Waiman Long reported that 24TB machines hit OOM during basic setup when
struct page initialisation was deferred. One approach is to initialise
memory on demand but it interferes with page allocator paths. This patch
creates dedicated threads to initialise memory before basic setup. It
then blocks on a rw_semaphore until completion as a wait_queue and counter
is overkill. This may be slower to boot but it's simplier overall and
also gets rid of a section mangling which existed so kswapd could do the
initialisation.
[akpm@linux-foundation.org: include rwsem.h, use DECLARE_RWSEM, fix comment, remove unneeded cast]
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: Waiman Long <waiman.long@hp.com
Cc: Nathan Zimmer <nzimmer@sgi.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Scott Norton <scott.norton@hp.com>
Tested-by: Daniel J Blueman <daniel@numascale.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mminit_verify_page_links() is an extremely paranoid check that was
introduced when memory initialisation was being heavily reworked.
Profiles indicated that up to 10% of parallel memory initialisation was
spent on checking this for every page. The cost could be reduced but in
practice this check only found problems very early during the
initialisation rewrite and has found nothing since. This patch removes an
expensive unnecessary check.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Tested-by: Nate Zimmer <nzimmer@sgi.com>
Tested-by: Waiman Long <waiman.long@hp.com>
Tested-by: Daniel J Blueman <daniel@numascale.com>
Acked-by: Pekka Enberg <penberg@kernel.org>
Cc: Robin Holt <robinmholt@gmail.com>
Cc: Nate Zimmer <nzimmer@sgi.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Waiman Long <waiman.long@hp.com>
Cc: Scott Norton <scott.norton@hp.com>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Only a subset of struct pages are initialised at the moment. When this
patch is applied kswapd initialise the remaining struct pages in parallel.
This should boot faster by spreading the work to multiple CPUs and
initialising data that is local to the CPU. The user-visible effect on
large machines is that free memory will appear to rapidly increase early
in the lifetime of the system until kswapd reports that all memory is
initialised in the kernel log. Once initialised there should be no other
user-visibile effects.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Tested-by: Nate Zimmer <nzimmer@sgi.com>
Tested-by: Waiman Long <waiman.long@hp.com>
Tested-by: Daniel J Blueman <daniel@numascale.com>
Acked-by: Pekka Enberg <penberg@kernel.org>
Cc: Robin Holt <robinmholt@gmail.com>
Cc: Nate Zimmer <nzimmer@sgi.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Waiman Long <waiman.long@hp.com>
Cc: Scott Norton <scott.norton@hp.com>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch initalises all low memory struct pages and 2G of the highest
zone on each node during memory initialisation if
CONFIG_DEFERRED_STRUCT_PAGE_INIT is set. That config option cannot be set
but will be available in a later patch. Parallel initialisation of struct
page depends on some features from memory hotplug and it is necessary to
alter alter section annotations.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Tested-by: Nate Zimmer <nzimmer@sgi.com>
Tested-by: Waiman Long <waiman.long@hp.com>
Tested-by: Daniel J Blueman <daniel@numascale.com>
Acked-by: Pekka Enberg <penberg@kernel.org>
Cc: Robin Holt <robinmholt@gmail.com>
Cc: Nate Zimmer <nzimmer@sgi.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Waiman Long <waiman.long@hp.com>
Cc: Scott Norton <scott.norton@hp.com>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
__free_pages_bootmem prepares a page for release to the buddy allocator
and assumes that the struct page is initialised. Parallel initialisation
of struct pages defers initialisation and __free_pages_bootmem can be
called for struct pages that cannot yet map struct page to PFN. This
patch passes PFN to __free_pages_bootmem with no other functional change.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Tested-by: Nate Zimmer <nzimmer@sgi.com>
Tested-by: Waiman Long <waiman.long@hp.com>
Tested-by: Daniel J Blueman <daniel@numascale.com>
Acked-by: Pekka Enberg <penberg@kernel.org>
Cc: Robin Holt <robinmholt@gmail.com>
Cc: Nate Zimmer <nzimmer@sgi.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Waiman Long <waiman.long@hp.com>
Cc: Scott Norton <scott.norton@hp.com>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We converted some of the usages of ACCESS_ONCE to READ_ONCE in the mm/
tree since it doesn't work reliably on non-scalar types.
This patch removes the rest of the usages of ACCESS_ONCE, and use the new
READ_ONCE API for the read accesses. This makes things cleaner, instead
of using separate/multiple sets of APIs.
Signed-off-by: Jason Low <jason.low2@hp.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Davidlohr Bueso <dave@stgolabs.net>
Acked-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Compaction has anti fragmentation algorithm. It is that freepage should
be more than pageblock order to finish the compaction if we don't find any
freepage in requested migratetype buddy list. This is for mitigating
fragmentation, but, there is a lack of migratetype consideration and it is
too excessive compared to page allocator's anti fragmentation algorithm.
Not considering migratetype would cause premature finish of compaction.
For example, if allocation request is for unmovable migratetype, freepage
with CMA migratetype doesn't help that allocation and compaction should
not be stopped. But, current logic regards this situation as compaction
is no longer needed, so finish the compaction.
Secondly, condition is too excessive compared to page allocator's logic.
We can steal freepage from other migratetype and change pageblock
migratetype on more relaxed conditions in page allocator. This is
designed to prevent fragmentation and we can use it here. Imposing hard
constraint only to the compaction doesn't help much in this case since
page allocator would cause fragmentation again.
To solve these problems, this patch borrows anti fragmentation logic from
page allocator. It will reduce premature compaction finish in some cases
and reduce excessive compaction work.
stress-highalloc test in mmtests with non movable order 7 allocation shows
considerable increase of compaction success rate.
Compaction success rate (Compaction success * 100 / Compaction stalls, %)
31.82 : 42.20
I tested it on non-reboot 5 runs stress-highalloc benchmark and found that
there is no more degradation on allocation success rate than before. That
roughly means that this patch doesn't result in more fragmentations.
Vlastimil suggests additional idea that we only test for fallbacks when
migration scanner has scanned a whole pageblock. It looked good for
fragmentation because chance of stealing increase due to making more free
pages in certain pageblock. So, I tested it, but, it results in decreased
compaction success rate, roughly 38.00. I guess the reason that if system
is low memory condition, watermark check could be failed due to not enough
order 0 free page and so, sometimes, we can't reach a fallback check
although migrate_pfn is aligned to pageblock_nr_pages. I can insert code
to cope with this situation but it makes code more complicated so I don't
include his idea at this patch.
[akpm@linux-foundation.org: fix CONFIG_CMA=n build]
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
__mlock_vma_pages_range() doesn't necessarily mlock pages. It depends on
vma flags. The same codepath is used for MAP_POPULATE.
Let's rename __mlock_vma_pages_range() to populate_vma_page_range().
This patch also drops mlock_vma_pages_range() references from
documentation. It has gone in cea10a19b7 ("mm: directly use
__mlock_vma_pages_range() in find_extend_vma()").
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
All users of mminit_dprintk pass a compile-time constant as level, so this
just makes gcc emit a single printk call instead of two.
Signed-off-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Rik van Riel <riel@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Vishnu Pratap Singh <vishnu.ps@samsung.com>
Cc: Pintu Kumar <pintu.k@samsung.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Li Zefan <lizefan@huawei.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Expand the usage of the struct alloc_context introduced in the previous
patch also for calling try_to_compact_pages(), to reduce the number of its
parameters. Since the function is in different compilation unit, we need
to move alloc_context definition in the shared mm/internal.h header.
With this change we get simpler code and small savings of code size and stack
usage:
add/remove: 0/0 grow/shrink: 0/1 up/down: 0/-27 (-27)
function old new delta
__alloc_pages_direct_compact 283 256 -27
add/remove: 0/0 grow/shrink: 0/1 up/down: 0/-13 (-13)
function old new delta
try_to_compact_pages 582 569 -13
Stack usage of __alloc_pages_direct_compact goes from 24 to none (per
scripts/checkstack.pl).
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Compaction caches the migration and free scanner positions between
compaction invocations, so that the whole zone gets eventually scanned and
there is no bias towards the initial scanner positions at the
beginning/end of the zone.
The cached positions are continuously updated as scanners progress and the
updating stops as soon as a page is successfully isolated. The reasoning
behind this is that a pageblock where isolation succeeded is likely to
succeed again in near future and it should be worth revisiting it.
However, the downside is that potentially many pages are rescanned without
successful isolation. At worst, there might be a page where isolation
from LRU succeeds but migration fails (potentially always). So upon
encountering this page, cached position would always stop being updated
for no good reason. It might have been useful to let such page be
rescanned with sync compaction after async one failed, but this is now
handled by caching scanner position for async and sync mode separately
since commit 35979ef339 ("mm, compaction: add per-zone migration pfn
cache for async compaction").
After this patch, cached positions are updated unconditionally. In
stress-highalloc benchmark, this has decreased the numbers of scanned
pages by few percent, without affecting allocation success rates.
To prevent free scanner from leaving free pages behind after they are
returned due to page migration failure, the cached scanner pfn is changed
to point to the pageblock of the returned free page with the highest pfn,
before leaving compact_zone().
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Christoph Lameter <cl@linux.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Compaction relies on zone watermark checks for decisions such as if it's
worth to start compacting in compaction_suitable() or whether compaction
should stop in compact_finished(). The watermark checks take
classzone_idx and alloc_flags parameters, which are related to the memory
allocation request. But from the context of compaction they are currently
passed as 0, including the direct compaction which is invoked to satisfy
the allocation request, and could therefore know the proper values.
The lack of proper values can lead to mismatch between decisions taken
during compaction and decisions related to the allocation request. Lack
of proper classzone_idx value means that lowmem_reserve is not taken into
account. This has manifested (during recent changes to deferred
compaction) when DMA zone was used as fallback for preferred Normal zone.
compaction_suitable() without proper classzone_idx would think that the
watermarks are already satisfied, but watermark check in
get_page_from_freelist() would fail. Because of this problem, deferring
compaction has extra complexity that can be removed in the following
patch.
The issue (not confirmed in practice) with missing alloc_flags is opposite
in nature. For allocations that include ALLOC_HIGH, ALLOC_HIGHER or
ALLOC_CMA in alloc_flags (the last includes all MOVABLE allocations on
CMA-enabled systems) the watermark checking in compaction with 0 passed
will be stricter than in get_page_from_freelist(). In these cases
compaction might be running for a longer time than is really needed.
Another issue compaction_suitable() is that the check for "does the zone
need compaction at all?" comes only after the check "does the zone have
enough free free pages to succeed compaction". The latter considers extra
pages for migration and can therefore in some situations fail and return
COMPACT_SKIPPED, although the high-order allocation would succeed and we
should return COMPACT_PARTIAL.
This patch fixes these problems by adding alloc_flags and classzone_idx to
struct compact_control and related functions involved in direct compaction
and watermark checking. Where possible, all other callers of
compaction_suitable() pass proper values where those are known. This is
currently limited to classzone_idx, which is sometimes known in kswapd
context. However, the direct reclaim callers should_continue_reclaim()
and compaction_ready() do not currently know the proper values, so the
coordination between reclaim and compaction may still not be as accurate
as it could. This can be fixed later, if it's shown to be an issue.
Additionaly the checks in compact_suitable() are reordered to address the
second issue described above.
The effect of this patch should be slightly better high-order allocation
success rates and/or less compaction overhead, depending on the type of
allocations and presence of CMA. It allows simplifying deferred
compaction code in a followup patch.
When testing with stress-highalloc, there was some slight improvement
(which might be just due to variance) in success rates of non-THP-like
allocations.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Christoph Lameter <cl@linux.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Current pageblock isolation logic could isolate each pageblock
individually. This causes freepage accounting problem if freepage with
pageblock order on isolate pageblock is merged with other freepage on
normal pageblock. We can prevent merging by restricting max order of
merging to pageblock order if freepage is on isolate pageblock.
A side-effect of this change is that there could be non-merged buddy
freepage even if finishing pageblock isolation, because undoing
pageblock isolation is just to move freepage from isolate buddy list to
normal buddy list rather than to consider merging. So, the patch also
makes undoing pageblock isolation consider freepage merge. When
un-isolation, freepage with more than pageblock order and it's buddy are
checked. If they are on normal pageblock, instead of just moving, we
isolate the freepage and free it in order to get merged.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Cc: Tang Chen <tangchen@cn.fujitsu.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com>
Cc: Wen Congyang <wency@cn.fujitsu.com>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Laura Abbott <lauraa@codeaurora.org>
Cc: Heesub Shin <heesub.shin@samsung.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Ritesh Harjani <ritesh.list@gmail.com>
Cc: Gioh Kim <gioh.kim@lge.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
struct compact_control currently converts the gfp mask to a migratetype,
but we need the entire gfp mask in a follow-up patch.
Pass the entire gfp mask as part of struct compact_control.
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The migration scanner skips PageBuddy pages, but does not consider their
order as checking page_order() is generally unsafe without holding the
zone->lock, and acquiring the lock just for the check wouldn't be a good
tradeoff.
Still, this could avoid some iterations over the rest of the buddy page,
and if we are careful, the race window between PageBuddy() check and
page_order() is small, and the worst thing that can happen is that we skip
too much and miss some isolation candidates. This is not that bad, as
compaction can already fail for many other reasons like parallel
allocations, and those have much larger race window.
This patch therefore makes the migration scanner obtain the buddy page
order and use it to skip the whole buddy page, if the order appears to be
in the valid range.
