ARM processors with LPAE enabled use 3 levels of page tables, with an
entry in the top level (pgd) covering 1GB of virtual space. Because of
the branch relocation limitations on ARM, the loadable modules are
mapped 16MB below PAGE_OFFSET, making the corresponding 1GB pgd shared
between kernel modules and user space.
If free_pgtables() is called with the default ceiling 0,
free_pgd_range() (and subsequently called functions) also frees the page
table shared between user space and kernel modules (which is normally
handled by the ARM-specific pgd_free() function). This patch changes
defines the ARM USER_PGTABLES_CEILING to TASK_SIZE when CONFIG_ARM_LPAE
is enabled.
Note that the pgd_free() function already checks the presence of the
shared pmd page allocated by pgd_alloc() and frees it, though with
ceiling 0 this wasn't necessary.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Hugh Dickins <hughd@google.com>
Cc: <stable@vger.kernel.org> [3.3+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Following commit 26ffd0d4 (ARM: mm: introduce present, faulting entries
for PAGE_NONE), if a page has been mapped as PROT_NONE, the L_PTE_VALID
bit is cleared by the set_pte_ext() code. With LPAE the software and
hardware pte share the same location and subsequent modifications of pte
range (change_protection()) will leave the L_PTE_VALID bit cleared.
This patch adds the L_PTE_VALID bit to the newprot mask in pte_modify().
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Reported-by: Subash Patel <subash.rp@samsung.com>
Tested-by: Subash Patel <subash.rp@samsung.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Cc: <stable@vger.kernel.org> # 3.8.x
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
KVM uses the stage-2 page tables and the Hyp page table format,
so we define the fields and page protection flags needed by KVM.
The nomenclature is this:
- page_hyp: PL2 code/data mappings
- page_hyp_device: PL2 device mappings (vgic access)
- page_s2: Stage-2 code/data page mappings
- page_s2_device: Stage-2 device mappings (vgic access)
Reviewed-by: Will Deacon <will.deacon@arm.com>
Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com>
Christoffer Dall <c.dall@virtualopensystems.com>
PROT_NONE mappings apply the page protection attributes defined by _P000
which translate to PAGE_NONE for ARM. These attributes specify an XN,
RDONLY pte that is inaccessible to userspace. However, on kernels
configured without support for domains, such a pte *is* accessible to
the kernel and can be read via get_user, allowing tasks to read
PROT_NONE pages via syscalls such as read/write over a pipe.
This patch introduces a new software pte flag, L_PTE_NONE, that is set
to identify faulting, present entries.
Signed-off-by: Will Deacon <will.deacon@arm.com>
For long-descriptor translation table formats, the ARMv7 architecture
defines the last two bits of the second- and third-level descriptors to
be:
x0b - Invalid
01b - Block (second-level), Reserved (third-level)
11b - Table (second-level), Page (third-level)
This allows us to define L_PTE_PRESENT as (3 << 0) and use this value to
create ptes directly. However, when determining whether a given pte
value is present in the low-level page table accessors, we only need to
check the least significant bit of the descriptor, allowing us to write
faulting, present entries which are required for PROT_NONE mappings.
This patch introduces L_PTE_VALID, which can be used to test whether a
pte should fault, and updates the low-level page table accessors
accordingly.
Signed-off-by: Will Deacon <will.deacon@arm.com>
Convert #include "..." to #include <path/...> in kernel system headers.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Acked-by: Dave Jones <davej@redhat.com>
Page migration encodes the pfn in the offset field of a swp_entry_t.
For LPAE, we support physical addresses of up to 36 bits (due to
sparsemem limitations with the size of page flags), requiring 24 bits
to represent a pfn. A further 3 bits are used to encode a swp_entry into
a pte, leaving 5 bits for the type field. Furthermore, the core code
defines MAX_SWAPFILES_SHIFT as 5, so the additional type bit does not
get used.
This patch reduces the width of the type field to 5 bits, allowing us
to create up to 31 swapfiles of 64GB each.
Cc: <stable@vger.kernel.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Swap entries are encoding in ptes such that !pte_present(pte) and
pte_file(pte). The remaining bits of the descriptor are used to identify
the swapfile and offset within it to the swap entry.
When writing such a pte for a user virtual address, set_pte_at
unconditionally sets the nG bit, which (in the case of LPAE) will
corrupt the swapfile offset and lead to a BUG:
[ 140.494067] swap_free: Unused swap offset entry 000763b4
[ 140.509989] BUG: Bad page map in process rs:main Q:Reg pte:0ec76800 pmd:8f92e003
This patch fixes the problem by only setting the nG bit for user
mappings that are actually present.
