Instead of storing the base addresses we can store the counter's msr
addresses directly in config_base/event_base of struct hw_perf_event.
This avoids recalculating the address with each msr access. The
addresses are configured one time. We also need this change to later
modify the address calculation.
Signed-off-by: Robert Richter <robert.richter@amd.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1296664860-10886-5-git-send-email-robert.richter@amd.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This patch adds helper functions to calculate perfctr msr addresses.
We need this to later add support for AMD family 15h cpus. For this we
have to change the algorithms to generate the perfctr's msr addresses.
Signed-off-by: Robert Richter <robert.richter@amd.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1296664860-10886-3-git-send-email-robert.richter@amd.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Use helper function in x86_pmu_enable_all() to minimize access to
x86_pmu.eventsel in the fast path. The counter's msr address is now
calculated using struct hw_perf_event. Later we add code that
calculates the msr addresses with a table lookup which shouldn't be
done in the fast path.
Signed-off-by: Robert Richter <robert.richter@amd.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1296664860-10886-2-git-send-email-robert.richter@amd.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
init_hw_perf_events() is called via early_initcall now.
x86_pmu_event_init is x86_pmu member function.
So we can change them to static.
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Arnaldo Carvalho de Melo <acme@ghostprotocols.net>
LKML-Reference: <4D3A16F9.109@kernel.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* 'for-2.6.38' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu: (30 commits)
gameport: use this_cpu_read instead of lookup
x86: udelay: Use this_cpu_read to avoid address calculation
x86: Use this_cpu_inc_return for nmi counter
x86: Replace uses of current_cpu_data with this_cpu ops
x86: Use this_cpu_ops to optimize code
vmstat: User per cpu atomics to avoid interrupt disable / enable
irq_work: Use per cpu atomics instead of regular atomics
cpuops: Use cmpxchg for xchg to avoid lock semantics
x86: this_cpu_cmpxchg and this_cpu_xchg operations
percpu: Generic this_cpu_cmpxchg() and this_cpu_xchg support
percpu,x86: relocate this_cpu_add_return() and friends
connector: Use this_cpu operations
xen: Use this_cpu_inc_return
taskstats: Use this_cpu_ops
random: Use this_cpu_inc_return
fs: Use this_cpu_inc_return in buffer.c
highmem: Use this_cpu_xx_return() operations
vmstat: Use this_cpu_inc_return for vm statistics
x86: Support for this_cpu_add, sub, dec, inc_return
percpu: Generic support for this_cpu_add, sub, dec, inc_return
...
Fixed up conflicts: in arch/x86/kernel/{apic/nmi.c, apic/x2apic_uv_x.c, process.c}
as per Tejun.
With priorities in place and no one really understanding the difference between
DIE_NMI and DIE_NMI_IPI, just remove DIE_NMI_IPI and convert everyone to DIE_NMI.
This also simplifies default_do_nmi() a little bit. Instead of calling the
die_notifier in both the if and else part, just pull it out and call it before
the if-statement. This has the side benefit of avoiding a call to the ioport
to see if there is an external NMI sitting around until after the (more frequent)
internal NMIs are dealt with.
Patch-Inspired-by: Huang Ying <ying.huang@intel.com>
Signed-off-by: Don Zickus <dzickus@redhat.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1294348732-15030-5-git-send-email-dzickus@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
In order to consolidate the NMI die_chain events, we need to setup the priorities
for the die notifiers.
I started by defining a bunch of common priorities that can be used by the
notifier blocks. Then I modified the notifier blocks to use the newly created
priorities.
Now that the priorities are straightened out, it should be easier to remove the
event DIE_NMI_IPI.
Signed-off-by: Don Zickus <dzickus@redhat.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1294348732-15030-4-git-send-email-dzickus@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Go through x86 code and replace __get_cpu_var and get_cpu_var
instances that refer to a scalar and are not used for address
determinations.
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Ingo Molnar <mingo@elte.hu>
Acked-by: Tejun Heo <tj@kernel.org>
Acked-by: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Extend the perf_pmu_register() interface to allow for named and
dynamic pmu types.
Because we need to support the existing static types we cannot use
dynamic types for everything, hence provide a type argument.
If we want to enumerate the PMUs they need a name, provide one.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <20101117222056.259707703@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Some BIOSes use PMU resources, which can cause various bugs:
- Non-working or erratic PMU based statistics - the PMU can end up
counting the wrong thing, resulting in misleading statistics
- Profiling can stop working or it can profile the wrong thing
- A non-working or erratic NMI watchdog that cannot be relied on
- The kernel may disturb whatever thing the BIOS tries to use the
PMU for - possibly causing hardware malfunction in extreme cases.
- ... and other forms of potential misbehavior
Various forms of such misbehavior has been observed in practice - there are
BIOSes that just corrupt the PMU state, consequences be damned.
The PMU is a CPU resource that is handled by the kernel and the BIOS
stealing+corrupting it is not acceptable nor robust, so we detect it,
warn about it and further refuse to touch the PMU ourselves.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Jason Wessel <jason.wessel@windriver.com>
Cc: Don Zickus <dzickus@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The perf hardware pmu got initialized at various points in the boot,
some before early_initcall() some after (notably arch_initcall).
The problem is that the NMI lockup detector is ran from early_initcall()
and expects the hardware pmu to be present.
Sanitize this by moving all architecture hardware pmu implementations to
initialize at early_initcall() and move the lockup detector to an explicit
initcall right after that.
Cc: paulus <paulus@samba.org>
Cc: davem <davem@davemloft.net>
Cc: Michael Cree <mcree@orcon.net.nz>
Cc: Deng-Cheng Zhu <dengcheng.zhu@gmail.com>
Acked-by: Paul Mundt <lethal@linux-sh.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1290707759.2145.119.camel@laptop>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
and use it when appropriate.
Signed-off-by: Franck Bui-Huu <fbuihuu@gmail.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1290525705-6265-1-git-send-email-fbuihuu@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
In a kvm virt guests, the perf counters are not emulated. Instead they
return zero on a rdmsrl. The perf nmi handler uses the fact that crossing
a zero means the counter overflowed (for those counters that do not have
specific interrupt bits). Therefore on kvm guests, perf will swallow all
NMIs thinking the counters overflowed.
This causes problems for subsystems like kgdb which needs NMIs to do its
magic. This problem was discovered by running kgdb tests.
The solution is to write garbage into a perf counter during the
initialization and hopefully reading back the same number. On kvm
guests, the value will be read back as zero and we disable perf as
a result.
Reported-by: Jason Wessel <jason.wessel@windriver.com>
Patch-inspired-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Don Zickus <dzickus@redhat.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Stephane Eranian <eranian@google.com>
LKML-Reference: <1290462923-30734-1-git-send-email-dzickus@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The various stack tracing routines take a 'bp' argument in which the
caller is supposed to provide the base pointer to use, or 0 if doesn't
have one. Since bp is garbage whenever CONFIG_FRAME_POINTER is not
defined, this means all callers in principle should either always pass
0, or be conditional on CONFIG_FRAME_POINTER.
However, there are only really three use cases for stack tracing:
(a) Trace the current task, including IRQ stack if any
(b) Trace the current task, but skip IRQ stack
(c) Trace some other task
In all cases, if CONFIG_FRAME_POINTER is not defined, bp should just
be 0. If it _is_ defined, then
- in case (a) bp should be gotten directly from the CPU's register, so
the caller should pass NULL for regs,
- in case (b) the caller should should pass the IRQ registers to
dump_trace(),
- in case (c) bp should be gotten from the top of the task's stack, so
the caller should pass NULL for regs.
Hence, the bp argument is not necessary because the combination of
task and regs is sufficient to determine an appropriate value for bp.
This patch introduces a new inline function stack_frame(task, regs)
that computes the desired bp. This function is then called from the
two versions of dump_stack().
Signed-off-by: Soren Sandmann <ssp@redhat.com>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Arjan van de Ven <arjan@infradead.org>,
Cc: Frederic Weisbecker <fweisbec@gmail.com>,
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>,
LKML-Reference: <m3oc9rop28.fsf@dhcp-100-3-82.bos.redhat.com>>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Now that the bulk of the old nmi_watchdog is gone, remove all
the stub variables and hooks associated with it.
This touches lots of files mainly because of how the io_apic
nmi_watchdog was implemented. Now that the io_apic nmi_watchdog
is forever gone, remove all its fingers.