It's important that the page_order() is read only once, so that the value
used in the checks and in the pfn calculation is the same. But in theory
the compiler can replace the local variable by multiple inlines of
page_order(). Therefore, the patch introduces page_order_unsafe() that
uses ACCESS_ONCE to prevent this.
Testing with stress-highalloc from mmtests shows a 15% reduction in number
of pages scanned by migration scanner. The reduction is >60% with
__GFP_NO_KSWAPD allocations, along with success rates better by few
percent.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Async compaction aborts when it detects zone lock contention or
need_resched() is true. David Rientjes has reported that in practice,
most direct async compactions for THP allocation abort due to
need_resched(). This means that a second direct compaction is never
attempted, which might be OK for a page fault, but khugepaged is intended
to attempt a sync compaction in such case and in these cases it won't.
This patch replaces "bool contended" in compact_control with an int that
distinguishes between aborting due to need_resched() and aborting due to
lock contention. This allows propagating the abort through all compaction
functions as before, but passing the abort reason up to
__alloc_pages_slowpath() which decides when to continue with direct
reclaim and another compaction attempt.
Another problem is that try_to_compact_pages() did not act upon the
reported contention (both need_resched() or lock contention) immediately
and would proceed with another zone from the zonelist. When
need_resched() is true, that means initializing another zone compaction,
only to check again need_resched() in isolate_migratepages() and aborting.
For zone lock contention, the unintended consequence is that the lock
contended status reported back to the allocator is detrmined from the last
zone where compaction was attempted, which is rather arbitrary.
This patch fixes the problem in the following way:
- async compaction of a zone aborting due to need_resched() or fatal signal
pending means that further zones should not be tried. We report
COMPACT_CONTENDED_SCHED to the allocator.
- aborting zone compaction due to lock contention means we can still try
another zone, since it has different set of locks. We report back
COMPACT_CONTENDED_LOCK only if *all* zones where compaction was attempted,
it was aborted due to lock contention.
As a result of these fixes, khugepaged will proceed with second sync
compaction as intended, when the preceding async compaction aborted due to
need_resched(). Page fault compactions aborting due to need_resched()
will spare some cycles previously wasted by initializing another zone
compaction only to abort again. Lock contention will be reported only
when compaction in all zones aborted due to lock contention, and therefore
it's not a good idea to try again after reclaim.
In stress-highalloc from mmtests configured to use __GFP_NO_KSWAPD, this
has improved number of THP collapse allocations by 10%, which shows
positive effect on khugepaged. The benchmark's success rates are
unchanged as it is not recognized as khugepaged. Numbers of compact_stall
and compact_fail events have however decreased by 20%, with
compact_success still a bit improved, which is good. With benchmark
configured not to use __GFP_NO_KSWAPD, there is 6% improvement in THP
collapse allocations, and only slight improvement in stalls and failures.
[akpm@linux-foundation.org: fix warnings]
Reported-by: David Rientjes <rientjes@google.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Minchan Kim <minchan@kernel.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
isolate_migratepages_range() is the main function of the compaction
scanner, called either on a single pageblock by isolate_migratepages()
during regular compaction, or on an arbitrary range by CMA's
__alloc_contig_migrate_range(). It currently perfoms two pageblock-wide
compaction suitability checks, and because of the CMA callpath, it tracks
if it crossed a pageblock boundary in order to repeat those checks.
However, closer inspection shows that those checks are always true for CMA:
- isolation_suitable() is true because CMA sets cc->ignore_skip_hint to true
- migrate_async_suitable() check is skipped because CMA uses sync compaction
We can therefore move the compaction-specific checks to
isolate_migratepages() and simplify isolate_migratepages_range().
Furthermore, we can mimic the freepage scanner family of functions, which
has isolate_freepages_block() function called both by compaction from
isolate_freepages() and by CMA from isolate_freepages_range(), where each
use-case adds own specific glue code. This allows further code
simplification.
Thus, we rename isolate_migratepages_range() to
isolate_migratepages_block() and limit its functionality to a single
pageblock (or its subset). For CMA, a new different
isolate_migratepages_range() is created as a CMA-specific wrapper for the
_block() function. The checks specific to compaction are moved to
isolate_migratepages(). As part of the unification of these two families
of functions, we remove the redundant zone parameter where applicable,
since zone pointer is already passed in cc->zone.
Furthermore, going back to compact_zone() and compact_finished() when
pageblock is found unsuitable (now by isolate_migratepages()) is wasteful
- the checks are meant to skip pageblocks quickly. The patch therefore
also introduces a simple loop into isolate_migratepages() so that it does
not return immediately on failed pageblock checks, but keeps going until
isolate_migratepages_range() gets called once. Similarily to
isolate_freepages(), the function periodically checks if it needs to
reschedule or abort async compaction.
[iamjoonsoo.kim@lge.com: fix isolated page counting bug in compaction]
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Minchan Kim <minchan@kernel.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Use nth_page instead of pfn_to_page(page_to_pfn
Signed-off-by: Fabian Frederick <fabf@skynet.be>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Compaction uses compact_checklock_irqsave() function to periodically check
for lock contention and need_resched() to either abort async compaction,
or to free the lock, schedule and retake the lock. When aborting,
cc->contended is set to signal the contended state to the caller. Two
problems have been identified in this mechanism.
First, compaction also calls directly cond_resched() in both scanners when
no lock is yet taken. This call either does not abort async compaction,
or set cc->contended appropriately. This patch introduces a new
compact_should_abort() function to achieve both. In isolate_freepages(),
the check frequency is reduced to once by SWAP_CLUSTER_MAX pageblocks to
match what the migration scanner does in the preliminary page checks. In
case a pageblock is found suitable for calling isolate_freepages_block(),
the checks within there are done on higher frequency.
Second, isolate_freepages() does not check if isolate_freepages_block()
aborted due to contention, and advances to the next pageblock. This
violates the principle of aborting on contention, and might result in
pageblocks not being scanned completely, since the scanning cursor is
advanced. This problem has been noticed in the code by Joonsoo Kim when
reviewing related patches. This patch makes isolate_freepages_block()
check the cc->contended flag and abort.
In case isolate_freepages() has already isolated some pages before
aborting due to contention, page migration will proceed, which is OK since
we do not want to waste the work that has been done, and page migration
has own checks for contention. However, we do not want another isolation
attempt by either of the scanners, so cc->contended flag check is added
also to compaction_alloc() and compact_finished() to make sure compaction
is aborted right after the migration.
The outcome of the patch should be reduced lock contention by async
compaction and lower latencies for higher-order allocations where direct
compaction is involved.
[akpm@linux-foundation.org: fix typo in comment]
Reported-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Acked-by: Michal Nazarewicz <mina86@mina86.com>
Tested-by: Shawn Guo <shawn.guo@linaro.org>
Tested-by: Kevin Hilman <khilman@linaro.org>
Tested-by: Stephen Warren <swarren@nvidia.com>
Tested-by: Fabio Estevam <fabio.estevam@freescale.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In previous commit(mm: use the light version __mod_zone_page_state in
mlocked_vma_newpage()) a irq-unsafe __mod_zone_page_state is used. And as
suggested by Andrew, to reduce the risks that new call sites incorrectly
using mlocked_vma_newpage() without knowing they are adding racing, this
patch folds mlocked_vma_newpage() into its only call site,
page_add_new_anon_rmap, to make it open-cocded for people to know what is
going on.
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Jianyu Zhan <nasa4836@gmail.com>
Suggested-by: Andrew Morton <akpm@linux-foundation.org>
Suggested-by: Hugh Dickins <hughd@google.com>
Acked-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mlocked_vma_newpage() is called with pte lock held(a spinlock), which
implies preemtion disabled, and the vm stat counter is not modified from
interrupt context, so we need not use an irq-safe mod_zone_page_state()
here, using a light-weight version __mod_zone_page_state() would be OK.
This patch also documents __mod_zone_page_state() and some of its
callsites. The comment above __mod_zone_page_state() is from Hugh
Dickins, and acked by Christoph.
Most credits to Hugh and Christoph for the clarification on the usage of
the __mod_zone_page_state().
[akpm@linux-foundation.org: coding-style fixes]
Suggested-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Jianyu Zhan <nasa4836@gmail.com>
Reviewed-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We're going to want to manipulate the migration mode for compaction in the
page allocator, and currently compact_control's sync field is only a bool.
Currently, we only do MIGRATE_ASYNC or MIGRATE_SYNC_LIGHT compaction
depending on the value of this bool. Convert the bool to enum
migrate_mode and pass the migration mode in directly. Later, we'll want
to avoid MIGRATE_SYNC_LIGHT for thp allocations in the pagefault patch to
avoid unnecessary latency.
This also alters compaction triggered from sysfs, either for the entire
system or for a node, to force MIGRATE_SYNC.
[akpm@linux-foundation.org: fix build]
[iamjoonsoo.kim@lge.com: use MIGRATE_SYNC in alloc_contig_range()]
Signed-off-by: David Rientjes <rientjes@google.com>
Suggested-by: Mel Gorman <mgorman@suse.de>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Greg Thelen <gthelen@google.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mm/memory.c is overloaded: over 4k lines. get_user_pages() code is
pretty much self-contained let's move it to separate file.
No other changes made.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit f9acc8c7b3 ("readahead: sanify file_ra_state names") left
ra_submit with a single function call.
Move ra_submit to internal.h and inline it to save some stack. Thanks
to Andrew Morton for commenting different versions.
Signed-off-by: Fabian Frederick <fabf@skynet.be>
Suggested-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
On NUMA systems, a node may start thrashing cache or even swap anonymous
pages while there are still free pages on remote nodes.
This is a result of commits 81c0a2bb51 ("mm: page_alloc: fair zone
allocator policy") and fff4068cba ("mm: page_alloc: revert NUMA aspect
of fair allocation policy").
Before those changes, the allocator would first try all allowed zones,
including those on remote nodes, before waking any kswapds. But now,
the allocator fastpath doubles as the fairness pass, which in turn can
only consider the local node to prevent remote spilling based on
exhausted fairness batches alone. Remote nodes are only considered in
the slowpath, after the kswapds are woken up. But if remote nodes still
have free memory, kswapd should not be woken to rebalance the local node
or it may thrash cash or swap prematurely.
Fix this by adding one more unfair pass over the zonelist that is
allowed to spill to remote nodes after the local fairness pass fails but
before entering the slowpath and waking the kswapds.
This also gets rid of the GFP_THISNODE exemption from the fairness
protocol because the unfair pass is no longer tied to kswapd, which
GFP_THISNODE is not allowed to wake up.
However, because remote spills can be more frequent now - we prefer them
over local kswapd reclaim - the allocation batches on remote nodes could
underflow more heavily. When resetting the batches, use
atomic_long_read() directly instead of zone_page_state() to calculate the
delta as the latter filters negative counter values.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: <stable@kernel.org> [3.12+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The VM is currently heavily tuned to avoid swapping. Whether that is
good or bad is a separate discussion, but as long as the VM won't swap
to make room for dirty cache, we can not consider anonymous pages when
calculating the amount of dirtyable memory, the baseline to which
dirty_background_ratio and dirty_ratio are applied.
A simple workload that occupies a significant size (40+%, depending on
memory layout, storage speeds etc.) of memory with anon/tmpfs pages and
uses the remainder for a streaming writer demonstrates this problem. In
that case, the actual cache pages are a small fraction of what is
considered dirtyable overall, which results in an relatively large
portion of the cache pages to be dirtied. As kswapd starts rotating
these, random tasks enter direct reclaim and stall on IO.
Only consider free pages and file pages dirtyable.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reported-by: Tejun Heo <tj@kernel.org>
Tested-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Developers occasionally try and optimise PFN scanners by using
page_order but miss that in general it requires zone->lock. This has
happened twice for compaction.c and rejected both times. This patch
clarifies the documentation of page_order and adds a note to
compaction.c why page_order is not used.
[akpm@linux-foundation.org: tweaks]
[lauraa@codeaurora.org: Corrected a page_zone(page)->lock reference]
Signed-off-by: Mel Gorman <mgorman@suse.de>
Acked-by: Rafael Aquini <aquini@redhat.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Laura Abbott <lauraa@codeaurora.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
min_free_kbytes may be raised during THP's initialization. Sometimes,
this will change the value which was set by the user. Showing this
message will clarify this confusion.
Only show this message when changing a value which was set by the user
according to Michal Hocko's suggestion.
Show the old value of min_free_kbytes according to Dave Hansen's
suggestion. This will give user the chance to restore old value of
min_free_kbytes.
Signed-off-by: Han Pingtian <hanpt@linux.vnet.ibm.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Most of the VM_BUG_ON assertions are performed on a page. Usually, when
one of these assertions fails we'll get a BUG_ON with a call stack and
the registers.
I've recently noticed based on the requests to add a small piece of code
that dumps the page to various VM_BUG_ON sites that the page dump is
quite useful to people debugging issues in mm.
This patch adds a VM_BUG_ON_PAGE(cond, page) which beyond doing what
VM_BUG_ON() does, also dumps the page before executing the actual
BUG_ON.
[akpm@linux-foundation.org: fix up includes]
Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Cleanup. Change __get_page_tail_foll() to use get_huge_page_tail()
to avoid the code duplication.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Dave Jones <davej@redhat.com>
Cc: Darren Hart <dvhart@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Mel Gorman <mgorman@suse.de>
Acked-by: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This skips the _mapcount mangling for slab and hugetlbfs pages.
The main trouble in doing this is to guarantee that PageSlab and
PageHeadHuge remains constant for all get_page/put_page run on the tail
of slab or hugetlbfs compound pages. Otherwise if they're set during
get_page but not set during put_page, the _mapcount of the tail page
would underflow.
