Commit Graph

336 Commits

Author SHA1 Message Date
Nishanth Aravamudan 2c740c5841 powerpc/kvm: Fix build errors with older toolchains
On a box with gcc 4.3.2, I see errors like:

arch/powerpc/kvm/book3s_hv_rmhandlers.S:1254: Error: Unrecognized opcode: stxvd2x
arch/powerpc/kvm/book3s_hv_rmhandlers.S:1316: Error: Unrecognized opcode: lxvd2x

Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2011-08-05 14:47:56 +10:00
Linus Torvalds 5fabc487c9 Merge branch 'kvm-updates/3.1' of git://git.kernel.org/pub/scm/virt/kvm/kvm
* 'kvm-updates/3.1' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (143 commits)
  KVM: IOMMU: Disable device assignment without interrupt remapping
  KVM: MMU: trace mmio page fault
  KVM: MMU: mmio page fault support
  KVM: MMU: reorganize struct kvm_shadow_walk_iterator
  KVM: MMU: lockless walking shadow page table
  KVM: MMU: do not need atomicly to set/clear spte
  KVM: MMU: introduce the rules to modify shadow page table
  KVM: MMU: abstract some functions to handle fault pfn
  KVM: MMU: filter out the mmio pfn from the fault pfn
  KVM: MMU: remove bypass_guest_pf
  KVM: MMU: split kvm_mmu_free_page
  KVM: MMU: count used shadow pages on prepareing path
  KVM: MMU: rename 'pt_write' to 'emulate'
  KVM: MMU: cleanup for FNAME(fetch)
  KVM: MMU: optimize to handle dirty bit
  KVM: MMU: cache mmio info on page fault path
  KVM: x86: introduce vcpu_mmio_gva_to_gpa to cleanup the code
  KVM: MMU: do not update slot bitmap if spte is nonpresent
  KVM: MMU: fix walking shadow page table
  KVM guest: KVM Steal time registration
  ...
2011-07-24 09:07:03 -07:00
Ohad Ben-Cohen e72542191c virtio: expose for non-virtualization users too
virtio has been so far used only in the context of virtualization,
and the virtio Kconfig was sourced directly by the relevant arch
Kconfigs when VIRTUALIZATION was selected.

Now that we start using virtio for inter-processor communications,
we need to source the virtio Kconfig outside of the virtualization
scope too.

Moreover, some architectures might use virtio for both virtualization
and inter-processor communications, so directly sourcing virtio
might yield unexpected results due to conflicting selections.

The simple solution offered by this patch is to always source virtio's
Kconfig in drivers/Kconfig, and remove it from the appropriate arch
Kconfigs. Additionally, a virtio menu entry has been added so virtio
drivers don't show up in the general drivers menu.

This way anyone can use virtio, though it's arguably less accessible
(and neat!) for virtualization users now.

Note: some architectures (mips and sh) seem to have a VIRTUALIZATION
menu merely for sourcing virtio's Kconfig, so that menu is removed too.

Signed-off-by: Ohad Ben-Cohen <ohad@wizery.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
2011-07-23 16:20:30 +09:30
Paul Mackerras 9e368f2915 KVM: PPC: book3s_hv: Add support for PPC970-family processors
This adds support for running KVM guests in supervisor mode on those
PPC970 processors that have a usable hypervisor mode.  Unfortunately,
Apple G5 machines have supervisor mode disabled (MSR[HV] is forced to
1), but the YDL PowerStation does have a usable hypervisor mode.

There are several differences between the PPC970 and POWER7 in how
guests are managed.  These differences are accommodated using the
CPU_FTR_ARCH_201 (PPC970) and CPU_FTR_ARCH_206 (POWER7) CPU feature
bits.  Notably, on PPC970:

* The LPCR, LPID or RMOR registers don't exist, and the functions of
  those registers are provided by bits in HID4 and one bit in HID0.

* External interrupts can be directed to the hypervisor, but unlike
  POWER7 they are masked by MSR[EE] in non-hypervisor modes and use
  SRR0/1 not HSRR0/1.

* There is no virtual RMA (VRMA) mode; the guest must use an RMO
  (real mode offset) area.

* The TLB entries are not tagged with the LPID, so it is necessary to
  flush the whole TLB on partition switch.  Furthermore, when switching
  partitions we have to ensure that no other CPU is executing the tlbie
  or tlbsync instructions in either the old or the new partition,
  otherwise undefined behaviour can occur.

* The PMU has 8 counters (PMC registers) rather than 6.

* The DSCR, PURR, SPURR, AMR, AMOR, UAMOR registers don't exist.

* The SLB has 64 entries rather than 32.

