This patch modifies the stats counting macros and the callers
to those macros to properly increment, decrement, and add-to
the xfs stats counts. The counts for global and per-fs stats
are correctly advanced, and cleared by writing a "1" to the
corresponding clear file.
global counts: /sys/fs/xfs/stats/stats
per-fs counts: /sys/fs/xfs/sda*/stats/stats
global clear: /sys/fs/xfs/stats/stats_clear
per-fs clear: /sys/fs/xfs/sda*/stats/stats_clear
[dchinner: cleaned up macro variables, removed CONFIG_FS_PROC around
stats structures and macros. ]
Signed-off-by: Bill O'Donnell <billodo@redhat.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
As the code stands today, if xfs_trans_reserve() fails, we
goto out_dqrele, which does not free the allocated transaction.
Fix up the goto targets to undo everything properly.
Addresses-Coverity-Id: 145571
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
This update contains:
o A new sparse on-disk inode record format to allow small extents to
be used for inode allocation when free space is fragmented.
o DAX support. This includes minor changes to the DAX core code to
fix problems with lock ordering and bufferhead mapping abuse.
o transaction commit interface cleanup
o removal of various unnecessary XFS specific type definitions
o cleanup and optimisation of freelist preparation before allocation
o various minor cleanups
o bug fixes for
- transaction reservation leaks
- incorrect inode logging in unwritten extent conversion
- mmap lock vs freeze ordering
- remote symlink mishandling
- attribute fork removal issues.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.12 (GNU/Linux)
iQIcBAABAgAGBQJVkhI0AAoJEK3oKUf0dfod45MQAJCOEkNduBdlfPvTCMPjj/7z
vzcfDdzgKwhpPTMXSDRvw4zDPt3C2FLMBJqxtPpC4sKGKG/8G0kFvw8bDtBag1m9
ru5nI5LaQ6LC5RcU40zxBx1s/L8qYvyfUlxeoOT5lSwN9c6ENGOCQ3bUk4pSKaee
pWDplag9LbfQomW2GHtxd8agMUZEYx0R1vgfv88V8xgPka8CvQo81XUgkb4PcDZV
ugR+wDUsvwMS01aLYBmRFkMXuExNuCJVwtvdTJS+ZWGHzyTpulFoANUW6QT24gAM
eP4yRXN4bv9vXrXpg8JkF25DHsfw4HBwNEL17ZvoB8t3oJp1/NYaH8ce1jS0+I8i
NCtaO+qUqDSTGQZKgmeDPwCciQp54ra9LEdmIJFxpZxiBof9g/tIYEFgRklyFLwR
GZU6Io6VpBa1oTGlC4D1cmG6bdcnhMB9MGVVCbqnB5mRRDKCmVgCyJwusd1pi7Re
G4O6KkFt21O7+fP13VsjP57KoaJzsIgZ/+H3Ff/fJOJ33AKYTRCmwi8+IMi2n5JI
zz+V0AIBQZAx9dlVyENnxufh9eJYcnwta0lUSLCCo91fZKxbo3ktK1kVHNZP5EGs
IMFM1Ka6hibY20rWlR3GH0dfyP5/yNcvNgTMYPKjj9SVjTar1aSfF2rGpkqYXYyH
D4FICbtDgtOc2ClfpI2k
=3x+W
-----END PGP SIGNATURE-----
Merge tag 'xfs-for-linus-4.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs
Pul xfs updates from Dave Chinner:
"There's a couple of small API changes to the core DAX code which
required small changes to the ext2 and ext4 code bases, but otherwise
everything is within the XFS codebase.
This update contains:
- A new sparse on-disk inode record format to allow small extents to
be used for inode allocation when free space is fragmented.
- DAX support. This includes minor changes to the DAX core code to
fix problems with lock ordering and bufferhead mapping abuse.
- transaction commit interface cleanup
- removal of various unnecessary XFS specific type definitions
- cleanup and optimisation of freelist preparation before allocation
- various minor cleanups
- bug fixes for
- transaction reservation leaks
- incorrect inode logging in unwritten extent conversion
- mmap lock vs freeze ordering
- remote symlink mishandling
- attribute fork removal issues"
* tag 'xfs-for-linus-4.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs: (49 commits)
xfs: don't truncate attribute extents if no extents exist
xfs: clean up XFS_MIN_FREELIST macros
xfs: sanitise error handling in xfs_alloc_fix_freelist
xfs: factor out free space extent length check
xfs: xfs_alloc_fix_freelist() can use incore perag structures
xfs: remove xfs_caddr_t
xfs: use void pointers in log validation helpers
xfs: return a void pointer from xfs_buf_offset
xfs: remove inst_t
xfs: remove __psint_t and __psunsigned_t
xfs: fix remote symlinks on V5/CRC filesystems
xfs: fix xfs_log_done interface
xfs: saner xfs_trans_commit interface
xfs: remove the flags argument to xfs_trans_cancel
xfs: pass a boolean flag to xfs_trans_free_items
xfs: switch remaining xfs_trans_dup users to xfs_trans_roll
xfs: check min blks for random debug mode sparse allocations
xfs: fix sparse inodes 32-bit compile failure
xfs: add initial DAX support
xfs: add DAX IO path support
...
The flags argument to xfs_trans_commit is not useful for most callers, as
a commit of a transaction without a permanent log reservation must pass
0 here, and all callers for a transaction with a permanent log reservation
except for xfs_trans_roll must pass XFS_TRANS_RELEASE_LOG_RES. So remove
the flags argument from the public xfs_trans_commit interfaces, and
introduce low-level __xfs_trans_commit variant just for xfs_trans_roll
that regrants a log reservation instead of releasing it.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
xfs_trans_cancel takes two flags arguments: XFS_TRANS_RELEASE_LOG_RES and
XFS_TRANS_ABORT. Both of them are a direct product of the transaction
state, and can be deducted:
- any dirty transaction needs XFS_TRANS_ABORT to be properly canceled,
and XFS_TRANS_ABORT is a noop for a transaction that is not dirty.
- any transaction with a permanent log reservation needs
XFS_TRANS_RELEASE_LOG_RES to be properly canceled, and passing
XFS_TRANS_RELEASE_LOG_RES for a transaction without a permanent
log reservation is invalid.