PageHeadHuge will remain true until the compound page is released and
enters the buddy allocator so it won't risk to change even if the tail
page is the last reference left on the page.
PG_slab instead is cleared before the slab frees the head page with
put_page, so if the tail pin is released after the slab freed the page,
we would have a problem. But in the slab case the tail pin cannot be
the last reference left on the page. This is because the slab code is
free to reuse the compound page after a kfree/kmem_cache_free without
having to check if there's any tail pin left. In turn all tail pins
must be always released while the head is still pinned by the slab code
and so we know PG_slab will be still set too.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Reviewed-by: Khalid Aziz <khalid.aziz@oracle.com>
Cc: Pravin Shelar <pshelar@nicira.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Ben Hutchings <bhutchings@solarflare.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Johannes Weiner <jweiner@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch is based on KOSAKI's work and I add a little more description,
please refer https://lkml.org/lkml/2012/6/14/74.
Currently, I found system can enter a state that there are lots of free
pages in a zone but only order-0 and order-1 pages which means the zone is
heavily fragmented, then high order allocation could make direct reclaim
path's long stall(ex, 60 seconds) especially in no swap and no compaciton
enviroment. This problem happened on v3.4, but it seems issue still lives
in current tree, the reason is do_try_to_free_pages enter live lock:
kswapd will go to sleep if the zones have been fully scanned and are still
not balanced. As kswapd thinks there's little point trying all over again
to avoid infinite loop. Instead it changes order from high-order to
0-order because kswapd think order-0 is the most important. Look at
73ce02e9 in detail. If watermarks are ok, kswapd will go back to sleep
and may leave zone->all_unreclaimable =3D 0. It assume high-order users
can still perform direct reclaim if they wish.
Direct reclaim continue to reclaim for a high order which is not a
COSTLY_ORDER without oom-killer until kswapd turn on
zone->all_unreclaimble= . This is because to avoid too early oom-kill.
So it means direct_reclaim depends on kswapd to break this loop.
In worst case, direct-reclaim may continue to page reclaim forever when
kswapd sleeps forever until someone like watchdog detect and finally kill
the process. As described in:
http://thread.gmane.org/gmane.linux.kernel.mm/103737
We can't turn on zone->all_unreclaimable from direct reclaim path because
direct reclaim path don't take any lock and this way is racy. Thus this
patch removes zone->all_unreclaimable field completely and recalculates
zone reclaimable state every time.
Note: we can't take the idea that direct-reclaim see zone->pages_scanned
directly and kswapd continue to use zone->all_unreclaimable. Because, it
is racy. commit 929bea7c71 (vmscan: all_unreclaimable() use
zone->all_unreclaimable as a name) describes the detail.
[akpm@linux-foundation.org: uninline zone_reclaimable_pages() and zone_reclaimable()]
Cc: Aaditya Kumar <aaditya.kumar.30@gmail.com>
Cc: Ying Han <yinghan@google.com>
Cc: Nick Piggin <npiggin@gmail.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Bob Liu <lliubbo@gmail.com>
Cc: Neil Zhang <zhangwm@marvell.com>
Cc: Russell King - ARM Linux <linux@arm.linux.org.uk>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Minchan Kim <minchan@kernel.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Lisa Du <cldu@marvell.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This function is nowhere used, and it has a confusing name with put_page
in mm/swap.c. So better to remove it.
Signed-off-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
munlock_vma_pages_range() was always incrementing addresses by PAGE_SIZE
at a time. When munlocking THP pages (or the huge zero page), this
resulted in taking the mm->page_table_lock 512 times in a row.
We can do better by making use of the page_mask returned by
follow_page_mask (for the huge zero page case), or the size of the page
munlock_vma_page() operated on (for the true THP page case).
Signed-off-by: Michel Lespinasse <walken@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In find_extend_vma(), we don't need mlock_vma_pages_range() to verify
the vma type - we know we're working with a stack. So, we can call
directly into __mlock_vma_pages_range(), and remove the last
make_pages_present() call site.
Note that we don't use mm_populate() here, so we can't release the
mmap_sem while allocating new stack pages. This is deemed acceptable,
because the stack vmas grow by a bounded number of pages at a time, and
these are anon pages so we don't have to read from disk to populate
them.
Signed-off-by: Michel Lespinasse <walken@google.com>
Acked-by: Rik van Riel <riel@redhat.com>
Tested-by: Andy Lutomirski <luto@amacapital.net>
Cc: Greg Ungerer <gregungerer@westnet.com.au>
Cc: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Eric Wong reported on 3.7 and 3.8-rc2 that ppoll() got stuck when
waiting for POLLIN on a local TCP socket. It was easier to trigger if
there was disk IO and dirty pages at the same time and he bisected it to
commit 1fb3f8ca0e ("mm: compaction: capture a suitable high-order page
immediately when it is made available").
The intention of that patch was to improve high-order allocations under
memory pressure after changes made to reclaim in 3.6 drastically hurt
THP allocations but the approach was flawed. For Eric, the problem was
that page->pfmemalloc was not being cleared for captured pages leading
to a poor interaction with swap-over-NFS support causing the packets to
be dropped. However, I identified a few more problems with the patch
including the fact that it can increase contention on zone->lock in some
cases which could result in async direct compaction being aborted early.
In retrospect the capture patch took the wrong approach. What it should
have done is mark the pageblock being migrated as MIGRATE_ISOLATE if it
was allocating for THP and avoided races that way. While the patch was
showing to improve allocation success rates at the time, the benefit is
marginal given the relative complexity and it should be revisited from
scratch in the context of the other reclaim-related changes that have
taken place since the patch was first written and tested. This patch
partially reverts commit 1fb3f8ca "mm: compaction: capture a suitable
high-order page immediately when it is made available".
Reported-and-tested-by: Eric Wong <normalperson@yhbt.net>
Tested-by: Eric Dumazet <eric.dumazet@gmail.com>
Cc: stable@vger.kernel.org
Signed-off-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.18 (GNU/Linux)
iQIcBAABAgAGBQJQx0kQAAoJEHzG/DNEskfi4fQP/R5PRovayroZALBMLnVJDaLD
Ttr9p40VNXbiJ+MfRgatJjSSJZ4Jl+fC3NEqBhcwVZhckZZb9R2s0WtrSQo5+ZbB
vdRfiuKoCaKM4cSZ08C12uTvsF6xjhjd27CTUlMkyOcDoKxMEFKelv0hocSxe4Wo
xqlv3eF+VsY7kE1BNbgBP06SX4tDpIHRxXfqJPMHaSKQmre+cU0xG2GcEu3QGbHT
DEDTI788YSaWLmBfMC+kWoaQl1+bV/FYvavIAS8/o4K9IKvgR42VzrXmaFaqrbgb
72ksa6xfAi57yTmZHqyGmts06qYeBbPpKI+yIhCMInxA9CY3lPbvHppRf0RQOyzj
YOi4hovGEMJKE+BCILukhJcZ9jCTtS3zut6v1rdvR88f4y7uhR9RfmRfsxuW7PNj
3Rmh191+n0lVWDmhOs2psXuCLJr3LEiA0dFffN1z8REUTtTAZMsj8Rz+SvBNAZDR
hsJhERVeXB6X5uQ5rkLDzbn1Zic60LjVw7LIp6SF2OYf/YKaF8vhyWOA8dyCEu8W
CGo7AoG0BO8tIIr8+LvFe8CweypysZImx4AjCfIs4u9pu/v11zmBvO9NO5yfuObF
BreEERYgTes/UITxn1qdIW4/q+Nr0iKO3CTqsmu6L1GfCz3/XzPGs3U26fUhllqi
Ka0JKgnWvsa6ez6FSzKI
=ivQa
-----END PGP SIGNATURE-----
Merge tag 'balancenuma-v11' of git://git.kernel.org/pub/scm/linux/kernel/git/mel/linux-balancenuma
Pull Automatic NUMA Balancing bare-bones from Mel Gorman:
"There are three implementations for NUMA balancing, this tree
(balancenuma), numacore which has been developed in tip/master and
autonuma which is in aa.git.
In almost all respects balancenuma is the dumbest of the three because
its main impact is on the VM side with no attempt to be smart about
scheduling. In the interest of getting the ball rolling, it would be
desirable to see this much merged for 3.8 with the view to building
scheduler smarts on top and adapting the VM where required for 3.9.
The most recent set of comparisons available from different people are
mel: https://lkml.org/lkml/2012/12/9/108
mingo: https://lkml.org/lkml/2012/12/7/331
tglx: https://lkml.org/lkml/2012/12/10/437
srikar: https://lkml.org/lkml/2012/12/10/397
The results are a mixed bag. In my own tests, balancenuma does
reasonably well. It's dumb as rocks and does not regress against
mainline. On the other hand, Ingo's tests shows that balancenuma is
incapable of converging for this workloads driven by perf which is bad
but is potentially explained by the lack of scheduler smarts. Thomas'
results show balancenuma improves on mainline but falls far short of
numacore or autonuma. Srikar's results indicate we all suffer on a
large machine with imbalanced node sizes.
My own testing showed that recent numacore results have improved
dramatically, particularly in the last week but not universally.
We've butted heads heavily on system CPU usage and high levels of
migration even when it shows that overall performance is better.
There are also cases where it regresses. Of interest is that for
specjbb in some configurations it will regress for lower numbers of
warehouses and show gains for higher numbers which is not reported by
the tool by default and sometimes missed in treports. Recently I
reported for numacore that the JVM was crashing with
NullPointerExceptions but currently it's unclear what the source of
this problem is. Initially I thought it was in how numacore batch
handles PTEs but I'm no longer think this is the case. It's possible
numacore is just able to trigger it due to higher rates of migration.
These reports were quite late in the cycle so I/we would like to start
with this tree as it contains much of the code we can agree on and has
not changed significantly over the last 2-3 weeks."
* tag 'balancenuma-v11' of git://git.kernel.org/pub/scm/linux/kernel/git/mel/linux-balancenuma: (50 commits)
mm/rmap, migration: Make rmap_walk_anon() and try_to_unmap_anon() more scalable
mm/rmap: Convert the struct anon_vma::mutex to an rwsem
mm: migrate: Account a transhuge page properly when rate limiting
mm: numa: Account for failed allocations and isolations as migration failures
mm: numa: Add THP migration for the NUMA working set scanning fault case build fix
mm: numa: Add THP migration for the NUMA working set scanning fault case.
mm: sched: numa: Delay PTE scanning until a task is scheduled on a new node
mm: sched: numa: Control enabling and disabling of NUMA balancing if !SCHED_DEBUG
mm: sched: numa: Control enabling and disabling of NUMA balancing
mm: sched: Adapt the scanning rate if a NUMA hinting fault does not migrate
mm: numa: Use a two-stage filter to restrict pages being migrated for unlikely task<->node relationships
mm: numa: migrate: Set last_nid on newly allocated page
mm: numa: split_huge_page: Transfer last_nid on tail page
mm: numa: Introduce last_nid to the page frame
sched: numa: Slowly increase the scanning period as NUMA faults are handled
mm: numa: Rate limit setting of pte_numa if node is saturated
mm: numa: Rate limit the amount of memory that is migrated between nodes
mm: numa: Structures for Migrate On Fault per NUMA migration rate limiting
mm: numa: Migrate pages handled during a pmd_numa hinting fault
mm: numa: Migrate on reference policy
...
Several place need to find the pmd by(mm_struct, address), so introduce a
function to simplify it.
[akpm@linux-foundation.org: fix warning]
Signed-off-by: Bob Liu <lliubbo@gmail.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: Ni zhan Chen <nizhan.chen@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Note: This is very heavily based on a patch from Peter Zijlstra with
fixes from Ingo Molnar, Hugh Dickins and Johannes Weiner. That patch
put a lot of migration logic into mm/huge_memory.c where it does
not belong. This version puts tries to share some of the migration
logic with migrate_misplaced_page. However, it should be noted
that now migrate.c is doing more with the pagetable manipulation
than is preferred. The end result is barely recognisable so as
before, the signed-offs had to be removed but will be re-added if
the original authors are ok with it.
Add THP migration for the NUMA working set scanning fault case.
It uses the page lock to serialize. No migration pte dance is
necessary because the pte is already unmapped when we decide
to migrate.
[dhillf@gmail.com: Fix memory leak on isolation failure]
[dhillf@gmail.com: Fix transfer of last_nid information]
Signed-off-by: Mel Gorman <mgorman@suse.de>
Presently CMA cannot migrate mlocked pages so it ends up failing to allocate
contiguous memory space.
This patch makes mlocked pages be migrated out. Of course, it can affect
realtime processes but in CMA usecase, contiguous memory allocation failing
is far worse than access latency to an mlocked page being variable while
CMA is running. If someone wants to make the system realtime, he shouldn't
enable CMA because stalls can still happen at random times.
[akpm@linux-foundation.org: tweak comment text, per Mel]
Signed-off-by: Minchan Kim <minchan@kernel.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We had thought that pages could no longer get freed while still marked as
mlocked; but Johannes Weiner posted this program to demonstrate that
truncating an mlocked private file mapping containing COWed pages is still
mishandled:
#include <sys/types.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <stdlib.h>
#include <unistd.h>
#include <fcntl.h>
#include <stdio.h>
int main(void)
{
char *map;
int fd;
system("grep mlockfreed /proc/vmstat");
fd = open("chigurh", O_CREAT|O_EXCL|O_RDWR);
unlink("chigurh");
ftruncate(fd, 4096);
map = mmap(NULL, 4096, PROT_WRITE, MAP_PRIVATE, fd, 0);
map[0] = 11;
mlock(map, sizeof(fd));
ftruncate(fd, 0);
close(fd);
munlock(map, sizeof(fd));
munmap(map, 4096);
system("grep mlockfreed /proc/vmstat");
return 0;
}
The anon COWed pages are not caught by truncation's clear_page_mlock() of
the pagecache pages; but unmap_mapping_range() unmaps them, so we ought to
look out for them there in page_remove_rmap(). Indeed, why should
truncation or invalidation be doing the clear_page_mlock() when removing
from pagecache? mlock is a property of mapping in userspace, not a
property of pagecache: an mlocked unmapped page is nonsensical.