Most of this code was not being exercised by virtue of
nmi_watchdog != NMI_IO_APIC, so there shouldn't be anything to
risky here.
Signed-off-by: Don Zickus <dzickus@redhat.com>
Cc: fweisbec@gmail.com
Cc: gorcunov@openvz.org
LKML-Reference: <1289578944-28564-3-git-send-email-dzickus@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Now that the KM_type stuff is history, clean up the compiler warning.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Chris Metcalf <cmetcalf@tilera.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: David Miller <davem@davemloft.net>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now that reserve_ds_buffers() never fails, change it to return
void and remove all code dealing with the error return.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Stephane Eranian <eranian@google.com>
LKML-Reference: <20101019134808.462621937@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Currently PEBS/BTS buffers are allocated when we instantiate the first
event, when this fails everything fails.
This is a problem because esp. BTS tries to allocate a rather large
buffer (64K), which can easily fail.
This patch changes the logic such that when either buffer allocation
fails, we simply don't allow events that would use these facilities,
but continue functioning for all other events.
This logic comes from a much larger patch proposed by Stephane.
Suggested-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Stephane Eranian <eranian@google.com>
LKML-Reference: <20101019134808.354429461@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
In case we don't have PEBS, the LBR fixup doesn't make sense.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Stephane Eranian <eranian@google.com>
LKML-Reference: <20101019134808.354429461@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Provide a mechanism that allows running code in IRQ context. It is
most useful for NMI code that needs to interact with the rest of the
system -- like wakeup a task to drain buffers.
Perf currently has such a mechanism, so extract that and provide it as
a generic feature, independent of perf so that others may also
benefit.
The IRQ context callback is generated through self-IPIs where
possible, or on architectures like powerpc the decrementer (the
built-in timer facility) is set to generate an interrupt immediately.
Architectures that don't have anything like this get to do with a
callback from the timer tick. These architectures can call
irq_work_run() at the tail of any IRQ handlers that might enqueue such
work (like the perf IRQ handler) to avoid undue latencies in
processing the work.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Kyle McMartin <kyle@mcmartin.ca>
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
[ various fixes ]
Signed-off-by: Huang Ying <ying.huang@intel.com>
LKML-Reference: <1287036094.7768.291.camel@yhuang-dev>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Just dead code I believe.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: andi@firstfloor.org
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Conflicts:
tools/perf/util/ui/browsers/hists.c
Merge reason: fix the conflict and merge in changes for dependent patch.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Neither the overcommit nor the reservation sysfs parameter were
actually working, remove them as they'll only get in the way.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: paulus <paulus@samba.org>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Replace pmu::{enable,disable,start,stop,unthrottle} with
pmu::{add,del,start,stop}, all of which take a flags argument.
The new interface extends the capability to stop a counter while
keeping it scheduled on the PMU. We replace the throttled state with
the generic stopped state.
This also allows us to efficiently stop/start counters over certain
code paths (like IRQ handlers).
It also allows scheduling a counter without it starting, allowing for
a generic frozen state (useful for rotating stopped counters).
The stopped state is implemented in two different ways, depending on
how the architecture implemented the throttled state:
1) We disable the counter:
a) the pmu has per-counter enable bits, we flip that
b) we program a NOP event, preserving the counter state
2) We store the counter state and ignore all read/overflow events
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: paulus <paulus@samba.org>
Cc: stephane eranian <eranian@googlemail.com>
Cc: Robert Richter <robert.richter@amd.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Cyrill Gorcunov <gorcunov@gmail.com>
Cc: Lin Ming <ming.m.lin@intel.com>
Cc: Yanmin <yanmin_zhang@linux.intel.com>
Cc: Deng-Cheng Zhu <dengcheng.zhu@gmail.com>
Cc: David Miller <davem@davemloft.net>
Cc: Michael Cree <mcree@orcon.net.nz>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Since the current perf_disable() usage is only an optimization,
remove it for now. This eases the removal of the __weak
hw_perf_enable() interface.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: paulus <paulus@samba.org>
Cc: stephane eranian <eranian@googlemail.com>
Cc: Robert Richter <robert.richter@amd.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Cyrill Gorcunov <gorcunov@gmail.com>
Cc: Lin Ming <ming.m.lin@intel.com>
Cc: Yanmin <yanmin_zhang@linux.intel.com>
Cc: Deng-Cheng Zhu <dengcheng.zhu@gmail.com>
Cc: David Miller <davem@davemloft.net>
Cc: Michael Cree <mcree@orcon.net.nz>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Simple registration interface for struct pmu, this provides the
infrastructure for removing all the weak functions.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: paulus <paulus@samba.org>
Cc: stephane eranian <eranian@googlemail.com>
Cc: Robert Richter <robert.richter@amd.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Cyrill Gorcunov <gorcunov@gmail.com>
Cc: Lin Ming <ming.m.lin@intel.com>
Cc: Yanmin <yanmin_zhang@linux.intel.com>
Cc: Deng-Cheng Zhu <dengcheng.zhu@gmail.com>
Cc: David Miller <davem@davemloft.net>
Cc: Michael Cree <mcree@orcon.net.nz>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
When the PMU is enabled it is valid to have unhandled nmis, two
events could trigger 'simultaneously' raising two back-to-back
NMIs. If the first NMI handles both, the latter will be empty
and daze the CPU.
The solution to avoid an 'unknown nmi' massage in this case was
simply to stop the nmi handler chain when the PMU is enabled by
stating the nmi was handled. This has the drawback that a) we
can not detect unknown nmis anymore, and b) subsequent nmi
handlers are not called.
This patch addresses this. Now, we check this unknown NMI if it
could be a PMU back-to-back NMI. Otherwise we pass it and let
the kernel handle the unknown nmi.
This is a debug log:
cpu #6, nmi #32333, skip_nmi #32330, handled = 1, time = 1934364430
cpu #6, nmi #32334, skip_nmi #32330, handled = 1, time = 1934704616
cpu #6, nmi #32335, skip_nmi #32336, handled = 2, time = 1936032320
cpu #6, nmi #32336, skip_nmi #32336, handled = 0, time = 1936034139
cpu #6, nmi #32337, skip_nmi #32336, handled = 1, time = 1936120100
cpu #6, nmi #32338, skip_nmi #32336, handled = 1, time = 1936404607
cpu #6, nmi #32339, skip_nmi #32336, handled = 1, time = 1937983416
cpu #6, nmi #32340, skip_nmi #32341, handled = 2, time = 1938201032
cpu #6, nmi #32341, skip_nmi #32341, handled = 0, time = 1938202830
cpu #6, nmi #32342, skip_nmi #32341, handled = 1, time = 1938443743
cpu #6, nmi #32343, skip_nmi #32341, handled = 1, time = 1939956552
cpu #6, nmi #32344, skip_nmi #32341, handled = 1, time = 1940073224
cpu #6, nmi #32345, skip_nmi #32341, handled = 1, time = 1940485677
cpu #6, nmi #32346, skip_nmi #32347, handled = 2, time = 1941947772
cpu #6, nmi #32347, skip_nmi #32347, handled = 1, time = 1941949818
cpu #6, nmi #32348, skip_nmi #32347, handled = 0, time = 1941951591
Uhhuh. NMI received for unknown reason 00 on CPU 6.
Do you have a strange power saving mode enabled?
Dazed and confused, but trying to continue
Deltas:
nmi #32334 340186
nmi #32335 1327704
nmi #32336 1819 <<<< back-to-back nmi [1]
nmi #32337 85961
nmi #32338 284507
nmi #32339 1578809
nmi #32340 217616
nmi #32341 1798 <<<< back-to-back nmi [2]
nmi #32342 240913
nmi #32343 1512809
nmi #32344 116672
nmi #32345 412453
nmi #32346 1462095 <<<< 1st nmi (standard) handling 2 counters
nmi #32347 2046 <<<< 2nd nmi (back-to-back) handling one
counter nmi #32348 1773 <<<< 3rd nmi (back-to-back)
handling no counter! [3]
For back-to-back nmi detection there are the following rules:
The PMU nmi handler was handling more than one counter and no
counter was handled in the subsequent nmi (see [1] and [2]
above).
There is another case if there are two subsequent back-to-back
nmis [3]. The 2nd is detected as back-to-back because the first
handled more than one counter. If the second handles one counter
and the 3rd handles nothing, we drop the 3rd nmi because it
could be a back-to-back nmi.