* There is no mediated external interrupt facility, so if we switch to
  a guest that has a virtual external interrupt pending but the guest
  has MSR[EE] = 0, we have to arrange to have an interrupt pending for
  it so that we can get control back once it re-enables interrupts.  We
  do that by sending ourselves an IPI with smp_send_reschedule after
  hard-disabling interrupts.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-07-12 13:16:59 +03:00
Paul Mackerras 969391c58a powerpc, KVM: Split HVMODE_206 cpu feature bit into separate HV and architecture bits
This replaces the single CPU_FTR_HVMODE_206 bit with two bits, one to
indicate that we have a usable hypervisor mode, and another to indicate
that the processor conforms to PowerISA version 2.06.  We also add
another bit to indicate that the processor conforms to ISA version 2.01
and set that for PPC970 and derivatives.

Some PPC970 chips (specifically those in Apple machines) have a
hypervisor mode in that MSR[HV] is always 1, but the hypervisor mode
is not useful in the sense that there is no way to run any code in
supervisor mode (HV=0 PR=0).  On these processors, the LPES0 and LPES1
bits in HID4 are always 0, and we use that as a way of detecting that
hypervisor mode is not useful.

Where we have a feature section in assembly code around code that
only applies on POWER7 in hypervisor mode, we use a construct like

END_FTR_SECTION_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206)

The definition of END_FTR_SECTION_IFSET is such that the code will
be enabled (not overwritten with nops) only if all bits in the
provided mask are set.

Note that the CPU feature check in __tlbie() only needs to check the
ARCH_206 bit, not the HVMODE bit, because __tlbie() can only get called
if we are running bare-metal, i.e. in hypervisor mode.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-07-12 13:16:58 +03:00
Paul Mackerras aa04b4cc5b KVM: PPC: Allocate RMAs (Real Mode Areas) at boot for use by guests
This adds infrastructure which will be needed to allow book3s_hv KVM to
run on older POWER processors, including PPC970, which don't support
the Virtual Real Mode Area (VRMA) facility, but only the Real Mode
Offset (RMO) facility.  These processors require a physically
contiguous, aligned area of memory for each guest.  When the guest does
an access in real mode (MMU off), the address is compared against a
limit value, and if it is lower, the address is ORed with an offset
value (from the Real Mode Offset Register (RMOR)) and the result becomes
the real address for the access.  The size of the RMA has to be one of
a set of supported values, which usually includes 64MB, 128MB, 256MB
and some larger powers of 2.

Since we are unlikely to be able to allocate 64MB or more of physically
contiguous memory after the kernel has been running for a while, we
allocate a pool of RMAs at boot time using the bootmem allocator.  The
size and number of the RMAs can be set using the kvm_rma_size=xx and
kvm_rma_count=xx kernel command line options.

KVM exports a new capability, KVM_CAP_PPC_RMA, to signal the availability
of the pool of preallocated RMAs.  The capability value is 1 if the
processor can use an RMA but doesn't require one (because it supports
the VRMA facility), or 2 if the processor requires an RMA for each guest.

This adds a new ioctl, KVM_ALLOCATE_RMA, which allocates an RMA from the
pool and returns a file descriptor which can be used to map the RMA.  It
also returns the size of the RMA in the argument structure.

Having an RMA means we will get multiple KMV_SET_USER_MEMORY_REGION
ioctl calls from userspace.  To cope with this, we now preallocate the
kvm->arch.ram_pginfo array when the VM is created with a size sufficient
for up to 64GB of guest memory.  Subsequently we will get rid of this
array and use memory associated with each memslot instead.

This moves most of the code that translates the user addresses into
host pfns (page frame numbers) out of kvmppc_prepare_vrma up one level
to kvmppc_core_prepare_memory_region.  Also, instead of having to look
up the VMA for each page in order to check the page size, we now check
that the pages we get are compound pages of 16MB.  However, if we are
adding memory that is mapped to an RMA, we don't bother with calling
get_user_pages_fast and instead just offset from the base pfn for the
RMA.

Typically the RMA gets added after vcpus are created, which makes it
inconvenient to have the LPCR (logical partition control register) value
in the vcpu->arch struct, since the LPCR controls whether the processor
uses RMA or VRMA for the guest.  This moves the LPCR value into the
kvm->arch struct and arranges for the MER (mediated external request)
bit, which is the only bit that varies between vcpus, to be set in
assembly code when going into the guest if there is a pending external
interrupt request.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-07-12 13:16:57 +03:00
Paul Mackerras 371fefd6f2 KVM: PPC: Allow book3s_hv guests to use SMT processor modes
This lifts the restriction that book3s_hv guests can only run one
hardware thread per core, and allows them to use up to 4 threads
per core on POWER7.  The host still has to run single-threaded.

This capability is advertised to qemu through a new KVM_CAP_PPC_SMT
capability.  The return value of the ioctl querying this capability
is the number of vcpus per virtual CPU core (vcore), currently 4.

To use this, the host kernel should be booted with all threads
active, and then all the secondary threads should be offlined.
This will put the secondary threads into nap mode.  KVM will then
wake them from nap mode and use them for running guest code (while
they are still offline).  To wake the secondary threads, we send
them an IPI using a new xics_wake_cpu() function, implemented in
arch/powerpc/sysdev/xics/icp-native.c.  In other words, at this stage
we assume that the platform has a XICS interrupt controller and
we are using icp-native.c to drive it.  Since the woken thread will
need to acknowledge and clear the IPI, we also export the base
physical address of the XICS registers using kvmppc_set_xics_phys()
for use in the low-level KVM book3s code.