Reported-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Rik van Riel <riel@redhat.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: Ying Han <yinghan@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
page_evictable(page, vma) is an irritant: almost all its callers pass
NULL for vma. Remove the vma arg and use mlocked_vma_newpage(vma, page)
explicitly in the couple of places it's needed. But in those places we
don't even need page_evictable() itself! They're dealing with a freshly
allocated anonymous page, which has no "mapping" and cannot be mlocked yet.
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Cc: Rik van Riel <riel@redhat.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michel Lespinasse <walken@google.com>
Cc: Ying Han <yinghan@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is almost entirely based on Rik's previous patches and discussions
with him about how this might be implemented.
Order > 0 compaction stops when enough free pages of the correct page
order have been coalesced. When doing subsequent higher order
allocations, it is possible for compaction to be invoked many times.
However, the compaction code always starts out looking for things to
compact at the start of the zone, and for free pages to compact things to
at the end of the zone.
This can cause quadratic behaviour, with isolate_freepages starting at the
end of the zone each time, even though previous invocations of the
compaction code already filled up all free memory on that end of the zone.
This can cause isolate_freepages to take enormous amounts of CPU with
certain workloads on larger memory systems.
This patch caches where the migration and free scanner should start from
on subsequent compaction invocations using the pageblock-skip information.
When compaction starts it begins from the cached restart points and will
update the cached restart points until a page is isolated or a pageblock
is skipped that would have been scanned by synchronous compaction.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Richard Davies <richard@arachsys.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: Avi Kivity <avi@redhat.com>
Acked-by: Rafael Aquini <aquini@redhat.com>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When compaction was implemented it was known that scanning could
potentially be excessive. The ideal was that a counter be maintained for
each pageblock but maintaining this information would incur a severe
penalty due to a shared writable cache line. It has reached the point
where the scanning costs are a serious problem, particularly on
long-lived systems where a large process starts and allocates a large
number of THPs at the same time.
Instead of using a shared counter, this patch adds another bit to the
pageblock flags called PG_migrate_skip. If a pageblock is scanned by
either migrate or free scanner and 0 pages were isolated, the pageblock is
marked to be skipped in the future. When scanning, this bit is checked
before any scanning takes place and the block skipped if set.
The main difficulty with a patch like this is "when to ignore the cached
information?" If it's ignored too often, the scanning rates will still be
excessive. If the information is too stale then allocations will fail
that might have otherwise succeeded. In this patch
o CMA always ignores the information
o If the migrate and free scanner meet then the cached information will
be discarded if it's at least 5 seconds since the last time the cache
was discarded
o If there are a large number of allocation failures, discard the cache.
The time-based heuristic is very clumsy but there are few choices for a
better event. Depending solely on multiple allocation failures still
allows excessive scanning when THP allocations are failing in quick
succession due to memory pressure. Waiting until memory pressure is
relieved would cause compaction to continually fail instead of using
reclaim/compaction to try allocate the page. The time-based mechanism is
clumsy but a better option is not obvious.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Richard Davies <richard@arachsys.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: Avi Kivity <avi@redhat.com>
Acked-by: Rafael Aquini <aquini@redhat.com>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com>
Cc: Kyungmin Park <kyungmin.park@samsung.com>
Cc: Mark Brown <broonie@opensource.wolfsonmicro.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This reverts commit 7db8889ab0 ("mm: have order > 0 compaction start
off where it left") and commit de74f1cc ("mm: have order > 0 compaction
start near a pageblock with free pages"). These patches were a good
idea and tests confirmed that they massively reduced the amount of
scanning but the implementation is complex and tricky to understand. A
later patch will cache what pageblocks should be skipped and
reimplements the concept of compact_cached_free_pfn on top for both
migration and free scanners.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Richard Davies <richard@arachsys.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: Avi Kivity <avi@redhat.com>
Acked-by: Rafael Aquini <aquini@redhat.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
isolate_migratepages_range() might isolate no pages if for example when
zone->lru_lock is contended and running asynchronous compaction. In this
case, we should abort compaction, otherwise, compact_zone will run a
useless loop and make zone->lru_lock is even contended.
An additional check is added to ensure that cc.migratepages and
cc.freepages get properly drained whan compaction is aborted.
[minchan@kernel.org: Putback pages isolated for migration if aborting]
[akpm@linux-foundation.org: compact_zone_order requires non-NULL arg contended]
[akpm@linux-foundation.org: make compact_zone_order() require non-NULL arg `contended']
[minchan@kernel.org: Putback pages isolated for migration if aborting]
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Shaohua Li <shli@fusionio.com>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Acked-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Add ALLOC_CMA alloc flag and pass it to [__]zone_watermark_ok()
(from Minchan Kim).
* During watermark check decrease available free pages number by
free CMA pages number if necessary (unmovable allocations cannot
use pages from CMA areas).
Signed-off-by: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Drop clean cache pages instead of migration during alloc_contig_range() to
minimise allocation latency by reducing the amount of migration that is
necessary. It's useful for CMA because latency of migration is more
important than evicting the background process's working set. In
addition, as pages are reclaimed then fewer free pages for migration
targets are required so it avoids memory reclaiming to get free pages,
which is a contributory factor to increased latency.
I measured elapsed time of __alloc_contig_migrate_range() which migrates
10M in 40M movable zone in QEMU machine.
Before - 146ms, After - 7ms
[akpm@linux-foundation.org: fix nommu build]
Signed-off-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Minchan Kim <minchan@kernel.org>
Reviewed-by: Mel Gorman <mgorman@suse.de>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Acked-by: Michal Nazarewicz <mina86@mina86.com>
Cc: Rik van Riel <riel@redhat.com>
Tested-by: Kyungmin Park <kyungmin.park@samsung.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Make sure the #endif that terminates the standard #ifndef / #define /
#endif construct gets labeled, and gets positioned at the end of the file
as is normally the case.
Signed-off-by: Michel Lespinasse <walken@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
While compaction is migrating pages to free up large contiguous blocks
for allocation it races with other allocation requests that may steal
these blocks or break them up. This patch alters direct compaction to
capture a suitable free page as soon as it becomes available to reduce
this race. It uses similar logic to split_free_page() to ensure that
watermarks are still obeyed.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Jim Schutt reported a problem that pointed at compaction contending
heavily on locks. The workload is straight-forward and in his own words;
The systems in question have 24 SAS drives spread across 3 HBAs,
running 24 Ceph OSD instances, one per drive. FWIW these servers
are dual-socket Intel 5675 Xeons w/48 GB memory. I've got ~160
Ceph Linux clients doing dd simultaneously to a Ceph file system
backed by 12 of these servers.
Early in the test everything looks fine
procs -------------------memory------------------ ---swap-- -----io---- --system-- -----cpu-------
r b swpd free buff cache si so bi bo in cs us sy id wa st
31 15 0 287216 576 38606628 0 0 2 1158 2 14 1 3 95 0 0
27 15 0 225288 576 38583384 0 0 18 2222016 203357 134876 11 56 17 15 0
28 17 0 219256 576 38544736 0 0 11 2305932 203141 146296 11 49 23 17 0
6 18 0 215596 576 38552872 0 0 7 2363207 215264 166502 12 45 22 20 0
22 18 0 226984 576 38596404 0 0 3 2445741 223114 179527 12 43 23 22 0
and then it goes to pot
procs -------------------memory------------------ ---swap-- -----io---- --system-- -----cpu-------
r b swpd free buff cache si so bi bo in cs us sy id wa st
163 8 0 464308 576 36791368 0 0 11 22210 866 536 3 13 79 4 0
207 14 0 917752 576 36181928 0 0 712 1345376 134598 47367 7 90 1 2 0
123 12 0 685516 576 36296148 0 0 429 1386615 158494 60077 8 84 5 3 0
123 12 0 598572 576 36333728 0 0 1107 1233281 147542 62351 7 84 5 4 0
622 7 0 660768 576 36118264 0 0 557 1345548 151394 59353 7 85 4 3 0
223 11 0 283960 576 36463868 0 0 46 1107160 121846 33006 6 93 1 1 0
Note that system CPU usage is very high blocks being written out has
dropped by 42%. He analysed this with perf and found
perf record -g -a sleep 10
perf report --sort symbol --call-graph fractal,5
34.63% [k] _raw_spin_lock_irqsave
|
|--97.30%-- isolate_freepages
| compaction_alloc
| unmap_and_move
| migrate_pages
| compact_zone
| compact_zone_order
| try_to_compact_pages
| __alloc_pages_direct_compact
| __alloc_pages_slowpath
| __alloc_pages_nodemask
| alloc_pages_vma
| do_huge_pmd_anonymous_page
| handle_mm_fault
| do_page_fault
| page_fault
| |
| |--87.39%-- skb_copy_datagram_iovec
| | tcp_recvmsg
| | inet_recvmsg
| | sock_recvmsg
| | sys_recvfrom
| | system_call
| | __recv
| | |
| | --100.00%-- (nil)
| |
| --12.61%-- memcpy
--2.70%-- [...]
There was other data but primarily it is all showing that compaction is
contended heavily on the zone->lock and zone->lru_lock.
commit [b2eef8c0: mm: compaction: minimise the time IRQs are disabled
while isolating pages for migration] noted that it was possible for
migration to hold the lru_lock for an excessive amount of time. Very
broadly speaking this patch expands the concept.
This patch introduces compact_checklock_irqsave() to check if a lock
is contended or the process needs to be scheduled. If either condition
is true then async compaction is aborted and the caller is informed.
The page allocator will fail a THP allocation if compaction failed due
to contention. This patch also introduces compact_trylock_irqsave()
which will acquire the lock only if it is not contended and the process
does not need to schedule.
Reported-by: Jim Schutt <jaschut@sandia.gov>
Tested-by: Jim Schutt <jaschut@sandia.gov>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Change the skb allocation API to indicate RX usage and use this to fall
back to the PFMEMALLOC reserve when needed. SKBs allocated from the
reserve are tagged in skb->pfmemalloc. If an SKB is allocated from the
reserve and the socket is later found to be unrelated to page reclaim, the
packet is dropped so that the memory remains available for page reclaim.
Network protocols are expected to recover from this packet loss.
[a.p.zijlstra@chello.nl: Ideas taken from various patches]
[davem@davemloft.net: Use static branches, coding style corrections]
[sebastian@breakpoint.cc: Avoid unnecessary cast, fix !CONFIG_NET build]
Signed-off-by: Mel Gorman <mgorman@suse.de>
Acked-by: David S. Miller <davem@davemloft.net>
Cc: Neil Brown <neilb@suse.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Mike Christie <michaelc@cs.wisc.edu>
Cc: Eric B Munson <emunson@mgebm.net>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Sebastian Andrzej Siewior <sebastian@breakpoint.cc>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When a user or administrator requires swap for their application, they
create a swap partition and file, format it with mkswap and activate it
with swapon. Swap over the network is considered as an option in diskless
systems. The two likely scenarios are when blade servers are used as part
of a cluster where the form factor or maintenance costs do not allow the
use of disks and thin clients.
The Linux Terminal Server Project recommends the use of the Network Block
Device (NBD) for swap according to the manual at
https://sourceforge.net/projects/ltsp/files/Docs-Admin-Guide/LTSPManual.pdf/download
There is also documentation and tutorials on how to setup swap over NBD at
places like https://help.ubuntu.com/community/UbuntuLTSP/EnableNBDSWAP The
nbd-client also documents the use of NBD as swap. Despite this, the fact
is that a machine using NBD for swap can deadlock within minutes if swap
is used intensively. This patch series addresses the problem.
The core issue is that network block devices do not use mempools like
normal block devices do. As the host cannot control where they receive
packets from, they cannot reliably work out in advance how much memory
they might need. Some years ago, Peter Zijlstra developed a series of
patches that supported swap over an NFS that at least one distribution is
carrying within their kernels. This patch series borrows very heavily
from Peter's work to support swapping over NBD as a pre-requisite to
supporting swap-over-NFS. The bulk of the complexity is concerned with
preserving memory that is allocated from the PFMEMALLOC reserves for use
by the network layer which is needed for both NBD and NFS.
Patch 1 adds knowledge of the PFMEMALLOC reserves to SLAB and SLUB to
preserve access to pages allocated under low memory situations
to callers that are freeing memory.
Patch 2 optimises the SLUB fast path to avoid pfmemalloc checks
Patch 3 introduces __GFP_MEMALLOC to allow access to the PFMEMALLOC
reserves without setting PFMEMALLOC.
Patch 4 opens the possibility for softirqs to use PFMEMALLOC reserves
for later use by network packet processing.
Patch 5 only sets page->pfmemalloc when ALLOC_NO_WATERMARKS was required
Patch 6 ignores memory policies when ALLOC_NO_WATERMARKS is set.
Patches 7-12 allows network processing to use PFMEMALLOC reserves when
the socket has been marked as being used by the VM to clean pages. If
packets are received and stored in pages that were allocated under
low-memory situations and are unrelated to the VM, the packets
are dropped.