So just remove the flags argument and do the right thing.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Add initial DAX support to XFS. To do this we need a new mount
option to turn DAX on filesystem, and we need to propagate this into
the inode flags whenever an inode is instantiated so that the
per-inode checks throughout the code Do The Right Thing.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
When we truncate a DAX file, we need to call through the DAX page
truncation path rather than through block_truncate_page() so that
mappings and block zeroing are all handled correctly. Otherwise,
truncate does not need to change.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
a) instead of storing the symlink body (via nd_set_link()) and returning
an opaque pointer later passed to ->put_link(), ->follow_link() _stores_
that opaque pointer (into void * passed by address by caller) and returns
the symlink body. Returning ERR_PTR() on error, NULL on jump (procfs magic
symlinks) and pointer to symlink body for normal symlinks. Stored pointer
is ignored in all cases except the last one.
Storing NULL for opaque pointer (or not storing it at all) means no call
of ->put_link().
b) the body used to be passed to ->put_link() implicitly (via nameidata).
Now only the opaque pointer is. In the cases when we used the symlink body
to free stuff, ->follow_link() now should store it as opaque pointer in addition
to returning it.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Pull fourth vfs update from Al Viro:
"d_inode() annotations from David Howells (sat in for-next since before
the beginning of merge window) + four assorted fixes"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
RCU pathwalk breakage when running into a symlink overmounting something
fix I_DIO_WAKEUP definition
direct-io: only inc/dec inode->i_dio_count for file systems
fs/9p: fix readdir()
VFS: assorted d_backing_inode() annotations
VFS: fs/inode.c helpers: d_inode() annotations
VFS: fs/cachefiles: d_backing_inode() annotations
VFS: fs library helpers: d_inode() annotations
VFS: assorted weird filesystems: d_inode() annotations
VFS: normal filesystems (and lustre): d_inode() annotations
VFS: security/: d_inode() annotations
VFS: security/: d_backing_inode() annotations
VFS: net/: d_inode() annotations
VFS: net/unix: d_backing_inode() annotations
VFS: kernel/: d_inode() annotations
VFS: audit: d_backing_inode() annotations
VFS: Fix up some ->d_inode accesses in the chelsio driver
VFS: Cachefiles should perform fs modifications on the top layer only
VFS: AF_UNIX sockets should call mknod on the top layer only
that's the bulk of filesystem drivers dealing with inodes of their own
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
We want to drop all I/O path locks when recalling layouts, and that includes
i_mutex for the write path. Without this we get stuck processe when recalls
take too long.
[dchinner: fix build with !CONFIG_PNFS]
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Whiteouts are used by overlayfs - it has a crazy convention that a
whiteout is a character device inode with a major:minor of 0:0.
Because it's not documented anywhere, here's an example of what
RENAME_WHITEOUT does on ext4:
# echo foo > /mnt/scratch/foo
# echo bar > /mnt/scratch/bar
# ls -l /mnt/scratch
total 24
-rw-r--r-- 1 root root 4 Feb 11 20:22 bar
-rw-r--r-- 1 root root 4 Feb 11 20:22 foo
drwx------ 2 root root 16384 Feb 11 20:18 lost+found
# src/renameat2 -w /mnt/scratch/foo /mnt/scratch/bar
# ls -l /mnt/scratch
total 20
-rw-r--r-- 1 root root 4 Feb 11 20:22 bar
c--------- 1 root root 0, 0 Feb 11 20:23 foo
drwx------ 2 root root 16384 Feb 11 20:18 lost+found
# cat /mnt/scratch/bar
foo
#
In XFS rename terms, the operation that has been done is that source
(foo) has been moved to the target (bar), which is like a nomal
rename operation, but rather than the source being removed, it have
been replaced with a whiteout.
We can't allocate whiteout inodes within the rename transaction due
to allocation being a multi-commit transaction: rename needs to
be a single, atomic commit. Hence we have several options here, form
most efficient to least efficient:
- use DT_WHT in the target dirent and do no whiteout inode
allocation. The main issue with this approach is that we need
hooks in lookup to create a virtual chardev inode to present
to userspace and in places where we might need to modify the
dirent e.g. unlink. Overlayfs also needs to be taught about
DT_WHT. Most invasive change, lowest overhead.
- create a special whiteout inode in the root directory (e.g. a
".wino" dirent) and then hardlink every new whiteout to it.
This means we only need to create a single whiteout inode, and
rename simply creates a hardlink to it. We can use DT_WHT for
these, though using DT_CHR means we won't have to modify
overlayfs, nor anything in userspace. Downside is we have to
look up the whiteout inode on every operation and create it if
it doesn't exist.
- copy ext4: create a special whiteout chardev inode for every
whiteout. This is more complex than the above options because
of the lack of atomicity between inode creation and the rename
operation, requiring us to create a tmpfile inode and then
linking it into the directory structure during the rename. At
least with a tmpfile inode crashes between the create and
rename doesn't leave unreferenced inodes or directory
pollution around.
By far the simplest thing to do in the short term is to copy ext4.
While it is the most inefficient way of supporting whiteouts, but as
an initial implementation we can simply reuse existing functions and
add a small amount of extra code the the rename operation.
When we get full whiteout support in the VFS (via the dentry cache)
we can then look to supporting DT_WHT method outlined as the first
method of supporting whiteouts. But until then, we'll stick with
what overlayfs expects us to be: dumb and stupid.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Al Viro noticed a generic set of issues to do with filehandle lookup
racing with dentry cache setup. They involve a filehandle lookup
occurring while an inode is being created and the filehandle lookup
racing with the dentry creation for the real file. This can lead to
multiple dentries for the one path being instantiated. There are a
host of other issues around this same set of paths.
The underlying cause is that file handle lookup only waits on inode
cache instantiation rather than full dentry cache instantiation. XFS
is mostly immune to the problems discovered due to it's own internal
inode cache, but there are a couple of corner cases where races can
happen.
We currently clear the XFS_INEW flag when the inode is fully set up
after insertion into the cache. Newly allocated inodes are inserted
locked and so aren't usable until the allocation transaction
commits. This, however, occurs before the dentry and security
information is fully initialised and hence the inode is unlocked and
available for lookups to find too early.
To solve the problem, only clear the XFS_INEW flag for newly created
inodes once the dentry is fully instantiated. This means lookups
will retry until the XFS_INEW flag is removed from the inode and
hence avoids the race conditions in questions.
THis also means that xfs_create(), xfs_create_tmpfile() and
xfs_symlink() need to finish the setup of the inode in their error
paths if we had allocated the inode but failed later in the creation
process. xfs_symlink(), in particular, needed a lot of help to make
it's error handling match that of xfs_create().
