While testing I found that when hitting error path in bpf_prog_load()
where we jump to free_used_maps and prog contained BPF to BPF calls
that were JITed earlier, then we never clean up the bpf_prog_kallsyms_add()
done under jit_subprogs(). Add proper API to make BPF kallsyms deletion
more clear and fix that.
Fixes: 1c2a088a66 ("bpf: x64: add JIT support for multi-function programs")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
bpf has been used extensively for tracing. For example, bcc
contains an almost full set of bpf-based tools to trace kernel
and user functions/events. Most tracing tools are currently
either filtered based on pid or system-wide.
Containers have been used quite extensively in industry and
cgroup is often used together to provide resource isolation
and protection. Several processes may run inside the same
container. It is often desirable to get container-level tracing
results as well, e.g. syscall count, function count, I/O
activity, etc.
This patch implements a new helper, bpf_get_current_cgroup_id(),
which will return cgroup id based on the cgroup within which
the current task is running.
The later patch will provide an example to show that
userspace can get the same cgroup id so it could
configure a filter or policy in the bpf program based on
task cgroup id.
The helper is currently implemented for tracing. It can
be added to other program types as well when needed.
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
This makes is it possible for bpf prog detach to return -ENOENT.
Acked-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Sean Young <sean@mess.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
S390 bpf_jit.S is removed in net-next and had changes in 'net',
since that code isn't used any more take the removal.
TLS data structures split the TX and RX components in 'net-next',
put the new struct members from the bug fix in 'net' into the RX
part.
The 'net-next' tree had some reworking of how the ERSPAN code works in
the GRE tunneling code, overlapping with a one-line headroom
calculation fix in 'net'.
Overlapping changes in __sock_map_ctx_update_elem(), keep the bits
that read the prog members via READ_ONCE() into local variables
before using them.
Signed-off-by: David S. Miller <davem@davemloft.net>
Recently during testing, I ran into the following panic:
[ 207.892422] Internal error: Accessing user space memory outside uaccess.h routines: 96000004 [#1] SMP
[ 207.901637] Modules linked in: binfmt_misc [...]
[ 207.966530] CPU: 45 PID: 2256 Comm: test_verifier Tainted: G W 4.17.0-rc3+ #7
[ 207.974956] Hardware name: FOXCONN R2-1221R-A4/C2U4N_MB, BIOS G31FB18A 03/31/2017
[ 207.982428] pstate: 60400005 (nZCv daif +PAN -UAO)
[ 207.987214] pc : bpf_skb_load_helper_8_no_cache+0x34/0xc0
[ 207.992603] lr : 0xffff000000bdb754
[ 207.996080] sp : ffff000013703ca0
[ 207.999384] x29: ffff000013703ca0 x28: 0000000000000001
[ 208.004688] x27: 0000000000000001 x26: 0000000000000000
[ 208.009992] x25: ffff000013703ce0 x24: ffff800fb4afcb00
[ 208.015295] x23: ffff00007d2f5038 x22: ffff00007d2f5000
[ 208.020599] x21: fffffffffeff2a6f x20: 000000000000000a
[ 208.025903] x19: ffff000009578000 x18: 0000000000000a03
[ 208.031206] x17: 0000000000000000 x16: 0000000000000000
[ 208.036510] x15: 0000ffff9de83000 x14: 0000000000000000
[ 208.041813] x13: 0000000000000000 x12: 0000000000000000
[ 208.047116] x11: 0000000000000001 x10: ffff0000089e7f18
[ 208.052419] x9 : fffffffffeff2a6f x8 : 0000000000000000
[ 208.057723] x7 : 000000000000000a x6 : 00280c6160000000
[ 208.063026] x5 : 0000000000000018 x4 : 0000000000007db6
[ 208.068329] x3 : 000000000008647a x2 : 19868179b1484500
[ 208.073632] x1 : 0000000000000000 x0 : ffff000009578c08
[ 208.078938] Process test_verifier (pid: 2256, stack limit = 0x0000000049ca7974)
[ 208.086235] Call trace:
[ 208.088672] bpf_skb_load_helper_8_no_cache+0x34/0xc0
[ 208.093713] 0xffff000000bdb754
[ 208.096845] bpf_test_run+0x78/0xf8
[ 208.100324] bpf_prog_test_run_skb+0x148/0x230
[ 208.104758] sys_bpf+0x314/0x1198
[ 208.108064] el0_svc_naked+0x30/0x34
[ 208.111632] Code: 91302260 f9400001 f9001fa1 d2800001 (29500680)
[ 208.117717] ---[ end trace 263cb8a59b5bf29f ]---
The program itself which caused this had a long jump over the whole
instruction sequence where all of the inner instructions required
heavy expansions into multiple BPF instructions. Additionally, I also
had BPF hardening enabled which requires once more rewrites of all
constant values in order to blind them. Each time we rewrite insns,
bpf_adj_branches() would need to potentially adjust branch targets
which cross the patchlet boundary to accommodate for the additional
delta. Eventually that lead to the case where the target offset could
not fit into insn->off's upper 0x7fff limit anymore where then offset
wraps around becoming negative (in s16 universe), or vice versa
depending on the jump direction.
Therefore it becomes necessary to detect and reject any such occasions
in a generic way for native eBPF and cBPF to eBPF migrations. For
the latter we can simply check bounds in the bpf_convert_filter()'s
BPF_EMIT_JMP helper macro and bail out once we surpass limits. The
bpf_patch_insn_single() for native eBPF (and cBPF to eBPF in case
of subsequent hardening) is a bit more complex in that we need to
detect such truncations before hitting the bpf_prog_realloc(). Thus
the latter is split into an extra pass to probe problematic offsets
on the original program in order to fail early. With that in place
and carefully tested I no longer hit the panic and the rewrites are
rejected properly. The above example panic I've seen on bpf-next,
though the issue itself is generic in that a guard against this issue
in bpf seems more appropriate in this case.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Sockmap is currently backed by an array and enforces keys to be
four bytes. This works well for many use cases and was originally
modeled after devmap which also uses four bytes keys. However,
this has become limiting in larger use cases where a hash would
be more appropriate. For example users may want to use the 5-tuple
of the socket as the lookup key.
To support this add hash support.
Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
bpf_event_output() is useful for offloads to add events to BPF
event rings, export it. Note that export is placed near the stub
since tracing is optional and kernel/bpf/core.c is always going
to be built.
Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reviewed-by: Quentin Monnet <quentin.monnet@netronome.com>
Reviewed-by: Jiong Wang <jiong.wang@netronome.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
The main part of this work is to finally allow removal of LD_ABS
and LD_IND from the BPF core by reimplementing them through native
eBPF instead. Both LD_ABS/LD_IND were carried over from cBPF and
keeping them around in native eBPF caused way more trouble than
actually worth it. To just list some of the security issues in
the past:
* fdfaf64e75 ("x86: bpf_jit: support negative offsets")
* 35607b02db ("sparc: bpf_jit: fix loads from negative offsets")
* e0ee9c1215 ("x86: bpf_jit: fix two bugs in eBPF JIT compiler")
* 07aee94394 ("bpf, sparc: fix usage of wrong reg for load_skb_regs after call")
* 6d59b7dbf7 ("bpf, s390x: do not reload skb pointers in non-skb context")
* 87338c8e2c ("bpf, ppc64: do not reload skb pointers in non-skb context")
For programs in native eBPF, LD_ABS/LD_IND are pretty much legacy
these days due to their limitations and more efficient/flexible
alternatives that have been developed over time such as direct
packet access. LD_ABS/LD_IND only cover 1/2/4 byte loads into a
register, the load happens in host endianness and its exception
handling can yield unexpected behavior. The latter is explained
in depth in f6b1b3bf0d ("bpf: fix subprog verifier bypass by
div/mod by 0 exception") with similar cases of exceptions we had.
In native eBPF more recent program types will disable LD_ABS/LD_IND
altogether through may_access_skb() in verifier, and given the
limitations in terms of exception handling, it's also disabled
in programs that use BPF to BPF calls.
In terms of cBPF, the LD_ABS/LD_IND is used in networking programs
to access packet data. It is not used in seccomp-BPF but programs
that use it for socket filtering or reuseport for demuxing with
cBPF. This is mostly relevant for applications that have not yet
migrated to native eBPF.
The main complexity and source of bugs in LD_ABS/LD_IND is coming
from their implementation in the various JITs. Most of them keep
the model around from cBPF times by implementing a fastpath written
in asm. They use typically two from the BPF program hidden CPU
registers for caching the skb's headlen (skb->len - skb->data_len)
and skb->data. Throughout the JIT phase this requires to keep track
whether LD_ABS/LD_IND are used and if so, the two registers need
to be recached each time a BPF helper would change the underlying
packet data in native eBPF case. At least in eBPF case, available
CPU registers are rare and the additional exit path out of the
asm written JIT helper makes it also inflexible since not all
parts of the JITer are in control from plain C. A LD_ABS/LD_IND
implementation in eBPF therefore allows to significantly reduce
the complexity in JITs with comparable performance results for
them, e.g.:
test_bpf tcpdump port 22 tcpdump complex
x64 - before 15 21 10 14 19 18
- after 7 10 10 7 10 15
arm64 - before 40 91 92 40 91 151
- after 51 64 73 51 62 113
For cBPF we now track any usage of LD_ABS/LD_IND in bpf_convert_filter()
and cache the skb's headlen and data in the cBPF prologue. The
BPF_REG_TMP gets remapped from R8 to R2 since it's mainly just
used as a local temporary variable. This allows to shrink the
image on x86_64 also for seccomp programs slightly since mapping
to %rsi is not an ereg. In callee-saved R8 and R9 we now track
skb data and headlen, respectively. For normal prologue emission
in the JITs this does not add any extra instructions since R8, R9
are pushed to stack in any case from eBPF side. cBPF uses the
convert_bpf_ld_abs() emitter which probes the fast path inline
already and falls back to bpf_skb_load_helper_{8,16,32}() helper
relying on the cached skb data and headlen as well. R8 and R9
never need to be reloaded due to bpf_helper_changes_pkt_data()
since all skb access in cBPF is read-only. Then, for the case
of native eBPF, we use the bpf_gen_ld_abs() emitter, which calls
the bpf_skb_load_helper_{8,16,32}_no_cache() helper unconditionally,
does neither cache skb data and headlen nor has an inlined fast
path. The reason for the latter is that native eBPF does not have
any extra registers available anyway, but even if there were, it
avoids any reload of skb data and headlen in the first place.
Additionally, for the negative offsets, we provide an alternative
bpf_skb_load_bytes_relative() helper in eBPF which operates
similarly as bpf_skb_load_bytes() and allows for more flexibility.
Tested myself on x64, arm64, s390x, from Sandipan on ppc64.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
tracepoints to bpf core were added as a way to provide introspection
to bpf programs and maps, but after some time it became clear that
this approach is inadequate, so prog_id, map_id and corresponding
get_next_id, get_fd_by_id, get_info_by_fd, prog_query APIs were
introduced and fully adopted by bpftool and other applications.
The tracepoints in bpf core started to rot and causing syzbot warnings:
WARNING: CPU: 0 PID: 3008 at kernel/trace/trace_event_perf.c:274
Kernel panic - not syncing: panic_on_warn set ...
perf_trace_bpf_map_keyval+0x260/0xbd0 include/trace/events/bpf.h:228
trace_bpf_map_update_elem include/trace/events/bpf.h:274 [inline]
map_update_elem kernel/bpf/syscall.c:597 [inline]
SYSC_bpf kernel/bpf/syscall.c:1478 [inline]
Hence this patch deletes tracepoints in bpf core.
Reported-by: Eric Biggers <ebiggers3@gmail.com>
Reported-by: syzbot <bot+a9dbb3c3e64b62536a4bc5ee7bbd4ca627566188@syzkaller.appspotmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Currently, stackmap and bpf_get_stackid helper are provided
for bpf program to get the stack trace. This approach has
a limitation though. If two stack traces have the same hash,
only one will get stored in the stackmap table,
so some stack traces are missing from user perspective.
This patch implements a new helper, bpf_get_stack, will
send stack traces directly to bpf program. The bpf program
is able to see all stack traces, and then can do in-kernel
processing or send stack traces to user space through
shared map or bpf_perf_event_output.
Acked-by: Alexei Starovoitov <ast@fb.com>
Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
syzbot reported a possible deadlock in perf_event_detach_bpf_prog.
