* 'drm-nouveau-next' of git://git.freedesktop.org/git/nouveau/linux-2.6: (353 commits)
drm/nouveau: remove allocations from gart populate() hook
drm/nvc0/fb: slightly improve PMFB intr handling, move out of nvc0_graph.c
drm/nvc0/fifo: avoid touching missing subfifos
drm/nvd9/disp: bail out of mode_set_base if no fb bound to crtc
drm/nvd9/disp: stub some more api hooks so we don't oops on resume
drm/nouveau: fix printk typo in ioremap failure path
drm/nvc0/pm: minor clock readback fixes
drm/nv40/pm: execute memory reset script from vbios
drm/nv50/gr: refactor initialisation
drm/nouveau: if requested, try harder at disabling sysmem pushbufs
drm/nv50/gr: enable ctxprog xfer only when we need it to save power
drm/nouveau/dp: add support for displayport table 0x30
drm/nouveau/dp: return master dp table pointer too when looking up encoder
drm/nouveau/bios: simplify U/d table hash matching func to just match
drm/nouveau/dp: preserve non-pattern bits in DP_TRAINING_PATTERN_SET
drm/nvc0/gr: remove MODULE_FIRMWARE() lines
drm/nouveau/dp: use alternate lane mask for nvaf
drm/nouveau/dp: link rate scripts are selected with a comparison table
drm/nv40/pm: write nv40-specific reclocking routines
drm/nv40/pm: parse geometric delta clock from vbios
...
Sometimes we want to know whether a buffer is busy and wait for it (bo_wait).
However, sometimes it would be more useful to be able to query whether
a buffer is busy and being either read or written, and wait until it's stopped
being either read or written. The point of this is to be able to avoid
unnecessary waiting, e.g. if a GPU has written something to a buffer and is now
reading that buffer, and a CPU wants to map that buffer for read, it needs to
only wait for the last write. If there were no write, there wouldn't be any
waiting needed.
This, or course, requires user space drivers to send read/write flags
with each relocation (like we have read/write domains in radeon, so we can
actually use those for something useful now).
Now how this patch works:
The read/write flags should passed to ttm_validate_buffer. TTM maintains
separate sync objects of the last read and write for each buffer, in addition
to the sync object of the last use of a buffer. ttm_bo_wait then operates
with one the sync objects.
Signed-off-by: Marek Olšák <maraeo@gmail.com>
Reviewed-by: Jerome Glisse <jglisse@redhat.com>
Signed-off-by: Dave Airlie <airlied@redhat.com>
Greatly simplifies a number of things, particularly once per-client GPU
address spaces are involved.
May add this back later once I know what things'll look like.
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
Was previously assuming a page size of 4KiB unless a VMA was present to
override it. Eventually, a buffer won't necessarily have a VMA at all at
some stages of its life, so we need to store this info elsewhere.
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
On chipsets using nouveau_vm, the virtual address stays constant, so
the value set at bo creation time is fine.
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
* 'intel/drm-intel-next' of ../drm-next: (755 commits)
drm/i915: Only wait on a pending flip if we intend to write to the buffer
drm/i915/dp: Sanity check eDP existence
drm/i915: Rebind the buffer if its alignment constraints changes with tiling
drm/i915: Disable GPU semaphores by default
drm/i915: Do not overflow the MMADDR write FIFO
Revert "drm/i915: fix corruptions on i8xx due to relaxed fencing"
drm/i915: Don't save/restore hardware status page address register
drm/i915: don't store the reg value for HWS_PGA
drm/i915: fix memory corruption with GM965 and >4GB RAM
Linux 2.6.38-rc7
Revert "TPM: Long default timeout fix"
drm/i915: Re-enable GPU semaphores for SandyBridge mobile
drm/i915: Replace vblank PM QoS with "Interrupt-Based AGPBUSY#"
Revert "drm/i915: Use PM QoS to prevent C-State starvation of gen3 GPU"
drm/i915: Allow relocation deltas outside of target bo
drm/i915: Silence an innocuous compiler warning for an unused variable
fs/block_dev.c: fix new kernel-doc warning
ACPI: Fix build for CONFIG_NET unset
mm: <asm-generic/pgtable.h> must include <linux/mm_types.h>
x86: Use u32 instead of long to set reset vector back to 0
...
Conflicts:
drivers/gpu/drm/i915/i915_gem.c
Somehow fixes a misrendering + hang at GDM startup on my NVA8...