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
A new fsync vs power fail test in xfstests indicated that XFS can
have unreliable data consistency when doing extending truncates that
require block zeroing. The blocks beyond EOF get zeroed in memory,
but we never force those changes to disk before we run the
transaction that extends the file size and exposes those blocks to
userspace. This can result in the blocks not being correctly zeroed
after a crash.
Because in-memory behaviour is correct, tools like fsx don't pick up
any coherency problems - it's not until the filesystem is shutdown
or the system crashes after writing the truncate transaction to the
journal but before the zeroed data in the page cache is flushed that
the issue is exposed.
Fix this by also flushing the dirty data in memory region between
the old size and new size when we've found blocks that need zeroing
in the truncate process.
Reported-by: Liu Bo <bo.li.liu@oracle.com>
cc: <stable@vger.kernel.org>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Now that truncate locks out new page faults, we no longer need to do
special writeback hacks in truncate to work around potential races
between page faults, page cache truncation and file size updates to
ensure we get write page faults for extending truncates on sub-page
block size filesystems. Hence we can remove the code in
xfs_setattr_size() that handles this and update the comments around
the code tha thandles page cache truncate and size updates to
reflect the new reality.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Now we have the i_mmap_lock being held across the page fault IO
path, we now add extent manipulation operation exclusion by adding
the lock to the paths that directly modify extent maps. This
includes truncate, hole punching and other fallocate based
operations. The operations will now take both the i_iolock and the
i_mmaplock in exclusive mode, thereby ensuring that all IO and page
faults block without holding any page locks while the extent
manipulation is in progress.
This gives us the lock order during truncate of i_iolock ->
i_mmaplock -> page_lock -> i_lock, hence providing the same
lock order as the iolock provides the normal IO path without
involving the mmap_sem.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Recall all outstanding pNFS layouts and truncates, writes and similar extent
list modifying operations.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Add operations to export pNFS block layouts from an XFS filesystem. See
the previous commit adding the operations for an explanation of them.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Adds a new function named xfs_cross_rename(), responsible for
handling requests from sys_renameat2() using RENAME_EXCHANGE flag.
Signed-off-by: Carlos Maiolino <cmaiolino@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
To be able to support RENAME_EXCHANGE flag from renameat2() system
call, XFS must have its inode_operations updated, exporting .rename2
method, instead of .rename.
This patch just replaces the (now old) .rename method by .rename2,
using the same infra-structure, but checking rename flags. Calls to
.rename2 using RENAME_EXCHANGE flag, although now handled inside
XFS, still return -EINVAL.
RENAME_NOREPLACE is handled via VFS and we don't need to care about
it inside xfs_vn_rename.
Signed-off-by: Carlos Maiolino <cmaiolino@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
These functions are needed in userspace for repair and mkfs to
do the right thing. Move them to libxfs so they can be easily
shared.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
More on-disk format consolidation.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
More on-disk format consolidation. A few declarations that weren't on-disk
format related move into better suitable spots.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
More consolidatation for the on-disk format defintions. Note that the
XFS_IS_REALTIME_INODE moves to xfs_linux.h instead as it is not related
to the on disk format, but depends on a CONFIG_ option.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
On a sub-page sized filesystem, truncating a mapped region down
leaves us in a world of hurt. We truncate the pagecache, zeroing the
newly unused tail, then punch blocks out from under the page. If we
then truncate the file back up immediately, we expose that unmapped
hole to a dirty page mapped into the user application, and that's
where it all goes wrong.
In truncating the page cache, we avoid unmapping the tail page of
the cache because it still contains valid data. The problem is that
it also contains a hole after the truncate, but nobody told the mm
subsystem that. Therefore, if the page is dirty before the truncate,
we'll never get a .page_mkwrite callout after we extend the file and
the application writes data into the hole on the page. Hence when
we come to writing that region of the page, it has no blocks and no
delayed allocation reservation and hence we toss the data away.
This patch adds code to the truncate up case to solve it, by
ensuring the partial page at the old EOF is always cleaned after we
do any zeroing and move the EOF upwards. We can't actually serialise
the page writeback and truncate against page faults (yes, that
problem AGAIN) so this is really just a best effort and assumes it
is extremely unlikely that someone is concurrently writing to the
page at the EOF while extending the file.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The offset and length parameters are converted from bytes to basic
blocks by xfs_vn_fiemap(). The BTOBB() converter rounds the value up to
the nearest basic block. This leads to unexpected behavior when
unaligned offsets are provided to FIEMAP.
Fix the conversions of byte values to block values to cover the provided
offsets. Round down the start offset to the nearest basic block.
Calculate the end offset based on the provided values, round up and
calculate length based on the start block offset.
Reported-by: Chandan Rajendra <chandan@linux.vnet.ibm.com>
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Convert all the errors the core XFs code to negative error signs
like the rest of the kernel and remove all the sign conversion we
do in the interface layers.
Errors for conversion (and comparison) found via searches like:
$ git grep " E" fs/xfs
$ git grep "return E" fs/xfs
$ git grep " E[A-Z].*;$" fs/xfs
Negation points found via searches like:
$ git grep "= -[a-z,A-Z]" fs/xfs
$ git grep "return -[a-z,A-D,F-Z]" fs/xfs
$ git grep " -[a-z].*;" fs/xfs
[ with some bits I missed from Brian Foster ]
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
XFS_ERROR was designed long ago to trap return values, but it's not
runtime configurable, it's not consistently used, and we can do
similar error trapping with ftrace scripts and triggers from
userspace.
Just nuke XFS_ERROR and associated bits.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
truncate_setsize() removes pages from the page cache, and hence
requires page locks to be held. It is not valid to lock a page cache
page inside a transaction context as we can hold page locks when we
we reserve space for a transaction. If we do, then we expose an ABBA
deadlock between log space reservation and page locks.
That is, both the write path and writeback lock a page, then start a
transaction for block allocation, which means they can block waiting
for a log reservation with the page lock held. If we hold a log
reservation and then do something that locks a page (e.g.
truncate_setsize in xfs_setattr_size) then that page lock can block
on the page locked and waiting for a log reservation. If the
transaction that is waiting for the page lock is the only active
transaction in the system that can free log space via a commit,
then writeback will never make progress and so log space will never
free up.
This issue with xfs_setattr_size() was introduced back in 2010 by
commit fa9b227 ("xfs: new truncate sequence") which moved the page
cache truncate from outside the transaction context (what was
xfs_itruncate_data()) to inside the transaction context as a call to
truncate_setsize().