The error details:
======================================================
WARNING: possible circular locking dependency detected
4.16.0-rc7+ #3 Not tainted
------------------------------------------------------
syz-executor7/24531 is trying to acquire lock:
(bpf_event_mutex){+.+.}, at: [<000000008a849b07>] perf_event_detach_bpf_prog+0x92/0x3d0 kernel/trace/bpf_trace.c:854
but task is already holding lock:
(&mm->mmap_sem){++++}, at: [<0000000038768f87>] vm_mmap_pgoff+0x198/0x280 mm/util.c:353
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #1 (&mm->mmap_sem){++++}:
__might_fault+0x13a/0x1d0 mm/memory.c:4571
_copy_to_user+0x2c/0xc0 lib/usercopy.c:25
copy_to_user include/linux/uaccess.h:155 [inline]
bpf_prog_array_copy_info+0xf2/0x1c0 kernel/bpf/core.c:1694
perf_event_query_prog_array+0x1c7/0x2c0 kernel/trace/bpf_trace.c:891
_perf_ioctl kernel/events/core.c:4750 [inline]
perf_ioctl+0x3e1/0x1480 kernel/events/core.c:4770
vfs_ioctl fs/ioctl.c:46 [inline]
do_vfs_ioctl+0x1b1/0x1520 fs/ioctl.c:686
SYSC_ioctl fs/ioctl.c:701 [inline]
SyS_ioctl+0x8f/0xc0 fs/ioctl.c:692
do_syscall_64+0x281/0x940 arch/x86/entry/common.c:287
entry_SYSCALL_64_after_hwframe+0x42/0xb7
-> #0 (bpf_event_mutex){+.+.}:
lock_acquire+0x1d5/0x580 kernel/locking/lockdep.c:3920
__mutex_lock_common kernel/locking/mutex.c:756 [inline]
__mutex_lock+0x16f/0x1a80 kernel/locking/mutex.c:893
mutex_lock_nested+0x16/0x20 kernel/locking/mutex.c:908
perf_event_detach_bpf_prog+0x92/0x3d0 kernel/trace/bpf_trace.c:854
perf_event_free_bpf_prog kernel/events/core.c:8147 [inline]
_free_event+0xbdb/0x10f0 kernel/events/core.c:4116
put_event+0x24/0x30 kernel/events/core.c:4204
perf_mmap_close+0x60d/0x1010 kernel/events/core.c:5172
remove_vma+0xb4/0x1b0 mm/mmap.c:172
remove_vma_list mm/mmap.c:2490 [inline]
do_munmap+0x82a/0xdf0 mm/mmap.c:2731
mmap_region+0x59e/0x15a0 mm/mmap.c:1646
do_mmap+0x6c0/0xe00 mm/mmap.c:1483
do_mmap_pgoff include/linux/mm.h:2223 [inline]
vm_mmap_pgoff+0x1de/0x280 mm/util.c:355
SYSC_mmap_pgoff mm/mmap.c:1533 [inline]
SyS_mmap_pgoff+0x462/0x5f0 mm/mmap.c:1491
SYSC_mmap arch/x86/kernel/sys_x86_64.c:100 [inline]
SyS_mmap+0x16/0x20 arch/x86/kernel/sys_x86_64.c:91
do_syscall_64+0x281/0x940 arch/x86/entry/common.c:287
entry_SYSCALL_64_after_hwframe+0x42/0xb7
other info that might help us debug this:
Possible unsafe locking scenario:
CPU0 CPU1
---- ----
lock(&mm->mmap_sem);
lock(bpf_event_mutex);
lock(&mm->mmap_sem);
lock(bpf_event_mutex);
*** DEADLOCK ***
======================================================
The bug is introduced by Commit f371b304f1 ("bpf/tracing: allow
user space to query prog array on the same tp") where copy_to_user,
which requires mm->mmap_sem, is called inside bpf_event_mutex lock.
At the same time, during perf_event file descriptor close,
mm->mmap_sem is held first and then subsequent
perf_event_detach_bpf_prog needs bpf_event_mutex lock.
Such a senario caused a deadlock.
As suggested by Daniel, moving copy_to_user out of the
bpf_event_mutex lock should fix the problem.
Fixes: f371b304f1 ("bpf/tracing: allow user space to query prog array on the same tp")
Reported-by: syzbot+dc5ca0e4c9bfafaf2bae@syzkaller.appspotmail.com
Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
syzkaller tried to perform a prog query in perf_event_query_prog_array()
where struct perf_event_query_bpf had an ids_len of 1,073,741,353 and
thus causing a warning due to failed kcalloc() allocation out of the
bpf_prog_array_copy_to_user() helper. Given we cannot attach more than
64 programs to a perf event, there's no point in allowing huge ids_len.
Therefore, allow a buffer that would fix the maximum number of ids and
also add a __GFP_NOWARN to the temporary ids buffer.
Fixes: f371b304f1 ("bpf/tracing: allow user space to query prog array on the same tp")
Fixes: 0911287ce3 ("bpf: fix bpf_prog_array_copy_to_user() issues")
Reported-by: syzbot+cab5816b0edbabf598b3@syzkaller.appspotmail.com
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
1. move copy_to_user out of rcu section to fix the following issue:
./include/linux/rcupdate.h:302 Illegal context switch in RCU read-side critical section!
stack backtrace:
__dump_stack lib/dump_stack.c:17 [inline]
dump_stack+0x194/0x257 lib/dump_stack.c:53
lockdep_rcu_suspicious+0x123/0x170 kernel/locking/lockdep.c:4592
rcu_preempt_sleep_check include/linux/rcupdate.h:301 [inline]
___might_sleep+0x385/0x470 kernel/sched/core.c:6079
__might_sleep+0x95/0x190 kernel/sched/core.c:6067
__might_fault+0xab/0x1d0 mm/memory.c:4532
_copy_to_user+0x2c/0xc0 lib/usercopy.c:25
copy_to_user include/linux/uaccess.h:155 [inline]
bpf_prog_array_copy_to_user+0x217/0x4d0 kernel/bpf/core.c:1587
bpf_prog_array_copy_info+0x17b/0x1c0 kernel/bpf/core.c:1685
perf_event_query_prog_array+0x196/0x280 kernel/trace/bpf_trace.c:877
_perf_ioctl kernel/events/core.c:4737 [inline]
perf_ioctl+0x3e1/0x1480 kernel/events/core.c:4757
2. move *prog under rcu, since it's not ok to dereference it afterwards
3. in a rare case of prog array being swapped between bpf_prog_array_length()
and bpf_prog_array_copy_to_user() calls make sure to copy zeros to user space,
so the user doesn't walk over uninited prog_ids while kernel reported
uattr->query.prog_cnt > 0
Reported-by: syzbot+7dbcd2d3b85f9b608b23@syzkaller.appspotmail.com
Fixes: 468e2f64d2 ("bpf: introduce BPF_PROG_QUERY command")
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
One of the ugly leftovers from the early eBPF days is that div/mod
operations based on registers have a hard-coded src_reg == 0 test
in the interpreter as well as in JIT code generators that would
return from the BPF program with exit code 0. This was basically
adopted from cBPF interpreter for historical reasons.
There are multiple reasons why this is very suboptimal and prone
to bugs. To name one: the return code mapping for such abnormal
program exit of 0 does not always match with a suitable program
type's exit code mapping. For example, '0' in tc means action 'ok'
where the packet gets passed further up the stack, which is just
undesirable for such cases (e.g. when implementing policy) and
also does not match with other program types.
While trying to work out an exception handling scheme, I also
noticed that programs crafted like the following will currently
pass the verifier:
0: (bf) r6 = r1
1: (85) call pc+8
caller:
R6=ctx(id=0,off=0,imm=0) R10=fp0,call_-1
callee:
frame1: R1=ctx(id=0,off=0,imm=0) R10=fp0,call_1
10: (b4) (u32) r2 = (u32) 0
11: (b4) (u32) r3 = (u32) 1
12: (3c) (u32) r3 /= (u32) r2
13: (61) r0 = *(u32 *)(r1 +76)
14: (95) exit
returning from callee:
frame1: R0_w=pkt(id=0,off=0,r=0,imm=0)
R1=ctx(id=0,off=0,imm=0) R2_w=inv0
R3_w=inv(id=0,umax_value=4294967295,var_off=(0x0; 0xffffffff))
R10=fp0,call_1
to caller at 2:
R0_w=pkt(id=0,off=0,r=0,imm=0) R6=ctx(id=0,off=0,imm=0)
R10=fp0,call_-1
from 14 to 2: R0=pkt(id=0,off=0,r=0,imm=0)
R6=ctx(id=0,off=0,imm=0) R10=fp0,call_-1
2: (bf) r1 = r6
3: (61) r1 = *(u32 *)(r1 +80)
4: (bf) r2 = r0
5: (07) r2 += 8
6: (2d) if r2 > r1 goto pc+1
R0=pkt(id=0,off=0,r=8,imm=0) R1=pkt_end(id=0,off=0,imm=0)
R2=pkt(id=0,off=8,r=8,imm=0) R6=ctx(id=0,off=0,imm=0)
R10=fp0,call_-1
7: (71) r0 = *(u8 *)(r0 +0)
8: (b7) r0 = 1
9: (95) exit
from 6 to 8: safe
processed 16 insns (limit 131072), stack depth 0+0
Basically what happens is that in the subprog we make use of a
div/mod by 0 exception and in the 'normal' subprog's exit path
we just return skb->data back to the main prog. This has the
implication that the verifier thinks we always get a pkt pointer
in R0 while we still have the implicit 'return 0' from the div
as an alternative unconditional return path earlier. Thus, R0
then contains 0, meaning back in the parent prog we get the
address range of [0x0, skb->data_end] as read and writeable.
Similar can be crafted with other pointer register types.
Since i) BPF_ABS/IND is not allowed in programs that contain
BPF to BPF calls (and generally it's also disadvised to use in
native eBPF context), ii) unknown opcodes don't return zero
anymore, iii) we don't return an exception code in dead branches,
the only last missing case affected and to fix is the div/mod
handling.
What we would really need is some infrastructure to propagate
exceptions all the way to the original prog unwinding the
current stack and returning that code to the caller of the
BPF program. In user space such exception handling for similar
runtimes is typically implemented with setjmp(3) and longjmp(3)
as one possibility which is not available in the kernel,
though (kgdb used to implement it in kernel long time ago). I
implemented a PoC exception handling mechanism into the BPF
interpreter with porting setjmp()/longjmp() into x86_64 and
adding a new internal BPF_ABRT opcode that can use a program
specific exception code for all exception cases we have (e.g.
div/mod by 0, unknown opcodes, etc). While this seems to work
in the constrained BPF environment (meaning, here, we don't
need to deal with state e.g. from memory allocations that we
would need to undo before going into exception state), it still
has various drawbacks: i) we would need to implement the
setjmp()/longjmp() for every arch supported in the kernel and
for x86_64, arm64, sparc64 JITs currently supporting calls,
ii) it has unconditional additional cost on main program
entry to store CPU register state in initial setjmp() call,
and we would need some way to pass the jmp_buf down into
___bpf_prog_run() for main prog and all subprogs, but also
storing on stack is not really nice (other option would be
per-cpu storage for this, but it also has the drawback that
we need to disable preemption for every BPF program types).
All in all this approach would add a lot of complexity.
Another poor-man's solution would be to have some sort of
additional shared register or scratch buffer to hold state
for exceptions, and test that after every call return to
chain returns and pass R0 all the way down to BPF prog caller.
This is also problematic in various ways: i) an additional
register doesn't map well into JITs, and some other scratch
space could only be on per-cpu storage, which, again has the
side-effect that this only works when we disable preemption,
or somewhere in the input context which is not available
everywhere either, and ii) this adds significant runtime
overhead by putting conditionals after each and every call,
as well as implementation complexity.
Yet another option is to teach verifier that div/mod can
return an integer, which however is also complex to implement
as verifier would need to walk such fake 'mov r0,<code>; exit;'
sequeuence and there would still be no guarantee for having
propagation of this further down to the BPF caller as proper
exception code. For parent prog, it is also is not distinguishable
from a normal return of a constant scalar value.
The approach taken here is a completely different one with
little complexity and no additional overhead involved in
that we make use of the fact that a div/mod by 0 is undefined
behavior. Instead of bailing out, we adapt the same behavior
as on some major archs like ARMv8 [0] into eBPF as well:
X div 0 results in 0, and X mod 0 results in X. aarch64 and
aarch32 ISA do not generate any traps or otherwise aborts
of program execution for unsigned divides. I verified this
also with a test program compiled by gcc and clang, and the
behavior matches with the spec. Going forward we adapt the
eBPF verifier to emit such rewrites once div/mod by register
was seen. cBPF is not touched and will keep existing 'return 0'
semantics. Given the options, it seems the most suitable from
all of them, also since major archs have similar schemes in
place. Given this is all in the realm of undefined behavior,
we still have the option to adapt if deemed necessary and
this way we would also have the option of more flexibility
from LLVM code generation side (which is then fully visible
to verifier). Thus, this patch i) fixes the panic seen in
above program and ii) doesn't bypass the verifier observations.
[0] ARM Architecture Reference Manual, ARMv8 [ARM DDI 0487B.b]
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0487b.b/DDI0487B_b_armv8_arm.pdf
1) aarch64 instruction set: section C3.4.7 and C6.2.279 (UDIV)
"A division by zero results in a zero being written to
the destination register, without any indication that
the division by zero occurred."
