Commit Graph

903 Commits

Author SHA1 Message Date
Su Yue 29b665cc51 btrfs: prevent NULL pointer dereference in extent_io_tree_panic
Some extent io trees are initialized with NULL private member (e.g.
btrfs_device::alloc_state and btrfs_fs_info::excluded_extents).
Dereference of a NULL tree->private as inode pointer will cause panic.

Pass tree->fs_info as it's known to be valid in all cases.

Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=208929
Fixes: 05912a3c04 ("btrfs: drop extent_io_ops::tree_fs_info callback")
CC: stable@vger.kernel.org # 4.19+
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Su Yue <l@damenly.su>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-01-07 17:25:05 +01:00
Qu Wenruo 884b07d0f4 btrfs: handle sectorsize < PAGE_SIZE case for extent buffer accessors
To support sectorsize < PAGE_SIZE case, we need to take extra care of
extent buffer accessors.

Since sectorsize is smaller than PAGE_SIZE, one page can contain
multiple tree blocks, we must use eb->start to determine the real offset
to read/write for extent buffer accessors.

This patch introduces two helpers to do this:

- get_eb_page_index()
  This is to calculate the index to access extent_buffer::pages.
  It's just a simple wrapper around "start >> PAGE_SHIFT".

  For sectorsize == PAGE_SIZE case, nothing is changed.
  For sectorsize < PAGE_SIZE case, we always get index as 0, and
  the existing page shift also works.

- get_eb_offset_in_page()
  This is to calculate the offset to access extent_buffer::pages.
  This needs to take extent_buffer::start into consideration.

  For sectorsize == PAGE_SIZE case, extent_buffer::start is always
  aligned to PAGE_SIZE, thus adding extent_buffer::start to
  offset_in_page() won't change the result.
  For sectorsize < PAGE_SIZE case, adding extent_buffer::start gives
  us the correct offset to access.

This patch will touch the following parts to cover all extent buffer
accessors:

- BTRFS_SETGET_HEADER_FUNCS()
- read_extent_buffer()
- read_extent_buffer_to_user()
- memcmp_extent_buffer()
- write_extent_buffer_chunk_tree_uuid()
- write_extent_buffer_fsid()
- write_extent_buffer()
- memzero_extent_buffer()
- copy_extent_buffer_full()
- copy_extent_buffer()
- memcpy_extent_buffer()
- memmove_extent_buffer()
- btrfs_get_token_##bits()
- btrfs_get_##bits()
- btrfs_set_token_##bits()
- btrfs_set_##bits()
- generic_bin_search()

Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-12-09 19:16:10 +01:00
Qu Wenruo 1aaac38c83 btrfs: don't allow tree block to cross page boundary for subpage support
As a preparation for subpage sector size support (allowing filesystem
with sector size smaller than page size to be mounted) if the sector
size is smaller than page size, we don't allow tree block to be read if
it crosses 64K(*) boundary.

The 64K is selected because:

- we are only going to support 64K page size for subpage for now
- 64K is also the maximum supported node size

This ensures that tree blocks are always contained in one page for a
system with 64K page size, which can greatly simplify the handling.

Otherwise we would have to do complex multi-page handling of tree
blocks.  Currently there is no way to create such tree blocks.

In kernel we have avoided such tree blocks allocation even on 4K page
size, as it can lead to RAID56 stripe scrubbing.

While btrfs-progs have fixed its chunk allocator since 2016 for convert,
and has extra checks to do the same behavior as the kernel.

Just add such graceful checks in case of an ancient filesystem.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-12-09 19:16:10 +01:00
Qu Wenruo deb6789553 btrfs: calculate inline extent buffer page size based on page size
Btrfs only support 64K as maximum node size, thus for 4K page system, we
would have at most 16 pages for one extent buffer.

For a system using 64K page size, we would really have just one page.

While we always use 16 pages for extent_buffer::pages, this means for
systems using 64K pages, we are wasting memory for 15 page pointers
which will never be used.

Calculate the array size based on page size and the node size maximum.

- for systems using 4K page size, it will stay 16 pages
- for systems using 64K page size, it will be 1 page

Move the definition of BTRFS_MAX_METADATA_BLOCKSIZE to btrfs_tree.h, to
avoid circular inclusion of ctree.h.

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-12-09 19:16:10 +01:00
Qu Wenruo f91e0d0c4c btrfs: factor out btree page submission code to a helper
In btree_write_cache_pages() we have a btree page submission routine
buried deeply in a nested loop.

This patch will extract that part of code into a helper function,
submit_eb_page(), to do the same work.

Since submit_eb_page() now can return >0 for successful extent
buffer submission, remove the "ASSERT(ret <= 0);" line.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-12-09 19:16:10 +01:00
Qu Wenruo 7ffd27e378 btrfs: pass bio_offset to check_data_csum() directly
Parameter icsum for check_data_csum() is a little hard to understand.
So is the phy_offset for btrfs_verify_data_csum().

Both parameters are calculated values for csum lookup.