When a vcpu is created, it is assigned to a virtual CPU core.
The vcore number is obtained by dividing the vcpu number by the
number of threads per core in the host.  This number is exported
to userspace via the KVM_CAP_PPC_SMT capability.  If qemu wishes
to run the guest in single-threaded mode, it should make all vcpu
numbers be multiples of the number of threads per core.

We distinguish three states of a vcpu: runnable (i.e., ready to execute
the guest), blocked (that is, idle), and busy in host.  We currently
implement a policy that the vcore can run only when all its threads
are runnable or blocked.  This way, if a vcpu needs to execute elsewhere
in the kernel or in qemu, it can do so without being starved of CPU
by the other vcpus.

When a vcore starts to run, it executes in the context of one of the
vcpu threads.  The other vcpu threads all go to sleep and stay asleep
until something happens requiring the vcpu thread to return to qemu,
or to wake up to run the vcore (this can happen when another vcpu
thread goes from busy in host state to blocked).

It can happen that a vcpu goes from blocked to runnable state (e.g.
because of an interrupt), and the vcore it belongs to is already
running.  In that case it can start to run immediately as long as
the none of the vcpus in the vcore have started to exit the guest.
We send the next free thread in the vcore an IPI to get it to start
to execute the guest.  It synchronizes with the other threads via
the vcore->entry_exit_count field to make sure that it doesn't go
into the guest if the other vcpus are exiting by the time that it
is ready to actually enter the guest.

Note that there is no fixed relationship between the hardware thread
number and the vcpu number.  Hardware threads are assigned to vcpus
as they become runnable, so we will always use the lower-numbered
hardware threads in preference to higher-numbered threads if not all
the vcpus in the vcore are runnable, regardless of which vcpus are
runnable.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-07-12 13:16:57 +03:00
David Gibson 54738c0971 KVM: PPC: Accelerate H_PUT_TCE by implementing it in real mode
This improves I/O performance for guests using the PAPR
paravirtualization interface by making the H_PUT_TCE hcall faster, by
implementing it in real mode.  H_PUT_TCE is used for updating virtual
IOMMU tables, and is used both for virtual I/O and for real I/O in the
PAPR interface.

Since this moves the IOMMU tables into the kernel, we define a new
KVM_CREATE_SPAPR_TCE ioctl to allow qemu to create the tables.  The
ioctl returns a file descriptor which can be used to mmap the newly
created table.  The qemu driver models use them in the same way as
userspace managed tables, but they can be updated directly by the
guest with a real-mode H_PUT_TCE implementation, reducing the number
of host/guest context switches during guest IO.

There are certain circumstances where it is useful for userland qemu
to write to the TCE table even if the kernel H_PUT_TCE path is used
most of the time.  Specifically, allowing this will avoid awkwardness
when we need to reset the table.  More importantly, we will in the
future need to write the table in order to restore its state after a
checkpoint resume or migration.

Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-07-12 13:16:56 +03:00
Paul Mackerras a8606e20e4 KVM: PPC: Handle some PAPR hcalls in the kernel
This adds the infrastructure for handling PAPR hcalls in the kernel,
either early in the guest exit path while we are still in real mode,
or later once the MMU has been turned back on and we are in the full
kernel context.  The advantage of handling hcalls in real mode if
possible is that we avoid two partition switches -- and this will
become more important when we support SMT4 guests, since a partition
switch means we have to pull all of the threads in the core out of
the guest.  The disadvantage is that we can only access the kernel
linear mapping, not anything vmalloced or ioremapped, since the MMU
is off.

This also adds code to handle the following hcalls in real mode:

H_ENTER       Add an HPTE to the hashed page table
H_REMOVE      Remove an HPTE from the hashed page table
H_READ        Read HPTEs from the hashed page table
H_PROTECT     Change the protection bits in an HPTE
H_BULK_REMOVE Remove up to 4 HPTEs from the hashed page table
H_SET_DABR    Set the data address breakpoint register

Plus code to handle the following hcalls in the kernel:

H_CEDE        Idle the vcpu until an interrupt or H_PROD hcall arrives
H_PROD        Wake up a ceded vcpu
H_REGISTER_VPA Register a virtual processor area (VPA)

The code that runs in real mode has to be in the base kernel, not in
the module, if KVM is compiled as a module.  The real-mode code can
only access the kernel linear mapping, not vmalloc or ioremap space.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-07-12 13:16:55 +03:00
Paul Mackerras de56a948b9 KVM: PPC: Add support for Book3S processors in hypervisor mode
This adds support for KVM running on 64-bit Book 3S processors,
specifically POWER7, in hypervisor mode.  Using hypervisor mode means
that the guest can use the processor's supervisor mode.  That means
that the guest can execute privileged instructions and access privileged
registers itself without trapping to the host.  This gives excellent
performance, but does mean that KVM cannot emulate a processor
architecture other than the one that the hardware implements.