Patch 11 reintroduces __skb_alloc_page which the networking
folk may object to but is needed in some cases to propogate
pfmemalloc from a newly allocated page to an skb. If there is a
strong objection, this patch can be dropped with the impact being
that swap-over-network will be slower in some cases but it should
not fail.
Patch 13 is a micro-optimisation to avoid a function call in the
common case.
Patch 14 tags NBD sockets as being SOCK_MEMALLOC so they can use
PFMEMALLOC if necessary.
Patch 15 notes that it is still possible for the PFMEMALLOC reserve
to be depleted. To prevent this, direct reclaimers get throttled on
a waitqueue if 50% of the PFMEMALLOC reserves are depleted. It is
expected that kswapd and the direct reclaimers already running
will clean enough pages for the low watermark to be reached and
the throttled processes are woken up.
Patch 16 adds a statistic to track how often processes get throttled
Some basic performance testing was run using kernel builds, netperf on
loopback for UDP and TCP, hackbench (pipes and sockets), iozone and
sysbench. Each of them were expected to use the sl*b allocators
reasonably heavily but there did not appear to be significant performance
variances.
For testing swap-over-NBD, a machine was booted with 2G of RAM with a
swapfile backed by NBD. 8*NUM_CPU processes were started that create
anonymous memory mappings and read them linearly in a loop. The total
size of the mappings were 4*PHYSICAL_MEMORY to use swap heavily under
memory pressure.
Without the patches and using SLUB, the machine locks up within minutes
and runs to completion with them applied. With SLAB, the story is
different as an unpatched kernel run to completion. However, the patched
kernel completed the test 45% faster.
MICRO
3.5.0-rc2 3.5.0-rc2
vanilla swapnbd
Unrecognised test vmscan-anon-mmap-write
MMTests Statistics: duration
Sys Time Running Test (seconds) 197.80 173.07
User+Sys Time Running Test (seconds) 206.96 182.03
Total Elapsed Time (seconds) 3240.70 1762.09
This patch: mm: sl[au]b: add knowledge of PFMEMALLOC reserve pages
Allocations of pages below the min watermark run a risk of the machine
hanging due to a lack of memory. To prevent this, only callers who have
PF_MEMALLOC or TIF_MEMDIE set and are not processing an interrupt are
allowed to allocate with ALLOC_NO_WATERMARKS. Once they are allocated to
a slab though, nothing prevents other callers consuming free objects
within those slabs. This patch limits access to slab pages that were
alloced from the PFMEMALLOC reserves.
When this patch is applied, pages allocated from below the low watermark
are returned with page->pfmemalloc set and it is up to the caller to
determine how the page should be protected. SLAB restricts access to any
page with page->pfmemalloc set to callers which are known to able to
access the PFMEMALLOC reserve. If one is not available, an attempt is
made to allocate a new page rather than use a reserve. SLUB is a bit more
relaxed in that it only records if the current per-CPU page was allocated
from PFMEMALLOC reserve and uses another partial slab if the caller does
not have the necessary GFP or process flags. This was found to be
sufficient in tests to avoid hangs due to SLUB generally maintaining
smaller lists than SLAB.
In low-memory conditions it does mean that !PFMEMALLOC allocators can fail
a slab allocation even though free objects are available because they are
being preserved for callers that are freeing pages.
[a.p.zijlstra@chello.nl: Original implementation]
[sebastian@breakpoint.cc: Correct order of page flag clearing]
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: David Miller <davem@davemloft.net>
Cc: Neil Brown <neilb@suse.de>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Mike Christie <michaelc@cs.wisc.edu>
Cc: Eric B Munson <emunson@mgebm.net>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Sebastian Andrzej Siewior <sebastian@breakpoint.cc>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
On architectures with CONFIG_HUGETLB_PAGE_SIZE_VARIABLE set, such as
Itanium, pageblock_order is a variable with default value of 0. It's set
to the right value by set_pageblock_order() in function
free_area_init_core().
But pageblock_order may be used by sparse_init() before free_area_init_core()
is called along path:
sparse_init()
->sparse_early_usemaps_alloc_node()
->usemap_size()
->SECTION_BLOCKFLAGS_BITS
->((1UL << (PFN_SECTION_SHIFT - pageblock_order)) *
NR_PAGEBLOCK_BITS)
The uninitialized pageblock_size will cause memory wasting because
usemap_size() returns a much bigger value then it's really needed.
For example, on an Itanium platform,
sparse_init() pageblock_order=0 usemap_size=24576
free_area_init_core() before pageblock_order=0, usemap_size=24576
free_area_init_core() after pageblock_order=12, usemap_size=8
That means 24K memory has been wasted for each section, so fix it by calling
set_pageblock_order() from sparse_init().
Signed-off-by: Xishi Qiu <qiuxishi@huawei.com>
Signed-off-by: Jiang Liu <liuj97@gmail.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Keping Chen <chenkeping@huawei.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Order > 0 compaction stops when enough free pages of the correct page
order have been coalesced. When doing subsequent higher order
allocations, it is possible for compaction to be invoked many times.
However, the compaction code always starts out looking for things to
compact at the start of the zone, and for free pages to compact things to
at the end of the zone.
This can cause quadratic behaviour, with isolate_freepages starting at the
end of the zone each time, even though previous invocations of the
compaction code already filled up all free memory on that end of the zone.
This can cause isolate_freepages to take enormous amounts of CPU with
certain workloads on larger memory systems.
The obvious solution is to have isolate_freepages remember where it left
off last time, and continue at that point the next time it gets invoked
for an order > 0 compaction. This could cause compaction to fail if
cc->free_pfn and cc->migrate_pfn are close together initially, in that
case we restart from the end of the zone and try once more.
Forced full (order == -1) compactions are left alone.
[akpm@linux-foundation.org: checkpatch fixes]
[akpm@linux-foundation.org: s/laste/last/, use 80 cols]
Signed-off-by: Rik van Riel <riel@redhat.com>
Reported-by: Jim Schutt <jaschut@sandia.gov>
Tested-by: Jim Schutt <jaschut@sandia.gov>
Cc: Minchan Kim <minchan.kim@gmail.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This reverts commit 5ceb9ce6fe.
That commit seems to be the cause of the mm compation list corruption
issues that Dave Jones reported. The locking (or rather, absense
there-of) is dubious, as is the use of the 'page' variable once it has
been found to be outside the pageblock range.
So revert it for now, we can re-visit this for 3.6. If we even need to:
as Minchan Kim says, "The patch wasn't a bug fix and even test workload
was very theoretical".
Reported-and-tested-by: Dave Jones <davej@redhat.com>
Acked-by: Hugh Dickins <hughd@google.com>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com>
Cc: Kyungmin Park <kyungmin.park@samsung.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull vfs changes from Al Viro.
"A lot of misc stuff. The obvious groups:
* Miklos' atomic_open series; kills the damn abuse of
->d_revalidate() by NFS, which was the major stumbling block for
all work in that area.
* ripping security_file_mmap() and dealing with deadlocks in the
area; sanitizing the neighborhood of vm_mmap()/vm_munmap() in
general.
* ->encode_fh() switched to saner API; insane fake dentry in
mm/cleancache.c gone.
* assorted annotations in fs (endianness, __user)
* parts of Artem's ->s_dirty work (jff2 and reiserfs parts)
* ->update_time() work from Josef.
* other bits and pieces all over the place.
Normally it would've been in two or three pull requests, but
signal.git stuff had eaten a lot of time during this cycle ;-/"
Fix up trivial conflicts in Documentation/filesystems/vfs.txt (the
'truncate_range' inode method was removed by the VM changes, the VFS
update adds an 'update_time()' method), and in fs/btrfs/ulist.[ch] (due
to sparse fix added twice, with other changes nearby).
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (95 commits)
nfs: don't open in ->d_revalidate
vfs: retry last component if opening stale dentry
vfs: nameidata_to_filp(): don't throw away file on error
vfs: nameidata_to_filp(): inline __dentry_open()
vfs: do_dentry_open(): don't put filp
vfs: split __dentry_open()
vfs: do_last() common post lookup
vfs: do_last(): add audit_inode before open
vfs: do_last(): only return EISDIR for O_CREAT
vfs: do_last(): check LOOKUP_DIRECTORY
vfs: do_last(): make ENOENT exit RCU safe
vfs: make follow_link check RCU safe
vfs: do_last(): use inode variable
vfs: do_last(): inline walk_component()
vfs: do_last(): make exit RCU safe
vfs: split do_lookup()
Btrfs: move over to use ->update_time
fs: introduce inode operation ->update_time
reiserfs: get rid of resierfs_sync_super
reiserfs: mark the superblock as dirty a bit later
...
take it to mm/util.c, convert vm_mmap() to use of that one and
take it to mm/util.c as well, convert both sys_mmap_pgoff() to
use of vm_mmap_pgoff()
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
When MIGRATE_UNMOVABLE pages are freed from MIGRATE_UNMOVABLE type
pageblock (and some MIGRATE_MOVABLE pages are left in it) waiting until an
allocation takes ownership of the block may take too long. The type of
the pageblock remains unchanged so the pageblock cannot be used as a
migration target during compaction.
Fix it by:
* Adding enum compact_mode (COMPACT_ASYNC_[MOVABLE,UNMOVABLE], and
COMPACT_SYNC) and then converting sync field in struct compact_control
to use it.
* Adding nr_pageblocks_skipped field to struct compact_control and
tracking how many destination pageblocks were of MIGRATE_UNMOVABLE type.
If COMPACT_ASYNC_MOVABLE mode compaction ran fully in
try_to_compact_pages() (COMPACT_COMPLETE) it implies that there is not a
suitable page for allocation. In this case then check how if there were
enough MIGRATE_UNMOVABLE pageblocks to try a second pass in
COMPACT_ASYNC_UNMOVABLE mode.
* Scanning the MIGRATE_UNMOVABLE pageblocks (during COMPACT_SYNC and
COMPACT_ASYNC_UNMOVABLE compaction modes) and building a count based on
finding PageBuddy pages, page_count(page) == 0 or PageLRU pages. If all
pages within the MIGRATE_UNMOVABLE pageblock are in one of those three
sets change the whole pageblock type to MIGRATE_MOVABLE.
My particular test case (on a ARM EXYNOS4 device with 512 MiB, which means
131072 standard 4KiB pages in 'Normal' zone) is to:
- allocate 120000 pages for kernel's usage
- free every second page (60000 pages) of memory just allocated
- allocate and use 60000 pages from user space
- free remaining 60000 pages of kernel memory
(now we have fragmented memory occupied mostly by user space pages)
- try to allocate 100 order-9 (2048 KiB) pages for kernel's usage
The results:
- with compaction disabled I get 11 successful allocations
- with compaction enabled - 14 successful allocations
- with this patch I'm able to get all 100 successful allocations
NOTE: If we can make kswapd aware of order-0 request during compaction, we
can enhance kswapd with changing mode to COMPACT_ASYNC_FULL
(COMPACT_ASYNC_MOVABLE + COMPACT_ASYNC_UNMOVABLE). Please see the
following thread:
http://marc.info/?l=linux-mm&m=133552069417068&w=2
[minchan@kernel.org: minor cleanups]
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Signed-off-by: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Andrew pointed out that the is_mlocked_vma() is misnamed. A function
with name like that would expect bool return and no side-effects.
Since it is called on the fault path for new page, rename it in this
patch.
Signed-off-by: Ying Han <yinghan@google.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujtisu.com>
Reviewed-by: Minchan Kim <minchan@kernel.org>
[akpm@linux-foundation.org: s/mlock_vma_newpage/mlock_vma_newpage/, per Minchan]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This commit exports some of the functions from compaction.c file
outside of it adding their declaration into internal.h header
file so that other mm related code can use them.
This forced compaction.c to always be compiled (as opposed to being
compiled only if CONFIG_COMPACTION is defined) but as to avoid
introducing code that user did not ask for, part of the compaction.c
is now wrapped in on #ifdef.
Signed-off-by: Michal Nazarewicz <mina86@mina86.com>
Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Tested-by: Rob Clark <rob.clark@linaro.org>
Tested-by: Ohad Ben-Cohen <ohad@wizery.com>
Tested-by: Benjamin Gaignard <benjamin.gaignard@linaro.org>
Tested-by: Robert Nelson <robertcnelson@gmail.com>
Tested-by: Barry Song <Baohua.Song@csr.com>
Michel while working on the working set estimation code, noticed that
calling get_page_unless_zero() on a random pfn_to_page(random_pfn)
wasn't safe, if the pfn ended up being a tail page of a transparent
hugepage under splitting by __split_huge_page_refcount().
He then found the problem could also theoretically materialize with
page_cache_get_speculative() during the speculative radix tree lookups
that uses get_page_unless_zero() in SMP if the radix tree page is freed
and reallocated and get_user_pages is called on it before
page_cache_get_speculative has a chance to call get_page_unless_zero().
So the best way to fix the problem is to keep page_tail->_count zero at
all times. This will guarantee that get_page_unless_zero() can never
succeed on any tail page. page_tail->_mapcount is guaranteed zero and
is unused for all tail pages of a compound page, so we can simply
account the tail page references there and transfer them to
tail_page->_count in __split_huge_page_refcount() (in addition to the
head_page->_mapcount).