Signed-off-by: Robert Richter <robert.richter@amd.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
[ renamed nmi variable to pmu_nmi to avoid clash with .nmi in entry.S ]
Signed-off-by: Don Zickus <dzickus@redhat.com>
Cc: peterz@infradead.org
Cc: gorcunov@gmail.com
Cc: fweisbec@gmail.com
Cc: ying.huang@intel.com
Cc: ming.m.lin@intel.com
Cc: eranian@google.com
LKML-Reference: <1283454469-1909-3-git-send-email-dzickus@redhat.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This fixes the following build warning introduced by the
callchain rework:
arch/x86/kernel/cpu/perf_event.c:1574: warning: ‘perf_callchain_entry_nmi’ defined but not used
Signed-off-by: Lin Ming <ming.m.lin@intel.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
LKML-Reference: <1282718949.16443.75.camel@minggr.sh.intel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Fixes these build warnings introduced by the callchain
rework:
arch/x86/kernel/cpu/perf_event.c: In function ‘perf_callchain_kernel’:
arch/x86/kernel/cpu/perf_event.c:1646: warning: ‘return’ with a value, in function returning void
arch/x86/kernel/cpu/perf_event.c: In function ‘perf_callchain_user’:
arch/x86/kernel/cpu/perf_event.c:1699: warning: ‘return’ with a value, in function returning void
arch/x86/kernel/cpu/perf_event.c: At top level:
arch/x86/kernel/cpu/perf_event.c:1607: warning: ‘perf_callchain_entry_nmi’ defined but not used
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Frederic Weisbecker <fweisbec@gmail.com>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Now that software events don't have interrupt disabled anymore in
the event path, callchains can nest on any context. So seperating
nmi and others contexts in two buffers has become racy.
Fix this by providing one buffer per nesting level. Given the size
of the callchain entries (2040 bytes * 4), we now need to allocate
them dynamically.
v2: Fixed put_callchain_entry call after recursion.
Fix the type of the recursion, it must be an array.
v3: Use a manual pr cpu allocation (temporary solution until NMIs
can safely access vmalloc'ed memory).
Do a better separation between callchain reference tracking and
allocation. Make the "put" path lockless for non-release cases.
v4: Protect the callchain buffers with rcu.
v5: Do the cpu buffers allocations node affine.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Tested-by: Will Deacon <will.deacon@arm.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: David Miller <davem@davemloft.net>
Cc: Borislav Petkov <bp@amd64.org>
Store the kernel and user contexts from the generic layer instead
of archs, this gathers some repetitive code.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Acked-by: Paul Mackerras <paulus@samba.org>
Tested-by: Will Deacon <will.deacon@arm.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: David Miller <davem@davemloft.net>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Borislav Petkov <bp@amd64.org>
- Most archs use one callchain buffer per cpu, except x86 that needs
to deal with NMIs. Provide a default perf_callchain_buffer()
implementation that x86 overrides.
- Centralize all the kernel/user regs handling and invoke new arch
handlers from there: perf_callchain_user() / perf_callchain_kernel()
That avoid all the user_mode(), current->mm checks and so...
- Invert some parameters in perf_callchain_*() helpers: entry to the
left, regs to the right, following the traditional (dst, src).
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Acked-by: Paul Mackerras <paulus@samba.org>
Tested-by: Will Deacon <will.deacon@arm.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: David Miller <davem@davemloft.net>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Borislav Petkov <bp@amd64.org>
callchain_store() is the same on every archs, inline it in
perf_event.h and rename it to perf_callchain_store() to avoid
any collision.
This removes repetitive code.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Acked-by: Paul Mackerras <paulus@samba.org>
Tested-by: Will Deacon <will.deacon@arm.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: David Miller <davem@davemloft.net>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Borislav Petkov <bp@amd64.org>
Drop the TASK_RUNNING test on user tasks for callchains as
this check doesn't seem to make any sense.
Also remove the tests for !current that is not supposed to
happen and current->pid as this should be handled at the
generic level, with exclude_idle attribute.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Tested-by: Will Deacon <will.deacon@arm.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: David Miller <davem@davemloft.net>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Borislav Petkov <bp@amd64.org>
Since now all modification to event->count (and ->prev_count
and ->period_left) are local to a cpu, change then to local64_t so we
avoid the LOCK'ed ops.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
On Netburst PMU we need a second write to a performance counter
due to cpu erratum.
A simple flag test instead of alternative instructions was choosen
because wrmsrl is already a macro and if virtualization is turned
on will need an additional wrapper call which is more expencise.
nb: we should propably switch to jump-labels as only this facility
reach the mainline.
Signed-off-by: Cyrill Gorcunov <gorcunov@openvz.org>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Robert Richter <robert.richter@amd.com>
Cc: Lin Ming <ming.m.lin@intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
LKML-Reference: <20100602212304.GC5264@lenovo>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Clarify some of the transactional group scheduling API details
and change it so that a successfull ->commit_txn also closes
the transaction.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Steven Rostedt <rostedt@goodmis.org>
LKML-Reference: <1274803086.5882.1752.camel@twins>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Drop this argument now that we always want to rewind only to the
state of the first caller.
It means frame pointers are not necessary anymore to reliably get
the source of an event. But this also means we need this helper
to be a macro now, as an inline function is not an option since
we need to know when to provide a default implentation.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Cc: David Miller <davem@davemloft.net>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
arch/x86/include/asm/stacktrace.h and arch/x86/kernel/dumpstack.h
declare headers of objects that deal with the same topic.
Actually most of the files that include stacktrace.h also include
dumpstack.h
Although dumpstack.h seems more reserved for internals of stack
traces, those are quite often needed to define specialized stack
trace operations. And perf event arch headers are going to need
access to such low level operations anyway. So don't continue to
bother with dumpstack.h as it's not anymore about isolated deep
internals.
v2: fix struct stack_frame definition conflict in sysprof
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Soeren Sandmann <sandmann@daimi.au.dk>
The transactional API patch between the generic and model-specific
code introduced several important bugs with event scheduling, at
least on X86. If you had pinned events, e.g., watchdog, and were
over-committing the PMU, you would get bogus counts. The bug was
showing up on Intel CPU because events would move around more
often that on AMD. But the problem also existed on AMD, though
harder to expose.
The issues were:
- group_sched_in() was missing a cancel_txn() in the error path
- cpuc->n_added was not properly maintained, leading to missing
actions in hw_perf_enable(), i.e., n_running being 0. You cannot
update n_added until you know the transaction has succeeded. In
case of failed transaction n_added was not adjusted back.
- in case of failed transactions, event_sched_out() was called
and eventually invoked x86_disable_event() to touch the HW reg.
But with transactions, on X86, event_sched_in() does not touch
HW registers, it simply collects events into a list. Thus, you
could end up calling x86_disable_event() on a counter which
did not correspond to the current event when idx != -1.
The patch modifies the generic and X86 code to avoid all those problems.
First, we keep track of the number of events added last. In case the
transaction fails, we substract them from n_added. This approach is
necessary (as opposed to delaying updates to n_added) because not all
event updates use the transaction API, e.g., single events.
Second, we encapsulate the event_sched_in() and event_sched_out() in
group_sched_in() inside the transaction. That makes the operations
symmetrical and you can also detect that you are inside a transaction
and skip the HW reg access by checking cpuc->group_flag.
With this patch, you can now overcommit the PMU even with pinned
system-wide events present and still get valid counts.
Signed-off-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1274796225.5882.1389.camel@twins>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Patch b7e2ecef92 (perf, trace: Optimize tracepoints by removing
IRQ-disable from perf/tracepoint interaction) made the
unfortunate mistake of assuming the world is x86 only, correct
this.
The problem was that perf_fetch_caller_regs() did
local_save_flags() into regs->flags, and I re-used that to
remove another local_save_flags(), forgetting !x86 doesn't have
regs->flags.
Do the reverse, remove the local_save_flags() from
perf_fetch_caller_regs() and let the ftrace site do the
local_save_flags() instead.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Paul Mackerras <paulus@samba.org>
Cc: acme@redhat.com
Cc: efault@gmx.de
Cc: fweisbec@gmail.com
Cc: rostedt@goodmis.org
LKML-Reference: <1274778175.5882.623.camel@twins>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Convert to the transactional PMU API and remove the duplication of
group_sched_in().