The reason truncate_setsize() was located where in this place was
that we can't shouldn't change the file size until after we are in
the transaction context and the operation will either succeed or
shut down the filesystem on failure. However, block_truncate_page()
already modifies the file contents before we enter the transaction
context, so we can't really fulfill this guarantee in any way. Hence
we may as well ensure that on success or failure, the in-memory
inode and data is truncated away and that the application cleans up
the mess appropriately.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The current tmpfile handler does not initialize default ACLs. Doing so
within xfs_vn_tmpfile() makes it roughly equivalent to xfs_vn_mknod(),
which is already used as a common create handler.
xfs_vn_mknod() does not currently have a mechanism to determine whether
to link the file into the namespace. Therefore, further abstract
xfs_vn_mknod() into a new xfs_generic_create() handler with a tmpfile
parameter. This new handler calls xfs_create_tmpfile() and d_tmpfile()
on the dentry when called via ->tmpfile().
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
xfstests generic/004 reproduces an ilock deadlock using the tmpfile
interface when selinux is enabled. This occurs because
xfs_create_tmpfile() takes the ilock and then calls d_tmpfile(). The
latter eventually calls into xfs_xattr_get() which attempts to get the
lock again. E.g.:
xfs_io D ffffffff81c134c0 4096 3561 3560 0x00000080
ffff8801176a1a68 0000000000000046 ffff8800b401b540 ffff8801176a1fd8
00000000001d5800 00000000001d5800 ffff8800b401b540 ffff8800b401b540
ffff8800b73a6bd0 fffffffeffffffff ffff8800b73a6bd8 ffff8800b5ddb480
Call Trace:
[<ffffffff8177f969>] schedule+0x29/0x70
[<ffffffff81783a65>] rwsem_down_read_failed+0xc5/0x120
[<ffffffffa05aa97f>] ? xfs_ilock_attr_map_shared+0x1f/0x50 [xfs]
[<ffffffff813b3434>] call_rwsem_down_read_failed+0x14/0x30
[<ffffffff810ed179>] ? down_read_nested+0x89/0xa0
[<ffffffffa05aa7f2>] ? xfs_ilock+0x122/0x250 [xfs]
[<ffffffffa05aa7f2>] xfs_ilock+0x122/0x250 [xfs]
[<ffffffffa05aa97f>] xfs_ilock_attr_map_shared+0x1f/0x50 [xfs]
[<ffffffffa05701d0>] xfs_attr_get+0x90/0xe0 [xfs]
[<ffffffffa0565e07>] xfs_xattr_get+0x37/0x50 [xfs]
[<ffffffff8124842f>] generic_getxattr+0x4f/0x70
[<ffffffff8133fd9e>] inode_doinit_with_dentry+0x1ae/0x650
[<ffffffff81340e0c>] selinux_d_instantiate+0x1c/0x20
[<ffffffff813351bb>] security_d_instantiate+0x1b/0x30
[<ffffffff81237db0>] d_instantiate+0x50/0x70
[<ffffffff81237e85>] d_tmpfile+0xb5/0xc0
[<ffffffffa05add02>] xfs_create_tmpfile+0x362/0x410 [xfs]
[<ffffffffa0559ac8>] xfs_vn_tmpfile+0x18/0x20 [xfs]
[<ffffffff81230388>] path_openat+0x228/0x6a0
[<ffffffff810230f9>] ? sched_clock+0x9/0x10
[<ffffffff8105a427>] ? kvm_clock_read+0x27/0x40
[<ffffffff8124054f>] ? __alloc_fd+0xaf/0x1f0
[<ffffffff8123101a>] do_filp_open+0x3a/0x90
[<ffffffff817845e7>] ? _raw_spin_unlock+0x27/0x40
[<ffffffff8124054f>] ? __alloc_fd+0xaf/0x1f0
[<ffffffff8121e3ce>] do_sys_open+0x12e/0x210
[<ffffffff8121e4ce>] SyS_open+0x1e/0x20
[<ffffffff8178eda9>] system_call_fastpath+0x16/0x1b
xfs_vn_tmpfile() also fails to initialize security on the newly created
inode.
Pull the d_tmpfile() call up into xfs_vn_tmpfile() after the transaction
has been committed and the inode unlocked. Also, initialize security on
the inode based on the parent directory provided via the tmpfile call.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The change to add the IO lock to protect the directory extent map
during readdir operations has cause lockdep to have a heart attack
as it now sees a different locking order on inodes w.r.t. the
mmap_sem because readdir has a different ordering to write().
Add a new lockdep class for directory inodes to avoid this false
positive.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <david@fromorbit.com>
The VFS doesn't set the proper ATTR_CTIME and ATTR_MTIME values for
truncate, so filesystems have to manually add them. The
introduction of xfs_setattr_time accidentally broke this special
case an caused a regression in generic/313. Fix this by removing
the local mask variable in xfs_setattr_size so that we only have a
single place to keep the attribute information.
cc: <stable@vger.kernel.org>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reported-by: Fengguang Wu <fengguang.wu@intel.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Jie Liu <jeff.liu@oracle.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
Pull vfs updates from Al Viro:
"Assorted stuff; the biggest pile here is Christoph's ACL series. Plus
assorted cleanups and fixes all over the place...
There will be another pile later this week"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (43 commits)
__dentry_path() fixes
vfs: Remove second variable named error in __dentry_path
vfs: Is mounted should be testing mnt_ns for NULL or error.
Fix race when checking i_size on direct i/o read
hfsplus: remove can_set_xattr
nfsd: use get_acl and ->set_acl
fs: remove generic_acl
nfs: use generic posix ACL infrastructure for v3 Posix ACLs
gfs2: use generic posix ACL infrastructure
jfs: use generic posix ACL infrastructure
xfs: use generic posix ACL infrastructure
reiserfs: use generic posix ACL infrastructure
ocfs2: use generic posix ACL infrastructure
jffs2: use generic posix ACL infrastructure
hfsplus: use generic posix ACL infrastructure
f2fs: use generic posix ACL infrastructure
ext2/3/4: use generic posix ACL infrastructure
btrfs: use generic posix ACL infrastructure
fs: make posix_acl_create more useful
fs: make posix_acl_chmod more useful
...
Also don't bother to set up a .get_acl method for symlinks as we do not
support access control (ACLs or even mode bits) for symlinks in Linux,
and create inodes with the proper mode instead of fixing it up later.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Add two functions xfs_create_tmpfile() and xfs_vn_tmpfile()
to support O_TMPFILE file creation.
In contrast to xfs_create(), xfs_create_tmpfile() has a different
log reservation to the regular file creation because there is no
directory modification, and doesn't check if an entry can be added
to the directory, but the reservation quotas is required appropriately,
and finally its inode is added to the unlinked list.
xfs_vn_tmpfile() add one O_TMPFILE method to VFS interface and directly
invoke xfs_create_tmpfile().