While debugging this s/_count/_mapcount/ change I also noticed get_page is
called by direct-io.c on pages returned by get_user_pages. That wasn't
entirely safe because the two atomic_inc in get_page weren't atomic. As
opposed to other get_user_page users like secondary-MMU page fault to
establish the shadow pagetables would never call any superflous get_page
after get_user_page returns. It's safer to make get_page universally safe
for tail pages and to use get_page_foll() within follow_page (inside
get_user_pages()). get_page_foll() is safe to do the refcounting for tail
pages without taking any locks because it is run within PT lock protected
critical sections (PT lock for pte and page_table_lock for
pmd_trans_huge).
The standard get_page() as invoked by direct-io instead will now take
the compound_lock but still only for tail pages. The direct-io paths
are usually I/O bound and the compound_lock is per THP so very
finegrined, so there's no risk of scalability issues with it. A simple
direct-io benchmarks with all lockdep prove locking and spinlock
debugging infrastructure enabled shows identical performance and no
overhead. So it's worth it. Ideally direct-io should stop calling
get_page() on pages returned by get_user_pages(). The spinlock in
get_page() is already optimized away for no-THP builds but doing
get_page() on tail pages returned by GUP is generally a rare operation
and usually only run in I/O paths.
This new refcounting on page_tail->_mapcount in addition to avoiding new
RCU critical sections will also allow the working set estimation code to
work without any further complexity associated to the tail page
refcounting with THP.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Reported-by: Michel Lespinasse <walken@google.com>
Reviewed-by: Michel Lespinasse <walken@google.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <jweiner@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: David Gibson <david@gibson.dropbear.id.au>
Cc: <stable@kernel.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When I was reading nommu code, I found that it handles the vma list/tree
in an unusual way. IIUC, because there can be more than one
identical/overrapped vmas in the list/tree, it sorts the tree more
strictly and does a linear search on the tree. But it doesn't applied to
the list (i.e. the list could be constructed in a different order than
the tree so that we can't use the list when finding the first vma in that
order).
Since inserting/sorting a vma in the tree and link is done at the same
time, we can easily construct both of them in the same order. And linear
searching on the tree could be more costly than doing it on the list, it
can be converted to use the list.
Also, after the commit 297c5eee37 ("mm: make the vma list be doubly
linked") made the list be doubly linked, there were a couple of code need
to be fixed to construct the list properly.
Patch 1/6 is a preparation. It maintains the list sorted same as the tree
and construct doubly-linked list properly. Patch 2/6 is a simple
optimization for the vma deletion. Patch 3/6 and 4/6 convert tree
traversal to list traversal and the rest are simple fixes and cleanups.
This patch:
@vma added into @mm should be sorted by start addr, end addr and VMA
struct addr in that order because we may get identical VMAs in the @mm.
However this was true only for the rbtree, not for the list.
This patch fixes this by remembering 'rb_prev' during the tree traversal
like find_vma_prepare() does and linking the @vma via __vma_link_list().
After this patch, we can iterate the whole VMAs in correct order simply by
using @mm->mmap list.
[akpm@linux-foundation.org: avoid duplicating __vma_link_list()]
Signed-off-by: Namhyung Kim <namhyung@gmail.com>
Acked-by: Greg Ungerer <gerg@uclinux.org>
Cc: David Howells <dhowells@redhat.com>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In most cases, get_user_pages and get_user_pages_fast should be used
to pin user pages in memory. But sometimes, some special flags except
FOLL_GET, FOLL_WRITE and FOLL_FORCE are needed, for example in
following patch, KVM needs FOLL_HWPOISON. To support these users,
__get_user_pages is exported directly.
There are some symbol name conflicts in infiniband driver, fixed them too.
Signed-off-by: Huang Ying <ying.huang@intel.com>
CC: Andrew Morton <akpm@linux-foundation.org>
CC: Michel Lespinasse <walken@google.com>
CC: Roland Dreier <roland@kernel.org>
CC: Ralph Campbell <infinipath@qlogic.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
This reverts commit 744ed14427.
Chris Mason ended up chasing down some page allocation errors and pages
stuck waiting on the IO scheduler, and was able to narrow it down to two
commits: commit 744ed14427 ("mm: batch activate_page() to reduce lock
contention") and d8505dee1a ("mm: simplify code of swap.c").
This reverts the first of them.
Reported-and-debugged-by: Chris Mason <chris.mason@oracle.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Jens Axboe <jaxboe@fusionio.com>
Cc: linux-mm <linux-mm@kvack.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Shaohua Li <shaohua.li@intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The zone->lru_lock is heavily contented in workload where activate_page()
is frequently used. We could do batch activate_page() to reduce the lock
contention. The batched pages will be added into zone list when the pool
is full or page reclaim is trying to drain them.
For example, in a 4 socket 64 CPU system, create a sparse file and 64
processes, processes shared map to the file. Each process read access the
whole file and then exit. The process exit will do unmap_vmas() and cause
a lot of activate_page() call. In such workload, we saw about 58% total
time reduction with below patch. Other workloads with a lot of
activate_page also benefits a lot too.
I tested some microbenchmarks:
case-anon-cow-rand-mt 0.58%
case-anon-cow-rand -3.30%
case-anon-cow-seq-mt -0.51%
case-anon-cow-seq -5.68%
case-anon-r-rand-mt 0.23%
case-anon-r-rand 0.81%
case-anon-r-seq-mt -0.71%
case-anon-r-seq -1.99%
case-anon-rx-rand-mt 2.11%
case-anon-rx-seq-mt 3.46%
case-anon-w-rand-mt -0.03%
case-anon-w-rand -0.50%
case-anon-w-seq-mt -1.08%
case-anon-w-seq -0.12%
case-anon-wx-rand-mt -5.02%
case-anon-wx-seq-mt -1.43%
case-fork 1.65%
case-fork-sleep -0.07%
case-fork-withmem 1.39%
case-hugetlb -0.59%
case-lru-file-mmap-read-mt -0.54%
case-lru-file-mmap-read 0.61%
case-lru-file-mmap-read-rand -2.24%
case-lru-file-readonce -0.64%
case-lru-file-readtwice -11.69%
case-lru-memcg -1.35%
case-mmap-pread-rand-mt 1.88%
case-mmap-pread-rand -15.26%
case-mmap-pread-seq-mt 0.89%
case-mmap-pread-seq -69.72%
case-mmap-xread-rand-mt 0.71%
case-mmap-xread-seq-mt 0.38%
The most significent are:
case-lru-file-readtwice -11.69%
case-mmap-pread-rand -15.26%
case-mmap-pread-seq -69.72%
which use activate_page a lot. others are basically variations because
each run has slightly difference.
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Shaohua Li <shaohua.li@intel.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Lately I've been working to make KVM use hugepages transparently without
the usual restrictions of hugetlbfs. Some of the restrictions I'd like to
see removed:
1) hugepages have to be swappable or the guest physical memory remains
locked in RAM and can't be paged out to swap
2) if a hugepage allocation fails, regular pages should be allocated
instead and mixed in the same vma without any failure and without
userland noticing
3) if some task quits and more hugepages become available in the
buddy, guest physical memory backed by regular pages should be
relocated on hugepages automatically in regions under
madvise(MADV_HUGEPAGE) (ideally event driven by waking up the
kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes
not null)
4) avoidance of reservation and maximization of use of hugepages whenever
possible. Reservation (needed to avoid runtime fatal faliures) may be ok for
1 machine with 1 database with 1 database cache with 1 database cache size
known at boot time. It's definitely not feasible with a virtualization
hypervisor usage like RHEV-H that runs an unknown number of virtual machines
with an unknown size of each virtual machine with an unknown amount of
pagecache that could be potentially useful in the host for guest not using
O_DIRECT (aka cache=off).
hugepages in the virtualization hypervisor (and also in the guest!) are
much more important than in a regular host not using virtualization,
becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24
to 19 in case only the hypervisor uses transparent hugepages, and they
decrease the tlb-miss cacheline accesses from 19 to 15 in case both the
linux hypervisor and the linux guest both uses this patch (though the
guest will limit the addition speedup to anonymous regions only for
now...). Even more important is that the tlb miss handler is much slower
on a NPT/EPT guest than for a regular shadow paging or no-virtualization
scenario. So maximizing the amount of virtual memory cached by the TLB
pays off significantly more with NPT/EPT than without (even if there would
be no significant speedup in the tlb-miss runtime).
The first (and more tedious) part of this work requires allowing the VM to
handle anonymous hugepages mixed with regular pages transparently on
regular anonymous vmas. This is what this patch tries to achieve in the
least intrusive possible way. We want hugepages and hugetlb to be used in
a way so that all applications can benefit without changes (as usual we
leverage the KVM virtualization design: by improving the Linux VM at
large, KVM gets the performance boost too).
The most important design choice is: always fallback to 4k allocation if
the hugepage allocation fails! This is the _very_ opposite of some large
pagecache patches that failed with -EIO back then if a 64k (or similar)
allocation failed...
Second important decision (to reduce the impact of the feature on the
existing pagetable handling code) is that at any time we can split an
hugepage into 512 regular pages and it has to be done with an operation
that can't fail. This way the reliability of the swapping isn't decreased
(no need to allocate memory when we are short on memory to swap) and it's
trivial to plug a split_huge_page* one-liner where needed without
polluting the VM. Over time we can teach mprotect, mremap and friends to
handle pmd_trans_huge natively without calling split_huge_page*. The fact
it can't fail isn't just for swap: if split_huge_page would return -ENOMEM
(instead of the current void) we'd need to rollback the mprotect from the
middle of it (ideally including undoing the split_vma) which would be a
big change and in the very wrong direction (it'd likely be simpler not to
call split_huge_page at all and to teach mprotect and friends to handle
hugepages instead of rolling them back from the middle). In short the
very value of split_huge_page is that it can't fail.
The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and
incremental and it'll just be an "harmless" addition later if this initial
part is agreed upon. It also should be noted that locking-wise replacing
regular pages with hugepages is going to be very easy if compared to what
I'm doing below in split_huge_page, as it will only happen when
page_count(page) matches page_mapcount(page) if we can take the PG_lock
and mmap_sem in write mode. collapse_huge_page will be a "best effort"
that (unlike split_huge_page) can fail at the minimal sign of trouble and
we can try again later. collapse_huge_page will be similar to how KSM
works and the madvise(MADV_HUGEPAGE) will work similar to
madvise(MADV_MERGEABLE).
The default I like is that transparent hugepages are used at page fault
time. This can be changed with
/sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set
to three values "always", "madvise", "never" which mean respectively that
hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions,
or never used. /sys/kernel/mm/transparent_hugepage/defrag instead
controls if the hugepage allocation should defrag memory aggressively
"always", only inside "madvise" regions, or "never".
The pmd_trans_splitting/pmd_trans_huge locking is very solid. The
put_page (from get_user_page users that can't use mmu notifier like
O_DIRECT) that runs against a __split_huge_page_refcount instead was a
pain to serialize in a way that would result always in a coherent page
count for both tail and head. I think my locking solution with a
compound_lock taken only after the page_first is valid and is still a
PageHead should be safe but it surely needs review from SMP race point of
view. In short there is no current existing way to serialize the O_DIRECT
final put_page against split_huge_page_refcount so I had to invent a new
one (O_DIRECT loses knowledge on the mapping status by the time gup_fast
returns so...). And I didn't want to impact all gup/gup_fast users for
now, maybe if we change the gup interface substantially we can avoid this
locking, I admit I didn't think too much about it because changing the gup
unpinning interface would be invasive.
If we ignored O_DIRECT we could stick to the existing compound refcounting
code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM
(and any other mmu notifier user) would call it without FOLL_GET (and if
FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the
current task mmu notifier list yet). But O_DIRECT is fundamental for
decent performance of virtualized I/O on fast storage so we can't avoid it
to solve the race of put_page against split_huge_page_refcount to achieve
a complete hugepage feature for KVM.
Swap and oom works fine (well just like with regular pages ;). MMU
notifier is handled transparently too, with the exception of the young bit
on the pmd, that didn't have a range check but I think KVM will be fine
because the whole point of hugepages is that EPT/NPT will also use a huge
pmd when they notice gup returns pages with PageCompound set, so they
won't care of a range and there's just the pmd young bit to check in that
case.
NOTE: in some cases if the L2 cache is small, this may slowdown and waste
memory during COWs because 4M of memory are accessed in a single fault
instead of 8k (the payoff is that after COW the program can run faster).
So we might want to switch the copy_huge_page (and clear_huge_page too) to
not temporal stores. I also extensively researched ways to avoid this
cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k
up to 1M (I can send those patches that fully implemented prefault) but I
concluded they're not worth it and they add an huge additional complexity
and they remove all tlb benefits until the full hugepage has been faulted
in, to save a little bit of memory and some cache during app startup, but
they still don't improve substantially the cache-trashing during startup
if the prefault happens in >4k chunks. One reason is that those 4k pte
entries copied are still mapped on a perfectly cache-colored hugepage, so
the trashing is the worst one can generate in those copies (cow of 4k page
copies aren't so well colored so they trashes less, but again this results
in software running faster after the page fault). Those prefault patches
allowed things like a pte where post-cow pages were local 4k regular anon
pages and the not-yet-cowed pte entries were pointing in the middle of
some hugepage mapped read-only. If it doesn't payoff substantially with
todays hardware it will payoff even less in the future with larger l2
caches, and the prefault logic would blot the VM a lot. If one is
emebdded transparent_hugepage can be disabled during boot with sysfs or
with the boot commandline parameter transparent_hugepage=0 (or
transparent_hugepage=2 to restrict hugepages inside madvise regions) that
will ensure not a single hugepage is allocated at boot time. It is simple
enough to just disable transparent hugepage globally and let transparent
hugepages be allocated selectively by applications in the MADV_HUGEPAGE
region (both at page fault time, and if enabled with the
collapse_huge_page too through the kernel daemon).