Reviewed-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Lin Ming <ming.m.lin@intel.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: David Miller <davem@davemloft.net>
Cc: Paul Mackerras <paulus@samba.org>
LKML-Reference: <1272002172.5707.61.camel@minggr.sh.intel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Rename perf_event_attr::precise to perf_event_attr::precise_ip and
widen it to 2 bits. This new field describes the required precision of
the PERF_SAMPLE_IP field:
0 - SAMPLE_IP can have arbitrary skid
1 - SAMPLE_IP must have constant skid
2 - SAMPLE_IP requested to have 0 skid
3 - SAMPLE_IP must have 0 skid
And modify the Intel PEBS code accordingly. The PEBS implementation
now supports up to precise_ip == 2, where we perform the IP fixup.
Also s/PERF_RECORD_MISC_EXACT/&_IP/ to clarify its meaning, this bit
should be set for each PERF_SAMPLE_IP field known to match the actual
instruction triggering the event.
This new scheme allows for a PEBS mode that uses the buffer for more
than a single event.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Stephane Eranian <eranian@google.com>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
There may exist constraints with a cmask set to zero. In this case
for_each_event_constraint() will not work properly. Now weight is used
instead of the cmask for loop exit detection. Weight is always a value
other than zero since the default contains the HWEIGHT from the
counter mask and in other cases a value of zero does not fit too.
This is in preparation of ibs event constraints that wont have a
cmask.
Signed-off-by: Robert Richter <robert.richter@amd.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1271190201-25705-7-git-send-email-robert.richter@amd.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
To reuse this function for events with different enable bit masks,
this mask is part of the function's argument list now.
The function will be used later to control ibs events too.
Signed-off-by: Robert Richter <robert.richter@amd.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1271190201-25705-6-git-send-email-robert.richter@amd.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The perfctr setup calls are in the corresponding .hw_config()
functions now. This makes it possible to introduce config functions
for other pmu events that are not perfctr specific.
Also, all of a sudden the code looks much nicer.
Signed-off-by: Robert Richter <robert.richter@amd.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1271190201-25705-4-git-send-email-robert.richter@amd.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Move x86_setup_perfctr(), no other changes made.
Signed-off-by: Robert Richter <robert.richter@amd.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1271190201-25705-3-git-send-email-robert.richter@amd.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Split __hw_perf_event_init() to configure pmu events other than
perfctrs. Perfctr code is moved to a separate function
x86_setup_perfctr(). This and the following patches refactor the code.
Split in multiple patches for better review.
Signed-off-by: Robert Richter <robert.richter@amd.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1271190201-25705-2-git-send-email-robert.richter@amd.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Below patch introduces perf_guest_info_callbacks and related
register/unregister functions. Add more PERF_RECORD_MISC_XXX bits
meaning guest kernel and guest user space.
Signed-off-by: Zhang Yanmin <yanmin_zhang@linux.intel.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
It is useless now that we have a pure stack frame
walker, as given addr are always reliable.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Stephane Eranian <eranian@google.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Ingo Molnar <mingo@elte.hu>
Stephane noticed that the ANY flag was in generic arch code, and Cyrill
reported that it broke the P4 code.
Solve this by merging x86_pmu::raw_event into x86_pmu::hw_config and
provide intel_pmu and amd_pmu specific versions of this callback.
The intel_pmu one deals with the ANY flag, the amd_pmu adds the few extra
event bits AMD64 has.
Reported-by: Stephane Eranian <eranian@google.com>
Reported-by: Cyrill Gorcunov <gorcunov@gmail.com>
Acked-by: Robert Richter <robert.richter@amd.com>
Acked-by: Cyrill Gorcunov <gorcunov@gmail.com>
Acked-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1269968113.5258.442.camel@laptop>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
ARCH_PERFMON_EVENTSEL bit masks are often used in the kernel. This
patch adds macros for the bit masks and removes local defines. The
function intel_pmu_raw_event() becomes x86_pmu_raw_event() which is
generic for x86 models and same also for p6. Duplicate code is
removed.
Signed-off-by: Robert Richter <robert.richter@amd.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <20100330092821.GH11907@erda.amd.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The big rename:
cdd6c48 perf: Do the big rename: Performance Counters -> Performance Events
accidentally renamed some members of stucts that were named after
registers in the spec. To avoid confusion this patch reverts some
changes. The related specs are MSR descriptions in AMD's BKDGs and the
ARCHITECTURAL PERFORMANCE MONITORING section in the Intel 64 and IA-32
Architectures Software Developer's Manuals.
This patch does:
$ sed -i -e 's:num_events:num_counters:g' \
arch/x86/include/asm/perf_event.h \
arch/x86/kernel/cpu/perf_event_amd.c \
arch/x86/kernel/cpu/perf_event.c \
arch/x86/kernel/cpu/perf_event_intel.c \
arch/x86/kernel/cpu/perf_event_p6.c \
arch/x86/kernel/cpu/perf_event_p4.c \
arch/x86/oprofile/op_model_ppro.c
$ sed -i -e 's:event_bits:cntval_bits:g' -e 's:event_mask:cntval_mask:g' \
arch/x86/kernel/cpu/perf_event_amd.c \
arch/x86/kernel/cpu/perf_event.c \
arch/x86/kernel/cpu/perf_event_intel.c \
arch/x86/kernel/cpu/perf_event_p6.c \
arch/x86/kernel/cpu/perf_event_p4.c
Signed-off-by: Robert Richter <robert.richter@amd.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1269880612-25800-2-git-send-email-robert.richter@amd.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
When profiling a 32-bit process on a 64-bit kernel, callgraph tracing
stopped after the first function, because it has seen a garbage memory
address (tried to interpret the frame pointer, and return address as a
64-bit pointer).
Fix this by using a struct stack_frame with 32-bit pointers when the
TIF_IA32 flag is set.
Note that TIF_IA32 flag must be used, and not is_compat_task(), because
the latter is only set when the 32-bit process is executing a syscall,
which may not always be the case (when tracing page fault events for
example).
Signed-off-by: Török Edwin <edwintorok@gmail.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: x86@kernel.org
Cc: linux-kernel@vger.kernel.org
LKML-Reference: <1268820436-13145-1-git-send-email-edwintorok@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Commit 3f6da39 ("perf: Rework and fix the arch CPU-hotplug hooks") moved
the amd northbridge allocation from CPUS_ONLINE to CPUS_PREPARE_UP
however amd_nb_id() doesn't work yet on prepare so it would simply bail
basically reverting to a state where we do not properly track node wide
constraints - causing weird perf results.
Fix up the AMD NorthBridge initialization code by allocating from
CPU_UP_PREPARE and installing it from CPU_STARTING once we have the
proper nb_id. It also properly deals with the allocation failing.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
[ robustify using amd_has_nb() ]
Signed-off-by: Stephane Eranian <eranian@google.com>
LKML-Reference: <1269353485.5109.48.camel@twins>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Scheduler's task migration events don't work because they always
pass NULL regs perf_sw_event(). The event hence gets filtered
in perf_swevent_add().
Scheduler's context switches events use task_pt_regs() to get
the context when the event occured which is a wrong thing to
do as this won't give us the place in the kernel where we went
to sleep but the place where we left userspace. The result is
even more wrong if we switch from a kernel thread.
Use the hot regs snapshot for both events as they belong to the
non-interrupt/exception based events family. Unlike page faults
or so that provide the regs matching the exact origin of the event,
we need to save the current context.
This makes the task migration event working and fix the context
switch callchains and origin ip.
Example: perf record -a -e cs
Before:
10.91% ksoftirqd/0 0 [k] 0000000000000000
|
--- (nil)
perf_callchain
perf_prepare_sample
__perf_event_overflow
perf_swevent_overflow
perf_swevent_add
perf_swevent_ctx_event
do_perf_sw_event
__perf_sw_event
perf_event_task_sched_out
schedule
run_ksoftirqd
kthread
kernel_thread_helper
After:
23.77% hald-addon-stor [kernel.kallsyms] [k] schedule
|
--- schedule
|
|--60.00%-- schedule_timeout
| wait_for_common
| wait_for_completion
| blk_execute_rq
| scsi_execute
| scsi_execute_req
| sr_test_unit_ready
| |
| |--66.67%-- sr_media_change
| | media_changed
| | cdrom_media_changed
| | sr_block_media_changed
| | check_disk_change
| | cdrom_open
v2: Always build perf_arch_fetch_caller_regs() now that software
events need that too. They don't need it from modules, unlike trace
events, so we keep the EXPORT_SYMBOL in trace_event_perf.c
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: David Miller <davem@davemloft.net>
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
Implement the workaround for Intel Errata AAK100 and AAP53.