Cc: <stable@vger.kernel.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
This patch introduces the pgtable-3level*.h files with definitions
specific to the LPAE page table format (3 levels of page tables).
Each table is 4KB and has 512 64-bit entries. An entry can point to a
40-bit physical address. The young, write and exec software bits share
the corresponding hardware bits (negated). Other software bits use spare
bits in the PTE.
The patch also changes some variable types from unsigned long or int to
pteval_t or pgprot_t.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The page table maintenance macros need to be duplicated between the
classic and the LPAE MMU so this patch moves those that are not common
to the pgtable-2level.h file.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Nick Piggin noted upon introducing 4level-fixup.h:
| Add a temporary "fallback" header so architectures can run with
| the 4level pagetables patch without modification. All architectures
| should be converted to use the folding headers (include/asm-generic/
| pgtable-nop?d.h) as soon as possible, and the fallback header removed.
This makes ARM compliant with this statement.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
When disabling and re-enabling the MMU, it is necessary to take out an
identity mapping for the code that manipulates the SCTLR in order to
avoid it disappearing from under our feet. This is useful when soft
rebooting and returning from CPU suspend.
This patch allocates a set of page tables during boot and populates them
with an identity mapping for the .idmap.text section. This means that
users of the identity map do not need to manage their own pgd and can
instead annotate their functions with __idmap or, in the case of assembly
code, place them in the correct section.
Acked-by: Dave Martin <dave.martin@linaro.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Tested-by: Lorenzo Pieralisi <Lorenzo.Pieralisi@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Similar to other architectures, this adds topdown mmap support in user
process address space allocation policy. This allows mmap sizes greater
than 2GB. This support is largely copied from MIPS and the generic
implementations.
The address space randomization is moved into arch_pick_mmap_layout.
Tested on V-Express with ubuntu and a mmap test from here:
https://bugs.launchpad.net/bugs/861296
Signed-off-by: Rob Herring <rob.herring@calxeda.com>
Acked-by: Nicolas Pitre <nico@linaro.org>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
THIS IS A TEMPORARY HACK. The purpose of this is _only_ to avoid a
regression on an existing machine while a better fix is implemented.
On shmobile the consistent DMA memory area was set to 158MB in commit
28f0721a79 with no explanation. The documented size for this area should
vary between 2MB and 14MB, and none of the other ARM targets exceed that.
The included #warning is therefore meant to be noisy on purpose to get
shmobile maintainers attention and this commit reverted once this
consistent DMA size conflict is resolved.
Signed-off-by: Nicolas Pitre <nicolas.pitre@linaro.org>
Cc: Magnus Damm <damm@opensource.se>
Cc: Paul Mundt <lethal@linux-sh.org>
In order to remove the build time variation between different SOCs with
regards to VMALLOC_END, the iotable mappings are now allocated inside
the vmalloc region. This allows for VMALLOC_END to be identical across
all machines.
The value for VMALLOC_END is now set to 0xff000000 which is right where
the consistent DMA area starts.
To accommodate all static mappings on machines with possible highmem usage,
the default vmalloc area size is changed to 240 MB so that VMALLOC_START
is no higher than 0xf0000000 by default.
Signed-off-by: Nicolas Pitre <nicolas.pitre@linaro.org>
Tested-by: Stephen Warren <swarren@nvidia.com>
Tested-by: Kevin Hilman <khilman@ti.com>
Tested-by: Jamie Iles <jamie@jamieiles.com>
With LPAE, the physical address mask is 40-bit while the page table
entry is 64-bit. This patch introduces PHYS_MASK for the 2-level page
table format, defined as ~0UL.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
This patch moves page table definitions from asm/page.h, asm/pgtable.h
and asm/ptgable-hwdef.h into corresponding *-2level* files.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
On certain architectures, there might be a need to mark certain
addresses with strongly ordered memory attributes to avoid ordering
issues at the interconnect level.
On OMAP4, the asynchronous bridge buffers can only be drained
with strongly ordered accesses and hence the need to mark the
memory strongly ordered.
Signed-off-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Signed-off-by: Woodruff Richard <r-woodruff2@ti.com>
Tested-by: Vishwanath BS <vishwanath.bs@ti.com>
Add pud_offset() et.al. between the pgd and pmd code in preparation of
using pgtable-nopud.h rather than 4level-fixup.h.