Signed-off-by: Zhi Yong Wu <wuzhy@linux.vnet.ibm.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
For CRC enabled v5 super block, change a file's ownership can simply
trigger an ASSERT failure at xfs_setattr_nonsize() if both group and
project quota are enabled, i.e,
[ 305.337609] XFS: Assertion failed: !XFS_IS_PQUOTA_ON(mp), file: fs/xfs/xfs_iops.c, line: 621
[ 305.339250] Kernel BUG at ffffffffa0a7fa32 [verbose debug info unavailable]
[ 305.383939] Call Trace:
[ 305.385536] [<ffffffffa0a7d95a>] xfs_setattr_nonsize+0x69a/0x720 [xfs]
[ 305.387142] [<ffffffffa0a7dea9>] xfs_vn_setattr+0x29/0x70 [xfs]
[ 305.388727] [<ffffffff811ca388>] notify_change+0x1a8/0x350
[ 305.390298] [<ffffffff811ac39d>] chown_common+0xfd/0x110
[ 305.391868] [<ffffffff811ad6bf>] SyS_fchownat+0xaf/0x110
[ 305.393440] [<ffffffff811ad760>] SyS_lchown+0x20/0x30
[ 305.394995] [<ffffffff8170f7dd>] system_call_fastpath+0x1a/0x1f
[ 305.399870] RIP [<ffffffffa0a7fa32>] assfail+0x22/0x30 [xfs]
This fix adjust the assertion to check if the super block support both
quota inodes or not.
Signed-off-by: Jie Liu <jeff.liu@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
(cherry picked from commit 5a01dd54f4)
For CRC enabled v5 super block, change a file's ownership can simply
trigger an ASSERT failure at xfs_setattr_nonsize() if both group and
project quota are enabled, i.e,
[ 305.337609] XFS: Assertion failed: !XFS_IS_PQUOTA_ON(mp), file: fs/xfs/xfs_iops.c, line: 621
[ 305.339250] Kernel BUG at ffffffffa0a7fa32 [verbose debug info unavailable]
[ 305.383939] Call Trace:
[ 305.385536] [<ffffffffa0a7d95a>] xfs_setattr_nonsize+0x69a/0x720 [xfs]
[ 305.387142] [<ffffffffa0a7dea9>] xfs_vn_setattr+0x29/0x70 [xfs]
[ 305.388727] [<ffffffff811ca388>] notify_change+0x1a8/0x350
[ 305.390298] [<ffffffff811ac39d>] chown_common+0xfd/0x110
[ 305.391868] [<ffffffff811ad6bf>] SyS_fchownat+0xaf/0x110
[ 305.393440] [<ffffffff811ad760>] SyS_lchown+0x20/0x30
[ 305.394995] [<ffffffff8170f7dd>] system_call_fastpath+0x1a/0x1f
[ 305.399870] RIP [<ffffffffa0a7fa32>] assfail+0x22/0x30 [xfs]
This fix adjust the assertion to check if the super block support both
quota inodes or not.
Signed-off-by: Jie Liu <jeff.liu@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
Split out a xfs_setattr_time helper to share code between truncate and
regular setattr similar to xfs_setattr_mode. I might also have another
caller growing for this in the near future.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Remove the pointless tp argument, and properly align the local variable
declarations.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Page cache allocation doesn't always go through ->begin_write and
hence we don't always get the opportunity to set the allocation
context to GFP_NOFS. Failing to do this means we open up the direct
relcaim stack to recurse into the filesystem and consume a
significant amount of stack.
On RHEL6.4 kernels we are seeing ra_submit() and
generic_file_splice_read() from an nfsd context recursing into the
filesystem via the inode cache shrinker and evicting inodes. This is
causing truncation to be run (e.g EOF block freeing) and causing
bmap btree block merges and free space btree block splits to occur.
These btree manipulations are occurring with the call chain already
30 functions deep and hence there is not enough stack space to
complete such operations.
To avoid these specific overruns, we need to prevent the page cache
allocation from recursing via direct reclaim. We can do that because
the allocation functions take the allocation context from that which
is stored in the mapping for the inode. We don't set that right now,
so the default is GFP_HIGHUSER_MOVABLE, which is effectively a
GFP_KERNEL context. We need it to be the equivalent of GFP_NOFS, so
when we initialise an inode, set the mapping gfp mask appropriately.
This makes the use of AOP_FLAG_NOFS redundant from other parts of
the XFS IO path, so get rid of it.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
The remaining non-vectorised code for the directory structure is the
node format blocks. This is shared with the attribute tree, and so
is slightly more complex to vectorise.
Introduce a "non-directory" directory ops structure that is attached
to all non-directory inodes so that attribute operations can be
vectorised for all inodes.
Once we do this, we can vectorise all the da btree operations.
Because this patch adds more infrastructure than it removes the
binary size does not decrease:
text data bss dec hex filename
794490 96802 1096 892388 d9de4 fs/xfs/xfs.o.orig
792986 96802 1096 890884 d9804 fs/xfs/xfs.o.p1
792350 96802 1096 890248 d9588 fs/xfs/xfs.o.p2
789293 96802 1096 887191 d8997 fs/xfs/xfs.o.p3
789005 96802 1096 886903 d8997 fs/xfs/xfs.o.p4
789061 96802 1096 886959 d88af fs/xfs/xfs.o.p5
789733 96802 1096 887631 d8b4f fs/xfs/xfs.o.p6
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Lots of the dir code now goes through switches to determine what is
the correct on-disk format to parse. It generally involves a
"xfs_sbversion_hasfoo" check, deferencing the superblock version and
feature fields and hence touching several cache lines per operation
in the process. Some operations do multiple checks because they nest
conditional operations and they don't pass the information in a
direct fashion between each other.
Hence, add an ops vector to the xfs_inode structure that is
configured when the inode is initialised to point to all the correct
decode and encoding operations. This will significantly reduce the
branchiness and cacheline footprint of the directory object decoding
and encoding.
This is the first patch in a series of conversion patches. It will
introduce the ops structure, the setup of it and add the first
operation to the vector. Subsequent patches will convert directory
ops one at a time to keep the changes simple and obvious.
Just this patch shows the benefit of such an approach on code size.