Also, remove the Core-i7 name for Nehalem events since there are
also Westmere based i7 chips.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Stephane Eranian <eranian@google.com>
LKML-Reference: <1269608924.12097.147.camel@laptop>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
If reserve_pmc_hardware() succeeds but reserve_ds_buffers()
fails, then we need to release_pmc_hardware. It won't be done
by the destroy() callback because we return before setting it
in case of error.
Signed-off-by: Stephane Eranian <eranian@google.com>
Cc: <stable@kernel.org>
Cc: peterz@infradead.org
Cc: paulus@samba.org
Cc: davem@davemloft.net
Cc: fweisbec@gmail.com
Cc: robert.richter@amd.com
Cc: perfmon2-devel@lists.sf.net
LKML-Reference: <4ba1568b.15185e0a.182a.7802@mx.google.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
--
arch/x86/kernel/cpu/perf_event.c | 5 ++++-
1 file changed, 4 insertions(+), 1 deletion(-)
Since apic_write() maps to a plain noop in the !CONFIG_X86_LOCAL_APIC
case we're safe to remove this conditional compilation and clean up
the code a bit.
Signed-off-by: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: fweisbec@gmail.com
Cc: acme@redhat.com
Cc: eranian@google.com
Cc: peterz@infradead.org
LKML-Reference: <20100317104356.232371479@openvz.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The same information is stored also in x86_pmu.intel_ctrl. This
patch removes perf_event_mask and instead uses
x86_pmu.intel_ctrl directly.
Signed-off-by: Robert Richter <robert.richter@amd.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1268826553-19518-5-git-send-email-robert.richter@amd.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This member in the struct is not used anymore and can be
removed.
Signed-off-by: Robert Richter <robert.richter@amd.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1268826553-19518-4-git-send-email-robert.richter@amd.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The function reserve_pmc_hardware() and release_pmc_hardware()
were hard to read. This patch improves readability of the code by
removing most of the CONFIG_X86_LOCAL_APIC macros.
Signed-off-by: Robert Richter <robert.richter@amd.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1268826553-19518-2-git-send-email-robert.richter@amd.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
perf_arch_fetch_caller_regs() is exported for the overriden x86
version, but not for the generic weak version.
As a general rule, weak functions should not have their symbol
exported in the same file they are defined.
So let's export it on trace_event_perf.c as it is used by trace
events only.
This fixes:
ERROR: ".perf_arch_fetch_caller_regs" [fs/xfs/xfs.ko] undefined!
ERROR: ".perf_arch_fetch_caller_regs" [arch/powerpc/platforms/cell/spufs/spufs.ko] undefined!
-v2: And also only build it if trace events are enabled.
-v3: Fix changelog mistake
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Xiao Guangrong <xiaoguangrong@cn.fujitsu.com>
Cc: Paul Mackerras <paulus@samba.org>
LKML-Reference: <1268697902-9518-1-git-send-regression-fweisbec@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
If x86_pmu.hw_config() fails a fixed error code (-EOPNOTSUPP) is
returned even if a different error was reported. This patch fixes
this.
Signed-off-by: Robert Richter <robert.richter@amd.com>
Acked-by: Cyrill Gorcunov <gorcunov@gmail.com>
Acked-by: Lin Ming <ming.m.lin@intel.com>
Cc: acme@redhat.com
Cc: eranian@google.com
Cc: gorcunov@openvz.org
Cc: peterz@infradead.org
Cc: fweisbec@gmail.com
LKML-Reference: <20100316160733.GR1585@erda.amd.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
perf_arch_fetch_caller_regs() is exported for the overriden x86
version, but not for the generic weak version.
As a general rule, weak functions should not have their symbol
exported in the same file they are defined.
So let's export it on trace_event_perf.c as it is used by trace
events only.
This fixes:
ERROR: ".perf_arch_fetch_caller_regs" [fs/xfs/xfs.ko] undefined!
ERROR: ".perf_arch_fetch_caller_regs" [arch/powerpc/platforms/cell/spufs/spufs.ko] undefined!
-v2: And also only build it if trace events are enabled.
-v3: Fix changelog mistake
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Xiao Guangrong <xiaoguangrong@cn.fujitsu.com>
Cc: Paul Mackerras <paulus@samba.org>
LKML-Reference: <1268697902-9518-1-git-send-regression-fweisbec@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
In case of not assigned x86_pmu and software events NULL dereference may
being hit via x86_pmu::schedule_events method.
Fix it by checking if x86_pmu is initialized at all.
Signed-off-by: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Lin Ming <ming.m.lin@intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Robert Richter <robert.richter@amd.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
LKML-Reference: <20100311215016.GG25162@lenovo>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The netburst PMU is way different from the "architectural
perfomance monitoring" specification that current CPUs use.
P4 uses a tuple of ESCR+CCCR+COUNTER MSR registers to handle
perfomance monitoring events.
A few implementational details:
1) We need a separate x86_pmu::hw_config helper in struct
x86_pmu since register bit-fields are quite different from P6,
Core and later cpu series.
2) For the same reason is a x86_pmu::schedule_events helper
introduced.
3) hw_perf_event::config consists of packed ESCR+CCCR values.
It's allowed since in reality both registers only use a half
of their size. Of course before making a real write into a
particular MSR we need to unpack the value and extend it to
a proper size.
4) The tuple of packed ESCR+CCCR in hw_perf_event::config
doesn't describe the memory address of ESCR MSR register
so that we need to keep a mapping between these tuples
used and available ESCR (various P4 events may use same
ESCRs but not simultaneously), for this sake every active
event has a per-cpu map of hw_perf_event::idx <--> ESCR
addresses.
5) Since hw_perf_event::idx is an offset to counter/control register
we need to lift X86_PMC_MAX_GENERIC up, otherwise kernel
strips it down to 8 registers and event armed may never be turned
off (ie the bit in active_mask is set but the loop never reaches
this index to check), thanks to Peter Zijlstra
Restrictions:
- No cascaded counters support (do we ever need them?)
- No dependent events support (so PERF_COUNT_HW_INSTRUCTIONS
doesn't work for now)
- There are events with same counters which can't work simultaneously
(need to use intersected ones due to broken counter 1)
- No PERF_COUNT_HW_CACHE_ events yet
Todo:
- Implement dependent events
- Need proper hashing for event opcodes (no linear search, good for
debugging stage but not in real loads)
- Some events counted during a clock cycle -- need to set threshold
for them and count every clock cycle just to get summary statistics
(ie to behave the same way as other PMUs do)
- Need to swicth to use event_constraints
- To support RAW events we need to encode a global list of P4 events
into p4_templates
- Cache events need to be added
Event support status matrix:
Event status
-----------------------------
cycles works
cache-references works
cache-misses works
branch-misses works
bus-cycles partially (does not work on 64bit cpu with HT enabled)
instruction doesnt work (needs dependent event [mop tagging])
branches doesnt work
Signed-off-by: Cyrill Gorcunov <gorcunov@openvz.org>
Signed-off-by: Lin Ming <ming.m.lin@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Robert Richter <robert.richter@amd.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
LKML-Reference: <20100311165439.GB5129@lenovo>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Export perf_trace_regs and perf_arch_fetch_caller_regs since module will
use these.
Signed-off-by: Xiao Guangrong <xiaoguangrong@cn.fujitsu.com>
[ use EXPORT_PER_CPU_SYMBOL_GPL() ]
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <4B989C1B.2090407@cn.fujitsu.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
What happens is that we schedule badly like:
<...>-1987 [019] 280.252808: x86_pmu_start: event-46/1300c0: idx: 0
<...>-1987 [019] 280.252811: x86_pmu_start: event-47/1300c0: idx: 1
<...>-1987 [019] 280.252812: x86_pmu_start: event-48/1300c0: idx: 2
<...>-1987 [019] 280.252813: x86_pmu_start: event-49/1300c0: idx: 3
<...>-1987 [019] 280.252814: x86_pmu_start: event-50/1300c0: idx: 32
<...>-1987 [019] 280.252825: x86_pmu_stop: event-46/1300c0: idx: 0
<...>-1987 [019] 280.252826: x86_pmu_stop: event-47/1300c0: idx: 1
<...>-1987 [019] 280.252827: x86_pmu_stop: event-48/1300c0: idx: 2
<...>-1987 [019] 280.252828: x86_pmu_stop: event-49/1300c0: idx: 3
<...>-1987 [019] 280.252829: x86_pmu_stop: event-50/1300c0: idx: 32
<...>-1987 [019] 280.252834: x86_pmu_start: event-47/1300c0: idx: 1
<...>-1987 [019] 280.252834: x86_pmu_start: event-48/1300c0: idx: 2
<...>-1987 [019] 280.252835: x86_pmu_start: event-49/1300c0: idx: 3
<...>-1987 [019] 280.252836: x86_pmu_start: event-50/1300c0: idx: 32
<...>-1987 [019] 280.252837: x86_pmu_start: event-51/1300c0: idx: 32 *FAIL*
This happens because we only iterate the n_running events in the first
pass, and reset their index to -1 if they don't match to force a
re-assignment.