This code assumes that the guest is running paravirtualized using the
PAPR (Power Architecture Platform Requirements) interface, which is the
interface that IBM's PowerVM hypervisor uses.  That means that existing
Linux distributions that run on IBM pSeries machines will also run
under KVM without modification.  In order to communicate the PAPR
hypercalls to qemu, this adds a new KVM_EXIT_PAPR_HCALL exit code
to include/linux/kvm.h.

Currently the choice between book3s_hv support and book3s_pr support
(i.e. the existing code, which runs the guest in user mode) has to be
made at kernel configuration time, so a given kernel binary can only
do one or the other.

This new book3s_hv code doesn't support MMIO emulation at present.
Since we are running paravirtualized guests, this isn't a serious
restriction.

With the guest running in supervisor mode, most exceptions go straight
to the guest.  We will never get data or instruction storage or segment
interrupts, alignment interrupts, decrementer interrupts, program
interrupts, single-step interrupts, etc., coming to the hypervisor from
the guest.  Therefore this introduces a new KVMTEST_NONHV macro for the
exception entry path so that we don't have to do the KVM test on entry
to those exception handlers.

We do however get hypervisor decrementer, hypervisor data storage,
hypervisor instruction storage, and hypervisor emulation assist
interrupts, so we have to handle those.

In hypervisor mode, real-mode accesses can access all of RAM, not just
a limited amount.  Therefore we put all the guest state in the vcpu.arch
and use the shadow_vcpu in the PACA only for temporary scratch space.
We allocate the vcpu with kzalloc rather than vzalloc, and we don't use
anything in the kvmppc_vcpu_book3s struct, so we don't allocate it.
We don't have a shared page with the guest, but we still need a
kvm_vcpu_arch_shared struct to store the values of various registers,
so we include one in the vcpu_arch struct.

The POWER7 processor has a restriction that all threads in a core have
to be in the same partition.  MMU-on kernel code counts as a partition
(partition 0), so we have to do a partition switch on every entry to and
exit from the guest.  At present we require the host and guest to run
in single-thread mode because of this hardware restriction.

This code allocates a hashed page table for the guest and initializes
it with HPTEs for the guest's Virtual Real Memory Area (VRMA).  We
require that the guest memory is allocated using 16MB huge pages, in
order to simplify the low-level memory management.  This also means that
we can get away without tracking paging activity in the host for now,
since huge pages can't be paged or swapped.

This also adds a few new exports needed by the book3s_hv code.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-07-12 13:16:54 +03:00
Paul Mackerras 3c42bf8a71 KVM: PPC: Split host-state fields out of kvmppc_book3s_shadow_vcpu
There are several fields in struct kvmppc_book3s_shadow_vcpu that
temporarily store bits of host state while a guest is running,
rather than anything relating to the particular guest or vcpu.
This splits them out into a new kvmppc_host_state structure and
modifies the definitions in asm-offsets.c to suit.

On 32-bit, we have a kvmppc_host_state structure inside the
kvmppc_book3s_shadow_vcpu since the assembly code needs to be able
to get to them both with one pointer.  On 64-bit they are separate
fields in the PACA.  This means that on 64-bit we don't need to
copy the kvmppc_host_state in and out on vcpu load/unload, and
in future will mean that the book3s_hv code doesn't need a
shadow_vcpu struct in the PACA at all.  That does mean that we
have to be careful not to rely on any values persisting in the
hstate field of the paca across any point where we could block
or get preempted.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-07-12 13:16:53 +03:00
Paul Mackerras df6909e5d5 KVM: PPC: Move guest enter/exit down into subarch-specific code
Instead of doing the kvm_guest_enter/exit() and local_irq_dis/enable()
calls in powerpc.c, this moves them down into the subarch-specific
book3s_pr.c and booke.c.  This eliminates an extra local_irq_enable()
call in book3s_pr.c, and will be needed for when we do SMT4 guest
support in the book3s hypervisor mode code.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-07-12 13:16:51 +03:00
Paul Mackerras f9e0554dec KVM: PPC: Pass init/destroy vm and prepare/commit memory region ops down
This arranges for the top-level arch/powerpc/kvm/powerpc.c file to
pass down some of the calls it gets to the lower-level subarchitecture
specific code.  The lower-level implementations (in booke.c and book3s.c)
are no-ops.  The coming book3s_hv.c will need this.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-07-12 13:16:50 +03:00
Paul Mackerras 3cf658b605 KVM: PPC: Deliver program interrupts right away instead of queueing them
Doing so means that we don't have to save the flags anywhere and gets
rid of the last reference to to_book3s(vcpu) in arch/powerpc/kvm/book3s.c.

Doing so is OK because a program interrupt won't be generated at the
same time as any other synchronous interrupt.  If a program interrupt
and an asynchronous interrupt (external or decrementer) are generated
at the same time, the program interrupt will be delivered, which is
correct because it has a higher priority, and then the asynchronous
interrupt will be masked.