Just converting the two shortform dir operations as this patch does
decreases the built binary size by ~1500 bytes:
$ size fs/xfs/xfs.o.orig fs/xfs/xfs.o.p1
text data bss dec hex filename
794490 96802 1096 892388 d9de4 fs/xfs/xfs.o.orig
792986 96802 1096 890884 d9804 fs/xfs/xfs.o.p1
$
That's a significant decrease in the instruction cache footprint of
the directory code for such a simple change, and indicates that this
approach is definitely worth pursuing further.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
Currently the xfs_inode.h header has a dependency on the definition
of the BMAP btree records as the inode fork includes an array of
xfs_bmbt_rec_host_t objects in it's definition.
Move all the btree format definitions from xfs_btree.h,
xfs_bmap_btree.h, xfs_alloc_btree.h and xfs_ialloc_btree.h to
xfs_format.h to continue the process of centralising the on-disk
format definitions. With this done, the xfs inode definitions are no
longer dependent on btree header files.
The enables a massive culling of unnecessary includes, with close to
200 #include directives removed from the XFS kernel code base.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
xfs_trans.h has a dependency on xfs_log.h for a couple of
structures. Most code that does transactions doesn't need to know
anything about the log, but this dependency means that they have to
include xfs_log.h. Decouple the xfs_trans.h and xfs_log.h header
files and clean up the includes to be in dependency order.
In doing this, remove the direct include of xfs_trans_reserve.h from
xfs_trans.h so that we remove the dependency between xfs_trans.h and
xfs_mount.h. Hence the xfs_trans.h include can be moved to the
indicate the actual dependencies other header files have on it.
Note that these are kernel only header files, so this does not
translate to any userspace changes at all.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
The on-disk format definitions for the directory and attribute
structures are spread across 3 header files right now, only one of
which is dedicated to defining on-disk structures and their
manipulation (xfs_dir2_format.h). Pull all the format definitions
into a single header file - xfs_da_format.h - and switch all the
code over to point at that.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
All of the buffer operations structures are needed to be exported
for xfs_db, so move them all to a common location rather than
spreading them all over the place. They are verifying the on-disk
format, so while xfs_format.h might be a good place, it is not part
of the on disk format.
Hence we need to create a new header file that we centralise these
related definitions. Start by moving the bffer operations
structures, and then also move all the other definitions that have
crept into xfs_log_format.h and xfs_format.h as there was no other
shared header file to put them in.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
There is no reason to conditionally take the iolock inside xfs_setattr_size
when we can let the caller handle it unconditionally, which just incrases
the lock hold time for the case where it was previously taken internally
by a few instructions.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Add support for the file type field in directory entries so that
readdir can return the type of the inode the dirent points to to
userspace without first having to read the inode off disk.
The encoding of the type field is a single byte that is added to the
end of the directory entry name length. For all intents and
purposes, it appends a "hidden" byte to the name field which
contains the type information. As the directory entry is already of
dynamic size, helpers are already required to access and decode the
direct entry structures.
Hence the relevent extraction and iteration helpers are updated to
understand the hidden byte. Helpers for reading and writing the
filetype field from the directory entries are also added. Only the
read helpers are used by this patch. It also adds all the code
necessary to read the type information out of the dirents on disk.
Further we add the superblock feature bit and helpers to indicate
that we understand the on-disk format change. This is not a
compatible change - existing kernels cannot read the new format
successfully - so an incompatible feature flag is added. We don't
yet allow filesystems to mount with this flag yet - that will be
added once write support is added.
Finally, the code to take the type from the VFS, convert it to an
XFS on-disk type and put it into the xfs_name structures passed
around is added, but the directory code does not use this field yet.
That will be in the next patch.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Use uint32 from init_user_ns for xfs internal uid/gid
representation in xfs_icdinode, xfs_dqid_t.
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Gao feng <gaofeng@cn.fujitsu.com>
Signed-off-by: Dwight Engen <dwight.engen@oracle.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
With the new xfs_trans_res structure has been introduced, the log
reservation size, log count as well as log flags are pre-initialized
at mount time. So it's time to refine xfs_trans_reserve() interface
to be more neat.
Also, introduce a new helper M_RES() to return a pointer to the
mp->m_resv structure to simplify the input.
Signed-off-by: Jie Liu <jeff.liu@oracle.com>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
There are a few small helper functions in xfs_util, all related to
xfs_inode modifications. Move them all to xfs_inode.c so all
xfs_inode operations are consiolidated in the one place.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Now we have xfs_inode.c for holding kernel-only XFS inode
operations, move all the inode operations from xfs_vnodeops.c to
this new file as it holds another set of kernel-only inode
operations. The name of this file traces back to the days of Irix
and it's vnodes which we don't have anymore.
Essentially this move consolidates the inode locking functions
and a bunch of XFS inode operations into the one file. Eventually
the high level functions will be merged into the VFS interface
functions in xfs_iops.c.
This leaves only internal preallocation, EOF block manipulation and
hole punching functions in vnodeops.c. Move these to xfs_bmap_util.c
where we are already consolidating various in-kernel physical extent
manipulation and querying functions.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
There is a bunch of code in xfs_bmap.c that is kernel specific and
not shared with userspace. To minimise the difference between the
kernel and userspace code, shift this unshared code to
xfs_bmap_util.c, and the declarations to xfs_bmap_util.h.
The biggest issue here is xfs_bmap_finish() - userspace has it's own
definition of this function, and so we need to move it out of
xfs_bmap.[ch]. This means several other files need to include
xfs_bmap_util.h as well.
It also introduces and interesting dance for the stack switching
code in xfs_bmapi_allocate(). The stack switching/workqueue code is
actually moved to xfs_bmap_util.c, so that userspace can simply use
a #define in a header file to connect the dots without needing to
know about the stack switch code at all.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
The on disk format definitions of the on-disk dquot, log formats and
quota off log formats are all intertwined with other definitions for
quotas. Separate them out into their own header file so they can
easily be shared with userspace.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Add project quota changes to all the places where group quota field
is used:
* add separate project quota members into various structures
* split project quota and group quotas so that instead of overriding
the group quota members incore, the new project quota members are
used instead
* get rid of usage of the OQUOTA flag incore, in favor of separate
group and project quota flags.
* add a project dquot argument to various functions.
Not using the pquotino field from superblock yet.
Signed-off-by: Chandra Seetharaman <sekharan@us.ibm.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
XFS removes sgid bits of subdirectories under a directory containing a default
acl.
When a default acl is set, it implies xfs to call xfs_setattr_nonsize() in its
code path. Such function is shared among mkdir and chmod system calls, and
does some checks unneeded by mkdir (calling inode_change_ok()). Such checks
remove sgid bit from the inode after it has been granted.