Now, in our RR example, n_running == 0 because we fully unscheduled, so
event-50 will retain its idx==32, even though in scheduling it will have
gotten idx=0, and we don't trigger the re-assign path.
The easiest way to fix this is the below patch, which simply validates
the full assignment in the second pass.
Reported-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1268311069.5037.31.camel@laptop>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Events that trigger overflows by interrupting a context can
use get_irq_regs() or task_pt_regs() to retrieve the state
when the event triggered. But this is not the case for some
other class of events like trace events as tracepoints are
executed in the same context than the code that triggered
the event.
It means we need a different api to capture the regs there,
namely we need a hot snapshot to get the most important
informations for perf: the instruction pointer to get the
event origin, the frame pointer for the callchain, the code
segment for user_mode() tests (we always use __KERNEL_CS as
trace events always occur from the kernel) and the eflags
for further purposes.
v2: rename perf_save_regs to perf_fetch_caller_regs as per
Masami's suggestion.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Masami Hiramatsu <mhiramat@redhat.com>
Cc: Jason Baron <jbaron@redhat.com>
Cc: Archs <linux-arch@vger.kernel.org>
We don't need checking_{wr,rd}msr() calls, since we should know what cpu
we're running on and not use blindly poke at msrs.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Arnaldo Carvalho de Melo <acme@infradead.org>
Cc: paulus@samba.org
Cc: eranian@google.com
Cc: robert.richter@amd.com
Cc: fweisbec@gmail.com
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This CPU has just too many handycaps to be really useful.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Arnaldo Carvalho de Melo <acme@infradead.org>
Cc: paulus@samba.org
Cc: eranian@google.com
Cc: robert.richter@amd.com
Cc: fweisbec@gmail.com
LKML-Reference: <20100305154128.890278662@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Saner PERF_CAPABILITIES support, which also exposes pebs_trap. Use that
latter to make PEBS's use of LBR conditional since a fault-like pebs
should already report the correct IP.
( As of this writing there is no known hardware that implements
!pebs_trap )
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Arnaldo Carvalho de Melo <acme@infradead.org>
Cc: paulus@samba.org
Cc: eranian@google.com
Cc: robert.richter@amd.com
Cc: fweisbec@gmail.com
LKML-Reference: <20100304140100.770650663@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Use the LBR to fix up the PEBS IP+1 issue.
As said, PEBS reports the next instruction, here we use the LBR to find
the last branch and from that construct the actual IP. If the IP matches
the LBR-TO, we use LBR-FROM, otherwise we use the LBR-TO address as the
beginning of the last basic block and decode forward.
Once we find a match to the current IP, we use the previous location.
This patch introduces a new ABI element: PERF_RECORD_MISC_EXACT, which
conveys that the reported IP (PERF_SAMPLE_IP) is the exact instruction
that caused the event (barring CPU errata).
The fixup can fail due to various reasons:
1) LBR contains invalid data (quite possible)
2) part of the basic block got paged out
3) the reported IP isn't part of the basic block (see 1)
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Arnaldo Carvalho de Melo <acme@infradead.org>
Cc: Masami Hiramatsu <mhiramat@redhat.com>
Cc: "Zhang, Yanmin" <yanmin_zhang@linux.intel.com>
Cc: paulus@samba.org
Cc: eranian@google.com
Cc: robert.richter@amd.com
Cc: fweisbec@gmail.com
LKML-Reference: <20100304140100.619375431@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Implement simple suport Intel Last-Branch-Record, it supports all
hardware that implements FREEZE_LBRS_ON_PMI, but does not (yet) implement
the LBR config register.
The Intel LBR is a FIFO of From,To addresses describing the last few
branches the hardware took.
This patch does not add perf interface to the LBR, but merely provides an
interface for internal use.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Arnaldo Carvalho de Melo <acme@infradead.org>
Cc: paulus@samba.org
Cc: eranian@google.com
Cc: robert.richter@amd.com
Cc: fweisbec@gmail.com
LKML-Reference: <20100304140100.544191154@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This patch implements support for Intel Precise Event Based Sampling,
which is an alternative counter mode in which the counter triggers a
hardware assist to collect information on events. The hardware assist
takes a trap like snapshot of a subset of the machine registers.
This data is written to the Intel Debug-Store, which can be programmed
with a data threshold at which to raise a PMI.
With the PEBS hardware assist being trap like, the reported IP is always
one instruction after the actual instruction that triggered the event.
This implements a simple PEBS model that always takes a single PEBS event
at a time. This is done so that the interaction with the rest of the
system is as expected (freq adjust, period randomization, lbr,
callchains, etc.).
It adds an ABI element: perf_event_attr::precise, which indicates that we
wish to use this (constrained, but precise) mode.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Arnaldo Carvalho de Melo <acme@infradead.org>
Cc: paulus@samba.org
Cc: eranian@google.com
Cc: robert.richter@amd.com
Cc: fweisbec@gmail.com
LKML-Reference: <20100304140100.392111285@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
hw_perf_enable() would enable already enabled events.
This causes problems with code that assumes that ->enable/->disable calls
are balanced (like the LBR code does).
What happens is that events that were already running and left in place
would get enabled again.
Avoid this by only enabling new events that match their previous
assignment.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Arnaldo Carvalho de Melo <acme@infradead.org>
Cc: paulus@samba.org
Cc: eranian@google.com
Cc: robert.richter@amd.com
Cc: fweisbec@gmail.com
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
hw_perf_enable() would disable events that were not yet enabled.
This causes problems with code that assumes that ->enable/->disable calls
are balanced (like the LBR code does).
What happens is that we disable newly added counters that match their
previous assignment, even though they are not yet programmed on the
hardware.
Avoid this by only doing the first pass over the existing events.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Arnaldo Carvalho de Melo <acme@infradead.org>
Cc: paulus@samba.org
Cc: eranian@google.com
Cc: robert.richter@amd.com
Cc: fweisbec@gmail.com
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Make sure n_added is properly accounted so that we can rely on the value
to reflect the number of added counters. This is needed if its going to
be used for more than a boolean check.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Arnaldo Carvalho de Melo <acme@infradead.org>
Cc: paulus@samba.org
Cc: eranian@google.com
Cc: robert.richter@amd.com
Cc: fweisbec@gmail.com
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Calling ioctl(PERF_EVENT_IOC_DISABLE) on a thottled counter would result
in a double disable, cure this by using x86_pmu_{start,stop} for
throttle/unthrottle and teach x86_pmu_stop() to check ->active_mask.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Arnaldo Carvalho de Melo <acme@infradead.org>
Cc: paulus@samba.org
Cc: eranian@google.com
Cc: robert.richter@amd.com
Cc: fweisbec@gmail.com
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
There is no concurrency on these variables, so don't use LOCK'ed ops.
As to the intel_pmu_handle_irq() status bit clean, nobody uses that so
remove it all together.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: paulus@samba.org
Cc: eranian@google.com
Cc: robert.richter@amd.com
Cc: fweisbec@gmail.com
Cc: Arnaldo Carvalho de Melo <acme@infradead.org>
LKML-Reference: <20100304140100.240023029@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Pass the full perf_event into the x86_pmu functions so that those may
make use of more than the hw_perf_event, and while doing this, remove the
superfluous second argument.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: paulus@samba.org
Cc: eranian@google.com
Cc: robert.richter@amd.com
Cc: fweisbec@gmail.com
Cc: Arnaldo Carvalho de Melo <acme@infradead.org>
LKML-Reference: <20100304140100.165166129@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The second and third argument to x86_perf_event_update() are superfluous
since they are simple expressions of the first argument. Hence remove
them.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: paulus@samba.org
Cc: eranian@google.com
Cc: robert.richter@amd.com
Cc: fweisbec@gmail.com
Cc: Arnaldo Carvalho de Melo <acme@infradead.org>
LKML-Reference: <20100304140100.089468871@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The second and third argument to x86_perf_event_set_period() are
superfluous since they are simple expressions of the first argument.