This incorporates a fix from Jamie Iles <jamie@jamieiles.com> for
uaccess_with_memcpy.c.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
The unsigned long datatype is not sufficient for mapping physical addresses
>= 4GB.
This patch ensures that the phys_addr_t datatype is used to represent physical
addresses when converting from a PFN.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
The hardware page tables use an XN bit 'execute never'. Historically,
we've had a Linux 'execute allow' bit, in the positive sense. Get rid
of this artifact as future hardware will continue to have the XN sense.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
FIRST_USER_PGD_NR is now unnecessary, as this has been replaced by
FIRST_USER_ADDRESS except in the architecture code. Fix up the last
usage of FIRST_USER_PGD_NR, and remove the definition.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
We have two places where we create identity mappings - one when we bring
secondary CPUs online, and one where we setup some mappings for soft-
reboot. Combine these two into a single implementation. Also collect
the identity mapping deletion function.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
This switches the ordering of the Linux vs hardware page tables in
each page, thereby eliminating some of the arithmetic in the page
table walks. As we now place the Linux page table at the beginning
of the page, we can deal with the offset in the pgt by simply masking
it away, along with the other control bits.
This also makes the arithmetic all be positive, rather than a mixture.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Rather than passing the pte value to __pte_error, pass the raw pte_t
cookie instead. Do the same for pmd and pgd functions.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Allow the compiler to better optimize the page table walking code
by avoiding over-complex pmd_addr_end() calculations. These
calculations prevent the compiler spotting that we'll never iterate
over the PMD table, causing it to create double nested loops where
a single loop will do.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Since we no longer need to provide KM_type, the whole pte_*map_nested()
API is now redundant, remove it.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Chris Metcalf <cmetcalf@tilera.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: David Miller <davem@davemloft.net>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
ARMv7 onwards requires that there are no aliases to the same physical
location using different memory types (i.e. Normal vs Strongly Ordered).
Access to SO mappings when the unaligned accesses are handled in
hardware is also Unpredictable (pgprot_noncached() mappings in user
space).
The /dev/mem driver requires uncached mappings with O_SYNC. The patch
implements the phys_mem_access_prot() function which generates Strongly
Ordered memory attributes if !pfn_valid() (independent of O_SYNC) and
Normal Noncacheable (writecombine) if O_SYNC.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
On SMP systems, there is a small chance of a PTE becoming visible to a
different CPU before the current cache maintenance operations in
update_mmu_cache(). To avoid this, cache maintenance must be handled in
set_pte_at() (similar to IA-64 and PowerPC).
This patch provides a unified VIPT cache handling mechanism and
implements the __sync_icache_dcache() function for ARMv6 onwards
architectures. It is called from set_pte_at() and replaces the
update_mmu_cache(). The latter is still used on VIVT hardware where a
vm_area_struct is required.
Tested-by: Rabin Vincent <rabin.vincent@stericsson.com>
Cc: Nicolas Pitre <nicolas.pitre@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Provide a configuration option to allow the ARMv6 to use normal
bufferable memory for coherent DMA. This option is forced to 'y'
for ARMv7, and offered as a configuration option on ARMv6.
Enabling this option requires drivers to have the necessary barriers
to ensure that data in DMA coherent memory is visible prior to the
DMA operation commencing.
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
On ARMv7, it is invalid to map the same physical address multiple times
with different memory types. Since system RAM is already mapped as
'memory', subsequent remapping of it must retain this attribute.
However, DMA memory maps it as "strongly ordered". Fix this by introducing
'pgprot_dmacoherent()' which provides the necessary page table bits for
DMA mappings.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Acked-by: Greg Ungerer <gerg@uclinux.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Add the ARM implementation of highpte, which allows PTE tables to be
placed in highmem. Unfortunately, we do not offer highpte support
when support for L2 cache is enabled.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
For future compatibility, we need to ensure that swap and file Linux
PTEs conform with the hardware PTEs "fault" encoding. Swap PTEs
already fit in with this, but file PTEs do not. Shift them by one
bit to ensure that they conform, using bit 2 to distinguish between
swap and file PTEs.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
These old symbols are meaningless now that we have memory type
support implemented. The entire memory type field needs to be
modified rather than just a few bits twiddled.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Document the layout of our swp PTE entries, adding definitions for
the bit masks/shifts/sizes, and implement MAX_SWAPFILES_CHECK()
such that we fail to build if we are unable to properly encode the
swp type field.
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>