2) aarch32 instruction set: section F1.4.8 and F5.1.263 (UDIV)
"For the SDIV and UDIV instructions, division by zero
always returns a zero result."
Fixes: f4d7e40a5b ("bpf: introduce function calls (verification)")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Recent findings by syzcaller fixed in 7891a87efc ("bpf: arsh is
not supported in 32 bit alu thus reject it") triggered a warning
in the interpreter due to unknown opcode not being rejected by
the verifier. The 'return 0' for an unknown opcode is really not
optimal, since with BPF to BPF calls, this would go untracked by
the verifier.
Do two things here to improve the situation: i) perform basic insn
sanity check early on in the verification phase and reject every
non-uapi insn right there. The bpf_opcode_in_insntable() table
reuses the same mapping as the jumptable in ___bpf_prog_run() sans
the non-public mappings. And ii) in ___bpf_prog_run() we do need
to BUG in the case where the verifier would ever create an unknown
opcode due to some rewrites.
Note that JITs do not have such issues since they would punt to
interpreter in these situations. Moreover, the BPF_JIT_ALWAYS_ON
would also help to avoid such unknown opcodes in the first place.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Alexei Starovoitov says:
====================
pull-request: bpf-next 2018-01-19
The following pull-request contains BPF updates for your *net-next* tree.
The main changes are:
1) bpf array map HW offload, from Jakub.
2) support for bpf_get_next_key() for LPM map, from Yonghong.
3) test_verifier now runs loaded programs, from Alexei.
4) xdp cpumap monitoring, from Jesper.
5) variety of tests, cleanups and small x64 JIT optimization, from Daniel.
6) user space can now retrieve HW JITed program, from Jiong.
Note there is a minor conflict between Russell's arm32 JIT fixes
and removal of bpf_jit_enable variable by Daniel which should
be resolved by keeping Russell's comment and removing that variable.
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
The BPF verifier conflict was some minor contextual issue.
The TUN conflict was less trivial. Cong Wang fixed a memory leak of
tfile->tx_array in 'net'. This is an skb_array. But meanwhile in
net-next tun changed tfile->tx_arry into tfile->tx_ring which is a
ptr_ring.
Signed-off-by: David S. Miller <davem@davemloft.net>
Having a pure_initcall() callback just to permanently enable BPF
JITs under CONFIG_BPF_JIT_ALWAYS_ON is unnecessary and could leave
a small race window in future where JIT is still disabled on boot.
Since we know about the setting at compilation time anyway, just
initialize it properly there. Also consolidate all the individual
bpf_jit_enable variables into a single one and move them under one
location. Moreover, don't allow for setting unspecified garbage
values on them.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Divides by zero are not nice, lets avoid them if possible.
Also do_div() seems not needed when dealing with 32bit operands,
but this seems a minor detail.
Fixes: bd4cf0ed33 ("net: filter: rework/optimize internal BPF interpreter's instruction set")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Reported-by: syzbot <syzkaller@googlegroups.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
BPF alignment tests got a conflict because the registers
are output as Rn_w instead of just Rn in net-next, and
in net a fixup for a testcase prohibits logical operations
on pointers before using them.
Also, we should attempt to patch BPF call args if JIT always on is
enabled. Instead, if we fail to JIT the subprogs we should pass
an error back up and fail immediately.
Signed-off-by: David S. Miller <davem@davemloft.net>
The BPF interpreter has been used as part of the spectre 2 attack CVE-2017-5715.
A quote from goolge project zero blog:
"At this point, it would normally be necessary to locate gadgets in
the host kernel code that can be used to actually leak data by reading
from an attacker-controlled location, shifting and masking the result
appropriately and then using the result of that as offset to an
attacker-controlled address for a load. But piecing gadgets together
and figuring out which ones work in a speculation context seems annoying.
So instead, we decided to use the eBPF interpreter, which is built into
the host kernel - while there is no legitimate way to invoke it from inside
a VM, the presence of the code in the host kernel's text section is sufficient
to make it usable for the attack, just like with ordinary ROP gadgets."
To make attacker job harder introduce BPF_JIT_ALWAYS_ON config
option that removes interpreter from the kernel in favor of JIT-only mode.
So far eBPF JIT is supported by:
x64, arm64, arm32, sparc64, s390, powerpc64, mips64
The start of JITed program is randomized and code page is marked as read-only.
In addition "constant blinding" can be turned on with net.core.bpf_jit_harden
v2->v3:
- move __bpf_prog_ret0 under ifdef (Daniel)
v1->v2:
- fix init order, test_bpf and cBPF (Daniel's feedback)
- fix offloaded bpf (Jakub's feedback)
- add 'return 0' dummy in case something can invoke prog->bpf_func
- retarget bpf tree. For bpf-next the patch would need one extra hunk.
It will be sent when the trees are merged back to net-next
Considered doing:
int bpf_jit_enable __read_mostly = BPF_EBPF_JIT_DEFAULT;
but it seems better to land the patch as-is and in bpf-next remove
bpf_jit_enable global variable from all JITs, consolidate in one place
and remove this jit_init() function.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Typical JIT does several passes over bpf instructions to
compute total size and relative offsets of jumps and calls.
With multitple bpf functions calling each other all relative calls
will have invalid offsets intially therefore we need to additional
last pass over the program to emit calls with correct offsets.
For example in case of three bpf functions:
main:
call foo
call bpf_map_lookup
exit
foo:
call bar
exit
bar:
exit
We will call bpf_int_jit_compile() indepedently for main(), foo() and bar()
x64 JIT typically does 4-5 passes to converge.
After these initial passes the image for these 3 functions
will be good except call targets, since start addresses of
foo() and bar() are unknown when we were JITing main()
(note that call bpf_map_lookup will be resolved properly
during initial passes).
Once start addresses of 3 functions are known we patch
call_insn->imm to point to right functions and call
bpf_int_jit_compile() again which needs only one pass.
Additional safety checks are done to make sure this
last pass doesn't produce image that is larger or smaller
than previous pass.
When constant blinding is on it's applied to all functions
at the first pass, since doing it once again at the last
pass can change size of the JITed code.
Tested on x64 and arm64 hw with JIT on/off, blinding on/off.
x64 jits bpf-to-bpf calls correctly while arm64 falls back to interpreter.
All other JITs that support normal BPF_CALL will behave the same way
since bpf-to-bpf call is equivalent to bpf-to-kernel call from
JITs point of view.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
global bpf_jit_enable variable is tested multiple times in JITs,
blinding and verifier core. The malicious root can try to toggle
it while loading the programs. This race condition was accounted
for and there should be no issues, but it's safer to avoid
this race condition.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
though bpf_call is still the same call instruction and
calling convention 'bpf to bpf' and 'bpf to helper' is the same
the interpreter has to oparate on 'struct bpf_insn *'.
To distinguish these two cases add a kernel internal opcode and
mark call insns with it.
This opcode is seen by interpreter only. JITs will never see it.
Also add tiny bit of debug code to aid interpreter debugging.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Error injection is sloppy and very ad-hoc. BPF could fill this niche
perfectly with it's kprobe functionality. We could make sure errors are
only triggered in specific call chains that we care about with very
specific situations. Accomplish this with the bpf_override_funciton
helper. This will modify the probe'd callers return value to the
specified value and set the PC to an override function that simply
returns, bypassing the originally probed function. This gives us a nice
clean way to implement systematic error injection for all of our code
paths.
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Commit e87c6bc385 ("bpf: permit multiple bpf attachments
for a single perf event") added support to attach multiple
bpf programs to a single perf event.
Although this provides flexibility, users may want to know
what other bpf programs attached to the same tp interface.
Besides getting visibility for the underlying bpf system,
such information may also help consolidate multiple bpf programs,
understand potential performance issues due to a large array,
and debug (e.g., one bpf program which overwrites return code
may impact subsequent program results).
Commit 2541517c32 ("tracing, perf: Implement BPF programs
attached to kprobes") utilized the existing perf ioctl
interface and added the command PERF_EVENT_IOC_SET_BPF
to attach a bpf program to a tracepoint. This patch adds a new
ioctl command, given a perf event fd, to query the bpf program
array attached to the same perf tracepoint event.
The new uapi ioctl command:
PERF_EVENT_IOC_QUERY_BPF
The new uapi/linux/perf_event.h structure:
struct perf_event_query_bpf {
__u32 ids_len;
__u32 prog_cnt;
__u32 ids[0];
};
User space provides buffer "ids" for kernel to copy to.
When returning from the kernel, the number of available
programs in the array is set in "prog_cnt".
The usage:
struct perf_event_query_bpf *query =
malloc(sizeof(*query) + sizeof(u32) * ids_len);
query.ids_len = ids_len;
err = ioctl(pmu_efd, PERF_EVENT_IOC_QUERY_BPF, query);
if (err == 0) {
/* query.prog_cnt is the number of available progs,
* number of progs in ids: (ids_len == 0) ? 0 : query.prog_cnt
*/
} else if (errno == ENOSPC) {
/* query.ids_len number of progs copied,
* query.prog_cnt is the number of available progs
*/
} else {
/* other errors */
}
Signed-off-by: Yonghong Song <yhs@fb.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
cgropu+bpf prog array has a maximum number of 64 programs.
Let us apply the same limit here.
Fixes: e87c6bc385 ("bpf: permit multiple bpf attachments for a single perf event")
Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Merge updates from Andrew Morton:
- a few misc bits
- ocfs2 updates
- almost all of MM
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (131 commits)
memory hotplug: fix comments when adding section
mm: make alloc_node_mem_map a void call if we don't have CONFIG_FLAT_NODE_MEM_MAP
mm: simplify nodemask printing
mm,oom_reaper: remove pointless kthread_run() error check
mm/page_ext.c: check if page_ext is not prepared
writeback: remove unused function parameter
mm: do not rely on preempt_count in print_vma_addr
mm, sparse: do not swamp log with huge vmemmap allocation failures
mm/hmm: remove redundant variable align_end
mm/list_lru.c: mark expected switch fall-through
mm/shmem.c: mark expected switch fall-through
mm/page_alloc.c: broken deferred calculation
mm: don't warn about allocations which stall for too long
fs: fuse: account fuse_inode slab memory as reclaimable
mm, page_alloc: fix potential false positive in __zone_watermark_ok
mm: mlock: remove lru_add_drain_all()
mm, sysctl: make NUMA stats configurable
shmem: convert shmem_init_inodecache() to void
Unify migrate_pages and move_pages access checks
mm, pagevec: rename pagevec drained field
...
Patch series "kmemcheck: kill kmemcheck", v2.
As discussed at LSF/MM, kill kmemcheck.
KASan is a replacement that is able to work without the limitation of
kmemcheck (single CPU, slow). KASan is already upstream.
We are also not aware of any users of kmemcheck (or users who don't
consider KASan as a suitable replacement).
The only objection was that since KASAN wasn't supported by all GCC
versions provided by distros at that time we should hold off for 2
years, and try again.
Now that 2 years have passed, and all distros provide gcc that supports
KASAN, kill kmemcheck again for the very same reasons.
This patch (of 4):
Remove kmemcheck annotations, and calls to kmemcheck from the kernel.
[alexander.levin@verizon.com: correctly remove kmemcheck call from dma_map_sg_attrs]
Link: http://lkml.kernel.org/r/20171012192151.26531-1-alexander.levin@verizon.com
Link: http://lkml.kernel.org/r/20171007030159.22241-2-alexander.levin@verizon.com
Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Tim Hansen <devtimhansen@gmail.com>
Cc: Vegard Nossum <vegardno@ifi.uio.no>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Error injection is sloppy and very ad-hoc. BPF could fill this niche
perfectly with it's kprobe functionality. We could make sure errors are
only triggered in specific call chains that we care about with very
specific situations. Accomplish this with the bpf_override_funciton
helper. This will modify the probe'd callers return value to the
specified value and set the PC to an override function that simply
returns, bypassing the originally probed function. This gives us a nice
clean way to implement systematic error injection for all of our code
paths.
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
The fact that we don't know which device the program is going
to be used on is quite limiting in current eBPF infrastructure.
We have to reverse or limit the changes which kernel makes to
the loaded bytecode if we want it to be offloaded to a networking
device. We also have to invent new APIs for debugging and
troubleshooting support.
Make it possible to load programs for a specific netdev. This
helps us to bring the debug information closer to the core
eBPF infrastructure (e.g. we will be able to reuse the verifer
log in device JIT). It allows device JITs to perform translation
on the original bytecode.
__bpf_prog_get() when called to get a reference for an attachment
point will now refuse to give it if program has a device assigned.
Following patches will add a version of that function which passes
the expected netdev in. @type argument in __bpf_prog_get() is
renamed to attach_type to make it clearer that it's only set on
attachment.
All calls to ndo_bpf are protected by rtnl, only verifier callbacks
are not. We need a wait queue to make sure netdev doesn't get
destroyed while verifier is still running and calling its driver.
Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reviewed-by: Simon Horman <simon.horman@netronome.com>
Reviewed-by: Quentin Monnet <quentin.monnet@netronome.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch enables multiple bpf attachments for a
kprobe/uprobe/tracepoint single trace event.
Each trace_event keeps a list of attached perf events.
When an event happens, all attached bpf programs will
be executed based on the order of attachment.
A global bpf_event_mutex lock is introduced to protect
prog_array attaching and detaching. An alternative will
be introduce a mutex lock in every trace_event_call
structure, but it takes a lot of extra memory.
So a global bpf_event_mutex lock is a good compromise.
The bpf prog detachment involves allocation of memory.
If the allocation fails, a dummy do-nothing program
will replace to-be-detached program in-place.
Signed-off-by: Yonghong Song <yhs@fb.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
All the trace events defined in include/trace/events/bpf.h are only
used when CONFIG_BPF_SYSCALL is defined. But this file gets included by
include/linux/bpf_trace.h which is included by the networking code with
CREATE_TRACE_POINTS defined.
If a trace event is created but not used it still has data structures
and functions created for its use, even though nothing is using them.
To not waste space, do not define the BPF trace events in bpf.h unless
CONFIG_BPF_SYSCALL is defined.
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch makes the bpf_prog's name available
in kallsyms.
The new format is bpf_prog_tag[_name].
Sample kallsyms from running selftests/bpf/test_progs:
[root@arch-fb-vm1 ~]# egrep ' bpf_prog_[0-9a-fA-F]{16}' /proc/kallsyms
ffffffffa0048000 t bpf_prog_dabf0207d1992486_test_obj_id
ffffffffa0038000 t bpf_prog_a04f5eef06a7f555__123456789ABCDE
ffffffffa0050000 t bpf_prog_a04f5eef06a7f555
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@fb.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
introduce BPF_PROG_QUERY command to retrieve a set of either
attached programs to given cgroup or a set of effective programs
that will execute for events within a cgroup
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <kafai@fb.com>
for cgroup bits
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
introduce BPF_F_ALLOW_MULTI flag that can be used to attach multiple
bpf programs to a cgroup.
The difference between three possible flags for BPF_PROG_ATTACH command:
- NONE(default): No further bpf programs allowed in the subtree.
- BPF_F_ALLOW_OVERRIDE: If a sub-cgroup installs some bpf program,
the program in this cgroup yields to sub-cgroup program.
- BPF_F_ALLOW_MULTI: If a sub-cgroup installs some bpf program,
that cgroup program gets run in addition to the program in this cgroup.
NONE and BPF_F_ALLOW_OVERRIDE existed before. This patch doesn't
change their behavior. It only clarifies the semantics in relation
to new flag.
Only one program is allowed to be attached to a cgroup with
NONE or BPF_F_ALLOW_OVERRIDE flag.
Multiple programs are allowed to be attached to a cgroup with
BPF_F_ALLOW_MULTI flag. They are executed in FIFO order
(those that were attached first, run first)
The programs of sub-cgroup are executed first, then programs of
this cgroup and then programs of parent cgroup.
All eligible programs are executed regardless of return code from
earlier programs.
To allow efficient execution of multiple programs attached to a cgroup
and to avoid penalizing cgroups without any programs attached
introduce 'struct bpf_prog_array' which is RCU protected array
of pointers to bpf programs.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <kafai@fb.com>
for cgroup bits
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
- bpf prog_array just like all other types of bpf array accepts 32-bit index.
Clarify that in the comment.
- fix x64 JIT of bpf_tail_call which was incorrectly loading 8 instead of 4 bytes
- tighten corresponding check in the interpreter to stay consistent
The JIT bug can be triggered after introduction of BPF_F_NUMA_NODE flag
in commit 96eabe7a40 in 4.14. Before that the map_flags would stay zero and
though JIT code is wrong it will check bounds correctly.
Hence two fixes tags. All other JITs don't have this problem.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Fixes: 96eabe7a40 ("bpf: Allow selecting numa node during map creation")
Fixes: b52f00e6a7 ("x86: bpf_jit: implement bpf_tail_call() helper")
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Resolve issues with !CONFIG_BPF_SYSCALL and !STREAM_PARSER
net/core/filter.c: In function ‘do_sk_redirect_map’:
net/core/filter.c:1881:3: error: implicit declaration of function ‘__sock_map_lookup_elem’ [-Werror=implicit-function-declaration]
sk = __sock_map_lookup_elem(ri->map, ri->ifindex);
^
net/core/filter.c:1881:6: warning: assignment makes pointer from integer without a cast [enabled by default]
sk = __sock_map_lookup_elem(ri->map, ri->ifindex);
Fixes: 174a79ff95 ("bpf: sockmap with sk redirect support")
Reported-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
Currently, eBPF only understands BPF_JGT (>), BPF_JGE (>=),
BPF_JSGT (s>), BPF_JSGE (s>=) instructions, this means that
particularly *JLT/*JLE counterparts involving immediates need
to be rewritten from e.g. X < [IMM] by swapping arguments into
[IMM] > X, meaning the immediate first is required to be loaded
into a register Y := [IMM], such that then we can compare with
Y > X. Note that the destination operand is always required to
be a register.
This has the downside of having unnecessarily increased register
pressure, meaning complex program would need to spill other
registers temporarily to stack in order to obtain an unused
register for the [IMM]. Loading to registers will thus also
affect state pruning since we need to account for that register
use and potentially those registers that had to be spilled/filled
again. As a consequence slightly more stack space might have
been used due to spilling, and BPF programs are a bit longer
due to extra code involving the register load and potentially
required spill/fills.
Thus, add BPF_JLT (<), BPF_JLE (<=), BPF_JSLT (s<), BPF_JSLE (s<=)
counterparts to the eBPF instruction set. Modifying LLVM to
remove the NegateCC() workaround in a PoC patch at [1] and
allowing it to also emit the new instructions resulted in
cilium's BPF programs that are injected into the fast-path to
have a reduced program length in the range of 2-3% (e.g.
accumulated main and tail call sections from one of the object
file reduced from 4864 to 4729 insns), reduced complexity in
the range of 10-30% (e.g. accumulated sections reduced in one
of the cases from 116432 to 88428 insns), and reduced stack
usage in the range of 1-5% (e.g. accumulated sections from one
of the object files reduced from 824 to 784b).
The modification for LLVM will be incorporated in a backwards
compatible way. Plan is for LLVM to have i) a target specific
option to offer a possibility to explicitly enable the extension
by the user (as we have with -m target specific extensions today
for various CPU insns), and ii) have the kernel checked for
presence of the extensions and enable them transparently when
the user is selecting more aggressive options such as -march=native
in a bpf target context. (Other frontends generating BPF byte
code, e.g. ply can probe the kernel directly for its code
generation.)
[1] https://github.com/borkmann/llvm/tree/bpf-insns
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
The index is off-by-one when fp->aux->stack_depth
has already been rounded up to 32. In particular,
if stack_depth is 512, the index will be 16.
The fix is to round_up and then takes -1 instead of round_down.
[ 22.318680] ==================================================================
[ 22.319745] BUG: KASAN: global-out-of-bounds in bpf_prog_select_runtime+0x48a/0x670
[ 22.320737] Read of size 8 at addr ffffffff82aadae0 by task sockex3/1946
[ 22.321646]
[ 22.321858] CPU: 1 PID: 1946 Comm: sockex3 Tainted: G W 4.12.0-rc6-01680-g2ee87db3a287 #22
[ 22.323061] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.9.3-1.el7.centos 04/01/2014
[ 22.324260] Call Trace:
[ 22.324612] dump_stack+0x67/0x99
[ 22.325081] print_address_description+0x1e8/0x290
[ 22.325734] ? bpf_prog_select_runtime+0x48a/0x670
[ 22.326360] kasan_report+0x265/0x350
[ 22.326860] __asan_report_load8_noabort+0x19/0x20
[ 22.327484] bpf_prog_select_runtime+0x48a/0x670
[ 22.328109] bpf_prog_load+0x626/0xd40
[ 22.328637] ? __bpf_prog_charge+0xc0/0xc0
[ 22.329222] ? check_nnp_nosuid.isra.61+0x100/0x100
[ 22.329890] ? __might_fault+0xf6/0x1b0
[ 22.330446] ? lock_acquire+0x360/0x360
[ 22.331013] SyS_bpf+0x67c/0x24d0
[ 22.331491] ? trace_hardirqs_on+0xd/0x10
[ 22.332049] ? __getnstimeofday64+0xaf/0x1c0
[ 22.332635] ? bpf_prog_get+0x20/0x20
[ 22.333135] ? __audit_syscall_entry+0x300/0x600
[ 22.333770] ? syscall_trace_enter+0x540/0xdd0
[ 22.334339] ? exit_to_usermode_loop+0xe0/0xe0
[ 22.334950] ? do_syscall_64+0x48/0x410
[ 22.335446] ? bpf_prog_get+0x20/0x20
[ 22.335954] do_syscall_64+0x181/0x410
[ 22.336454] entry_SYSCALL64_slow_path+0x25/0x25
[ 22.337121] RIP: 0033:0x7f263fe81f19
[ 22.337618] RSP: 002b:00007ffd9a3440c8 EFLAGS: 00000202 ORIG_RAX: 0000000000000141
[ 22.338619] RAX: ffffffffffffffda RBX: 0000000000aac5fb RCX: 00007f263fe81f19
[ 22.339600] RDX: 0000000000000030 RSI: 00007ffd9a3440d0 RDI: 0000000000000005
[ 22.340470] RBP: 0000000000a9a1e0 R08: 0000000000a9a1e0 R09: 0000009d00000001
[ 22.341430] R10: 0000000000000000 R11: 0000000000000202 R12: 0000000000010000
[ 22.342411] R13: 0000000000a9a023 R14: 0000000000000001 R15: 0000000000000003
[ 22.343369]
[ 22.343593] The buggy address belongs to the variable:
[ 22.344241] interpreters+0x80/0x980
[ 22.344708]
[ 22.344908] Memory state around the buggy address:
[ 22.345556] ffffffff82aad980: 00 00 00 04 fa fa fa fa 04 fa fa fa fa fa fa fa
[ 22.346449] ffffffff82aada00: 00 00 00 00 00 fa fa fa fa fa fa fa 00 00 00 00
[ 22.347361] >ffffffff82aada80: 00 00 00 00 00 00 00 00 00 00 00 00 fa fa fa fa
[ 22.348301] ^
[ 22.349142] ffffffff82aadb00: 00 01 fa fa fa fa fa fa 00 00 00 00 00 00 00 00
[ 22.350058] ffffffff82aadb80: 00 00 07 fa fa fa fa fa 00 00 05 fa fa fa fa fa
[ 22.350984] ==================================================================
Fixes: b870aa901f ("bpf: use different interpreter depending on required stack size")
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Alexei Starovoitov <ast@fb.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
16 __bpf_prog_run() interpreters for various stack sizes add .text
but not a lot comparing to run-time stack savings
text data bss dec hex filename
26350 10328 624 37302 91b6 kernel/bpf/core.o.before_split
25777 10328 624 36729 8f79 kernel/bpf/core.o.after_split
26970 10328 624 37922 9422 kernel/bpf/core.o.now
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
free up BPF_JMP | BPF_CALL | BPF_X opcode to be used by actual
indirect call by register and use kernel internal opcode to
mark call instruction into bpf_tail_call() helper.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
__vmalloc* allows users to provide gfp flags for the underlying
allocation. This API is quite popular
$ git grep "=[[:space:]]__vmalloc\|return[[:space:]]*__vmalloc" | wc -l
77
The only problem is that many people are not aware that they really want
to give __GFP_HIGHMEM along with other flags because there is really no
reason to consume precious lowmemory on CONFIG_HIGHMEM systems for pages
which are mapped to the kernel vmalloc space. About half of users don't
use this flag, though. This signals that we make the API unnecessarily
too complex.
This patch simply uses __GFP_HIGHMEM implicitly when allocating pages to
be mapped to the vmalloc space. Current users which add __GFP_HIGHMEM
are simplified and drop the flag.
Link: http://lkml.kernel.org/r/20170307141020.29107-1-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Cristopher Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Hannes rightfully spotted that the bpf_lock doesn't need to be
irqsave variant. We never perform any such updates where this
would be necessary (neither right now nor in future), therefore
relax this further.
Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
It took me quite some time to figure out how this was linked,
so in order to save the next person the effort of finding it
add a comment in __bpf_prog_run() that indicates what exactly
determines that a program can access the ctx == skb.