My first guess would have been stale TLB entries laying around that a new
bo then accidentally inherits. That doesn't make a great deal of sense
however, as when we mapped the pages for the new bo the TLBs would've
gotten flushed anyway.
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
The immediate benefit of doing this is that on NV50 and up, the GPU
virtual address of any buffer is now constant, regardless of what
memtype they're placed in.
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
Upcoming patches are going to enable full support for buffers that keep
a constant GPU virtual address whenever they're validated for use by
the GPU.
In order for this to work properly while keeping support for large pages,
we need to know if it's ever going to be possible for a buffer to end
up in GART, and if so, disable large pages for the buffer's VMA.
This is a new restriction that's not present in earlier kernel's, but
should not break userspace as the current code never attempts to validate
buffers into a memtype other than it was created with.
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
'mappable' isn't really used at all, nor is it necessary anymore as the
bo code is capable of moving buffers to mappable vram as required.
'no_vm' isn't necessary anymore either, any places that don't want to be
mapped into a GPU address space should allocate the VRAM directly instead.
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
In preparation for the addition of a new nv40 backend, we'll need to be
able to distinguish between a paged dma object and the on-chip GART.
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
We free the temporary binding before leaving this function, so we also have
to wait for the move to actually complete.
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
Reported-by: Alex Buell <alex.buell@munted.org.uk>
Signed-off-by: Francisco Jerez <currojerez@riseup.net>
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
As of this commit, it's guaranteed that if an object is in VRAM that its
GPU virtual address will be constant.
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
This is required on nv50 as we need to be able to have more precise control
over physical VRAM allocations to avoid buffer corruption when using
buffers of mixed memory types.
This removes some nasty overallocation/alignment that we were previously
using to "control" this problem.
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
The point is to share more code between the PFB/PGRAPH tile region
hooks, and give the hardware specific functions a chance to allocate
per-region resources.
Signed-off-by: Francisco Jerez <currojerez@riseup.net>
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
nouveau_bo_move_m2mf() needs to lock the kernel channel, and it may be
called from the pushbuf IOCTL with an user channel already locked. Use
a separate subclass for the kernel channel mutex because this is
legitimate mutex nesting.
Signed-off-by: Francisco Jerez <currojerez@riseup.net>
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
nv0x-nv4x should be mostly fine, nv50 doesn't work yet.
Signed-off-by: Francisco Jerez <currojerez@riseup.net>
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
nouveau_fence_* functions are not type safe, which could lead to bugs.
Additionally every use of nouveau_fence_unref had to cast struct
nouveau_fence to void **.
Fix it by renaming old functions and creating static inline functions with
new prototypes. We still need old functions, because we pass function
pointers to ttm.
As we are wrapping functions, drop unused "void *arg" parameter where possible.
Signed-off-by: Marcin Slusarz <marcin.slusarz@gmail.com>
Signed-off-by: Francisco Jerez <currojerez@riseup.net>
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
The pushbuf ioctl syncs after validation, no need for this anymore.
Signed-off-by: Francisco Jerez <currojerez@riseup.net>
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
This fixes a race condition between fbcon acceleration and TTM buffer
moves. To reproduce:
- start X
- switch to vt and "while (true); do dmesg; done"
- switch to another vt and "sleep 2 && cat /path/to/debugfs/dri/0/evict_vram"
- switch back to vt running dmesg
We don't make use of this on any other channel yet, they're currently
protected by drm_global_mutex. This will change in the near future.
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
This will be needed for Z compression and to take smarter placement
decisions.
Signed-off-by: Francisco Jerez <currojerez@riseup.net>
Acked-by: Ben Skeggs <bskeggs@redhat.com>
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
Nouveau will need this on GeForce 8 and up to account for the GPU
reordering physical VRAM for some memory types.
Reviewed-by: Jerome Glisse <jglisse@redhat.com>
Acked-by: Thomas Hellström <thellstrom@vmware.com>
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
Existing core code/drivers call drm_mm_put_block on ttm_mem_reg.mm_node
directly. Future patches will modify TTM behaviour in such a way that
ttm_mem_reg.mm_node doesn't necessarily belong to drm_mm.
Reviewed-by: Jerome Glisse <jglisse@redhat.com>
Acked-by: Thomas Hellström <thellstrom@vmware.com>
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
Hopefully this one will be better able to cope with moving tiled buffers
around without getting them all scrambled as a result.
