.com>
2015-08-09 07:35:06 -07:00
Byongho Lee a4027a20c5 Btrfs: remove unused mutex from struct 'btrfs_fs_info'
The code using 'ordered_extent_flush_mutex' mutex has removed by below
commit.
 - 8d875f95da
   btrfs: disable strict file flushes for renames and truncates
But the mutex still lives in struct 'btrfs_fs_info'.

So, this patch removes the mutex from struct 'btrfs_fs_info' and its
initialization code.

Signed-off-by: Byongho Lee <bhlee.kernel@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-08-09 07:34:27 -07:00
Omar Sandoval 4a770891d9 Btrfs: fix parity scrub of RAID 5/6 with missing device
When testing the previous patch, Zhao Lei reported a similar bug when
attempting to scrub a degraded RAID 5/6 filesystem with a missing
device, leading to NULL pointer dereferences from the RAID 5/6 parity
scrubbing code.

The first cause was the same as in the previous patch: attempting to
call bio_add_page() on a missing block device. To fix this,
scrub_extent_for_parity() can just mark the sectors on the missing
device as errors instead of attempting to read from it.

Additionally, the code uses scrub_remap_extent() to map the extent of
the corresponding data stripe, but the extent wasn't already mapped. If
scrub_remap_extent() finds a missing block device, it doesn't initialize
extent_dev, so we're left with a NULL struct btrfs_device. The solution
is to use btrfs_map_block() directly.

Reported-by: Zhao Lei <zhaolei@cn.fujitsu.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-08-09 07:34:26 -07:00
Omar Sandoval 73ff61dbe5 Btrfs: fix device replace of a missing RAID 5/6 device
The original implementation of device replace on RAID 5/6 seems to have
missed support for replacing a missing device. When this is attempted,
we end up calling bio_add_page() on a bio with a NULL ->bi_bdev, which
crashes when we try to dereference it. This happens because
btrfs_map_block() has no choice but to return us the missing device
because RAID 5/6 don't have any alternate mirrors to read from, and a
missing device has a NULL bdev.

The idea implemented here is to handle the missing device case
separately, which better only happen when we're replacing a missing RAID
5/6 device. We use the new BTRFS_RBIO_REBUILD_MISSING operation to
reconstruct the data from parity, check it with
scrub_recheck_block_checksum(), and write it out with
scrub_write_block_to_dev_replace().

Reported-by: Philip <bugzilla@philip-seeger.de>
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=96141
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-08-09 07:34:26 -07:00
Omar Sandoval b4ee178268 Btrfs: add RAID 5/6 BTRFS_RBIO_REBUILD_MISSING operation
The current RAID 5/6 recovery code isn't quite prepared to handle
missing devices. In particular, it expects a bio that we previously
attempted to use in the read path, meaning that it has valid pages
allocated. However, missing devices have a NULL blkdev, and we can't
call bio_add_page() on a bio with a NULL blkdev. We could do manual
manipulation of bio->bi_io_vec, but that's pretty gross. So instead, add
a separate path that allows us to manually add pages to the rbio.

Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: Chris Mason <clm@fb.com>
2015-08-09 07:34:26 -07:00