With this patch, we extend the meaning of XFS_ATTR_NOACL flag to avoid these
checks when acls are being inherited (thanks hch).
Also, xfs_setattr_mode, doesn't need to re-check for group id and capabilities
permissions, this only implies in another try to remove sgid bit from the
directories. Such check is already done either on inode_change_ok() or
xfs_setattr_nonsize().
Changelog:
V2: Extends the meaning of XFS_ATTR_NOACL instead of wrap the tests into another
function
V3: Remove S_ISDIR check in xfs_setattr_nonsize() from the patch
Signed-off-by: Carlos Maiolino <cmaiolino@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
For FIEMAP ioctl(2), if an extent is in delayed allocation
state, we need to return the FIEMAP_EXTENT_UNKNOWN flag except
the FIEMAP_EXTENT_DELALLOC because its data location is unknown.
Signed-off-by: Jie Liu <jeff.liu@oracle.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
XFS has failed to kill suid/sgid bits correctly when truncating
files of non-zero size since commit c4ed4243 ("xfs: split
xfs_setattr") introduced in the 3.1 kernel. Fix it.
Fix it.
cc: stable kernel <stable@vger.kernel.org>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
It is a complex wrapper around VFS functions, but there are VFS
functions that provide exactly the same functionality. Call the VFS
functions directly and remove the unnecessary indirection and
complexity.
We don't need to care about clearing the XFS_ITRUNCATED flag, as
that is done during .writepages. Hence is cleared by the VFS
writeback path if there is anything to write back during the flush.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Andrew Dahl <adahl@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Add the XFS_ICI_EOFBLOCKS_TAG inode tag to identify inodes with
speculatively preallocated blocks beyond EOF. An inode is tagged
when speculative preallocation occurs and untagged either via
truncate down or when post-EOF blocks are freed via release or
reclaim.
The tag management is intentionally not aggressive to prefer
simplicity over the complexity of handling all the corner cases
under which post-EOF blocks could be freed (i.e., forward
truncation, fallocate, write error conditions, etc.). This means
that a tagged inode may or may not have post-EOF blocks after a
period of time. The tag is eventually cleared when the inode is
released or reclaimed.
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Numerous cleanups and several bug fixes. Here are some highlights:
* Discontiguous directory buffer support
* Inode allocator refactoring
* Removal of the IO lock in inode reclaim
* Implementation of .update_time
* Fix for handling of EOF in xfs_vm_writepage
* Fix for races in xfsaild, and idle mode is re-enabled
* Fix for a crash in xfs_buf completion handlers on unmount.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.10 (GNU/Linux)
iQIcBAABAgAGBQJQFtCvAAoJENaLyazVq6ZOIuEQAINJXb4SK9oBrdwGmq+Vsqf2
Eh4OmzZmdnSPrxfFGmqvyL9DdUBvGBuidwOcVLMAXGtzbxE9USK9NuKC5zN/hJip
8tIyv/8bqZ0aD4RJlHGN5zKFoQh/9Tag+JsaaqWstO8Ir1tA/5p04hDAz492btfT
49SvnV64sJ1fi7pmaJblMWMMtlWJjD6iOldaHwnKBQ3LKmcgy9sD9DY5HiGOTr1j
ecKtucX7B8Q9oFLKHaKEwTYZRRYDNuTbqZmI6hlEcA5hT280jotsGA4q/aXx/gHS
lZuBaqVtNFT5WCKm+j/et76tmTfIh0CSbo64ZfgSOESy2BkEVXHg5XJ1gDvPdV+L
6eBlUx3jaiNyFVHxVzFhzwKC/XdaITCd/ixFEogRDmoppDXencTCibLJXHNXxupN
BCAyTLCxEJIE9WCeOMmwHA0450bMY4or13NGep57pIvG8GomtdG1WncTRIo84KV5
0W5ocaUTGP7ROsr+KF8U9C7H866OHzVFijA+vvcTy8GtsT/xOCFxuJrqPVb+kgD7
mIKaoK7iH6Kufu433TzsLEcUkF36gq/7NytPKjQhURLpZhxkHG3rq6LC0HXp6uuZ
QgX5Y5Gl7SwDovIrndXmQXRnGrzvqHLguZl65+rB1CKggjemkLSdSLhryoNVjLU2
iB7/hvzOUdYFMRRz2mLc
=2wkC
-----END PGP SIGNATURE-----
Merge tag 'for-linus-v3.6-rc1' of git://oss.sgi.com/xfs/xfs
Pull xfs update from Ben Myers:
"Numerous cleanups and several bug fixes. Here are some highlights:
- Discontiguous directory buffer support
- Inode allocator refactoring
- Removal of the IO lock in inode reclaim
- Implementation of .update_time
- Fix for handling of EOF in xfs_vm_writepage
- Fix for races in xfsaild, and idle mode is re-enabled
- Fix for a crash in xfs_buf completion handlers on unmount."
Fix up trivial conflicts in fs/xfs/{xfs_buf.c,xfs_log.c,xfs_log_priv.h}
due to duplicate patches that had already been merged for 3.5.
* tag 'for-linus-v3.6-rc1' of git://oss.sgi.com/xfs/xfs: (44 commits)
xfs: wait for the write the superblock on unmount
xfs: re-enable xfsaild idle mode and fix associated races
xfs: remove iolock lock classes
xfs: avoid the iolock in xfs_free_eofblocks for evicted inodes
xfs: do not take the iolock in xfs_inactive
xfs: remove xfs_inactive_attrs
xfs: clean up xfs_inactive
xfs: do not read the AGI buffer in xfs_dialloc until nessecary
xfs: refactor xfs_ialloc_ag_select
xfs: add a short cut to xfs_dialloc for the non-NULL agbp case
xfs: remove the alloc_done argument to xfs_dialloc
xfs: split xfs_dialloc
xfs: remove xfs_ialloc_find_free
Prefix IO_XX flags with XFS_IO_XX to avoid namespace colision.
xfs: remove xfs_inotobp
xfs: merge xfs_itobp into xfs_imap_to_bp
xfs: handle EOF correctly in xfs_vm_writepage
xfs: implement ->update_time
xfs: fix comment typo of struct xfs_da_blkinfo.
xfs: do not call xfs_bdstrat_cb in xfs_buf_iodone_callbacks
...