Hence remove them.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: paulus@samba.org
Cc: eranian@google.com
Cc: robert.richter@amd.com
Cc: fweisbec@gmail.com
Cc: Arnaldo Carvalho de Melo <acme@infradead.org>
LKML-Reference: <20100304140100.006500906@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Remove the hw_perf_event_*() hotplug hooks in favour of per PMU hotplug
notifiers. This has the advantage of reducing the static weak interface
as well as exposing all hotplug actions to the PMU.
Use this to fix x86 hotplug usage where we did things in ONLINE which
should have been done in UP_PREPARE or STARTING.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: paulus@samba.org
Cc: eranian@google.com
Cc: robert.richter@amd.com
Cc: fweisbec@gmail.com
Cc: Arnaldo Carvalho de Melo <acme@infradead.org>
LKML-Reference: <20100305154128.736225361@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This makes it easier to extend perf_sample_data and fixes a bug on arm
and sparc, which failed to set ->raw to NULL, which can cause crashes
when combined with PERF_SAMPLE_RAW.
It also optimizes PowerPC and tracepoint, because the struct
initialization is forced to zero out the whole structure.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Jean Pihet <jpihet@mvista.com>
Reviewed-by: Frederic Weisbecker <fweisbec@gmail.com>
Acked-by: David S. Miller <davem@davemloft.net>
Cc: Jamie Iles <jamie.iles@picochip.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: stable@kernel.org
LKML-Reference: <20100304140100.315416040@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Rename for_each_bit to for_each_set_bit in the kernel source tree. To
permit for_each_clear_bit(), should that ever be added.
The patch includes a macro to map the old for_each_bit() onto the new
for_each_set_bit(). This is a (very) temporary thing to ease the migration.
[akpm@linux-foundation.org: add temporary for_each_bit()]
Suggested-by: Alexey Dobriyan <adobriyan@gmail.com>
Suggested-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Artem Bityutskiy <dedekind@infradead.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch 1da53e0230 ("perf_events, x86: Improve x86 event scheduling")
lost us one of the fixed purpose counters and then ed8777fc13
("perf_events, x86: Fix event constraint masks") broke it even
further.
Widen the fixed event mask to event+umask and specify the full config
for each of the 3 fixed purpose counters. Then let the init code fill
out the placement for the GP regs based on the cpuid info.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Stephane Eranian <eranian@google.com>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The ANY flag can show SMT data of another task (like 'top'),
so we want to disable it when system-wide profiling is
disabled.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
For consistency reasons this patch renames
ARCH_PERFMON_EVENTSEL0_ENABLE to ARCH_PERFMON_EVENTSEL_ENABLE.
The following is performed:
$ sed -i -e s/ARCH_PERFMON_EVENTSEL0_ENABLE/ARCH_PERFMON_EVENTSEL_ENABLE/g \
arch/x86/include/asm/perf_event.h arch/x86/kernel/cpu/perf_event.c \
arch/x86/kernel/cpu/perf_event_p6.c \
arch/x86/kernel/cpu/perfctr-watchdog.c \
arch/x86/oprofile/op_model_amd.c arch/x86/oprofile/op_model_ppro.c
Signed-off-by: Robert Richter <robert.richter@amd.com>
Split amd,p6,intel into separate files so that we can easily deal with
CONFIG_CPU_SUP_* things, needed to make things build now that perf_event.c
relies on symbols from amd.c
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
We re-program the event control register every time we reset the count,
this appears to be superflous, hence remove it.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Arjan van de Ven <arjan@linux.intel.com>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Since the cpu argument to hw_perf_group_sched_in() is always
smp_processor_id(), simplify the code a little by removing this argument
and using the current cpu where needed.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: David Miller <davem@davemloft.net>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
LKML-Reference: <1265890918.5396.3.camel@laptop>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This patch adds correct AMD NorthBridge event scheduling.
NB events are events measuring L3 cache, Hypertransport traffic. They are
identified by an event code >= 0xe0. They measure events on the
Northbride which is shared by all cores on a package. NB events are
counted on a shared set of counters. When a NB event is programmed in a
counter, the data actually comes from a shared counter. Thus, access to
those counters needs to be synchronized.
We implement the synchronization such that no two cores can be measuring
NB events using the same counters. Thus, we maintain a per-NB allocation
table. The available slot is propagated using the event_constraint
structure.
Signed-off-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <4b703957.0702d00a.6bf2.7b7d@mx.google.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
In certain situations, the kernel may need to stop and start the same
event rapidly. The current PMU callbacks do not distinguish between stop
and release (i.e., stop + free the resource). Thus, a counter may be
released, then it will be immediately re-acquired. Event scheduling will
again take place with no guarantee to assign the same counter. On some
processors, this may event yield to failure to assign the event back due
to competion between cores.
This patch is adding a new pair of callback to stop and restart a counter
without actually release the underlying counter resource. On stop, the
counter is stopped, its values saved and that's it. On start, the value
is reloaded and counter is restarted (on x86, actual restart is delayed
until perf_enable()).
Signed-off-by: Stephane Eranian <eranian@google.com>
[ added fallback to ->enable/->disable for all other PMUs
fixed x86_pmu_start() to call x86_pmu.enable()
merged __x86_pmu_disable into x86_pmu_stop() ]
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <4b703875.0a04d00a.7896.ffffb824@mx.google.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
We cannot assume that because hwc->idx == assign[i], we can avoid
reprogramming the counter in hw_perf_enable().
The event may have been scheduled out and another event may have been
programmed into this counter. Thus, we need a more robust way of
verifying if the counter still contains config/data related to an event.
This patch adds a generation number to each counter on each cpu. Using
this mechanism we can verify reliabilty whether the content of a counter
corresponds to an event.
Signed-off-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
LKML-Reference: <4b66dc67.0b38560a.1635.ffffae18@mx.google.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
At enable time the counter might still have a ->idx pointing to
a previously occupied location that might now be taken by
another event. Resetting the counter at that location with data
from this event will destroy the other counter's count.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Stephane Eranian <eranian@google.com>
LKML-Reference: <20100127221122.261477183@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The new Intel documentation includes Westmere arch specific
event maps that are significantly different from the Nehalem
ones. Add support for this generation.
Found the CPUID model numbers on wikipedia.
Also ammend some Nehalem constraints, spotted those when looking
for the differences between Nehalem and Westmere.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Stephane Eranian <eranian@google.com>
LKML-Reference: <20100127221122.151865645@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Put the recursion avoidance code in the generic hook instead of
replicating it in each implementation.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Stephane Eranian <eranian@google.com>
LKML-Reference: <20100127221122.057507285@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Since constraints are specified on the event number, not number
and unit mask shorten the constraint masks so that we'll
actually match something.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Stephane Eranian <eranian@google.com>
LKML-Reference: <20100127221121.967610372@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Share the meat of the x86_pmu_disable() code with hw_perf_enable().
Also remove the barrier() from that code, since I could not convince
myself we actually need it.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Stephane Eranian <eranian@google.com>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
x86_pmu_disable() removes the event from the cpuc->event_list[], however
since an event can only be on that list once, stop looking after we found
it.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Stephane Eranian <eranian@google.com>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Remove num from the fast path and save a few ops.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Stephane Eranian <eranian@google.com>
LKML-Reference: <20100122155536.056430539@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Add a weight member to the constraint structure and avoid recomputing the
weight at runtime.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Stephane Eranian <eranian@google.com>
LKML-Reference: <20100122155535.963944926@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Introduce INTEL_EVENT_CONSTRAINT and FIXED_EVENT_CONSTRAINT to reduce
some line length and typing work.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Stephane Eranian <eranian@google.com>
LKML-Reference: <20100122155535.688730371@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
We need this to be u64 for direct assigment, but the bitmask functions
all work on unsigned long, leading to cast heaven, solve this by using a
union.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Stephane Eranian <eranian@google.com>
LKML-Reference: <20100122155535.595961269@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Constraints gets defined an u64 but in long quantities and then cast to
long.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Stephane Eranian <eranian@google.com>
LKML-Reference: <20100122155535.504916780@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
GCC was complaining the stack usage was too large, so allocate the
structure.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Stephane Eranian <eranian@google.com>
LKML-Reference: <20100122155535.411197266@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This patch improves event scheduling by maximizing the use of PMU
registers regardless of the order in which events are created in a group.
