Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Pull ->s_options removal from Al Viro:
"Preparations for fsmount/fsopen stuff (coming next cycle). Everything
gets moved to explicit ->show_options(), killing ->s_options off +
some cosmetic bits around fs/namespace.c and friends. Basically, the
stuff needed to work with fsmount series with minimum of conflicts
with other work.
It's not strictly required for this merge window, but it would reduce
the PITA during the coming cycle, so it would be nice to have those
bits and pieces out of the way"
* 'work.mount' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
isofs: Fix isofs_show_options()
VFS: Kill off s_options and helpers
orangefs: Implement show_options
9p: Implement show_options
isofs: Implement show_options
afs: Implement show_options
affs: Implement show_options
befs: Implement show_options
spufs: Implement show_options
bpf: Implement show_options
ramfs: Implement show_options
pstore: Implement show_options
omfs: Implement show_options
hugetlbfs: Implement show_options
VFS: Don't use save/replace_mount_options if not using generic_show_options
VFS: Provide empty name qstr
VFS: Make get_filesystem() return the affected filesystem
VFS: Clean up whitespace in fs/namespace.c and fs/super.c
Provide a function to create a NUL-terminated string from unterminated data
Implement the show_options superblock op for pstore as part of a bid to get
rid of s_options and generic_show_options() to make it easier to implement
a context-based mount where the mount options can be passed individually
over a file descriptor.
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Kees Cook <keescook@chromium.org>
cc: Anton Vorontsov <anton@enomsg.org>
cc: Colin Cross <ccross@android.com>
cc: Tony Luck <tony.luck@intel.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
In preparation for setting timestamps in the pstore core, create a common
initializer routine, instead of using static initializers.
Signed-off-by: Kees Cook <keescook@chromium.org>
Lockdep complains about a possible deadlock between mount and unlink
(which is technically impossible), but fixing this improves possible
future multiple-backend support, and keeps locking in the right order.
The lockdep warning could be triggered by unlinking a file in the
pstore filesystem:
-> #1 (&sb->s_type->i_mutex_key#14){++++++}:
lock_acquire+0xc9/0x220
down_write+0x3f/0x70
pstore_mkfile+0x1f4/0x460
pstore_get_records+0x17a/0x320
pstore_fill_super+0xa4/0xc0
mount_single+0x89/0xb0
pstore_mount+0x13/0x20
mount_fs+0xf/0x90
vfs_kern_mount+0x66/0x170
do_mount+0x190/0xd50
SyS_mount+0x90/0xd0
entry_SYSCALL_64_fastpath+0x1c/0xb1
-> #0 (&psinfo->read_mutex){+.+.+.}:
__lock_acquire+0x1ac0/0x1bb0
lock_acquire+0xc9/0x220
__mutex_lock+0x6e/0x990
mutex_lock_nested+0x16/0x20
pstore_unlink+0x3f/0xa0
vfs_unlink+0xb5/0x190
do_unlinkat+0x24c/0x2a0
SyS_unlinkat+0x16/0x30
entry_SYSCALL_64_fastpath+0x1c/0xb1
Possible unsafe locking scenario:
CPU0 CPU1
---- ----
lock(&sb->s_type->i_mutex_key#14);
lock(&psinfo->read_mutex);
lock(&sb->s_type->i_mutex_key#14);
lock(&psinfo->read_mutex);
Reported-by: Marta Lofstedt <marta.lofstedt@intel.com>
Reported-by: Chris Wilson <chris@chris-wilson.co.uk>
Signed-off-by: Kees Cook <keescook@chromium.org>
Acked-by: Namhyung Kim <namhyung@kernel.org>
In preparation for merging the per CPU buffers into one buffer when
we retrieve the pstore ftrace data, we store the timestamp as a
counter in the ftrace pstore record. We store the CPU number as well
if !PSTORE_CPU_IN_IP, in this case we shift the counter and may lose
ordering there but we preserve the same record size. The timestamp counter
is also racy, and not doing any locking or synchronization here results
in the benefit of lower overhead. Since we don't care much here for exact
ordering of function traces across CPUs, we don't synchronize and may lose
some counter updates but I'm ok with that.
Using trace_clock() results in much lower performance so avoid using it
since we don't want accuracy in timestamp and need a rough ordering to
perform merge.
Signed-off-by: Joel Fernandes <joelaf@google.com>
[kees: updated commit message, added comments]
Signed-off-by: Kees Cook <keescook@chromium.org>
This patch changes return type of pstore_is_mounted from int to bool.
Signed-off-by: Geliang Tang <geliangtang@163.com>
Acked-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Tony Luck <tony.luck@intel.com>
pstore doesn't support unregistering yet. It was marked as TODO.
This patch adds some code to fix it:
1) Add functions to unregister kmsg/console/ftrace/pmsg.
2) Add a function to free compression buffer.
3) Unmap the memory and free it.
4) Add a function to unregister pstore filesystem.
Signed-off-by: Geliang Tang <geliangtang@163.com>
Acked-by: Kees Cook <keescook@chromium.org>
[Removed __exit annotation from ramoops_remove(). Reported by Arnd Bergmann]
Signed-off-by: Tony Luck <tony.luck@intel.com>
A secured user-space accessible pstore object. Writes
to /dev/pmsg0 are appended to the buffer, on reboot
the persistent contents are available in
/sys/fs/pstore/pmsg-ramoops-[ID].