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
Long standing issue with JITed programs is that stack traces from
function tracing check whether a given address is kernel code
through {__,}kernel_text_address(), which checks for code in core
kernel, modules and dynamically allocated ftrace trampolines. But
what is still missing is BPF JITed programs (interpreted programs
are not an issue as __bpf_prog_run() will be attributed to them),
thus when a stack trace is triggered, the code walking the stack
won't see any of the JITed ones. The same for address correlation
done from user space via reading /proc/kallsyms. This is read by
tools like perf, but the latter is also useful for permanent live
tracing with eBPF itself in combination with stack maps when other
eBPF types are part of the callchain. See offwaketime example on
dumping stack from a map.
This work tries to tackle that issue by making the addresses and
symbols known to the kernel. The lookup from *kernel_text_address()
is implemented through a latched RB tree that can be read under
RCU in fast-path that is also shared for symbol/size/offset lookup
for a specific given address in kallsyms. The slow-path iteration
through all symbols in the seq file done via RCU list, which holds
a tiny fraction of all exported ksyms, usually below 0.1 percent.
Function symbols are exported as bpf_prog_<tag>, in order to aide
debugging and attribution. This facility is currently enabled for
root-only when bpf_jit_kallsyms is set to 1, and disabled if hardening
is active in any mode. The rationale behind this is that still a lot
of systems ship with world read permissions on kallsyms thus addresses
should not get suddenly exposed for them. If that situation gets
much better in future, we always have the option to change the
default on this. Likewise, unprivileged programs are not allowed
to add entries there either, but that is less of a concern as most
such programs types relevant in this context are for root-only anyway.
If enabled, call graphs and stack traces will then show a correct
attribution; one example is illustrated below, where the trace is
now visible in tooling such as perf script --kallsyms=/proc/kallsyms
and friends.
Before:
7fff8166889d bpf_clone_redirect+0x80007f0020ed (/lib/modules/4.9.0-rc8+/build/vmlinux)
f5d80 __sendmsg_nocancel+0xffff006451f1a007 (/usr/lib64/libc-2.18.so)
After:
7fff816688b7 bpf_clone_redirect+0x80007f002107 (/lib/modules/4.9.0-rc8+/build/vmlinux)
7fffa0575728 bpf_prog_33c45a467c9e061a+0x8000600020fb (/lib/modules/4.9.0-rc8+/build/vmlinux)
7fffa07ef1fc cls_bpf_classify+0x8000600020dc (/lib/modules/4.9.0-rc8+/build/vmlinux)
7fff81678b68 tc_classify+0x80007f002078 (/lib/modules/4.9.0-rc8+/build/vmlinux)
7fff8164d40b __netif_receive_skb_core+0x80007f0025fb (/lib/modules/4.9.0-rc8+/build/vmlinux)
7fff8164d718 __netif_receive_skb+0x80007f002018 (/lib/modules/4.9.0-rc8+/build/vmlinux)
7fff8164e565 process_backlog+0x80007f002095 (/lib/modules/4.9.0-rc8+/build/vmlinux)
7fff8164dc71 net_rx_action+0x80007f002231 (/lib/modules/4.9.0-rc8+/build/vmlinux)
7fff81767461 __softirqentry_text_start+0x80007f0020d1 (/lib/modules/4.9.0-rc8+/build/vmlinux)
7fff817658ac do_softirq_own_stack+0x80007f00201c (/lib/modules/4.9.0-rc8+/build/vmlinux)
7fff810a2c20 do_softirq+0x80007f002050 (/lib/modules/4.9.0-rc8+/build/vmlinux)
7fff810a2cb5 __local_bh_enable_ip+0x80007f002085 (/lib/modules/4.9.0-rc8+/build/vmlinux)
7fff8168d452 ip_finish_output2+0x80007f002152 (/lib/modules/4.9.0-rc8+/build/vmlinux)
7fff8168ea3d ip_finish_output+0x80007f00217d (/lib/modules/4.9.0-rc8+/build/vmlinux)
7fff8168f2af ip_output+0x80007f00203f (/lib/modules/4.9.0-rc8+/build/vmlinux)
[...]
7fff81005854 do_syscall_64+0x80007f002054 (/lib/modules/4.9.0-rc8+/build/vmlinux)
7fff817649eb return_from_SYSCALL_64+0x80007f002000 (/lib/modules/4.9.0-rc8+/build/vmlinux)
f5d80 __sendmsg_nocancel+0xffff01c484812007 (/usr/lib64/libc-2.18.so)
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: David S. Miller <davem@davemloft.net>
Remove the dummy bpf_jit_compile() stubs for eBPF JITs and make
that a single __weak function in the core that can be overridden
similarly to the eBPF one. Also remove stale pr_err() mentions
of bpf_jit_compile.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
This work adds a number of tracepoints to paths that are either
considered slow-path or exception-like states, where monitoring or
inspecting them would be desirable.
For bpf(2) syscall, tracepoints have been placed for main commands
when they succeed. In XDP case, tracepoint is for exceptions, that
is, f.e. on abnormal BPF program exit such as unknown or XDP_ABORTED
return code, or when error occurs during XDP_TX action and the packet
could not be forwarded.
Both have been split into separate event headers, and can be further
extended. Worst case, if they unexpectedly should get into our way in
future, they can also removed [1]. Of course, these tracepoints (like
any other) can be analyzed by eBPF itself, etc. Example output:
# ./perf record -a -e bpf:* sleep 10
# ./perf script
sock_example 6197 [005] 283.980322: bpf:bpf_map_create: map type=ARRAY ufd=4 key=4 val=8 max=256 flags=0
sock_example 6197 [005] 283.980721: bpf:bpf_prog_load: prog=a5ea8fa30ea6849c type=SOCKET_FILTER ufd=5
sock_example 6197 [005] 283.988423: bpf:bpf_prog_get_type: prog=a5ea8fa30ea6849c type=SOCKET_FILTER
sock_example 6197 [005] 283.988443: bpf:bpf_map_lookup_elem: map type=ARRAY ufd=4 key=[06 00 00 00] val=[00 00 00 00 00 00 00 00]
[...]
sock_example 6197 [005] 288.990868: bpf:bpf_map_lookup_elem: map type=ARRAY ufd=4 key=[01 00 00 00] val=[14 00 00 00 00 00 00 00]
swapper 0 [005] 289.338243: bpf:bpf_prog_put_rcu: prog=a5ea8fa30ea6849c type=SOCKET_FILTER
[1] https://lwn.net/Articles/705270/
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Commit 7bd509e311 ("bpf: add prog_digest and expose it via
fdinfo/netlink") was recently discussed, partially due to
admittedly suboptimal name of "prog_digest" in combination
with sha1 hash usage, thus inevitably and rightfully concerns
about its security in terms of collision resistance were
raised with regards to use-cases.
The intended use cases are for debugging resp. introspection
only for providing a stable "tag" over the instruction sequence
that both kernel and user space can calculate independently.
It's not usable at all for making a security relevant decision.
So collisions where two different instruction sequences generate
the same tag can happen, but ideally at a rather low rate. The
"tag" will be dumped in hex and is short enough to introspect
in tracepoints or kallsyms output along with other data such
as stack trace, etc. Thus, this patch performs a rename into
prog_tag and truncates the tag to a short output (64 bits) to
make it obvious it's not collision-free.
Should in future a hash or facility be needed with a security
relevant focus, then we can think about requirements, constraints,
etc that would fit to that situation. For now, rework the exposed
parts for the current use cases as long as nothing has been
released yet. Tested on x86_64 and s390x.
Fixes: 7bd509e311 ("bpf: add prog_digest and expose it via fdinfo/netlink")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Cc: Andy Lutomirski <luto@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Commit aaac3ba95e ("bpf: charge user for creation of BPF maps and
programs") made a wrong assumption of charging against prog->pages.
Unlike map->pages, prog->pages are still subject to change when we
need to expand the program through bpf_prog_realloc().
This can for example happen during verification stage when we need to
expand and rewrite parts of the program. Should the required space
cross a page boundary, then prog->pages is not the same anymore as
its original value that we used to bpf_prog_charge_memlock() on. Thus,
we'll hit a wrap-around during bpf_prog_uncharge_memlock() when prog
is freed eventually. I noticed this that despite having unlimited
memlock, programs suddenly refused to load with EPERM error due to
insufficient memlock.
There are two ways to fix this issue. One would be to add a cached
variable to struct bpf_prog that takes a snapshot of prog->pages at the
time of charging. The other approach is to also account for resizes. I
chose to go with the latter for a couple of reasons: i) We want accounting
rather to be more accurate instead of further fooling limits, ii) adding
yet another page counter on struct bpf_prog would also be a waste just
for this purpose. We also do want to charge as early as possible to
avoid going into the verifier just to find out later on that we crossed
limits. The only place that needs to be fixed is bpf_prog_realloc(),
since only here we expand the program, so we try to account for the
needed delta and should we fail, call-sites check for outcome anyway.
On cBPF to eBPF migrations, we don't grab a reference to the user as
they are charged differently. With that in place, my test case worked
fine.
Fixes: aaac3ba95e ("bpf: charge user for creation of BPF maps and programs")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Geert rightfully complained that 7bd509e311 ("bpf: add prog_digest
and expose it via fdinfo/netlink") added a too large allocation of
variable 'raw' from bss section, and should instead be done dynamically:
# ./scripts/bloat-o-meter kernel/bpf/core.o.1 kernel/bpf/core.o.2
add/remove: 3/0 grow/shrink: 0/0 up/down: 33291/0 (33291)
function old new delta
raw - 32832 +32832
[...]
Since this is only relevant during program creation path, which can be
considered slow-path anyway, lets allocate that dynamically and be not
implicitly dependent on verifier mutex. Move bpf_prog_calc_digest() at
the beginning of replace_map_fd_with_map_ptr() and also error handling
stays straight forward.
Reported-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch allows XDP prog to extend/remove the packet
data at the head (like adding or removing header). It is
done by adding a new XDP helper bpf_xdp_adjust_head().
It also renames bpf_helper_changes_skb_data() to
bpf_helper_changes_pkt_data() to better reflect
that XDP prog does not work on skb.
This patch adds one "xdp_adjust_head" bit to bpf_prog for the
XDP-capable driver to check if the XDP prog requires
bpf_xdp_adjust_head() support. The driver can then decide
to error out during XDP_SETUP_PROG.
Signed-off-by: Martin KaFai Lau <kafai@fb.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: John Fastabend <john.r.fastabend@intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
When loading a BPF program via bpf(2), calculate the digest over
the program's instruction stream and store it in struct bpf_prog's
digest member. This is done at a point in time before any instructions
are rewritten by the verifier. Any unstable map file descriptor
number part of the imm field will be zeroed for the hash.
fdinfo example output for progs:
# cat /proc/1590/fdinfo/5
pos: 0
flags: 02000002
mnt_id: 11
prog_type: 1
prog_jited: 1
prog_digest: b27e8b06da22707513aa97363dfb11c7c3675d28
memlock: 4096
When programs are pinned and retrieved by an ELF loader, the loader
can check the program's digest through fdinfo and compare it against
one that was generated over the ELF file's program section to see
if the program needs to be reloaded. Furthermore, this can also be
exposed through other means such as netlink in case of a tc cls/act
dump (or xdp in future), but also through tracepoints or other
facilities to identify the program. Other than that, the digest can
also serve as a base name for the work in progress kallsyms support
of programs. The digest doesn't depend/select the crypto layer, since
we need to keep dependencies to a minimum. iproute2 will get support
for this facility.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Use case is mainly for soreuseport to select sockets for the local
numa node, but since generic, lets also add this for other networking
and tracing program types.
Suggested-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
put_cpu_var takes the percpu data, not the data returned from
get_cpu_var.
This doesn't change the behavior.
Cc: Tejun Heo <tj@kernel.org>
Cc: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Shaohua Li <shli@fb.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
This work adds BPF_CALL_<n>() macros and converts all the eBPF helper functions
to use them, in a similar fashion like we do with SYSCALL_DEFINE<n>() macros
that are used today. Motivation for this is to hide all the register handling
and all necessary casts from the user, so that it is done automatically in the
background when adding a BPF_CALL_<n>() call.
This makes current helpers easier to review, eases to write future helpers,
avoids getting the casting mess wrong, and allows for extending all helpers at
once (f.e. build time checks, etc). It also helps detecting more easily in
code reviews that unused registers are not instrumented in the code by accident,
breaking compatibility with existing programs.
BPF_CALL_<n>() internals are quite similar to SYSCALL_DEFINE<n>() ones with some
fundamental differences, for example, for generating the actual helper function
that carries all u64 regs, we need to fill unused regs, so that we always end up
with 5 u64 regs as an argument.
I reviewed several 0-5 generated BPF_CALL_<n>() variants of the .i results and
they look all as expected. No sparse issue spotted. We let this also sit for a
few days with Fengguang's kbuild test robot, and there were no issues seen. On
s390, it barked on the "uses dynamic stack allocation" notice, which is an old
one from bpf_perf_event_output{,_tp}() reappearing here due to the conversion
to the call wrapper, just telling that the perf raw record/frag sits on stack
(gcc with s390's -mwarn-dynamicstack), but that's all. Did various runtime tests
and they were fine as well. All eBPF helpers are now converted to use these
macros, getting rid of a good chunk of all the raw castings.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
This work addresses a couple of issues bpf_skb_event_output()
helper currently has: i) We need two copies instead of just a
single one for the skb data when it should be part of a sample.