The algorithm takes into account the list of counter constraints for each
event. It assigns events to counters from the most constrained, i.e.,
works on only one counter, to the least constrained, i.e., works on any
counter.
Intel Fixed counter events and the BTS special event are also handled via
this algorithm which is designed to be fairly generic.
The patch also updates the validation of an event to use the scheduling
algorithm. This will cause early failure in perf_event_open().
The 2nd version of this patch follows the model used by PPC, by running
the scheduling algorithm and the actual assignment separately. Actual
assignment takes place in hw_perf_enable() whereas scheduling is
implemented in hw_perf_group_sched_in() and x86_pmu_enable().
Signed-off-by: Stephane Eranian <eranian@google.com>
[ fixup whitespace and style nits as well as adding is_x86_event() ]
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
LKML-Reference: <4b5430c6.0f975e0a.1bf9.ffff85fe@mx.google.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
When running perf across all cpus with backtracing (-a -g), sometimes we
get samples without associated backtraces:
23.44% init [kernel] [k] restore
11.46% init eeba0c [k] 0x00000000eeba0c
6.77% swapper [kernel] [k] .perf_ctx_adjust_freq
5.73% init [kernel] [k] .__trace_hcall_entry
4.69% perf libc-2.9.so [.] 0x0000000006bb8c
|
|--11.11%-- 0xfffa941bbbc
It turns out the backtrace code has a check for the idle task and the IP
sampling does not. This creates problems when profiling an interrupt
heavy workload (in my case 10Gbit ethernet) since we get no backtraces
for interrupts received while idle (ie most of the workload).
Right now x86 and sh check that current is not NULL, which should never
happen so remove that too.
Idle task's exclusion must be performed from the core code, on top
of perf_event_attr:exclude_idle.
Signed-off-by: Anton Blanchard <anton@samba.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mundt <lethal@linux-sh.org>
LKML-Reference: <20100118054707.GT12666@kryten>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Propagate the ANY bit into the fixed counter config for v3 and higher.
Signed-off-by: Stephane Eranian <eranian@google.com>
[a.p.zijlstra@chello.nl: split from larger patch]
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <4b5430c6.0f975e0a.1bf9.ffff85fe@mx.google.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The check that ignores the debug and nmi stack frames is useless
now that we have a frame pointer that makes us start at the
right place. We don't anymore have to deal with these.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Paul Mackerras <paulus@samba.org>
LKML-Reference: <1262235183-5320-2-git-send-regression-fweisbec@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Pass the frame pointer from the regs of the interrupted path
to dump_trace() while processing the stack trace.
Currently, dump_trace() takes the current bp and starts the
callchain from dump_trace() itself. This is wasteful because
we need to walk through the entire NMI/DEBUG stack before
retrieving the interrupted point.
We can fix that by just using the frame pointer from the
captured regs. It points exactly where we want to start.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Paul Mackerras <paulus@samba.org>
LKML-Reference: <1262235183-5320-1-git-send-regression-fweisbec@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Paul Mackerras <paulus@samba.org>
It's just wasteful for stacktrace users like perf to walk
through every entries on the stack whereas these only accept
reliable ones, ie: that the frame pointer validates.
Since perf requires pure reliable stacktraces, it needs a stack
walker based on frame pointers-only to optimize the stacktrace
processing.
This might solve some near-lockup scenarios that can be triggered
by call-graph tracing timer events.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Paul Mackerras <paulus@samba.org>
LKML-Reference: <1261024834-5336-2-git-send-regression-fweisbec@gmail.com>
[ v2: fix for modular builds and small detail tidyup ]
Signed-off-by: Ingo Molnar <mingo@elte.hu>
The current print_context_stack helper that does the stack
walking job is good for usual stacktraces as it walks through
all the stack and reports even addresses that look unreliable,
which is nice when we don't have frame pointers for example.
But we have users like perf that only require reliable
stacktraces, and those may want a more adapted stack walker, so
lets make this function a callback in stacktrace_ops that users
can tune for their needs.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Paul Mackerras <paulus@samba.org>
LKML-Reference: <1261024834-5336-1-git-send-regression-fweisbec@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* 'perf-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (57 commits)
x86, perf events: Check if we have APIC enabled
perf_event: Fix variable initialization in other codepaths
perf kmem: Fix unused argument build warning
perf symbols: perf_header__read_build_ids() offset'n'size should be u64
perf symbols: dsos__read_build_ids() should read both user and kernel buildids
perf tools: Align long options which have no short forms
perf kmem: Show usage if no option is specified
sched: Mark sched_clock() as notrace
perf sched: Add max delay time snapshot
perf tools: Correct size given to memset
perf_event: Fix perf_swevent_hrtimer() variable initialization
perf sched: Fix for getting task's execution time
tracing/kprobes: Fix field creation's bad error handling
perf_event: Cleanup for cpu_clock_perf_event_update()
perf_event: Allocate children's perf_event_ctxp at the right time
perf_event: Clean up __perf_event_init_context()
hw-breakpoints: Modify breakpoints without unregistering them
perf probe: Update perf-probe document
perf probe: Support --del option
trace-kprobe: Support delete probe syntax
...
Dumping the callchains from breakpoint events with perf gives strange
results:
3.75% perf [kernel] [k] _raw_read_unlock
|
--- _raw_read_unlock
perf_callchain
perf_prepare_sample
__perf_event_overflow
perf_swevent_overflow
perf_swevent_add
perf_bp_event
hw_breakpoint_exceptions_notify
notifier_call_chain
__atomic_notifier_call_chain
atomic_notifier_call_chain
notify_die
do_debug
debug
munmap
We are infected with all the debug stack. Like the nmi stack, the debug
stack is undesired as it is part of the profiling path, not helpful for
the user.
Ignore it.
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: "K. Prasad" <prasad@linux.vnet.ibm.com>
The validate_event() was failing on valid event combinations. The
function was assuming that if x86_schedule_event() returned 0, it
meant error. But x86_schedule_event() returns the counter index and
0 is a perfectly valid value. An error is returned if the function
returns a negative value.
Furthermore, validate_event() was also failing for event groups
because the event->pmu was not set until after
hw_perf_event_init().
Signed-off-by: Stephane Eranian <eranian@google.com>
Cc: peterz@infradead.org
Cc: paulus@samba.org
Cc: perfmon2-devel@lists.sourceforge.net
Cc: eranian@gmail.com
LKML-Reference: <4b0bdf36.1818d00a.07cc.25ae@mx.google.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
--
arch/x86/kernel/cpu/perf_event.c | 4 ++--
1 file changed, 2 insertions(+), 2 deletions(-)
There was namespace overlap due to a rename i did - this caused
the following build warning, reported by Stephen Rothwell against
linux-next x86_64 allmodconfig:
arch/x86/kernel/cpu/perf_event.c: In function 'intel_get_event_idx':
arch/x86/kernel/cpu/perf_event.c:1445: warning: 'event_constraint' is used uninitialized in this function
This is a real bug not just a warning: fix it by renaming the
global event-constraints table pointer to 'event_constraints'.
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Stephane Eranian <eranian@gmail.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
LKML-Reference: <20091013144223.369d616d.sfr@canb.auug.org.au>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Refuse to add events when the group wouldn't fit onto the PMU
anymore.
Naive implementation.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Stephane Eranian <eranian@gmail.com>
LKML-Reference: <1254911461.26976.239.camel@twins>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
On some Intel processors, not all events can be measured in all
counters. Some events can only be measured in one particular
counter, for instance. Assigning an event to the wrong counter does
not crash the machine but this yields bogus counts, i.e., silent
error.
This patch changes the event to counter assignment logic to take
into account event constraints for Intel P6, Core and Nehalem
processors. There is no contraints on Intel Atom. There are
constraints on Intel Yonah (Core Duo) but they are not provided in
this patch given that this processor is not yet supported by
perf_events.
As a result of the constraints, it is possible for some event
groups to never actually be loaded onto the PMU if they contain two
events which can only be measured on a single counter. That
situation can be detected with the scaling information extracted
with read().
Signed-off-by: Stephane Eranian <eranian@gmail.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <1254840129-6198-3-git-send-email-eranian@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>