Instead of some calculated value, just pass bio_offset and let the
final and only user, check_data_csum(), calculate whatever it needs.

Since we are here, also make the bio_offset parameter and some related
variables to be u32 (unsigned int).
As bio size is limited by its bi_size, which is unsigned int, and has
extra size limit check during various bio operations.
Thus we are ensured that bio_offset won't overflow u32.

Thus for all involved functions, not only rename the parameter from
@phy_offset to @bio_offset, but also reduce its width to u32, so we
won't have suspicious "u32 = u64 >> sector_bits;" lines anymore.

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-12-09 19:16:09 +01:00
David Sterba 1201b58b67 btrfs: drop casts of bio bi_sector
Since commit 72deb455b5 ("block: remove CONFIG_LBDAF") (5.2) the
sector_t type is u64 on all arches and configs so we don't need to
typecast it.  It used to be unsigned long and the result of sector size
shifts were not guaranteed to fit in the type.

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-12-09 19:16:05 +01:00
Qu Wenruo fb22e9c4cd btrfs: use detach_page_private() in alloc_extent_buffer()
In alloc_extent_buffer(), after we got a page from btree inode, we check
if that page has private pointer attached.

If attached, we check if the existing extent buffer has proper refs.
If not (the eb is being freed), we will detach that private eb pointer.

The point here is, we are detaching that eb pointer by calling:
- ClearPagePrivate()
- put_page()

The put_page() here is especially confusing, as it's decreasing the ref
from attach_page_private().  Without knowing that, it looks like the
put_page() is for the find_or_create_page() call, confusing the reader.

Since we're always modifying page private with attach_page_private() and
detach_page_private(), the only open-coded detach_page_private() here is
really confusing.

Fix it by calling detach_page_private().

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-12-08 15:54:14 +01:00
Qu Wenruo 829ddec922 btrfs: only clear EXTENT_LOCK bit in extent_invalidatepage
extent_invalidatepage() will try to clear all possible bits since it's
calling clear_extent_bit() with delete == 1.

This is currently fine, since for btree io tree, it only utilizes
EXTENT_LOCK bit.  But this could be a problem for later subpage support,
which will utilize extra io tree bit to represent additional info.

This patch will just convert that clear_extent_bit() to
unlock_extent_cached().

For current code since only EXTENT_LOCKED bit is utilized, this doesn't
change the behavior, but provides a much cleaner basis for incoming
subpage support.

Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-12-08 15:54:14 +01:00
Qu Wenruo 8e1dc982ed btrfs: remove unused parameter phy_offset from btrfs_validate_metadata_buffer
Parameter @phy_offset is the offset against the bio->bi_iter.bi_sector.
@phy_offset is mostly for data io to lookup the csum in btrfs_io_bio.

But for metadata, it's completely useless as metadata stores their own
csum in its header, so we can remove it.

Note: parameters @start and @end, they are not utilized at all for
current sectorsize == PAGE_SIZE case, as we can grab eb directly from
page.

But those two parameters are very important for later subpage support,
thus @start/@len are not touched here.

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-12-08 15:54:14 +01:00
Qu Wenruo f97e27e91d btrfs: use fixed width int type for extent_state::state
Currently the type is unsigned int which could change its width
depending on the architecture. We need up to 32 bits so make it
explicit.

Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-12-08 15:54:13 +01:00
Qu Wenruo e09caaf913 btrfs: introduce helper to handle page status update in end_bio_extent_readpage()
Introduce a new helper to handle update page status in
end_bio_extent_readpage(). This will be later used for subpage support
where the page status update can be more complex than now.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-12-08 15:54:13 +01:00
Qu Wenruo 94e8c95ccb btrfs: add structure to keep track of extent range in end_bio_extent_readpage
In end_bio_extent_readpage() we had a strange dance around
extent_start/extent_len.

Hidden behind the strange dance is, it's just calling
endio_readpage_release_extent() on each bvec range.

Here is an example to explain the original work flow:

  Bio is for inode 257, containing 2 pages, for range [1M, 1M+8K)

  end_bio_extent_extent_readpage() entered
  |- extent_start = 0;
  |- extent_end = 0;
  |- bio_for_each_segment_all() {
  |  |- /* Got the 1st bvec */
  |  |- start = SZ_1M;
  |  |- end = SZ_1M + SZ_4K - 1;
  |  |- update = 1;
  |  |- if (extent_len == 0) {
  |  |  |- extent_start = start; /* SZ_1M */
  |  |  |- extent_len = end + 1 - start; /* SZ_1M */
  |  |  }
  |  |
  |  |- /* Got the 2nd bvec */
  |  |- start = SZ_1M + 4K;
  |  |- end = SZ_1M + 4K - 1;
  |  |- update = 1;
  |  |- if (extent_start + extent_len == start) {
  |  |  |- extent_len += end + 1 - start; /* SZ_8K */
  |  |  }
  |  } /* All bio vec iterated */
  |
  |- if (extent_len) {
     |- endio_readpage_release_extent(tree, extent_start, extent_len,
				      update);
	/* extent_start == SZ_1M, extent_len == SZ_8K, uptodate = 1 */

As the above flow shows, the existing code in end_bio_extent_readpage()
is accumulates extent_start/extent_len, and when the contiguous range
stops, calls endio_readpage_release_extent() for the range.