We don't ever generate system reset or machine check interrupts to the
guest, but if we did, then we would need to make sure they got delivered
rather than the program interrupt.  The current code would be wrong in
this situation anyway since it would deliver the program interrupt as
well as the reset/machine check interrupt.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-07-12 13:16:49 +03:00
Paul Mackerras b01c8b54a1 powerpc, KVM: Rework KVM checks in first-level interrupt handlers
Instead of branching out-of-line with the DO_KVM macro to check if we
are in a KVM guest at the time of an interrupt, this moves the KVM
check inline in the first-level interrupt handlers.  This speeds up
the non-KVM case and makes sure that none of the interrupt handlers
are missing the check.

Because the first-level interrupt handlers are now larger, some things
had to be move out of line in exceptions-64s.S.

This all necessitated some minor changes to the interrupt entry code
in KVM.  This also streamlines the book3s_32 KVM test.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-07-12 13:16:48 +03:00
Paul Mackerras f05ed4d56e KVM: PPC: Split out code from book3s.c into book3s_pr.c
In preparation for adding code to enable KVM to use hypervisor mode
on 64-bit Book 3S processors, this splits book3s.c into two files,
book3s.c and book3s_pr.c, where book3s_pr.c contains the code that is
specific to running the guest in problem state (user mode) and book3s.c
contains code which should apply to all Book 3S processors.

In doing this, we abstract some details, namely the interrupt offset,
updating the interrupt pending flag, and detecting if the guest is
in a critical section.  These are all things that will be different
when we use hypervisor mode.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-07-12 13:16:47 +03:00
Paul Mackerras c4befc58a0 KVM: PPC: Move fields between struct kvm_vcpu_arch and kvmppc_vcpu_book3s
This moves the slb field, which represents the state of the emulated
SLB, from the kvmppc_vcpu_book3s struct to the kvm_vcpu_arch, and the
hpte_hash_[v]pte[_long] fields from kvm_vcpu_arch to kvmppc_vcpu_book3s.
This is in accord with the principle that the kvm_vcpu_arch struct
represents the state of the emulated CPU, and the kvmppc_vcpu_book3s
struct holds the auxiliary data structures used in the emulation.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-07-12 13:16:46 +03:00
Paul Mackerras 149dbdb185 KVM: PPC: Fix machine checks on 32-bit Book3S
Commit 69acc0d3ba ("KVM: PPC: Resolve real-mode handlers through
function exports") resulted in vcpu->arch.trampoline_lowmem and
vcpu->arch.trampoline_enter ending up with kernel virtual addresses
rather than physical addresses.  This is OK on 64-bit Book3S machines,
which ignore the top 4 bits of the effective address in real mode,
but on 32-bit Book3S machines, accessing these addresses in real mode
causes machine check interrupts, as the hardware uses the whole
effective address as the physical address in real mode.

This fixes the problem by using __pa() to convert these addresses
to physical addresses.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-07-12 13:16:45 +03:00
Scott Wood 1aee47a027 KVM: PPC: e500: Don't search over the entire TLB0.
Only look in the 4 entries that could possibly contain the
entry we're looking for.

Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-07-12 13:16:40 +03:00
Liu Yu dd9ebf1f94 KVM: PPC: e500: Add shadow PID support
Dynamically assign host PIDs to guest PIDs, splitting each guest PID into
multiple host (shadow) PIDs based on kernel/user and MSR[IS/DS].  Use
both PID0 and PID1 so that the shadow PIDs for the right mode can be
selected, that correspond both to guest TID = zero and guest TID = guest
PID.

This allows us to significantly reduce the frequency of needing to
invalidate the entire TLB.  When the guest mode or PID changes, we just
update the host PID0/PID1.  And since the allocation of shadow PIDs is
global, multiple guests can share the TLB without conflict.

Note that KVM does not yet support the guest setting PID1 or PID2 to
a value other than zero.  This will need to be fixed for nested KVM
to work.  Until then, we enforce the requirement for guest PID1/PID2
to stay zero by failing the emulation if the guest tries to set them
to something else.

Signed-off-by: Liu Yu <yu.liu@freescale.com>
Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-07-12 13:16:39 +03:00
Liu Yu 08b7fa92b9 KVM: PPC: e500: Stop keeping shadow TLB
Instead of a fully separate set of TLB entries, keep just the
pfn and dirty status.

Signed-off-by: Liu Yu <yu.liu@freescale.com>
Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-07-12 13:16:38 +03:00
Scott Wood a4cd8b23ac KVM: PPC: e500: enable magic page
This is a shared page used for paravirtualization.  It is always present
in the guest kernel's effective address space at the address indicated
by the hypercall that enables it.

The physical address specified by the hypercall is not used, as
e500 does not have real mode.

Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-07-12 13:16:37 +03:00
Scott Wood 9973d54eea KVM: PPC: e500: Support large page mappings of PFNMAP vmas.
This allows large pages to be used on guest mappings backed by things like
/dev/mem, resulting in a significant speedup when guest memory
is mapped this way (it's useful for directly-assigned MMIO, too).