This patch supports only hugepages mapped in the pmd, archs that have
smaller hugepages will not fit in this patch alone. Also some archs like
power have certain tlb limits that prevents mixing different page size in
the same regions so they will not fit in this framework that requires
"graceful fallback" to basic PAGE_SIZE in case of physical memory
fragmentation. hugetlbfs remains a perfect fit for those because its
software limits happen to match the hardware limits. hugetlbfs also
remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped
to be found not fragmented after a certain system uptime and that would be
very expensive to defragment with relocation, so requiring reservation.
hugetlbfs is the "reservation way", the point of transparent hugepages is
not to have any reservation at all and maximizing the use of cache and
hugepages at all times automatically.
Some performance result:
vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep
ages3
memset page fault 1566023
memset tlb miss 453854
memset second tlb miss 453321
random access tlb miss 41635
random access second tlb miss 41658
vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3
memset page fault 1566471
memset tlb miss 453375
memset second tlb miss 453320
random access tlb miss 41636
random access second tlb miss 41637
vmx andrea # ./largepages3
memset page fault 1566642
memset tlb miss 453417
memset second tlb miss 453313
random access tlb miss 41630
random access second tlb miss 41647
vmx andrea # ./largepages3
memset page fault 1566872
memset tlb miss 453418
memset second tlb miss 453315
random access tlb miss 41618
random access second tlb miss 41659
vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage
vmx andrea # ./largepages3
memset page fault 2182476
memset tlb miss 460305
memset second tlb miss 460179
random access tlb miss 44483
random access second tlb miss 44186
vmx andrea # ./largepages3
memset page fault 2182791
memset tlb miss 460742
memset second tlb miss 459962
random access tlb miss 43981
random access second tlb miss 43988
============
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/time.h>
#define SIZE (3UL*1024*1024*1024)
int main()
{
char *p = malloc(SIZE), *p2;
struct timeval before, after;
gettimeofday(&before, NULL);
memset(p, 0, SIZE);
gettimeofday(&after, NULL);
printf("memset page fault %Lu\n",
(after.tv_sec-before.tv_sec)*1000000UL +
after.tv_usec-before.tv_usec);
gettimeofday(&before, NULL);
memset(p, 0, SIZE);
gettimeofday(&after, NULL);
printf("memset tlb miss %Lu\n",
(after.tv_sec-before.tv_sec)*1000000UL +
after.tv_usec-before.tv_usec);
gettimeofday(&before, NULL);
memset(p, 0, SIZE);
gettimeofday(&after, NULL);
printf("memset second tlb miss %Lu\n",
(after.tv_sec-before.tv_sec)*1000000UL +
after.tv_usec-before.tv_usec);
gettimeofday(&before, NULL);
for (p2 = p; p2 < p+SIZE; p2 += 4096)
*p2 = 0;
gettimeofday(&after, NULL);
printf("random access tlb miss %Lu\n",
(after.tv_sec-before.tv_sec)*1000000UL +
after.tv_usec-before.tv_usec);
gettimeofday(&before, NULL);
for (p2 = p; p2 < p+SIZE; p2 += 4096)
*p2 = 0;
gettimeofday(&after, NULL);
printf("random access second tlb miss %Lu\n",
(after.tv_sec-before.tv_sec)*1000000UL +
after.tv_usec-before.tv_usec);
return 0;
}
============
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
__get_user_pages gets a new 'nonblocking' parameter to signal that the
caller is prepared to re-acquire mmap_sem and retry the operation if
needed. This is used to split off long operations if they are going to
block on a disk transfer, or when we detect contention on the mmap_sem.
[akpm@linux-foundation.org: remove ref to rwsem_is_contended()]
Signed-off-by: Michel Lespinasse <walken@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Nick Piggin <npiggin@kernel.dk>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
page_order() is called by memory hotplug's user interface to check the
section is removable or not. (is_mem_section_removable())
It calls page_order() withoug holding zone->lock.
So, even if the caller does
if (PageBuddy(page))
ret = page_order(page) ...
The caller may hit BUG_ON().
For fixing this, there are 2 choices.
1. add zone->lock.
2. remove BUG_ON().
is_mem_section_removable() is used for some "advice" and doesn't need to
be 100% accurate. This is_removable() can be called via user program..
We don't want to take this important lock for long by user's request. So,
this patch removes BUG_ON().
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Wu Fengguang <fengguang.wu@intel.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In some use cases, user doesn't need extra filtering. E.g. user program
can inject errors through madvise syscall to its own pages, however it
might not know what the page state exactly is or which inode the page
belongs to.
So introduce an one-off interface "corrupt-filter-enable".
Echo 0 to switch off page filters, and echo 1 to switch on the filters.
[AK: changed default to 0]
Signed-off-by: Haicheng Li <haicheng.li@linux.intel.com>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
The hwpoison test suite need to inject hwpoison to a collection of
selected task pages, and must not touch pages not owned by them and
thus kill important system processes such as init. (But it's OK to
mis-hwpoison free/unowned pages as well as shared clean pages.
Mis-hwpoison of shared dirty pages will kill all tasks, so the test
suite will target all or non of such tasks in the first place.)
The memory cgroup serves this purpose well. We can put the target
processes under the control of a memory cgroup, and tell the hwpoison
injection code to only kill pages associated with some active memory
cgroup.
The prerequisite for doing hwpoison stress tests with mem_cgroup is,
the mem_cgroup code tracks task pages _accurately_ (unless page is
locked). Which we believe is/should be true.
The benefits are simplification of hwpoison injector code. Also the
mem_cgroup code will automatically be tested by hwpoison test cases.
The alternative interfaces pin-pfn/unpin-pfn can also delegate the
(process and page flags) filtering functions reliably to user space.
However prototype implementation shows that this scheme adds more
complexity than we wanted.
Example test case:
mkdir /cgroup/hwpoison
usemem -m 100 -s 1000 &
echo `jobs -p` > /cgroup/hwpoison/tasks
memcg_ino=$(ls -id /cgroup/hwpoison | cut -f1 -d' ')
echo $memcg_ino > /debug/hwpoison/corrupt-filter-memcg
page-types -p `pidof init` --hwpoison # shall do nothing
page-types -p `pidof usemem` --hwpoison # poison its pages
[AK: Fix documentation]
[Add fix for problem noticed by Li Zefan <lizf@cn.fujitsu.com>;
dentry in the css could be NULL]
CC: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
CC: Hugh Dickins <hugh.dickins@tiscali.co.uk>
CC: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
CC: Balbir Singh <balbir@linux.vnet.ibm.com>
CC: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
CC: Li Zefan <lizf@cn.fujitsu.com>
CC: Paul Menage <menage@google.com>
CC: Nick Piggin <npiggin@suse.de>
CC: Andi Kleen <andi@firstfloor.org>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
When specified, only poison pages if ((page_flags & mask) == value).
- corrupt-filter-flags-mask
- corrupt-filter-flags-value
This allows stress testing of many kinds of pages.
Strictly speaking, the buddy pages requires taking zone lock, to avoid
setting PG_hwpoison on a "was buddy but now allocated to someone" page.
However we can just do nothing because we set PG_locked in the beginning,
this prevents the page allocator from allocating it to someone. (It will
BUG() on the unexpected PG_locked, which is fine for hwpoison testing.)
[AK: Add select PROC_PAGE_MONITOR to satisfy dependency]
CC: Nick Piggin <npiggin@suse.de>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
__memory_failure()'s workflow is
set PG_hwpoison
//...
unset PG_hwpoison if didn't pass hwpoison filter
That could kill unrelated process if it happens to page fault on the
page with the (temporary) PG_hwpoison. The race should be big enough to
appear in stress tests.
Fix it by grabbing the page and checking filter at inject time. This
also avoids the very noisy "Injecting memory failure..." messages.
- we don't touch madvise() based injection, because the filters are
generally not necessary for it.
- if we want to apply the filters to h/w aided injection, we'd better to
rearrange the logic in __memory_failure() instead of this patch.
AK: fix documentation, use drain all, cleanups
CC: Haicheng Li <haicheng.li@intel.com>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Filesystem data/metadata present the most tricky-to-isolate pages.
It requires careful code review and stress testing to get them right.
The fs/device filter helps to target the stress tests to some specific
filesystem pages. The filter condition is block device's major/minor
numbers:
- corrupt-filter-dev-major
- corrupt-filter-dev-minor
When specified (non -1), only page cache pages that belong to that
device will be poisoned.
The filters are checked reliably on the locked and refcounted page.
Haicheng: clear PG_hwpoison and drop bad page count if filter not OK
AK: Add documentation
CC: Haicheng Li <haicheng.li@intel.com>
CC: Nick Piggin <npiggin@suse.de>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Most free pages in the buddy system have no PG_buddy set.
Introduce is_free_buddy_page() for detecting them reliably.
CC: Nick Piggin <npiggin@suse.de>
CC: Mel Gorman <mel@linux.vnet.ibm.com>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
unevictable_migrate_page() in mm/internal.h is a relic of the since
removed UNEVICTABLE_LRU Kconfig option. This patch removes the function
and open codes the test in migrate_page_copy().
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Reviewed-by: Christoph Lameter <cl@linux-foundation.org>
Acked-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When KSM merges an mlocked page, it has been forgetting to munlock it:
that's been left to free_page_mlock(), which reports it in /proc/vmstat as
unevictable_pgs_mlockfreed instead of unevictable_pgs_munlocked (and
whinges "Page flag mlocked set for process" in mmotm, whereas mainline is
silently forgiving). Call munlock_vma_page() to fix that.
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Izik Eidus <ieidus@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Chris Wright <chrisw@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Remove three degrees of obfuscation, left over from when we had
CONFIG_UNEVICTABLE_LRU. MLOCK_PAGES is CONFIG_HAVE_MLOCKED_PAGE_BIT is
CONFIG_HAVE_MLOCK is CONFIG_MMU. rmap.o (and memory-failure.o) are only
built when CONFIG_MMU, so don't need such conditions at all.
Somehow, I feel no compulsion to remove the CONFIG_HAVE_MLOCK* lines from
169 defconfigs: leave those to evolve in due course.
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Izik Eidus <ieidus@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Nick Piggin <npiggin@suse.de>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Move highest_memmap_pfn __read_mostly from page_alloc.c next to zero_pfn
__read_mostly in memory.c: to help them share a cacheline, since they're
very often tested together in vm_normal_page().
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Rik van Riel <riel@redhat.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
__get_user_pages() has been taking its own GUP flags, then processing
them into FOLL flags for follow_page(). Though oddly named, the FOLL
flags are more widely used, so pass them to __get_user_pages() now.
Sorry, VM flags, VM_FAULT flags and FAULT_FLAGs are still distinct.
(The patch to __get_user_pages() looks peculiar, with both gup_flags
and foll_flags: the gup_flags remain constant; but as before there's
an exceptional case, out of scope of the patch, in which foll_flags
per page have FOLL_WRITE masked off.)
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Rik van Riel <riel@redhat.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The "FOLL_ANON optimization" and its use_zero_page() test have caused
confusion and bugs: why does it test VM_SHARED? for the very good but
unsatisfying reason that VMware crashed without. As we look to maybe
reinstating anonymous use of the ZERO_PAGE, we need to sort this out.
Easily done: it's silly for __get_user_pages() and follow_page() to
be guessing whether it's safe to assume that they're being used for
a coredump (which can take a shortcut snapshot where other uses must
handle a fault) - just tell them with GUP_FLAGS_DUMP and FOLL_DUMP.
get_dump_page() doesn't even want a ZERO_PAGE: an error suits fine.
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
GUP_FLAGS_IGNORE_VMA_PERMISSIONS and GUP_FLAGS_IGNORE_SIGKILL were
flags added solely to prevent __get_user_pages() from doing some of
what it usually does, in the munlock case: we can now remove them.
Signed-off-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
On NUMA machines, the administrator can configure zone_reclaim_mode that
is a more targetted form of direct reclaim. On machines with large NUMA
distances for example, a zone_reclaim_mode defaults to 1 meaning that
clean unmapped pages will be reclaimed if the zone watermarks are not
being met. The problem is that zone_reclaim() failing at all means the
zone gets marked full.
This can cause situations where a zone is usable, but is being skipped
because it has been considered full. Take a situation where a large tmpfs
mount is occuping a large percentage of memory overall. The pages do not
get cleaned or reclaimed by zone_reclaim(), but the zone gets marked full
and the zonelist cache considers them not worth trying in the future.
This patch makes zone_reclaim() return more fine-grained information about
what occured when zone_reclaim() failued. The zone only gets marked full
if it really is unreclaimable. If it's a case that the scan did not occur
or if enough pages were not reclaimed with the limited reclaim_mode, then
the zone is simply skipped.
There is a side-effect to this patch. Currently, if zone_reclaim()
successfully reclaimed SWAP_CLUSTER_MAX, an allocation attempt would go
ahead. With this patch applied, zone watermarks are rechecked after
zone_reclaim() does some work.
This bug was introduced by commit 9276b1bc96
("memory page_alloc zonelist caching speedup") way back in 2.6.19 when the
zonelist_cache was introduced. It was not intended that zone_reclaim()
aggressively consider the zone to be full when it failed as full direct
reclaim can still be an option. Due to the age of the bug, it should be
considered a -stable candidate.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Wu Fengguang <fengguang.wu@intel.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, free_page_mlock() is only called from page_alloc.c. Thus, we
can move it to page_alloc.c.
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
free_page_mlock() tests and clears PG_mlocked using locked versions of the
bit operations. If set, it disables interrupts to update counters and
this happens on every page free even though interrupts are disabled very
shortly afterwards a second time. This is wasteful.