However current behavior has something not really considered:

- The inode can change
  For bio, its pages don't need to have contiguous page_offset.
  This means, even pages from different inodes can be packed into one
  bio.

- bvec cross page boundary
  There is a feature called multi-page bvec, where bvec->bv_len can go
  beyond bvec->bv_page boundary.

- Poor readability

This patch will address the problem:

- Introduce a proper structure, processed_extent, to record processed
  extent range

- Integrate inode/start/end/uptodate check into
  endio_readpage_release_extent()

- Add more comment on each step.
  This should greatly improve the readability, now in
  end_bio_extent_readpage() there are only two
  endio_readpage_release_extent() calls.

- Add inode check for contiguity
  Now we also ensure the inode is the same one before checking if the
  range is contiguous.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-12-08 15:54:13 +01:00
Nikolay Borisov 1cab5e7283 btrfs: merge __set_extent_bit and set_extent_bit
There are only 2 direct calls to set_extent_bit outside of extent-io -
in btrfs_find_new_delalloc_bytes and btrfs_truncate_block, the rest are
thin wrappers around __set_extent_bit. This adds unnecessary indirection
and just makes it more annoying when looking at the various extent bit
manipulation functions.  This patch renames __set_extent_bit to
set_extent_bit effectively removing a level of indirection. No
functional changes.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ reformat and remove __must_check ]
Signed-off-by: David Sterba <dsterba@suse.com>
2020-12-08 15:54:12 +01:00
Josef Bacik a55463c9f0 btrfs: remove extent_buffer::recursed
It is unused everywhere now, it can be removed.

Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-12-08 15:54:10 +01:00
Filipe Manana 2766ff6176 btrfs: update the number of bytes used by an inode atomically
There are several occasions where we do not update the inode's number of
used bytes atomically, resulting in a concurrent stat(2) syscall to report
a value of used blocks that does not correspond to a valid value, that is,
a value that does not match neither what we had before the operation nor
what we get after the operation completes.

In extreme cases it can result in stat(2) reporting zero used blocks, which
can cause problems for some userspace tools where they can consider a file
with a non-zero size and zero used blocks as completely sparse and skip
reading data, as reported/discussed a long time ago in some threads like
the following:

  https://lists.gnu.org/archive/html/bug-tar/2016-07/msg00001.html

The cases where this can happen are the following:

-> Case 1

If we do a write (buffered or direct IO) against a file region for which
there is already an allocated extent (or multiple extents), then we have a
short time window where we can report a number of used blocks to stat(2)
that does not take into account the file region being overwritten. This
short time window happens when completing the ordered extent(s).

This happens because when we drop the extents in the write range we
decrement the inode's number of bytes and later on when we insert the new
extent(s) we increment the number of bytes in the inode, resulting in a
short time window where a stat(2) syscall can get an incorrect number of
used blocks.

If we do writes that overwrite an entire file, then we have a short time
window where we report 0 used blocks to stat(2).

Example reproducer:

  $ cat reproducer-1.sh
  #!/bin/bash

  MNT=/mnt/sdi
  DEV=/dev/sdi

  stat_loop()
  {
      trap "wait; exit" SIGTERM
      local filepath=$1
      local expected=$2
      local got

      while :; do
          got=$(stat -c %b $filepath)
          if [ $got -ne $expected ]; then
             echo -n "ERROR: unexpected used blocks"
             echo " (got: $got expected: $expected)"
          fi
      done
  }

  mkfs.btrfs -f $DEV > /dev/null
  # mkfs.xfs -f $DEV > /dev/null
  # mkfs.ext4 -F $DEV > /dev/null
  # mkfs.f2fs -f $DEV > /dev/null
  # mkfs.reiserfs -f $DEV > /dev/null
  mount $DEV $MNT

  xfs_io -f -s -c "pwrite -b 64K 0 64K" $MNT/foobar >/dev/null
  expected=$(stat -c %b $MNT/foobar)

  # Create a process to keep calling stat(2) on the file and see if the
  # reported number of blocks used (disk space used) changes, it should
  # not because we are not increasing the file size nor punching holes.
  stat_loop $MNT/foobar $expected &
  loop_pid=$!

  for ((i = 0; i < 50000; i++)); do
      xfs_io -s -c "pwrite -b 64K 0 64K" $MNT/foobar >/dev/null
  done

  kill $loop_pid &> /dev/null
  wait

  umount $DEV

  $ ./reproducer-1.sh
  ERROR: unexpected used blocks (got: 0 expected: 128)
  ERROR: unexpected used blocks (got: 0 expected: 128)
  (...)