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
When VRAM is running out it's possible that the client's push buffers get
evicted to main memory. When they're validated back in, the GPU may
be used for the copy back to VRAM, but the existing synchronisation code
only deals with inter-channel sync, not sync between PFIFO and PGRAPH on
the same channel. This leads to PFIFO fetching from command buffers that
haven't quite been copied by PGRAPH yet.
This patch marks push buffers as so, and forces any GPU-assisted buffer
moves to be done on a different channel, which triggers the correct
synchronisation to happen before we submit them.
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
Avoids an oops in the fence wait failure path (bug 26521).
Signed-off-by: Francisco Jerez <currojerez@riseup.net>
Tested-by: Marcin Slusarz <marcin.slusarz@gmail.com>
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
Remove the drm_resource wrappers and directly use the
actual PCI and/or platform functions in their place.
[airlied: fixup nouveau properly to build]
Signed-off-by: Jordan Crouse <jcrouse@codeaurora.org>
Reviewed-by: Matt Turner <mattst88@gmail.com>
Signed-off-by: Dave Airlie <airlied@redhat.com>
* drm-ttm-unmappable:
drm/radeon/kms: enable use of unmappable VRAM V2
drm/ttm: remove io_ field from TTM V6
drm/vmwgfx: add support for new TTM fault callback V5
drm/nouveau/kms: add support for new TTM fault callback V5
drm/radeon/kms: add support for new fault callback V7
drm/ttm: ttm_fault callback to allow driver to handle bo placement V6
drm/ttm: split no_wait argument in 2 GPU or reserve wait
Conflicts:
drivers/gpu/drm/nouveau/nouveau_bo.c
All TTM driver have been converted to new io_mem_reserve/free
interface which allow driver to choose and return proper io
base, offset to core TTM for ioremapping if necessary. This
patch remove what is now deadcode.
V2 adapt to match with change in first patch of the patchset
V3 update after io_mem_reserve/io_mem_free callback balancing
V4 adjust to minor cleanup
V5 remove the needs ioremap flag
V6 keep the ioremapping facility in TTM
[airlied- squashed driver removals in here also]
Signed-off-by: Jerome Glisse <jglisse@redhat.com>
Reviewed-by: Thomas Hellstrom <thellstrom@vmware.com>
Signed-off-by: Dave Airlie <airlied@redhat.com>
This add the support for the new fault callback, does change anything
from driver point of view, thought it should allow nouveau to add
support for unmappable VRAM.
Improvement: store the aperture base in a variable so that we don't
call a function to get it on each fault.
Patch hasn't been tested on any hw.
V2 don't derefence bo->mem.mm_node as it's not NULL only for
VRAM or GTT
V3 update after io_mem_reserve/io_mem_free callback balancing
V4 callback has to ioremap
V5 ioremap is done by ttm
Signed-off-by: Jerome Glisse <jglisse@redhat.com>
Signed-off-by: Dave Airlie <airlied@redhat.com>
* 'drm-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/airlied/drm-2.6: (29 commits)
drm/nouveau: bail out of auxch transaction if we repeatedly recieve defers
drm/nv50: implement gpio set/get routines
drm/nv50: parse/use some more de-magiced parts of gpio table entries
drm/nouveau: store raw gpio table entry in bios gpio structs
drm/nv40: Init some tiling-related PGRAPH state.
drm/nv50: Add NVA3 support in ctxprog/ctxvals generator.
drm/nv50: another dodgy DP hack
drm/nv50: punt hotplug irq handling out to workqueue
drm/nv50: preserve an unknown SOR_MODECTRL value for DP encoders
drm/nv50: Allow using the NVA3 new compute class.
drm/nv50: cleanup properly if PDISPLAY init fails
drm/nouveau: fixup the init failure paths some more
drm/nv50: fix instmem init on IGPs if stolen mem crosses 4GiB mark
drm/nv40: add LVDS table quirk for Dell Latitude D620
drm/nv40: rework lvds table parsing
drm/nouveau: detect vram amount once, and save the value
drm/nouveau: remove some unused members from drm_nouveau_private
drm/nouveau: Make use of TTM busy_placements.
drm/nv50: add more 0x100c80 flushy magic
drm/nv50: fix fbcon when framebuffer above 4GiB mark
...
As opposed to repeatedly reading the amount back from the GPU every
time we need to know the VRAM size.