The data can be non-linear and thus needs to be extracted via
bpf_skb_load_bytes() helper first, and then copied once again
into the ring buffer slot. ii) Since bpf_skb_load_bytes()
currently needs to be used first, the helper needs to see a
constant size on the passed stack buffer to make sure BPF
verifier can do sanity checks on it during verification time.
Thus, just passing skb->len (or any other non-constant value)
wouldn't work, but changing bpf_skb_load_bytes() is also not
the proper solution, since the two copies are generally still
needed. iii) bpf_skb_load_bytes() is just for rather small
buffers like headers, since they need to sit on the limited
BPF stack anyway. Instead of working around in bpf_skb_load_bytes(),
this work improves the bpf_skb_event_output() helper to address
all 3 at once.
We can make use of the passed in skb context that we have in
the helper anyway, and use some of the reserved flag bits as
a length argument. The helper will use the new __output_custom()
facility from perf side with bpf_skb_copy() as callback helper
to walk and extract the data. It will pass the data for setup
to bpf_event_output(), which generates and pushes the raw record
with an additional frag part. The linear data used in the first
frag of the record serves as programmatically defined meta data
passed along with the appended sample.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Some minor cleanups: i) Remove the unlikely() from fd array map lookups
and let the CPU branch predictor do its job, scenarios where there is not
always a map entry are very well valid. ii) Move the attribute type check
in the bpf_perf_event_read() helper a bit earlier so it's consistent wrt
checks with bpf_perf_event_output() helper as well. iii) remove some
comments that are self-documenting in kprobe_prog_is_valid_access() and
therefore make it consistent to tp_prog_is_valid_access() as well.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Start address randomization and blinding in BPF currently use
prandom_u32(). prandom_u32() values are not exposed to unpriviledged
user space to my knowledge, but given other kernel facilities such as
ASLR, stack canaries, etc make use of stronger get_random_int(), we
better make use of it here as well given blinding requests successively
new random values. get_random_int() has minimal entropy pool depletion,
is not cryptographically secure, but doesn't need to be for our use
cases here.
Suggested-by: Hannes Frederic Sowa <hannes@stressinduktion.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
This work adds a generic facility for use from eBPF JIT compilers
that allows for further hardening of JIT generated images through
blinding constants. In response to the original work on BPF JIT
spraying published by Keegan McAllister [1], most BPF JITs were
changed to make images read-only and start at a randomized offset
in the page, where the rest was filled with trap instructions. We
have this nowadays in x86, arm, arm64 and s390 JIT compilers.
Additionally, later work also made eBPF interpreter images read
only for kernels supporting DEBUG_SET_MODULE_RONX, that is, x86,
arm, arm64 and s390 archs as well currently. This is done by
default for mentioned JITs when JITing is enabled. Furthermore,
we had a generic and configurable constant blinding facility on our
todo for quite some time now to further make spraying harder, and
first implementation since around netconf 2016.
We found that for systems where untrusted users can load cBPF/eBPF
code where JIT is enabled, start offset randomization helps a bit
to make jumps into crafted payload harder, but in case where larger
programs that cross page boundary are injected, we again have some
part of the program opcodes at a page start offset. With improved
guessing and more reliable payload injection, chances can increase
to jump into such payload. Elena Reshetova recently wrote a test
case for it [2, 3]. Moreover, eBPF comes with 64 bit constants, which
can leave some more room for payloads. Note that for all this,
additional bugs in the kernel are still required to make the jump
(and of course to guess right, to not jump into a trap) and naturally
the JIT must be enabled, which is disabled by default.
For helping mitigation, the general idea is to provide an option
bpf_jit_harden that admins can tweak along with bpf_jit_enable, so
that for cases where JIT should be enabled for performance reasons,
the generated image can be further hardened with blinding constants
for unpriviledged users (bpf_jit_harden == 1), with trading off
performance for these, but not for privileged ones. We also added
the option of blinding for all users (bpf_jit_harden == 2), which
is quite helpful for testing f.e. with test_bpf.ko. There are no
further e.g. hardening levels of bpf_jit_harden switch intended,
rationale is to have it dead simple to use as on/off. Since this
functionality would need to be duplicated over and over for JIT
compilers to use, which are already complex enough, we provide a
generic eBPF byte-code level based blinding implementation, which is
then just transparently JITed. JIT compilers need to make only a few
changes to integrate this facility and can be migrated one by one.
This option is for eBPF JITs and will be used in x86, arm64, s390
without too much effort, and soon ppc64 JITs, thus that native eBPF
can be blinded as well as cBPF to eBPF migrations, so that both can
be covered with a single implementation. The rule for JITs is that
bpf_jit_blind_constants() must be called from bpf_int_jit_compile(),
and in case blinding is disabled, we follow normally with JITing the
passed program. In case blinding is enabled and we fail during the
process of blinding itself, we must return with the interpreter.
Similarly, in case the JITing process after the blinding failed, we
return normally to the interpreter with the non-blinded code. Meaning,
interpreter doesn't change in any way and operates on eBPF code as
usual. For doing this pre-JIT blinding step, we need to make use of
a helper/auxiliary register, here BPF_REG_AX. This is strictly internal
to the JIT and not in any way part of the eBPF architecture. Just like
in the same way as JITs internally make use of some helper registers
when emitting code, only that here the helper register is one
abstraction level higher in eBPF bytecode, but nevertheless in JIT
phase. That helper register is needed since f.e. manually written
program can issue loads to all registers of eBPF architecture.
The core concept with the additional register is: blind out all 32
and 64 bit constants by converting BPF_K based instructions into a
small sequence from K_VAL into ((RND ^ K_VAL) ^ RND). Therefore, this
is transformed into: BPF_REG_AX := (RND ^ K_VAL), BPF_REG_AX ^= RND,
and REG <OP> BPF_REG_AX, so actual operation on the target register
is translated from BPF_K into BPF_X one that is operating on
BPF_REG_AX's content. During rewriting phase when blinding, RND is
newly generated via prandom_u32() for each processed instruction.
64 bit loads are split into two 32 bit loads to make translation and
patching not too complex. Only basic thing required by JITs is to
call the helper bpf_jit_blind_constants()/bpf_jit_prog_release_other()
pair, and to map BPF_REG_AX into an unused register.
Small bpf_jit_disasm extract from [2] when applied to x86 JIT:
echo 0 > /proc/sys/net/core/bpf_jit_harden
ffffffffa034f5e9 + <x>:
[...]
39: mov $0xa8909090,%eax
3e: mov $0xa8909090,%eax
43: mov $0xa8ff3148,%eax
48: mov $0xa89081b4,%eax
4d: mov $0xa8900bb0,%eax
52: mov $0xa810e0c1,%eax
57: mov $0xa8908eb4,%eax
5c: mov $0xa89020b0,%eax
[...]
echo 1 > /proc/sys/net/core/bpf_jit_harden
ffffffffa034f1e5 + <x>:
[...]
39: mov $0xe1192563,%r10d
3f: xor $0x4989b5f3,%r10d
46: mov %r10d,%eax
49: mov $0xb8296d93,%r10d
4f: xor $0x10b9fd03,%r10d
56: mov %r10d,%eax
59: mov $0x8c381146,%r10d
5f: xor $0x24c7200e,%r10d
66: mov %r10d,%eax
69: mov $0xeb2a830e,%r10d
6f: xor $0x43ba02ba,%r10d
76: mov %r10d,%eax
79: mov $0xd9730af,%r10d
7f: xor $0xa5073b1f,%r10d
86: mov %r10d,%eax
89: mov $0x9a45662b,%r10d
8f: xor $0x325586ea,%r10d
96: mov %r10d,%eax
[...]
As can be seen, original constants that carry payload are hidden
when enabled, actual operations are transformed from constant-based
to register-based ones, making jumps into constants ineffective.
Above extract/example uses single BPF load instruction over and
over, but of course all instructions with constants are blinded.
Performance wise, JIT with blinding performs a bit slower than just
JIT and faster than interpreter case. This is expected, since we
still get all the performance benefits from JITing and in normal
use-cases not every single instruction needs to be blinded. Summing
up all 296 test cases averaged over multiple runs from test_bpf.ko
suite, interpreter was 55% slower than JIT only and JIT with blinding
was 8% slower than JIT only. Since there are also some extremes in
the test suite, I expect for ordinary workloads that the performance
for the JIT with blinding case is even closer to JIT only case,
f.e. nmap test case from suite has averaged timings in ns 29 (JIT),
35 (+ blinding), and 151 (interpreter).
BPF test suite, seccomp test suite, eBPF sample code and various
bigger networking eBPF programs have been tested with this and were
running fine. For testing purposes, I also adapted interpreter and
redirected blinded eBPF image to interpreter and also here all tests
pass.
[1] http://mainisusuallyafunction.blogspot.com/2012/11/attacking-hardened-linux-systems-with.html
[2] https://github.com/01org/jit-spray-poc-for-ksp/
[3] http://www.openwall.com/lists/kernel-hardening/2016/05/03/5
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: Elena Reshetova <elena.reshetova@intel.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Since the blinding is strictly only called from inside eBPF JITs,
we need to change signatures for bpf_int_jit_compile() and
bpf_prog_select_runtime() first in order to prepare that the
eBPF program we're dealing with can change underneath. Hence,
for call sites, we need to return the latest prog. No functional
change in this patch.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Move the functionality to patch instructions out of the verifier
code and into the core as the new bpf_patch_insn_single() helper
will be needed later on for blinding as well. No changes in
functionality.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Besides others, remove redundant comments where the code is self
documenting enough, and properly indent various bpf_verifier_ops
and bpf_prog_type_list declarations. Moreover, remove two exports
that actually have no module user.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Extended BPF carried over two instructions from classic to access
packet data: LD_ABS and LD_IND. They're highly optimized in JITs,
but due to their design they have to do length check for every access.
When BPF is processing 20M packets per second single LD_ABS after JIT
is consuming 3% cpu. Hence the need to optimize it further by amortizing
the cost of 'off < skb_headlen' over multiple packet accesses.
One option is to introduce two new eBPF instructions LD_ABS_DW and LD_IND_DW
with similar usage as skb_header_pointer().
The kernel part for interpreter and x64 JIT was implemented in [1], but such
new insns behave like old ld_abs and abort the program with 'return 0' if
access is beyond linear data. Such hidden control flow is hard to workaround
plus changing JITs and rolling out new llvm is incovenient.
Therefore allow cls_bpf/act_bpf program access skb->data directly:
int bpf_prog(struct __sk_buff *skb)
{
struct iphdr *ip;
if (skb->data + sizeof(struct iphdr) + ETH_HLEN > skb->data_end)
/* packet too small */
return 0;
ip = skb->data + ETH_HLEN;
/* access IP header fields with direct loads */
if (ip->version != 4 || ip->saddr == 0x7f000001)
return 1;
[...]
}
This solution avoids introduction of new instructions. llvm stays
the same and all JITs stay the same, but verifier has to work extra hard
to prove safety of the above program.
For XDP the direct store instructions can be allowed as well.
The skb->data is NET_IP_ALIGNED, so for common cases the verifier can check
the alignment. The complex packet parsers where packet pointer is adjusted
incrementally cannot be tracked for alignment, so allow byte access in such cases
and misaligned access on architectures that define efficient_unaligned_access
[1] https://git.kernel.org/cgit/linux/kernel/git/ast/bpf.git/?h=ld_abs_dw
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch adds a new helper for cls/act programs that can push events
to user space applications. For networking, this can be f.e. for sampling,
debugging, logging purposes or pushing of arbitrary wake-up events. The
idea is similar to a43eec3042 ("bpf: introduce bpf_perf_event_output()
helper") and 39111695b1 ("samples: bpf: add bpf_perf_event_output example").
The eBPF program utilizes a perf event array map that user space populates
with fds from perf_event_open(), the eBPF program calls into the helper
f.e. as skb_event_output(skb, &my_map, BPF_F_CURRENT_CPU, raw, sizeof(raw))
so that the raw data is pushed into the fd f.e. at the map index of the
current CPU.
User space can poll/mmap/etc on this and has a data channel for receiving
events that can be post-processed. The nice thing is that since the eBPF
program and user space application making use of it are tightly coupled,
they can define their own arbitrary raw data format and what/when they
want to push.
While f.e. packet headers could be one part of the meta data that is being
pushed, this is not a substitute for things like packet sockets as whole
packet is not being pushed and push is only done in a single direction.
Intention is more of a generically usable, efficient event pipe to applications.
Workflow is that tc can pin the map and applications can attach themselves
e.g. after cls/act setup to one or multiple map slots, demuxing is done by
the eBPF program.