Note that since this is a short time window where the race can happen, the
reproducer may not be able to always trigger the bug in one run, or it may
trigger it multiple times.

-> Case 2

If we do a buffered write against a file region that does not have any
allocated extents, like a hole or beyond EOF, then during ordered extent
completion we have a short time window where a concurrent stat(2) syscall
can report a number of used blocks that does not correspond to the value
before or after the write operation, a value that is actually larger than
the value after the write completes.

This happens because once we start a buffered write into an unallocated
file range we increment the inode's 'new_delalloc_bytes', to make sure
any stat(2) call gets a correct used blocks value before delalloc is
flushed and completes. However at ordered extent completion, after we
inserted the new extent, we increment the inode's number of bytes used
with the size of the new extent, and only later, when clearing the range
in the inode's iotree, we decrement the inode's 'new_delalloc_bytes'
counter with the size of the extent. So this results in a short time
window where a concurrent stat(2) syscall can report a number of used
blocks that accounts for the new extent twice.

Example reproducer:

  $ cat reproducer-2.sh
  #!/bin/bash

  MNT=/mnt/sdi
  DEV=/dev/sdi

  stat_loop()
  {
      trap "wait; exit" SIGTERM
      local filepath=$1
      local expected=$2
      local got

      while :; do
          got=$(stat -c %b $filepath)
          if [ $got -ne $expected ]; then
              echo -n "ERROR: unexpected used blocks"
              echo " (got: $got expected: $expected)"
          fi
      done
  }

  mkfs.btrfs -f $DEV > /dev/null
  # mkfs.xfs -f $DEV > /dev/null
  # mkfs.ext4 -F $DEV > /dev/null
  # mkfs.f2fs -f $DEV > /dev/null
  # mkfs.reiserfs -f $DEV > /dev/null
  mount $DEV $MNT

  touch $MNT/foobar
  write_size=$((64 * 1024))
  for ((i = 0; i < 16384; i++)); do
     offset=$(($i * $write_size))
     xfs_io -c "pwrite -S 0xab $offset $write_size" $MNT/foobar >/dev/null
     blocks_used=$(stat -c %b $MNT/foobar)

     # Fsync the file to trigger writeback and keep calling stat(2) on it
     # to see if the number of blocks used changes.
     stat_loop $MNT/foobar $blocks_used &
     loop_pid=$!
     xfs_io -c "fsync" $MNT/foobar

     kill $loop_pid &> /dev/null
     wait $loop_pid
  done

  umount $DEV

  $ ./reproducer-2.sh
  ERROR: unexpected used blocks (got: 265472 expected: 265344)
  ERROR: unexpected used blocks (got: 284032 expected: 283904)
  (...)

Note that since this is a short time window where the race can happen, the
reproducer may not be able to always trigger the bug in one run, or it may
trigger it multiple times.

-> Case 3

Another case where such problems happen is during other operations that
replace extents in a file range with other extents. Those operations are
extent cloning, deduplication and fallocate's zero range operation.

The cause of the problem is similar to the first case. When we drop the
extents from a range, we decrement the inode's number of bytes, and later
on, after inserting the new extents we increment it. Since this is not
done atomically, a concurrent stat(2) call can see and return a number of
used blocks that is smaller than it should be, does not match the number
of used blocks before or after the clone/deduplication/zero operation.

Like for the first case, when doing a clone, deduplication or zero range
operation against an entire file, we end up having a time window where we
can report 0 used blocks to a stat(2) call.

Example reproducer:

  $ cat reproducer-3.sh
  #!/bin/bash

  MNT=/mnt/sdi
  DEV=/dev/sdi

  mkfs.btrfs -f $DEV > /dev/null
  # mkfs.xfs -f -m reflink=1 $DEV > /dev/null
  mount $DEV $MNT

  extent_size=$((64 * 1024))
  num_extents=16384
  file_size=$(($extent_size * $num_extents))

  # File foo has many small extents.
  xfs_io -f -s -c "pwrite -S 0xab -b $extent_size 0 $file_size" $MNT/foo \
      > /dev/null
  # File bar has much less extents and has exactly the same data as foo.
  xfs_io -f -c "pwrite -S 0xab 0 $file_size" $MNT/bar > /dev/null

  expected=$(stat -c %b $MNT/foo)

  # Now deduplicate bar into foo. While the deduplication is in progres,
  # the number of used blocks/file size reported by stat should not change
  xfs_io -c "dedupe $MNT/bar 0 0 $file_size" $MNT/foo > /dev/null  &
  dedupe_pid=$!
  while [ -n "$(ps -p $dedupe_pid -o pid=)" ]; do
      used=$(stat -c %b $MNT/foo)
      if [ $used -ne $expected ]; then
          echo "Unexpected blocks used: $used (expected: $expected)"
      fi
  done

  umount $DEV

  $ ./reproducer-3.sh
  Unexpected blocks used: 2076800 (expected: 2097152)
  Unexpected blocks used: 2097024 (expected: 2097152)
  Unexpected blocks used: 2079872 (expected: 2097152)
  (...)