This is not a substitute for hugetlbfs integration, but is useful for
configurations where devices are directly assigned on chips without an
IOMMU -- in these cases, we need guest physical and true physical to
match, and be contiguous, so static reservation and mapping via /dev/mem
is the most straightforward way to set things up.

Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-07-12 13:16:36 +03:00
Scott Wood 59c1f4e35c KVM: PPC: e500: Eliminate shadow_pages[], and use pfns instead.
This is in line with what other architectures do, and will allow us to
map things other than ordinary, unreserved kernel pages -- such as
dedicated devices, or large contiguous reserved regions.

Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-07-12 13:16:35 +03:00
Scott Wood 0ef309956c KVM: PPC: e500: don't use MAS0 as intermediate storage.
This avoids races.  It also means that we use the shadow TLB way,
rather than the hardware hint -- if this is a problem, we could do
a tlbsx before inserting a TLB0 entry.

Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-07-12 13:16:34 +03:00
Scott Wood 6fc4d1eb91 KVM: PPC: e500: Disable preloading TLB1 in tlb_load().
Since TLB1 loading doesn't check the shadow TLB before allocating another
entry, you can get duplicates.

Once shadow PIDs are enabled in a later patch, we won't need to
invalidate the TLB on every switch, so this optimization won't be
needed anyway.

Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-07-12 13:16:33 +03:00
Scott Wood 4cd35f675b KVM: PPC: e500: Save/restore SPE state
This is done lazily.  The SPE save will be done only if the guest has
used SPE since the last preemption or heavyweight exit.  Restore will be
done only on demand, when enabling MSR_SPE in the shadow MSR, in response
to an SPE fault or mtmsr emulation.

For SPEFSCR, Linux already switches it on context switch (non-lazily), so
the only remaining bit is to save it between qemu and the guest.

Signed-off-by: Liu Yu <yu.liu@freescale.com>
Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-07-12 13:16:32 +03:00
Scott Wood ecee273fc4 KVM: PPC: booke: use shadow_msr
Keep the guest MSR and the guest-mode true MSR separate, rather than
modifying the guest MSR on each guest entry to produce a true MSR.

Any bits which should be modified based on guest MSR must be explicitly
propagated from vcpu->arch.shared->msr to vcpu->arch.shadow_msr in
kvmppc_set_msr().

While we're modifying the guest entry code, reorder a few instructions
to bury some load latencies.

Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-07-12 13:16:32 +03:00
Alexander Graf a22a2daccf KVM: PPC: Resolve real-mode handlers through function exports
Up until now, Book3S KVM had variables stored in the kernel that a kernel module
or the kvm code in the kernel could read from to figure out where some real mode
helper functions are located.

This is all unnecessary. The high bits of the EA get ignore in real mode, so we
can just use the pointer as is. Also, it's a lot easier on relocations when we
use the normal way of resolving the address to a function, instead of jumping
through hoops.

This patch fixes compilation with CONFIG_RELOCATABLE=y.

Signed-off-by: Alexander Graf <agraf@suse.de>
2011-07-12 13:16:29 +03:00
Stuart Yoder 24294b9a3f KVM: PPC: fix partial application of "exit timing in ticks"
When http://www.spinics.net/lists/kvm-ppc/msg02664.html
was applied to produce commit b51e7aa7ed6d8d134d02df78300ab0f91cfff4d2,
the removal of the conversion in add_exit_timing was left out.

Signed-off-by: Stuart Yoder <stuart.yoder@freescale.com>
Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-07-12 13:16:28 +03:00
Linus Torvalds f4b10bc60a Merge branch 'kvm-updates/2.6.40' of git://git.kernel.org/pub/scm/virt/kvm/kvm
* 'kvm-updates/2.6.40' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (131 commits)
  KVM: MMU: Use ptep_user for cmpxchg_gpte()
  KVM: Fix kvm mmu_notifier initialization order
  KVM: Add documentation for KVM_CAP_NR_VCPUS
  KVM: make guest mode entry to be rcu quiescent state
  KVM: x86 emulator: Make jmp far emulation into a separate function
  KVM: x86 emulator: Rename emulate_grpX() to em_grpX()
  KVM: x86 emulator: Remove unused arg from emulate_pop()
  KVM: x86 emulator: Remove unused arg from writeback()
  KVM: x86 emulator: Remove unused arg from read_descriptor()
  KVM: x86 emulator: Remove unused arg from seg_override()
  KVM: Validate userspace_addr of memslot when registered
  KVM: MMU: Clean up gpte reading with copy_from_user()
  KVM: PPC: booke: add sregs support
  KVM: PPC: booke: save/restore VRSAVE (a.k.a. USPRG0)
  KVM: PPC: use ticks, not usecs, for exit timing
  KVM: PPC: fix exit accounting for SPRs, tlbwe, tlbsx
  KVM: PPC: e500: emulate SVR
  KVM: VMX: Cache vmcs segment fields
  KVM: x86 emulator: consolidate segment accessors
  KVM: VMX: Avoid reading %rip unnecessarily when handling exceptions
  ...
2011-05-23 08:42:08 -07:00
Scott Wood 5ce941ee42 KVM: PPC: booke: add sregs support
Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-05-22 08:47:53 -04:00
Scott Wood eab176722f KVM: PPC: booke: save/restore VRSAVE (a.k.a. USPRG0)
Linux doesn't use USPRG0 (now renamed VRSAVE in the architecture, even
when Altivec isn't involved), but a guest might.

Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-05-22 08:47:50 -04:00
Stuart Yoder 1a040b26c5 KVM: PPC: use ticks, not usecs, for exit timing
Convert to microseconds when displaying
(with fix from Bharat Bhushan <Bharat.Bhushan@freescale.com>).

This reduces rounding error with large quantities of short exits.

Signed-off-by: Stuart Yoder <stuart.yoder@freescale.com>
Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-05-22 08:47:49 -04:00
Scott Wood 49ea06957b KVM: PPC: fix exit accounting for SPRs, tlbwe, tlbsx
The exit type setting for mfspr/mtspr is moved from 44x to toplevel SPR
emulation.  This enables it on e500, and makes sure that all SPRs
are covered.

Exit accounting for tlbwe and tlbsx is added to e500.

Signed-off-by: Stuart Yoder <stuart.yoder@freescale.com>
Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-05-22 08:47:47 -04:00
Scott Wood 90d34b0e45 KVM: PPC: e500: emulate SVR
Return the actual host SVR for now, as we already do for PVR.  Eventually
we may support Qemu overriding PVR/SVR if the situation is appropriate,
once we implement KVM_SET_SREGS on e500.

Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-05-22 08:47:46 -04:00
Paul Mackerras 593adf317c powerpc/kvm: Fix the build for 32-bit Book 3S (classic) processors
Commits a5d4f3ad3a ("powerpc: Base support for exceptions using
HSRR0/1") and 673b189a2e ("powerpc: Always use SPRN_SPRG_HSCRATCH0
when running in HV mode") cause compile and link errors for 32-bit
classic Book 3S processors when KVM is enabled.  This fixes these
errors.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2011-05-20 13:43:41 +10:00
Paul Mackerras 44075d95e2 powerpc/kvm: Fix kvmppc_core_pending_dec
The vcpu->arch.pending_exceptions field is a bitfield indexed by
interrupt priority number as returned by kvmppc_book3s_vec2irqprio.
However, kvmppc_core_pending_dec was using an interrupt vector shifted
by 7 as the bit index.  Fix it to use the irqprio value for the
decrementer interrupt instead.  This problem was found by code
inspection.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2011-05-20 13:43:41 +10:00
Bharat Bhushan 09000adb86 KVM: PPC: Fix issue clearing exit timing counters
Following dump is observed on host when clearing the exit timing counters

[root@p1021mds kvm]# echo -n 'c' > vm1200_vcpu0_timing
INFO: task echo:1276 blocked for more than 120 seconds.
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
echo          D 0ff5bf94     0  1276   1190 0x00000000
Call Trace:
[c2157e40] [c0007908] __switch_to+0x9c/0xc4
[c2157e50] [c040293c] schedule+0x1b4/0x3bc
[c2157e90] [c04032dc] __mutex_lock_slowpath+0x74/0xc0
[c2157ec0] [c00369e4] kvmppc_init_timing_stats+0x20/0xb8
[c2157ed0] [c0036b00] kvmppc_exit_timing_write+0x84/0x98
[c2157ef0] [c00b9f90] vfs_write+0xc0/0x16c
[c2157f10] [c00ba284] sys_write+0x4c/0x90
[c2157f40] [c000e320] ret_from_syscall+0x0/0x3c

        The vcpu->mutex is used by kvm_ioctl_* (KVM_RUN etc) and same was
used when clearing the stats (in kvmppc_init_timing_stats()). What happens
is that when the guest is idle then it held the vcpu->mutx. While the
exiting timing process waits for guest to release the vcpu->mutex and
a hang state is reached.

        Now using seprate lock for exit timing stats.

Signed-off-by: Bharat Bhushan <Bharat.Bhushan@freescale.com>
Acked-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-05-11 07:57:04 -04:00
Paul Mackerras 673b189a2e powerpc: Always use SPRN_SPRG_HSCRATCH0 when running in HV mode
This uses feature sections to arrange that we always use HSPRG1
as the scratch register in the interrupt entry code rather than
SPRG2 when we're running in hypervisor mode on POWER7.  This will
ensure that we don't trash the guest's SPRG2 when we are running
KVM guests.  To simplify the code, we define GET_SCRATCH0() and
SET_SCRATCH0() macros like the GET_PACA/SET_PACA macros.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2011-04-20 11:03:23 +10:00
Benjamin Herrenschmidt a5d4f3ad3a powerpc: Base support for exceptions using HSRR0/1
Pass the register type to the prolog, also provides alternate "HV"
version of hardware interrupt (0x500) and adjust LPES accordingly

We tag those interrupts by setting bit 0x2 in the trap number

Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2011-04-20 11:03:22 +10:00
Benjamin Herrenschmidt 2dd60d79e0 powerpc: In HV mode, use HSPRG0 for PACA
When running in Hypervisor mode (arch 2.06 or later), we store the PACA
in HSPRG0 instead of SPRG1. The architecture specifies that SPRGs may be
lost during a "nap" power management operation (though they aren't
currently on POWER7) and this enables use of SPRG1 by KVM guests.

Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2011-04-20 11:03:22 +10:00
Peter Tyser bc9c1933d9 KVM: PPC: Fix SPRG get/set for Book3S and BookE
Previously SPRGs 4-7 were improperly read and written in
kvm_arch_vcpu_ioctl_get_regs() and kvm_arch_vcpu_ioctl_set_regs();

Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Peter Tyser <ptyser@xes-inc.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
2011-03-17 13:08:25 -03:00
Jan Kiszka d89f5eff70 KVM: Clean up vm creation and release
IA64 support forces us to abstract the allocation of the kvm structure.
But instead of mixing this up with arch-specific initialization and
doing the same on destruction, split both steps. This allows to move
generic destruction calls into generic code.

It also fixes error clean-up on failures of kvm_create_vm for IA64.

Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Avi Kivity <avi@redhat.com>
2011-01-12 11:29:09 +02:00
Takuya Yoshikawa 2653503769 KVM: replace vmalloc and memset with vzalloc
Let's use newly introduced vzalloc().

Signed-off-by: Takuya Yoshikawa <yoshikawa.takuya@oss.ntt.co.jp>
Signed-off-by: Jesper Juhl <jj@chaosbits.net>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
2011-01-12 11:28:55 +02:00
Scott Wood df8940eadf KVM: PPC: BookE: Load the lower half of MSR
This was preventing the guest from setting any bits in the
hardware MSR which aren't forced on, such as MSR[SPE].

Signed-off-by: Scott Wood <scottwood@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2010-11-05 14:42:29 -02:00
Scott Wood bb59e9748f KVM: PPC: BookE: fix sleep with interrupts disabled
It is not legal to call mutex_lock() with interrupts disabled.
This will assert with debug checks enabled.

If there's a real need to disable interrupts here, it could be done
after the mutex is acquired -- but I don't see why it's needed at all.

Signed-off-by: Scott Wood <scottwood@freescale.com>
Reviewed-by: Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2010-11-05 14:42:28 -02:00
Scott Wood f22e2f049d KVM: PPC: e500: Call kvm_vcpu_uninit() before kvmppc_e500_tlb_uninit().
The VCPU uninit calls some TLB functions, and the TLB uninit function
frees the memory used by them.

Signed-off-by: Scott Wood <scottwood@freescale.com>
Acked-by: Liu Yu <yu.liu@freescale.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2010-11-05 14:42:28 -02:00
Vasiliy Kulikov d8cdddcd64 KVM: PPC: fix information leak to userland
Structure kvm_ppc_pvinfo is copied to userland with flags and
pad fields unitialized.  It leads to leaking of contents of
kernel stack memory.

Signed-off-by: Vasiliy Kulikov <segooon@gmail.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
2010-11-05 14:42:26 -02:00
Linus Torvalds 1765a1fe5d Merge branch 'kvm-updates/2.6.37' of git://git.kernel.org/pub/scm/virt/kvm/kvm
* 'kvm-updates/2.6.37' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (321 commits)
  KVM: Drop CONFIG_DMAR dependency around kvm_iommu_map_pages
  KVM: Fix signature of kvm_iommu_map_pages stub
  KVM: MCE: Send SRAR SIGBUS directly
  KVM: MCE: Add MCG_SER_P into KVM_MCE_CAP_SUPPORTED
  KVM: fix typo in copyright notice
  KVM: Disable interrupts around get_kernel_ns()
  KVM: MMU: Avoid sign extension in mmu_alloc_direct_roots() pae root address
  KVM: MMU: move access code parsing to FNAME(walk_addr) function
  KVM: MMU: audit: check whether have unsync sps after root sync
  KVM: MMU: audit: introduce audit_printk to cleanup audit code
  KVM: MMU: audit: unregister audit tracepoints before module unloaded
  KVM: MMU: audit: fix vcpu's spte walking
  KVM: MMU: set access bit for direct mapping
  KVM: MMU: cleanup for error mask set while walk guest page table
  KVM: MMU: update 'root_hpa' out of loop in PAE shadow path
  KVM: x86 emulator: Eliminate compilation warning in x86_decode_insn()
  KVM: x86: Fix constant type in kvm_get_time_scale
  KVM: VMX: Add AX to list of registers clobbered by guest switch
  KVM guest: Move a printk that's using the clock before it's ready
  KVM: x86: TSC catchup mode
  ...
2010-10-24 12:47:25 -07:00