This patch splits what free_page_mlock() does. The bit check is still
made. However, the update of counters is delayed until the interrupts are
disabled and the non-lock version for clearing the bit is used. One
potential weirdness with this split is that the counters do not get
updated if the bad_page() check is triggered but a system showing bad
pages is getting screwed already.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Christoph Lameter <cl@linux-foundation.org>
Reviewed-by: Pekka Enberg <penberg@cs.helsinki.fi>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Acked-by: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The mlock() facility does not exist for NOMMU since all mappings are
effectively locked anyway, so we don't make the bits available when
they're not useful.
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Greg Ungerer <gerg@snapgear.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Enrik Berkhan <Enrik.Berkhan@ge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The initial implementation of checking TIF_MEMDIE covers the cases of OOM
killing. If the process has been OOM killed, the TIF_MEMDIE is set and it
return immediately. This patch includes:
1. add the case that the SIGKILL is sent by user processes. The
process can try to get_user_pages() unlimited memory even if a user
process has sent a SIGKILL to it(maybe a monitor find the process
exceed its memory limit and try to kill it). In the old
implementation, the SIGKILL won't be handled until the get_user_pages()
returns.
2. change the return value to be ERESTARTSYS. It makes no sense to
return ENOMEM if the get_user_pages returned by getting a SIGKILL
signal. Considering the general convention for a system call
interrupted by a signal is ERESTARTNOSYS, so the current return value
is consistant to that.
Lee:
An unfortunate side effect of "make-get_user_pages-interruptible" is that
it prevents a SIGKILL'd task from munlock-ing pages that it had mlocked,
resulting in freeing of mlocked pages. Freeing of mlocked pages, in
itself, is not so bad. We just count them now--altho' I had hoped to
remove this stat and add PG_MLOCKED to the free pages flags check.
However, consider pages in shared libraries mapped by more than one task
that a task mlocked--e.g., via mlockall(). If the task that mlocked the
pages exits via SIGKILL, these pages would be left mlocked and
unevictable.
Proposed fix:
Add another GUP flag to ignore sigkill when calling get_user_pages from
munlock()--similar to Kosaki Motohiro's 'IGNORE_VMA_PERMISSIONS flag for
the same purpose. We are not actually allocating memory in this case,
which "make-get_user_pages-interruptible" intends to avoid. We're just
munlocking pages that are already resident and mapped, and we're reusing
get_user_pages() to access those pages.
?? Maybe we should combine 'IGNORE_VMA_PERMISSIONS and '_IGNORE_SIGKILL
into a single flag: GUP_FLAGS_MUNLOCK ???
[Lee.Schermerhorn@hp.com: ignore sigkill in get_user_pages during munlock]
Signed-off-by: Paul Menage <menage@google.com>
Signed-off-by: Ying Han <yinghan@google.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Hugh Dickins <hugh@veritas.com>
Cc: Oleg Nesterov <oleg@tv-sign.ru>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Rohit Seth <rohitseth@google.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
print_bad_pte() is so far being called only when zap_pte_range() finds
negative page_mapcount, or there's a fault on a pte_file where it does not
belong. That's weak coverage when we suspect pagetable corruption.
Originally, it was called when vm_normal_page() found an invalid pfn: but
pfn_valid is expensive on some architectures and configurations, so 2.6.24
put that under CONFIG_DEBUG_VM (which doesn't help in the field), then
2.6.26 replaced it by a VM_BUG_ON (likewise).
Reinstate the print_bad_pte() in vm_normal_page(), but use a cheaper test
than pfn_valid(): memmap_init_zone() (used in bootup and hotplug) keep a
__read_mostly note of the highest_memmap_pfn, vm_normal_page() then check
pfn against that. We could call this pfn_plausible() or pfn_sane(), but I
doubt we'll need it elsewhere: of course it's not reliable, but gives much
stronger pagetable validation on many boxes.
Also use print_bad_pte() when the pte_special bit is found outside a
VM_PFNMAP or VM_MIXEDMAP area, instead of VM_BUG_ON.
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
As we can determine exactly when a gigantic page is in use we can optimise
the common regular page cases by pulling out gigantic page initialisation
into its own function. As gigantic pages are never released to buddy we
do not need a destructor. This effectivly reverts the previous change to
the main buddy allocator. It also adds a paranoid check to ensure we
never release gigantic pages from hugetlbfs to the main buddy.
Signed-off-by: Andy Whitcroft <apw@shadowen.org>
Cc: Jon Tollefson <kniht@linux.vnet.ibm.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: <stable@kernel.org> [2.6.27.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When working with hugepages, hugetlbfs assumes that those hugepages are
smaller than MAX_ORDER. Specifically it assumes that the mem_map is
contigious and uses that to optimise access to the elements of the mem_map
that represent the hugepage. Gigantic pages (such as 16GB pages on
powerpc) by definition are of greater order than MAX_ORDER (larger than
MAX_ORDER_NR_PAGES in size). This means that we can no longer make use of
the buddy alloctor guarentees for the contiguity of the mem_map, which
ensures that the mem_map is at least contigious for maximmally aligned
areas of MAX_ORDER_NR_PAGES pages.
This patch adds new mem_map accessors and iterator helpers which handle
any discontiguity at MAX_ORDER_NR_PAGES boundaries. It then uses these to
implement gigantic page versions of copy_huge_page and clear_huge_page,
and to allow follow_hugetlb_page handle gigantic pages.
Signed-off-by: Andy Whitcroft <apw@shadowen.org>
Cc: Jon Tollefson <kniht@linux.vnet.ibm.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: <stable@kernel.org> [2.6.27.x]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Allow free of mlock()ed pages. This shouldn't happen, but during
developement, it occasionally did.
This patch allows us to survive that condition, while keeping the
statistics and events correct for debug.
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add NR_MLOCK zone page state, which provides a (conservative) count of
mlocked pages (actually, the number of mlocked pages moved off the LRU).
Reworked by lts to fit in with the modified mlock page support in the
Reclaim Scalability series.
[kosaki.motohiro@jp.fujitsu.com: fix incorrect Mlocked field of /proc/meminfo]
[lee.schermerhorn@hp.com: mlocked-pages: add event counting with statistics]
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Originally by Nick Piggin <npiggin@suse.de>
Remove mlocked pages from the LRU using "unevictable infrastructure"
during mmap(), munmap(), mremap() and truncate(). Try to move back to
normal LRU lists on munmap() when last mlocked mapping removed. Remove
PageMlocked() status when page truncated from file.
[akpm@linux-foundation.org: cleanup]
[kamezawa.hiroyu@jp.fujitsu.com: fix double unlock_page()]
[kosaki.motohiro@jp.fujitsu.com: split LRU: munlock rework]
[lee.schermerhorn@hp.com: mlock: fix __mlock_vma_pages_range comment block]
[akpm@linux-foundation.org: remove bogus kerneldoc token]
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: KAMEZAWA Hiroyuki <kamewzawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Make sure that mlocked pages also live on the unevictable LRU, so kswapd
will not scan them over and over again.
This is achieved through various strategies:
1) add yet another page flag--PG_mlocked--to indicate that
the page is locked for efficient testing in vmscan and,
optionally, fault path. This allows early culling of
unevictable pages, preventing them from getting to
page_referenced()/try_to_unmap(). Also allows separate
accounting of mlock'd pages, as Nick's original patch
did.
Note: Nick's original mlock patch used a PG_mlocked
flag. I had removed this in favor of the PG_unevictable
flag + an mlock_count [new page struct member]. I
restored the PG_mlocked flag to eliminate the new
count field.
2) add the mlock/unevictable infrastructure to mm/mlock.c,
with internal APIs in mm/internal.h. This is a rework
of Nick's original patch to these files, taking into
account that mlocked pages are now kept on unevictable
LRU list.
3) update vmscan.c:page_evictable() to check PageMlocked()
and, if vma passed in, the vm_flags. Note that the vma
will only be passed in for new pages in the fault path;
and then only if the "cull unevictable pages in fault
path" patch is included.
4) add try_to_unlock() to rmap.c to walk a page's rmap and
ClearPageMlocked() if no other vmas have it mlocked.
Reuses as much of try_to_unmap() as possible. This
effectively replaces the use of one of the lru list links
as an mlock count. If this mechanism let's pages in mlocked
vmas leak through w/o PG_mlocked set [I don't know that it
does], we should catch them later in try_to_unmap(). One
hopes this will be rare, as it will be relatively expensive.
Original mm/internal.h, mm/rmap.c and mm/mlock.c changes:
Signed-off-by: Nick Piggin <npiggin@suse.de>
splitlru: introduce __get_user_pages():
New munlock processing need to GUP_FLAGS_IGNORE_VMA_PERMISSIONS.
because current get_user_pages() can't grab PROT_NONE pages theresore it
cause PROT_NONE pages can't munlock.
[akpm@linux-foundation.org: fix this for pagemap-pass-mm-into-pagewalkers.patch]
[akpm@linux-foundation.org: untangle patch interdependencies]
[akpm@linux-foundation.org: fix things after out-of-order merging]
[hugh@veritas.com: fix page-flags mess]
[lee.schermerhorn@hp.com: fix munlock page table walk - now requires 'mm']
[kosaki.motohiro@jp.fujitsu.com: build fix]
[kosaki.motohiro@jp.fujitsu.com: fix truncate race and sevaral comments]
[kosaki.motohiro@jp.fujitsu.com: splitlru: introduce __get_user_pages()]
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Dave Hansen <dave@linux.vnet.ibm.com>
Cc: Matt Mackall <mpm@selenic.com>
Signed-off-by: Hugh Dickins <hugh@veritas.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When the system contains lots of mlocked or otherwise unevictable pages,
the pageout code (kswapd) can spend lots of time scanning over these
pages. Worse still, the presence of lots of unevictable pages can confuse
kswapd into thinking that more aggressive pageout modes are required,
resulting in all kinds of bad behaviour.
Infrastructure to manage pages excluded from reclaim--i.e., hidden from
vmscan. Based on a patch by Larry Woodman of Red Hat. Reworked to
maintain "unevictable" pages on a separate per-zone LRU list, to "hide"
them from vmscan.
Kosaki Motohiro added the support for the memory controller unevictable
lru list.
Pages on the unevictable list have both PG_unevictable and PG_lru set.
Thus, PG_unevictable is analogous to and mutually exclusive with
PG_active--it specifies which LRU list the page is on.
The unevictable infrastructure is enabled by a new mm Kconfig option
[CONFIG_]UNEVICTABLE_LRU.
A new function 'page_evictable(page, vma)' in vmscan.c tests whether or
not a page may be evictable. Subsequent patches will add the various
!evictable tests. We'll want to keep these tests light-weight for use in
shrink_active_list() and, possibly, the fault path.
To avoid races between tasks putting pages [back] onto an LRU list and
tasks that might be moving the page from non-evictable to evictable state,
the new function 'putback_lru_page()' -- inverse to 'isolate_lru_page()'
-- tests the "evictability" of a page after placing it on the LRU, before
dropping the reference. If the page has become unevictable,
putback_lru_page() will redo the 'putback', thus moving the page to the
unevictable list. This way, we avoid "stranding" evictable pages on the
unevictable list.
[akpm@linux-foundation.org: fix fallout from out-of-order merge]
[riel@redhat.com: fix UNEVICTABLE_LRU and !PROC_PAGE_MONITOR build]
[nishimura@mxp.nes.nec.co.jp: remove redundant mapping check]
[kosaki.motohiro@jp.fujitsu.com: unevictable-lru-infrastructure: putback_lru_page()/unevictable page handling rework]
[kosaki.motohiro@jp.fujitsu.com: kill unnecessary lock_page() in vmscan.c]
[kosaki.motohiro@jp.fujitsu.com: revert migration change of unevictable lru infrastructure]
[kosaki.motohiro@jp.fujitsu.com: revert to unevictable-lru-infrastructure-kconfig-fix.patch]
[kosaki.motohiro@jp.fujitsu.com: restore patch failure of vmstat-unevictable-and-mlocked-pages-vm-events.patch]
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Debugged-by: Benjamin Kidwell <benjkidwell@yahoo.com>
Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp>
Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
On large memory systems, the VM can spend way too much time scanning
through pages that it cannot (or should not) evict from memory. Not only
does it use up CPU time, but it also provokes lock contention and can
leave large systems under memory presure in a catatonic state.
This patch series improves VM scalability by:
1) putting filesystem backed, swap backed and unevictable pages
onto their own LRUs, so the system only scans the pages that it
can/should evict from memory
2) switching to two handed clock replacement for the anonymous LRUs,
so the number of pages that need to be scanned when the system
starts swapping is bound to a reasonable number
3) keeping unevictable pages off the LRU completely, so the
VM does not waste CPU time scanning them. ramfs, ramdisk,
SHM_LOCKED shared memory segments and mlock()ed VMA pages
are keept on the unevictable list.
This patch:
isolate_lru_page logically belongs to be in vmscan.c than migrate.c.
It is tough, because we don't need that function without memory migration
so there is a valid argument to have it in migrate.c. However a
subsequent patch needs to make use of it in the core mm, so we can happily
move it to vmscan.c.
Also, make the function a little more generic by not requiring that it
adds an isolated page to a given list. Callers can do that.
Note that we now have '__isolate_lru_page()', that does
something quite different, visible outside of vmscan.c
for use with memory controller. Methinks we need to
rationalize these names/purposes. --lts
[akpm@linux-foundation.org: fix mm/memory_hotplug.c build]
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>