Note that since this is a short time window where the race can happen, the
reproducer may not be able to always trigger the bug in one run, or it may
trigger it multiple times.

So fix this by:

1) Making btrfs_drop_extents() not decrement the VFS inode's number of
   bytes, and instead return the number of bytes;

2) Making any code that drops extents and adds new extents update the
   inode's number of bytes atomically, while holding the btrfs inode's
   spinlock, which is also used by the stat(2) callback to get the inode's
   number of bytes;

3) For ranges in the inode's iotree that are marked as 'delalloc new',
   corresponding to previously unallocated ranges, increment the inode's
   number of bytes when clearing the 'delalloc new' bit from the range,
   in the same critical section that decrements the inode's
   'new_delalloc_bytes' counter, delimited by the btrfs inode's spinlock.

An alternative would be to have btrfs_getattr() wait for any IO (ordered
extents in progress) and locking the whole range (0 to (u64)-1) while it
it computes the number of blocks used. But that would mean blocking
stat(2), which is a very used syscall and expected to be fast, waiting
for writes, clone/dedupe, fallocate, page reads, fiemap, etc.

CC: stable@vger.kernel.org # 5.4+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-12-08 15:54:08 +01:00
Josef Bacik e114c545bb btrfs: set the lockdep class for extent buffers on creation
Both Filipe and Fedora QA recently hit the following lockdep splat:

  WARNING: possible recursive locking detected
  5.10.0-0.rc1.20201028gited8780e3f2ec.57.fc34.x86_64 #1 Not tainted
  --------------------------------------------
  rsync/2610 is trying to acquire lock:
  ffff89617ed48f20 (&eb->lock){++++}-{2:2}, at: btrfs_tree_read_lock_atomic+0x34/0x140

  but task is already holding lock:
  ffff8961757b1130 (&eb->lock){++++}-{2:2}, at: btrfs_tree_read_lock_atomic+0x34/0x140

  other info that might help us debug this:
   Possible unsafe locking scenario:
	 CPU0
	 ----
    lock(&eb->lock);
    lock(&eb->lock);

   *** DEADLOCK ***
   May be due to missing lock nesting notation
  2 locks held by rsync/2610:
   #0: ffff896107212b90 (&type->i_mutex_dir_key#10){++++}-{3:3}, at: walk_component+0x10c/0x190
   #1: ffff8961757b1130 (&eb->lock){++++}-{2:2}, at: btrfs_tree_read_lock_atomic+0x34/0x140

  stack backtrace:
  CPU: 1 PID: 2610 Comm: rsync Not tainted 5.10.0-0.rc1.20201028gited8780e3f2ec.57.fc34.x86_64 #1
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 0.0.0 02/06/2015
  Call Trace:
   dump_stack+0x8b/0xb0
   __lock_acquire.cold+0x12d/0x2a4
   ? kvm_sched_clock_read+0x14/0x30
   ? sched_clock+0x5/0x10
   lock_acquire+0xc8/0x400
   ? btrfs_tree_read_lock_atomic+0x34/0x140
   ? read_block_for_search.isra.0+0xdd/0x320
   _raw_read_lock+0x3d/0xa0
   ? btrfs_tree_read_lock_atomic+0x34/0x140
   btrfs_tree_read_lock_atomic+0x34/0x140
   btrfs_search_slot+0x616/0x9a0
   btrfs_lookup_dir_item+0x6c/0xb0
   btrfs_lookup_dentry+0xa8/0x520
   ? lockdep_init_map_waits+0x4c/0x210
   btrfs_lookup+0xe/0x30
   __lookup_slow+0x10f/0x1e0
   walk_component+0x11b/0x190
   path_lookupat+0x72/0x1c0
   filename_lookup+0x97/0x180
   ? strncpy_from_user+0x96/0x1e0
   ? getname_flags.part.0+0x45/0x1a0
   vfs_statx+0x64/0x100
   ? lockdep_hardirqs_on_prepare+0xff/0x180
   ? _raw_spin_unlock_irqrestore+0x41/0x50
   __do_sys_newlstat+0x26/0x40
   ? lockdep_hardirqs_on_prepare+0xff/0x180
   ? syscall_enter_from_user_mode+0x27/0x80
   ? syscall_enter_from_user_mode+0x27/0x80
   do_syscall_64+0x33/0x40
   entry_SYSCALL_64_after_hwframe+0x44/0xa9

I have also seen a report of lockdep complaining about the lock class
that was looked up being the same as the lock class on the lock we were
using, but I can't find the report.

These are problems that occur because we do not have the lockdep class
set on the extent buffer until _after_ we read the eb in properly.  This
is problematic for concurrent readers, because we will create the extent
buffer, lock it, and then attempt to read the extent buffer.

If a second thread comes in and tries to do a search down the same path
they'll get the above lockdep splat because the class isn't set properly
on the extent buffer.

There was a good reason for this, we generally didn't know the real
owner of the eb until we read it, specifically in refcounted roots.