We should now fail to load gracefully on detecting no VRAM, rather than
something potentially messy happening.
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
Previously we were filling it the same as "placements", but in some
cases there're valid alternatives that we were ignoring completely.
Keeping a back-up memory type helps on several low-mem situations.
Signed-off-by: Francisco Jerez <currojerez@riseup.net>
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
There is case where we want to be able to wait only for the
GPU while not waiting for other buffer to be unreserved. This
patch split the no_wait argument all the way down in the whole
ttm path so that upper level can decide on what to wait on or
not.
[airlied: squashed these 4 for bisectability reasons.]
drm/radeon/kms: update to TTM no_wait splitted argument
drm/nouveau: update to TTM no_wait splitted argument
drm/vmwgfx: update to TTM no_wait splitted argument
[vmwgfx patch: Reviewed-by: Thomas Hellstrom <thellstrom@vmware.com>]
Signed-off-by: Jerome Glisse <jglisse@redhat.com>
Acked-by: Thomas Hellstrom <thellstrom@vmware.com>
Signed-off-by: Dave Airlie <airlied@redhat.com>
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
VRAM->system is a synchronous operation: it involves scheduling a
VRAM->TT DMA transfer and stalling the CPU until it's finished so that
we can unbind the new memory from the translation tables. VRAM->TT can
always be performed asynchronously, even if TT is already full and we
have to move something out of it.
Additionally, allowing VRAM->system behaves badly under heavy memory
pressure because once we run out of TT, stuff starts to be moved back
and forth between VRAM and system, and the TT contents are hardly
renewed.
Signed-off-by: Francisco Jerez <currojerez@riseup.net>
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
- In the current situation the padding that is added is dangerous to write
to, userspace could potentially overwrite parts of another bo.
- Depth and stencil buffers are supposed to be large enough in general so
the waste of memory should be acceptable.
- Alternatives are hiding the padding from users or splitting vram into 2
zones.
Signed-off-by: Maarten Maathuis <madman2003@gmail.com>
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
Not an ideal solution, but it'll do for the moment for correctness. We
need to come up with a nicer way to manage inter-channel sync, the hw
is unfortunately a little lacking in this area.
Should fix some resume corruption, as well as corruption that may be seen
while under memory pressure.
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
- Aligning to block size should ensure that the extra size is enough.
- Using roundup, because not all sizes are powers of two.
Signed-off-by: Maarten Maathuis <madman2003@gmail.com>
This commit has also the following 3 bugfix commits squashed into it from
the nouveau git tree:
drm/nouveau: Fix up the tiling alignment restrictions for nv1x.
drm/nouveau: Fix up the nv2x tiling alignment restrictions.
drm/nv50: fix align typo for g9x
Signed-off-by: Francisco Jerez <currojerez@riseup.net>
Previously, if there was no firmware available, the DRM would just
disable channel creation from userspace, but still use a single
channel for its own purposes.
With a bit of care it should actually be possible to do this, due
to the DRM's very limited use of the engine. It currently doesn't
work correctly however, resulting in corrupted fbcon and hangs on
a number of cards.
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
This adds a drm/kms staging non-API stable driver for GPUs from NVIDIA.
This driver is a KMS-based driver and requires a compatible nouveau
userspace libdrm and nouveau X.org driver.
This driver requires firmware files not available in this kernel tree,
interested parties can find them via the nouveau project git archive.
This driver is reverse engineered, and is in no way supported by nVidia.
Support for nearly the complete range of nvidia hw from nv04->g80 (nv50)
is available, and the kms driver should support driving nearly all
output types (displayport is under development still) along with supporting
suspend/resume.
This work is all from the upstream nouveau project found at
nouveau.freedesktop.org.
The original authors list from nouveau git tree is:
Anssi Hannula <anssi.hannula@iki.fi>
Ben Skeggs <bskeggs@redhat.com>
Francisco Jerez <currojerez@riseup.net>
Maarten Maathuis <madman2003@gmail.com>
Marcin Kościelnicki <koriakin@0x04.net>
Matthew Garrett <mjg@redhat.com>
Matt Parnell <mparnell@gmail.com>
Patrice Mandin <patmandin@gmail.com>
Pekka Paalanen <pq@iki.fi>
Xavier Chantry <shiningxc@gmail.com>
along with project founder Stephane Marchesin <marchesin@icps.u-strasbg.fr>
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
Signed-off-by: Dave Airlie <airlied@redhat.com>