One possible use is syslogd, or other daemon, can
write messages, then on reboot provides a means to
triage user-space activities leading up to a panic
as a companion to the pstore dmesg or console logs.
Signed-off-by: Mark Salyzyn <salyzyn@android.com>
Acked-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Tony Luck <tony.luck@intel.com>
In case decompression fails, add a ".enc.z" to indicate the file has
compressed data. This will help user space utilities to figure
out the file contents.
Signed-off-by: Aruna Balakrishnaiah <aruna@linux.vnet.ibm.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Tony Luck <tony.luck@intel.com>
[Issue]
Currently, a variable name, which identifies each entry, consists of type, id and ctime.
But if multiple events happens in a short time, a second/third event may fail to log because
efi_pstore can't distinguish each event with current variable name.
[Solution]
A reasonable way to identify all events precisely is introducing a sequence counter to
the variable name.
The sequence counter has already supported in a pstore layer with "oopscount".
So, this patch adds it to a variable name.
Also, it is passed to read/erase callbacks of platform drivers in accordance with
the modification of the variable name.
<before applying this patch>
a variable name of first event: dump-type0-1-12345678
a variable name of second event: dump-type0-1-12345678
type:0
id:1
ctime:12345678
If multiple events happen in a short time, efi_pstore can't distinguish them because
variable names are same among them.
<after applying this patch>
it can be distinguishable by adding a sequence counter as follows.
a variable name of first event: dump-type0-1-1-12345678
a variable name of Second event: dump-type0-1-2-12345678
type:0
id:1
sequence counter: 1(first event), 2(second event)
ctime:12345678
In case of a write callback executed in pstore_console_write(), "0" is added to
an argument of the write callback because it just logs all kernel messages and
doesn't need to care about multiple events.
Signed-off-by: Seiji Aguchi <seiji.aguchi@hds.com>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Mike Waychison <mikew@google.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
With this patch we no longer reuse function tracer infrastructure, now
we register our own tracer back-end via a debugfs knob.
It's a bit more code, but that is the only downside. On the bright side we
have:
- Ability to make persistent_ram module removable (when needed, we can
move ftrace_ops struct into a module). Note that persistent_ram is still
not removable for other reasons, but with this patch it's just one
thing less to worry about;
- Pstore part is more isolated from the generic function tracer. We tried
it already by registering our own tracer in available_tracers, but that
way we're loosing ability to see the traces while we record them to
pstore. This solution is somewhere in the middle: we only register
"internal ftracer" back-end, but not the "front-end";
- When there is only pstore tracing enabled, the kernel will only write
to the pstore buffer, omitting function tracer buffer (which, of course,
still can be enabled via 'echo function > current_tracer').
Suggested-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Anton Vorontsov <anton.vorontsov@linaro.org>
Headers should really include all the needed prototypes, types, defines
etc. to be self-contained. This is a long-standing issue, but apparently
the new tracing code unearthed it (SMP=n is also a prerequisite):
In file included from fs/pstore/internal.h:4:0,
from fs/pstore/ftrace.c:21:
include/linux/pstore.h:43:15: error: field ‘read_mutex’ has incomplete type
While at it, I also added the following:
linux/types.h -> size_t, phys_addr_t, uXX and friends
linux/spinlock.h -> spinlock_t
linux/errno.h -> Exxxx
linux/time.h -> struct timespec (struct passed by value)
struct module and rs_control forward declaration (passed via pointers).
Signed-off-by: Anton Vorontsov <anton.vorontsov@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
With this support kernel can save function call chain log into a
persistent ram buffer that can be decoded and dumped after reboot
through pstore filesystem. It can be used to determine what function
was last called before a reset or panic.
We store the log in a binary format and then decode it at read time.
p.s.
Mostly the code comes from trace_persistent.c driver found in the
Android git tree, written by Colin Cross <ccross@android.com>
(according to sign-off history). I reworked the driver a little bit,
and ported it to pstore.
Signed-off-by: Anton Vorontsov <anton.vorontsov@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Life is simple for all the kernel terminating types of kmsg_dump
call backs - pstore just saves the tail end of the console log. But
for "oops" the situation is more complex - the kernel may carry on
running (possibly for ever). So we'd like to make the logged copy
of the oops appear in the pstore filesystem - so that the user has
a handle to clear the entry from the persistent backing store (if
we don't, the store may fill with "oops" entries (that are also
safely stashed in /var/log/messages) leaving no space for real
errors.
Current code calls pstore_mkfile() immediately. But this may
not be safe. The oops could have happened with arbitrary locks
held, or in interrupt or NMI context. So allocating memory and
calling into generic filesystem code seems unwise.
This patch defers making the entry appear. At the time
of the oops, we merely set a flag "pstore_new_entry" noting that
a new entry has been added. A periodic timer checks once a minute
to see if the flag is set - if so, it schedules a work queue to
rescan the backing store and make all new entries appear in the
pstore filesystem.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Some pstore implementations may not have a static context, so extend the
API to pass the pstore_info struct to all calls and allow for a context
pointer.
Signed-off-by: Matthew Garrett <mjg@redhat.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
/sys/fs is a somewhat strange way to tweak what could more
obviously be tuned with a mount option.
Suggested-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Some platforms have a small amount of non-volatile storage that
can be used to store information useful to diagnose the cause of
a system crash. This is the generic part of a file system interface
that presents information from the crash as a series of files in
/dev/pstore. Once the information has been seen, the underlying
storage is freed by deleting the files.
Signed-off-by: Tony Luck <tony.luck@intel.com>