However now all refcounted roots have the same class name, so we no
longer need to worry about this.  For non-refcounted trees we know
which root we're on based on the parent.

Fix this by setting the lockdep class on the eb at creation time instead
of read time.  This will fix the splat and the weirdness where the class
changes in the middle of locking the block.

Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-12-08 15:54:07 +01:00
Josef Bacik 3fbaf25817 btrfs: pass the owner_root and level to alloc_extent_buffer
Now that we've plumbed all of the callers to have the owner root and the
level, plumb it down into alloc_extent_buffer().

Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-12-08 15:54:07 +01:00
Josef Bacik bfb484d922 btrfs: cleanup extent buffer readahead
We're going to pass around more information when we allocate extent
buffers, in order to make that cleaner how we do readahead.  Most of the
callers have the parent node that we're getting our blockptr from, with
the sole exception of relocation which simply has the bytenr it wants to
read.

Add a helper that takes the current arguments that we need (bytenr and
gen), and add another helper for simply reading the slot out of a node.
In followup patches the helper that takes all the extra arguments will
be expanded, and the simpler helper won't need to have it's arguments
adjusted.

Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-12-08 15:54:05 +01:00
Qu Wenruo 478ef8868f btrfs: make buffer_radix take sector size units
For subpage sector size support, one page can contain multiple tree
blocks. The entries cannot be based on page size and index must be
derived from the sectorsize. No change for page size == sector size.

Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-12-08 15:54:03 +01:00
Qu Wenruo 0d01e247a0 btrfs: assert page mapping lock in attach_extent_buffer_page
When calling attach_extent_buffer_page(), either we're attaching
anonymous pages, called from btrfs_clone_extent_buffer(),
or we're attaching btree inode pages, called from alloc_extent_buffer().

For the latter case, we should hold page->mapping->private_lock to avoid
parallel changes to page->private.

Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-12-08 15:54:03 +01:00
Josef Bacik b9729ce014 btrfs: locking: rip out path->leave_spinning
We no longer distinguish between blocking and spinning, so rip out all
this code.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-12-08 15:54:02 +01:00
David Sterba 223486c27b btrfs: switch cached fs_info::csum_size from u16 to u32
The fs_info value is 32bit, switch also the local u16 variables. This
leads to a better assembly code generated due to movzwl.

This simple change will shave some bytes on x86_64 and release config:

   text    data     bss     dec     hex filename
1090000   17980   14912 1122892  11224c pre/btrfs.ko
1089794   17980   14912 1122686  11217e post/btrfs.ko

DELTA: -206

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-12-08 15:53:59 +01:00
David Sterba 55fc29bed8 btrfs: use cached value of fs_info::csum_size everywhere
btrfs_get_16 shows up in the system performance profiles (helper to read
16bit values from on-disk structures). This is partially because of the
checksum size that's frequently read along with data reads/writes, other
u16 uses are from item size or directory entries.

Replace all calls to btrfs_super_csum_size by the cached value from
fs_info.

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-12-08 15:53:59 +01:00
David Sterba 265fdfa6ce btrfs: replace s_blocksize_bits with fs_info::sectorsize_bits
The value of super_block::s_blocksize_bits is the same as
fs_info::sectorsize_bits, but we don't need to do the extra dereferences
in many functions and storing the bits as u32 (in fs_info) generates
shorter assembly.

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-12-08 15:53:58 +01:00
Qu Wenruo e940e9a7c7 btrfs: rename page_size to io_size in submit_extent_page
The variable @page_size in submit_extent_page() is not related to page
size.

It can already be smaller than PAGE_SIZE, so rename it to io_size to
reduce confusion, this is especially important for later subpage
support.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-12-08 15:53:56 +01:00
Qu Wenruo 8b8bbd461e btrfs: only require sector size alignment for page read
If we're reading partial page, btrfs will warn about this as read/write
is always done in sector size, which now equals page size.

But for the upcoming subpage read-only support, our data read is only
aligned to sectorsize, which can be smaller than page size.

Thus here we change the warning condition to check it against
sectorsize, the behavior is not changed for regular sectorsize ==
PAGE_SIZE case, and won't report error for subpage read.

Also, pass the proper start/end with bv_offset for check_data_csum() to
handle.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-12-08 15:53:56 +01:00
Qu Wenruo 12e3360f74 btrfs: rename pages_locked in process_pages_contig()
Function process_pages_contig() does not only handle page locking but
also other operations.  Rename the local variable pages_locked to
pages_processed to reduce confusion.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-12-08 15:53:55 +01:00
Qu Wenruo 3f6bb4aeb5 btrfs: sink the failed_start parameter to set_extent_bit
The @failed_start parameter is only paired with @exclusive_bits, and
those parameters are only used for EXTENT_LOCKED bit, which have their
own wrappers lock_extent_bits().

Thus for regular set_extent_bit() calls, the failed_start makes no
sense, just sink the parameter.