Adding this facility is with minimal effort, it reuses the helper
introduced in a43eec3042 ("bpf: introduce bpf_perf_event_output() helper")
and we get its functionality for free by overloading its BPF_FUNC_ identifier
for cls/act programs, ctx is currently unused, but will be made use of in
future. Example will be added to iproute2's BPF example files.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
objtool reports the following false positive warnings:
kernel/bpf/core.o: warning: objtool: __bpf_prog_run()+0x5c: sibling call from callable instruction with changed frame pointer
kernel/bpf/core.o: warning: objtool: __bpf_prog_run()+0x60: function has unreachable instruction
kernel/bpf/core.o: warning: objtool: __bpf_prog_run()+0x64: function has unreachable instruction
[...]
It's confused by the following dynamic jump instruction in
__bpf_prog_run()::
jmp *(%r12,%rax,8)
which corresponds to the following line in the C code:
goto *jumptable[insn->code];
There's no way for objtool to deterministically find all possible
branch targets for a dynamic jump, so it can't verify this code.
In this case the jumps all stay within the function, and there's nothing
unusual going on related to the stack, so we can whitelist the function.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Bernd Petrovitsch <bernd@petrovitsch.priv.at>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Chris J Arges <chris.j.arges@canonical.com>
Cc: Jiri Slaby <jslaby@suse.cz>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Michal Marek <mmarek@suse.cz>
Cc: Namhyung Kim <namhyung@gmail.com>
Cc: Pedro Alves <palves@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: live-patching@vger.kernel.org
Cc: netdev@vger.kernel.org
Link: http://lkml.kernel.org/r/b90e6bf3fdbfb5c4cc1b164b965502e53cf48935.1456719558.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Back in the days where eBPF (or back then "internal BPF" ;->) was not
exposed to user space, and only the classic BPF programs internally
translated into eBPF programs, we missed the fact that for classic BPF
A and X needed to be cleared. It was fixed back then via 83d5b7ef99
("net: filter: initialize A and X registers"), and thus classic BPF
specifics were added to the eBPF interpreter core to work around it.
This added some confusion for JIT developers later on that take the
eBPF interpreter code as an example for deriving their JIT. F.e. in
f75298f5c3 ("s390/bpf: clear correct BPF accumulator register"), at
least X could leak stack memory. Furthermore, since this is only needed
for classic BPF translations and not for eBPF (verifier takes care
that read access to regs cannot be done uninitialized), more complexity
is added to JITs as they need to determine whether they deal with
migrations or native eBPF where they can just omit clearing A/X in
their prologue and thus reduce image size a bit, see f.e. cde66c2d88
("s390/bpf: Only clear A and X for converted BPF programs"). In other
cases (x86, arm64), A and X is being cleared in the prologue also for
eBPF case, which is unnecessary.
Lets move this into the BPF migration in bpf_convert_filter() where it
actually belongs as long as the number of eBPF JITs are still few. It
can thus be done generically; allowing us to remove the quirk from
__bpf_prog_run() and to slightly reduce JIT image size in case of eBPF,
while reducing code duplication on this matter in current(/future) eBPF
JITs.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Reviewed-by: Michael Holzheu <holzheu@linux.vnet.ibm.com>
Tested-by: Michael Holzheu <holzheu@linux.vnet.ibm.com>
Cc: Zi Shen Lim <zlim.lnx@gmail.com>
Cc: Yang Shi <yang.shi@linaro.org>
Acked-by: Yang Shi <yang.shi@linaro.org>
Acked-by: Zi Shen Lim <zlim.lnx@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
We currently have duplicated cleanup code in bpf_prog_put() and
bpf_prog_put_rcu() cleanup paths. Back then we decided that it was
not worth it to make it a common helper called by both, but with
the recent addition of resource charging, we could have avoided
the fix in commit ac00737f4e ("bpf: Need to call bpf_prog_uncharge_memlock
from bpf_prog_put") if we would have had only a single, common path.
We can simplify it further by assigning aux->prog only once during
allocation time.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
While recently arguing on a seccomp discussion that raw prandom_u32()
access shouldn't be exposed to unpriviledged user space, I forgot the
fact that SKF_AD_RANDOM extension actually already does it for some time
in cBPF via commit 4cd3675ebf ("filter: added BPF random opcode").
Since prandom_u32() is being used in a lot of critical networking code,
lets be more conservative and split their states. Furthermore, consolidate
eBPF and cBPF prandom handlers to use the new internal PRNG. For eBPF,
bpf_get_prandom_u32() was only accessible for priviledged users, but
should that change one day, we also don't want to leak raw sequences
through things like eBPF maps.
One thought was also to have own per bpf_prog states, but due to ABI
reasons this is not easily possible, i.e. the program code currently
cannot access bpf_prog itself, and copying the rnd_state to/from the
stack scratch space whenever a program uses the prng seems not really
worth the trouble and seems too hacky. If needed, taus113 could in such
cases be implemented within eBPF using a map entry to keep the state
space, or get_random_bytes() could become a second helper in cases where
performance would not be critical.
Both sides can trigger a one-time late init via prandom_init_once() on
the shared state. Performance-wise, there should even be a tiny gain
as bpf_user_rnd_u32() saves one function call. The PRNG needs to live
inside the BPF core since kernels could have a NET-less config as well.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Hannes Frederic Sowa <hannes@stressinduktion.org>
Acked-by: Alexei Starovoitov <ast@plumgrid.com>
Cc: Chema Gonzalez <chema@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
As we need to add further flags to the bpf_prog structure, lets migrate
both bools to a bitfield representation. The size of the base structure
(excluding insns) remains unchanged at 40 bytes.
Add also tags for the kmemchecker, so that it doesn't throw false
positives. Even in case gcc would generate suboptimal code, it's not
being accessed in performance critical paths.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
All the map backends are of generic nature. In order to avoid
adding much special code into the eBPF core, rewrite part of
the bpf_prog_array map code and make it more generic. So the
new perf_event_array map type can reuse most of code with
bpf_prog_array map and add fewer lines of special code.
Signed-off-by: Wang Nan <wangnan0@huawei.com>
Signed-off-by: Kaixu Xia <xiakaixu@huawei.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
improve accuracy of timing in test_bpf and add two stress tests:
- {skb->data[0], get_smp_processor_id} repeated 2k times
- {skb->data[0], vlan_push} x 68 followed by {skb->data[0], vlan_pop} x 68
1st test is useful to test performance of JIT implementation of BPF_LD_ABS
together with BPF_CALL instructions.
2nd test is stressing skb_vlan_push/pop logic together with skb->data access
via BPF_LD_ABS insn which checks that re-caching of skb->data is done correctly.
In order to call bpf_skb_vlan_push() from test_bpf.ko have to add
three export_symbol_gpl.
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
ARG1 = BPF_R1 as it stands, evaluates to regs[BPF_REG_1] = regs[BPF_REG_1]
and thus has no effect. Add a comment instead, explaining what happens and
why it's okay to just remove it. Since from user space side, a tail call is
invoked as a pseudo helper function via bpf_tail_call_proto, the verifier
checks the arguments just like with any other helper function and makes
sure that the first argument (regs[BPF_REG_1])'s type is ARG_PTR_TO_CTX.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
bpf_trace_printk() is a helper function used to debug eBPF programs.
Let socket and TC programs use it as well.
Note, it's DEBUG ONLY helper. If it's used in the program,
the kernel will print warning banner to make sure users don't use
it in production.
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
eBPF programs attached to kprobes need to filter based on
current->pid, uid and other fields, so introduce helper functions:
u64 bpf_get_current_pid_tgid(void)
Return: current->tgid << 32 | current->pid
u64 bpf_get_current_uid_gid(void)
Return: current_gid << 32 | current_uid
bpf_get_current_comm(char *buf, int size_of_buf)
stores current->comm into buf
They can be used from the programs attached to TC as well to classify packets
based on current task fields.
Update tracex2 example to print histogram of write syscalls for each process
instead of aggregated for all.
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Besides others, move bpf_tail_call_proto to the remaining definitions
of other protos, improve comments a bit (i.e. remove some obvious ones,
where the code is already self-documenting, add objectives for others),
simplify bpf_prog_array_compatible() a bit.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
As this is already exported from tracing side via commit d9847d310a
("tracing: Allow BPF programs to call bpf_ktime_get_ns()"), we might
as well want to move it to the core, so also networking users can make
use of it, e.g. to measure diffs for certain flows from ingress/egress.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Cc: Alexei Starovoitov <ast@plumgrid.com>
Cc: Ingo Molnar <mingo@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
introduce bpf_tail_call(ctx, &jmp_table, index) helper function
which can be used from BPF programs like:
int bpf_prog(struct pt_regs *ctx)
{
...
bpf_tail_call(ctx, &jmp_table, index);
...
}
that is roughly equivalent to:
int bpf_prog(struct pt_regs *ctx)
{
...
if (jmp_table[index])
return (*jmp_table[index])(ctx);
...
}
The important detail that it's not a normal call, but a tail call.
The kernel stack is precious, so this helper reuses the current
stack frame and jumps into another BPF program without adding
extra call frame.
It's trivially done in interpreter and a bit trickier in JITs.
In case of x64 JIT the bigger part of generated assembler prologue
is common for all programs, so it is simply skipped while jumping.
Other JITs can do similar prologue-skipping optimization or
do stack unwind before jumping into the next program.
bpf_tail_call() arguments:
ctx - context pointer
jmp_table - one of BPF_MAP_TYPE_PROG_ARRAY maps used as the jump table
index - index in the jump table
Since all BPF programs are idenitified by file descriptor, user space
need to populate the jmp_table with FDs of other BPF programs.
If jmp_table[index] is empty the bpf_tail_call() doesn't jump anywhere
and program execution continues as normal.
New BPF_MAP_TYPE_PROG_ARRAY map type is introduced so that user space can
populate this jmp_table array with FDs of other bpf programs.
Programs can share the same jmp_table array or use multiple jmp_tables.
The chain of tail calls can form unpredictable dynamic loops therefore
tail_call_cnt is used to limit the number of calls and currently is set to 32.
Use cases:
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
==========
- simplify complex programs by splitting them into a sequence of small programs
- dispatch routine
For tracing and future seccomp the program may be triggered on all system
calls, but processing of syscall arguments will be different. It's more
efficient to implement them as:
int syscall_entry(struct seccomp_data *ctx)
{
bpf_tail_call(ctx, &syscall_jmp_table, ctx->nr /* syscall number */);
... default: process unknown syscall ...
}
int sys_write_event(struct seccomp_data *ctx) {...}
int sys_read_event(struct seccomp_data *ctx) {...}
syscall_jmp_table[__NR_write] = sys_write_event;
syscall_jmp_table[__NR_read] = sys_read_event;
For networking the program may call into different parsers depending on
packet format, like:
int packet_parser(struct __sk_buff *skb)
{
... parse L2, L3 here ...
__u8 ipproto = load_byte(skb, ... offsetof(struct iphdr, protocol));
bpf_tail_call(skb, &ipproto_jmp_table, ipproto);
... default: process unknown protocol ...
}
int parse_tcp(struct __sk_buff *skb) {...}
int parse_udp(struct __sk_buff *skb) {...}
ipproto_jmp_table[IPPROTO_TCP] = parse_tcp;
ipproto_jmp_table[IPPROTO_UDP] = parse_udp;
- for TC use case, bpf_tail_call() allows to implement reclassify-like logic
- bpf_map_update_elem/delete calls into BPF_MAP_TYPE_PROG_ARRAY jump table
are atomic, so user space can build chains of BPF programs on the fly
Implementation details:
=======================
- high performance of bpf_tail_call() is the goal.
It could have been implemented without JIT changes as a wrapper on top of
BPF_PROG_RUN() macro, but with two downsides:
. all programs would have to pay performance penalty for this feature and
tail call itself would be slower, since mandatory stack unwind, return,
stack allocate would be done for every tailcall.
. tailcall would be limited to programs running preempt_disabled, since
generic 'void *ctx' doesn't have room for 'tail_call_cnt' and it would
need to be either global per_cpu variable accessed by helper and by wrapper
or global variable protected by locks.
In this implementation x64 JIT bypasses stack unwind and jumps into the
callee program after prologue.
- bpf_prog_array_compatible() ensures that prog_type of callee and caller
are the same and JITed/non-JITed flag is the same, since calling JITed
program from non-JITed is invalid, since stack frames are different.
Similarly calling kprobe type program from socket type program is invalid.
- jump table is implemented as BPF_MAP_TYPE_PROG_ARRAY to reuse 'map'
abstraction, its user space API and all of verifier logic.
It's in the existing arraymap.c file, since several functions are
shared with regular array map.
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
ALU64_DIV instruction should be dividing 64-bit by 64-bit,
whereas do_div() does 64-bit by 32-bit divide.
x64 and arm64 JITs correctly implement 64 by 64 unsigned divide.
llvm BPF backend emits code assuming that ALU64_DIV does 64 by 64.