Also, since @failed_start and @exclusive_bits are used in pairs, add
an assert to make it obvious.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-12-08 15:53:54 +01:00
Qu Wenruo 03509b781a btrfs: update the comment for find_first_extent_bit
The pitfall here is, if the parameter @bits has multiple bits set, we
will return the first range which just has one of the specified bits
set.

This is a little tricky if we want an exact match.  Anyway, update the
comment to make that clear.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-12-08 15:53:53 +01:00
Qu Wenruo a3efb2f0ba btrfs: fix the comment on lock_extent_buffer_for_io
The return value of that function is completely wrong.

That function only returns 0 if the extent buffer doesn't need to be
submitted.  The "ret = 1" and "ret = 0" are determined by the return
value of "test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)".

And if we get ret == 1, it's because the extent buffer is dirty, and we
set its status to EXTENT_BUFFER_WRITE_BACK, and continue to page
locking.

While if we get ret == 0, it means the extent is not dirty from the
beginning, so we don't need to write it back.

The caller also follows this, in btree_write_cache_pages(), if
lock_extent_buffer_for_io() returns 0, we just skip the extent buffer
completely.

So the comment is completely wrong.

Since we're here, also change the description a little.  The write bio
flushing won't be visible to the caller, thus it's not an major feature.
In the main description, only describe the locking part to make the
point more clear.

For reference, added in commit 2e3c25136a ("btrfs: extent_io: add
proper error handling to lock_extent_buffer_for_io()")

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-12-08 15:53:53 +01:00
Josef Bacik 196d59ab9c btrfs: switch extent buffer tree lock to rw_semaphore
Historically we've implemented our own locking because we wanted to be
able to selectively spin or sleep based on what we were doing in the
tree.  For instance, if all of our nodes were in cache then there's
rarely a reason to need to sleep waiting for node locks, as they'll
likely become available soon.  At the time this code was written the
rw_semaphore didn't do adaptive spinning, and thus was orders of
magnitude slower than our home grown locking.

However now the opposite is the case.  There are a few problems with how
we implement blocking locks, namely that we use a normal waitqueue and
simply wake everybody up in reverse sleep order.  This leads to some
suboptimal performance behavior, and a lot of context switches in highly
contended cases.  The rw_semaphores actually do this properly, and also
have adaptive spinning that works relatively well.

The locking code is also a bit of a bear to understand, and we lose the
benefit of lockdep for the most part because the blocking states of the
lock are simply ad-hoc and not mapped into lockdep.

So rework the locking code to drop all of this custom locking stuff, and
simply use a rw_semaphore for everything.  This makes the locking much
simpler for everything, as we can now drop a lot of cruft and blocking
transitions.  The performance numbers vary depending on the workload,
because generally speaking there doesn't tend to be a lot of contention
on the btree.  However, on my test system which is an 80 core single
socket system with 256GiB of RAM and a 2TiB NVMe drive I get the
following results (with all debug options off):

  dbench 200 baseline
  Throughput 216.056 MB/sec  200 clients  200 procs  max_latency=1471.197 ms

  dbench 200 with patch
  Throughput 737.188 MB/sec  200 clients  200 procs  max_latency=714.346 ms

Previously we also used fs_mark to test this sort of contention, and
those results are far less impressive, mostly because there's not enough
tasks to really stress the locking

  fs_mark -d /d[0-15] -S 0 -L 20 -n 100000 -s 0 -t 16

  baseline
    Average Files/sec:     160166.7
    p50 Files/sec:         165832
    p90 Files/sec:         123886
    p99 Files/sec:         123495

    real    3m26.527s
    user    2m19.223s
    sys     48m21.856s

  patched
    Average Files/sec:     164135.7
    p50 Files/sec:         171095
    p90 Files/sec:         122889
    p99 Files/sec:         113819

    real    3m29.660s
    user    2m19.990s
    sys     44m12.259s

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-12-08 15:53:43 +01:00
Goldwyn Rodrigues 949b32732e btrfs: use iosize while reading compressed pages
While using compression, a submitted bio is mapped with a compressed bio
which performs the read from disk, decompresses and returns uncompressed
data to original bio. The original bio must reflect the uncompressed
size (iosize) of the I/O to be performed, or else the page just gets the
decompressed I/O length of data (disk_io_size). The compressed bio
checks the extent map and gets the correct length while performing the
I/O from disk.

This came up in subpage work when only compressed length of the original
bio was filled in the page. This worked correctly for pagesize ==
sectorsize because both compressed and uncompressed data are at pagesize
boundaries, and would end up filling the requested page.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-12-08 15:53:37 +01:00
Nikolay Borisov 905eb88bce btrfs: remove struct extent_io_ops
It's no longer used just remove the function and any related code which
was initialising it for inodes. No functional changes.