Fixes: 89aa075832 ("net: sock: allow eBPF programs to be attached to sockets")
Reported-by: Michael Holzheu <holzheu@linux.vnet.ibm.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch adds the possibility to obtain raw_smp_processor_id() in
eBPF. Currently, this is only possible in classic BPF where commit
da2033c282 ("filter: add SKF_AD_RXHASH and SKF_AD_CPU") has added
facilities for this.
Perhaps most importantly, this would also allow us to track per CPU
statistics with eBPF maps, or to implement a poor-man's per CPU data
structure through eBPF maps.
Example function proto-type looks like:
u32 (*smp_processor_id)(void) = (void *)BPF_FUNC_get_smp_processor_id;
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
This work is similar to commit 4cd3675ebf ("filter: added BPF
random opcode") and adds a possibility for packet sampling in eBPF.
Currently, this is only possible in classic BPF and useful to
combine sampling with f.e. packet sockets, possible also with tc.
Example function proto-type looks like:
u32 (*prandom_u32)(void) = (void *)BPF_FUNC_get_prandom_u32;
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
Fengguang reported, that on openrisc and avr32 architectures, we
get the following linker errors on *_defconfig builds that have
no bpf syscall support:
net/built-in.o:(.rodata+0x1cd0): undefined reference to `bpf_map_lookup_elem_proto'
net/built-in.o:(.rodata+0x1cd4): undefined reference to `bpf_map_update_elem_proto'
net/built-in.o:(.rodata+0x1cd8): undefined reference to `bpf_map_delete_elem_proto'
Fix it up by providing built-in weak definitions of the symbols,
so they can be overridden when the syscall is enabled. I think
the issue might be that gcc is not able to optimize all that away.
This patch fixes the linker errors for me, tested with Fengguang's
make.cross [1] script.
[1] https://git.kernel.org/cgit/linux/kernel/git/wfg/lkp-tests.git/plain/sbin/make.cross
Reported-by: Fengguang Wu <fengguang.wu@intel.com>
Fixes: d4052c4aea ("ebpf: remove CONFIG_BPF_SYSCALL ifdefs in socket filter code")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Nothing needs the module pointer any more, and the next patch will
call it from RCU, where the module itself might no longer exist.
Removing the arg is the safest approach.
This just codifies the use of the module_alloc/module_free pattern
which ftrace and bpf use.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Cc: Mikael Starvik <starvik@axis.com>
Cc: Jesper Nilsson <jesper.nilsson@axis.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Ley Foon Tan <lftan@altera.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: x86@kernel.org
Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com>
Cc: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
Cc: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Cc: linux-cris-kernel@axis.com
Cc: linux-kernel@vger.kernel.org
Cc: linux-mips@linux-mips.org
Cc: nios2-dev@lists.rocketboards.org
Cc: linuxppc-dev@lists.ozlabs.org
Cc: sparclinux@vger.kernel.org
Cc: netdev@vger.kernel.org
introduce two configs:
- hidden CONFIG_BPF to select eBPF interpreter that classic socket filters
depend on
- visible CONFIG_BPF_SYSCALL (default off) that tracing and sockets can use
that solves several problems:
- tracing and others that wish to use eBPF don't need to depend on NET.
They can use BPF_SYSCALL to allow loading from userspace or select BPF
to use it directly from kernel in NET-less configs.
- in 3.18 programs cannot be attached to events yet, so don't force it on
- when the rest of eBPF infra is there in 3.19+, it's still useful to
switch it off to minimize kernel size
bloat-o-meter on x64 shows:
add/remove: 0/60 grow/shrink: 0/2 up/down: 0/-15601 (-15601)
tested with many different config combinations. Hopefully didn't miss anything.
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Acked-by: Daniel Borkmann <dborkman@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
eBPF programs are similar to kernel modules. They are loaded by the user
process and automatically unloaded when process exits. Each eBPF program is
a safe run-to-completion set of instructions. eBPF verifier statically
determines that the program terminates and is safe to execute.
The following syscall wrapper can be used to load the program:
int bpf_prog_load(enum bpf_prog_type prog_type,
const struct bpf_insn *insns, int insn_cnt,
const char *license)
{
union bpf_attr attr = {
.prog_type = prog_type,
.insns = ptr_to_u64(insns),
.insn_cnt = insn_cnt,
.license = ptr_to_u64(license),
};
return bpf(BPF_PROG_LOAD, &attr, sizeof(attr));
}
where 'insns' is an array of eBPF instructions and 'license' is a string
that must be GPL compatible to call helper functions marked gpl_only
Upon succesful load the syscall returns prog_fd.
Use close(prog_fd) to unload the program.
User space tests and examples follow in the later patches
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Since BPF JIT depends on the availability of module_alloc() and
module_free() helpers (HAVE_BPF_JIT and MODULES), we better build
that code only in case we have BPF_JIT in our config enabled, just
like with other JIT code. Fixes builds for arm/marzen_defconfig
and sh/rsk7269_defconfig.
====================
kernel/built-in.o: In function `bpf_jit_binary_alloc':
/home/cwang/linux/kernel/bpf/core.c:144: undefined reference to `module_alloc'
kernel/built-in.o: In function `bpf_jit_binary_free':
/home/cwang/linux/kernel/bpf/core.c:164: undefined reference to `module_free'
make: *** [vmlinux] Error 1
====================
Reported-by: Fengguang Wu <fengguang.wu@intel.com>
Fixes: 738cbe72ad ("net: bpf: consolidate JIT binary allocator")
Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Acked-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Introduced in commit 314beb9bca ("x86: bpf_jit_comp: secure bpf jit
against spraying attacks") and later on replicated in aa2d2c73c2
("s390/bpf,jit: address randomize and write protect jit code") for
s390 architecture, write protection for BPF JIT images got added and
a random start address of the JIT code, so that it's not on a page
boundary anymore.
Since both use a very similar allocator for the BPF binary header,
we can consolidate this code into the BPF core as it's mostly JIT
independant anyway.
This will also allow for future archs that support DEBUG_SET_MODULE_RONX
to just reuse instead of reimplementing it.
JIT tested on x86_64 and s390x with BPF test suite.
Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Acked-by: Alexei Starovoitov <ast@plumgrid.com>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
add BPF_LD_IMM64 instruction to load 64-bit immediate value into a register.
All previous instructions were 8-byte. This is first 16-byte instruction.
Two consecutive 'struct bpf_insn' blocks are interpreted as single instruction:
insn[0].code = BPF_LD | BPF_DW | BPF_IMM
insn[0].dst_reg = destination register
insn[0].imm = lower 32-bit
insn[1].code = 0
insn[1].imm = upper 32-bit
All unused fields must be zero.
Classic BPF has similar instruction: BPF_LD | BPF_W | BPF_IMM
which loads 32-bit immediate value into a register.
x64 JITs it as single 'movabsq %rax, imm64'
arm64 may JIT as sequence of four 'movk x0, #imm16, lsl #shift' insn
Note that old eBPF programs are binary compatible with new interpreter.
It helps eBPF programs load 64-bit constant into a register with one
instruction instead of using two registers and 4 instructions:
BPF_MOV32_IMM(R1, imm32)
BPF_ALU64_IMM(BPF_LSH, R1, 32)
BPF_MOV32_IMM(R2, imm32)
BPF_ALU64_REG(BPF_OR, R1, R2)
User space generated programs will use this instruction to load constants only.
To tell kernel that user space needs a pointer the _pseudo_ variant of
this instruction may be added later, which will use extra bits of encoding
to indicate what type of pointer user space is asking kernel to provide.
For example 'off' or 'src_reg' fields can be used for such purpose.
src_reg = 1 could mean that user space is asking kernel to validate and
load in-kernel map pointer.
src_reg = 2 could mean that user space needs readonly data section pointer
src_reg = 3 could mean that user space needs a pointer to per-cpu local data
All such future pseudo instructions will not be carrying the actual pointer
as part of the instruction, but rather will be treated as a request to kernel
to provide one. The kernel will verify the request_for_a_pointer, then
will drop _pseudo_ marking and will store actual internal pointer inside
the instruction, so the end result is the interpreter and JITs never
see pseudo BPF_LD_IMM64 insns and only operate on generic BPF_LD_IMM64 that
loads 64-bit immediate into a register. User space never operates on direct
pointers and verifier can easily recognize request_for_pointer vs other
instructions.
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
With eBPF getting more extended and exposure to user space is on it's way,
hardening the memory range the interpreter uses to steer its command flow
seems appropriate. This patch moves the to be interpreted bytecode to
read-only pages.
In case we execute a corrupted BPF interpreter image for some reason e.g.
caused by an attacker which got past a verifier stage, it would not only
provide arbitrary read/write memory access but arbitrary function calls
as well. After setting up the BPF interpreter image, its contents do not
change until destruction time, thus we can setup the image on immutable
made pages in order to mitigate modifications to that code. The idea
is derived from commit 314beb9bca ("x86: bpf_jit_comp: secure bpf jit
against spraying attacks").
This is possible because bpf_prog is not part of sk_filter anymore.
After setup bpf_prog cannot be altered during its life-time. This prevents
any modifications to the entire bpf_prog structure (incl. function/JIT
image pointer).
Every eBPF program (including classic BPF that are migrated) have to call
bpf_prog_select_runtime() to select either interpreter or a JIT image
as a last setup step, and they all are being freed via bpf_prog_free(),
including non-JIT. Therefore, we can easily integrate this into the
eBPF life-time, plus since we directly allocate a bpf_prog, we have no
performance penalty.
Tested with seccomp and test_bpf testsuite in JIT/non-JIT mode and manual
inspection of kernel_page_tables. Brad Spengler proposed the same idea
via Twitter during development of this patch.
Joint work with Hannes Frederic Sowa.
Suggested-by: Brad Spengler <spender@grsecurity.net>
Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org>
Cc: Alexei Starovoitov <ast@plumgrid.com>
Cc: Kees Cook <keescook@chromium.org>
Acked-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
clean up names related to socket filtering and bpf in the following way:
- everything that deals with sockets keeps 'sk_*' prefix
- everything that is pure BPF is changed to 'bpf_*' prefix
split 'struct sk_filter' into
struct sk_filter {
atomic_t refcnt;
struct rcu_head rcu;
struct bpf_prog *prog;
};
and
struct bpf_prog {
u32 jited:1,
len:31;
struct sock_fprog_kern *orig_prog;
unsigned int (*bpf_func)(const struct sk_buff *skb,
const struct bpf_insn *filter);
union {
struct sock_filter insns[0];
struct bpf_insn insnsi[0];
struct work_struct work;
};
};
so that 'struct bpf_prog' can be used independent of sockets and cleans up
'unattached' bpf use cases
split SK_RUN_FILTER macro into:
SK_RUN_FILTER to be used with 'struct sk_filter *' and
BPF_PROG_RUN to be used with 'struct bpf_prog *'
__sk_filter_release(struct sk_filter *) gains
__bpf_prog_release(struct bpf_prog *) helper function
also perform related renames for the functions that work
with 'struct bpf_prog *', since they're on the same lines:
sk_filter_size -> bpf_prog_size
sk_filter_select_runtime -> bpf_prog_select_runtime
sk_filter_free -> bpf_prog_free
sk_unattached_filter_create -> bpf_prog_create
sk_unattached_filter_destroy -> bpf_prog_destroy
sk_store_orig_filter -> bpf_prog_store_orig_filter
sk_release_orig_filter -> bpf_release_orig_filter
__sk_migrate_filter -> bpf_migrate_filter
__sk_prepare_filter -> bpf_prepare_filter
API for attaching classic BPF to a socket stays the same:
sk_attach_filter(prog, struct sock *)/sk_detach_filter(struct sock *)
and SK_RUN_FILTER(struct sk_filter *, ctx) to execute a program
which is used by sockets, tun, af_packet
API for 'unattached' BPF programs becomes:
bpf_prog_create(struct bpf_prog **)/bpf_prog_destroy(struct bpf_prog *)
and BPF_PROG_RUN(struct bpf_prog *, ctx) to execute a program
which is used by isdn, ppp, team, seccomp, ptp, xt_bpf, cls_bpf, test_bpf
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
to indicate that this function is converting classic BPF into eBPF
and not related to sockets
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
trivial rename to indicate that this functions performs classic BPF checking
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
eBPF is used by socket filtering, seccomp and soon by tracing and
exposed to userspace, therefore 'sock_filter_int' name is not accurate.
Rename it to 'bpf_insn'
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
BPF is used in several kernel components. This split creates logical boundary
between generic eBPF core and the rest
kernel/bpf/core.c: eBPF interpreter
net/core/filter.c: classic->eBPF converter, classic verifiers, socket filters
This patch only moves functions.
Signed-off-by: Alexei Starovoitov <ast@plumgrid.com>
Signed-off-by: David S. Miller <davem@davemloft.net>