Removing 8 bytes from extent_io_tree in turn reduces size of other
structures where it is embedded, notably btrfs_inode where it reduces
size by 24 bytes.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-10-07 12:13:25 +02:00
Nikolay Borisov 1b36294a6c btrfs: call submit_bio_hook directly for metadata pages
No need to go through a function pointer indirection simply call
submit_bio_hook directly by exporting and renaming the helper to
btrfs_submit_metadata_bio. This makes the code more readable and should
result in somewhat faster code due to no longer paying the price for
specualtive attack mitigations that come with indirect function calls.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-10-07 12:13:25 +02:00
Nikolay Borisov 908930f3ed btrfs: stop calling submit_bio_hook for data inodes
Instead export and rename the function to btrfs_submit_data_bio and
call it directly in submit_one_bio. This avoids paying the cost for
speculative attacks mitigations and improves code readability.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-10-07 12:13:24 +02:00
Nikolay Borisov be17b3afc4 btrfs: don't opencode is_data_inode in end_bio_extent_readpage
Use the is_data_inode helper.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-10-07 12:13:24 +02:00
Nikolay Borisov cd0537449c btrfs: call submit_bio_hook directly in submit_one_bio
BTRFS has 2 inode types (for the purposes of the code in submit_one_bio)
- ordinary data inodes (including the freespace inode) and the btree
inode. Both of these implement submit_bio_hook so btrfsic_submit_bio can
never be called from submit_one_bio so just remove it.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-10-07 12:13:24 +02:00
Nikolay Borisov 9a446d6a9f btrfs: replace readpage_end_io_hook with direct calls
Don't call readpage_end_io_hook for the btree inode.  Instead of relying
on indirect calls to implement metadata buffer validation simply check
if the inode whose page we are processing equals the btree inode. If it
does call the necessary function.

This is an improvement in 2 directions:

1. We aren't paying the penalty of indirect calls in a post-speculation
   attacks world.

2. The function is now named more explicitly so it's obvious what's
   going on

This is in preparation to removing struct extent_io_ops altogether.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-10-07 12:13:24 +02:00
Nikolay Borisov 0f20881249 btrfs: open code extent_read_full_page to its sole caller
This makes reading the code a tad easier by decreasing the level of
indirection by one.

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-10-07 12:13:21 +02:00
Nikolay Borisov fd513000eb btrfs: sink mirror_num argument in __do_readpage
It's always set to 0 by the 2 callers so move it inside __do_readpage.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-10-07 12:13:21 +02:00
Nikolay Borisov 6f15af6060 btrfs: sink read_flags argument into extent_read_full_page
It's always set to 0 by its sole caller - btrfs_readpage. Simply remove
it.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-10-07 12:13:20 +02:00
Nikolay Borisov 003c286aef btrfs: sink mirror_num argument in extent_read_full_page
It's always set to 0 from the sole caller - btrfs_readpage.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-10-07 12:13:20 +02:00
Nikolay Borisov c1be9c1ad5 btrfs: promote extent_read_full_page to btrfs_readpage
Now that btrfs_readpage is the only caller of extent_read_full_page the
latter can be open coded in the former. Use the occassion to rename
__extent_read_full_page to extent_read_full_page. To facillitate this
change submit_one_bio has to be exported as well.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-10-07 12:13:20 +02:00
Nikolay Borisov 72cffee463 btrfs: remove mirror_num argument from extent_read_full_page
It's called only from btrfs_readpage which always passes 0 so just sink
the argument into extent_read_full_page.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-10-07 12:13:20 +02:00
Nikolay Borisov 1a5ee1e626 btrfs: remove btrfs_get_extent indirection from __do_readpage
Now that this function is only responsible for reading data pages it's
no longer necessary to pass get_extent_t parameter across several
layers of functions. This patch removes this parameter from multiple
functions: __get_extent_map/__do_readpage/__extent_read_full_page/
extent_read_full_page and simply calls btrfs_get_extent directly in
__get_extent_map.

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-10-07 12:13:20 +02:00
Nikolay Borisov 0420177c08 btrfs: simplify metadata pages reading
Metadata pages currently use __do_readpage to read metadata pages,
unfortunately this function is also used to deal with ordinary data
pages. This makes the metadata pages reading code to go through multiple
hoops in order to adhere to __do_readpage invariants. Most of these are
necessary for data pages which could be compressed. For metadata it's
enough to simply build a bio and submit it.

To this effect simply call submit_extent_page directly from
read_extent_buffer_pages which is the only callpath used to populate
extent_buffers with data. This in turn enables further cleanups.

Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-10-07 12:13:19 +02:00
Nikolay Borisov facee0a09c btrfs: make extent_fiemap take btrfs_inode
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-10-07 12:12:19 +02:00
Nikolay Borisov f1bbde8d5f btrfs: make get_extent_skip_holes take btrfs_inode
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-10-07 12:12:18 +02:00
Nikolay Borisov 6fee248d2b btrfs: convert btrfs_inode_sectorsize to take btrfs_inode
It's counterintuitive to have a function named btrfs_inode_xxx which
takes a generic inode. Also move the function to btrfs_inode.h so that
it has access to the definition of struct btrfs_inode.

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2020-10-07 12:12:18 +02:00