Use this new method to replace our hacky use of ->dirty_inode. An additional
benefit is that we can now propagate errors up the stack.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
boolean "does it have to be exclusive?" flag is passed instead;
Local filesystem should just ignore it - the object is guaranteed
not to be there yet.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Just the flags; only NFS cares even about that, but there are
legitimate uses for such argument. And getting rid of that
completely would require splitting ->lookup() into a couple
of methods (at least), so let's leave that alone for now...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
With the removal of xfs_rw.h and other changes over time, xfs_bit.h
is being included in many files that don't actually need it. Clean
up the includes as necessary.
Also move the only-used-once xfs_ialloc_find_free() static inline
function out of a header file that is widely included to reduce
the number of needless dependencies on xfs_bit.h.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
The only thing left in xfs_rw.h is a function prototype for an inode
function. Move that to xfs_inode.h, and kill xfs_rw.h.
Also move the function implementing the prototype from xfs_rw.c to
xfs_inode.c so we only have one function left in xfs_rw.c
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
Untangle the header file includes a bit by moving the definition of
xfs_agino_t to xfs_types.h. This removes the dependency that xfs_ag.h has on
xfs_inum.h, meaning we don't need to include xfs_inum.h everywhere we include
xfs_ag.h.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
Instead of calling xfs_zero_eof with the ilock held only take it internally
for the minimall required critical section around xfs_bmapi_read. This
also requires changing the calling convention for xfs_zero_last_block
slightly. The actual zeroing operation is still serialized by the iolock,
which must be taken exclusively over the call to xfs_zero_eof.
We could in fact use a shared lock for the xfs_bmapi_read calls as long as
the extent list has been read in, but given that we already hold the iolock
exclusively there is little reason to micro optimize this further.
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
We do not need the ilock for most checks done in the beginning of
xfs_setattr_size. Replace the long critical section before starting the
transaction with a smaller one around xfs_zero_eof and an optional one
inside xfs_qm_dqattach that isn't entered unless using quotas. While
this isn't a big optimization for xfs_setattr_size itself it will allow
pushing the ilock into xfs_zero_eof itself later.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Timestamps on regular files are the last metadata that XFS does not update
transactionally. Now that we use the delaylog mode exclusively and made
the log scode scale extremly well there is no need to bypass that code for
timestamp updates. Logging all updates allows to drop a lot of code, and
will allow for further performance improvements later on.
Note that this patch drops optimized handling of fdatasync - it will be
added back in a separate commit.
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
There is no fundamental need to keep an in-memory inode size copy in the XFS
inode. We already have the on-disk value in the dinode, and the separate
in-memory copy that we need for regular files only in the XFS inode.
Remove the xfs_inode i_size field and change the XFS_ISIZE macro to use the
VFS inode i_size field for regular files. Switch code that was directly
accessing the i_size field in the xfs_inode to XFS_ISIZE, or in cases where
we are limited to regular files direct access of the VFS inode i_size field.
This also allows dropping some fairly complicated code in the write path
which dealt with keeping the xfs_inode i_size uptodate with the VFS i_size
that is getting updated inside ->write_end.
Note that we do not bother resetting the VFS i_size when truncating a file
that gets freed to zero as there is no point in doing so because the VFS inode
is no longer in use at this point. Just relax the assert in xfs_ifree to
only check the on-disk size instead.
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
This wrapper isn't overly useful, not to say rather confusing.
Around the call to xfs_itruncate_extents it does:
- add tracing
- add a few asserts in debug builds
- conditionally update the inode size in two places
- log the inode
Both the tracing and the inode logging can be moved to xfs_itruncate_extents
as they are useful for the attribute fork as well - in fact the attr code
already does an equivalent xfs_trans_log_inode call just after calling
xfs_itruncate_extents. The conditional size updates are a mess, and there
was no reason to do them in two places anyway, as the first one was
conditional on the inode having extents - but without extents we
xfs_itruncate_extents would be a no-op and the placement wouldn't matter
anyway. Instead move the size assignments and the asserts that make sense
to the callers that want it.
As a side effect of this clean up xfs_setattr_size by introducing variables
for the old and new inode size, and moving the size updates into a common
place.
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
vfs_create() ignores everything outside of 16bit subset of its
mode argument; switching it to umode_t is obviously equivalent
and it's the only caller of the method
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
vfs_mkdir() gets int, but immediately drops everything that might not
fit into umode_t and that's the only caller of ->mkdir()...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Replace remaining direct i_nlink updates with a new set_nlink()
updater function.
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Tested-by: Toshiyuki Okajima <toshi.okajima@jp.fujitsu.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
* 'for-linus' of git://oss.sgi.com/xfs/xfs: (69 commits)
xfs: add AIL pushing tracepoints
xfs: put in missed fix for merge problem
xfs: do not flush data workqueues in xfs_flush_buftarg
xfs: remove XFS_bflush
xfs: remove xfs_buf_target_name
xfs: use xfs_ioerror_alert in xfs_buf_iodone_callbacks
xfs: clean up xfs_ioerror_alert
xfs: clean up buffer allocation
xfs: remove buffers from the delwri list in xfs_buf_stale
xfs: remove XFS_BUF_STALE and XFS_BUF_SUPER_STALE
xfs: remove XFS_BUF_SET_VTYPE and XFS_BUF_SET_VTYPE_REF
xfs: remove XFS_BUF_FINISH_IOWAIT
xfs: remove xfs_get_buftarg_list
xfs: fix buffer flushing during unmount
xfs: optimize fsync on directories
xfs: reduce the number of log forces from tail pushing
xfs: Don't allocate new buffers on every call to _xfs_buf_find
xfs: simplify xfs_trans_ijoin* again
xfs: unlock the inode before log force in xfs_change_file_space
xfs: unlock the inode before log force in xfs_fs_nfs_commit_metadata
...
* 'next' of git://selinuxproject.org/~jmorris/linux-security: (95 commits)
TOMOYO: Fix incomplete read after seek.
Smack: allow to access /smack/access as normal user
TOMOYO: Fix unused kernel config option.
Smack: fix: invalid length set for the result of /smack/access
Smack: compilation fix
Smack: fix for /smack/access output, use string instead of byte
Smack: domain transition protections (v3)
Smack: Provide information for UDS getsockopt(SO_PEERCRED)
Smack: Clean up comments
Smack: Repair processing of fcntl
Smack: Rule list lookup performance
Smack: check permissions from user space (v2)
TOMOYO: Fix quota and garbage collector.
TOMOYO: Remove redundant tasklist_lock.
TOMOYO: Fix domain transition failure warning.
TOMOYO: Remove tomoyo_policy_memory_lock spinlock.
TOMOYO: Simplify garbage collector.
TOMOYO: Fix make namespacecheck warnings.
target: check hex2bin result
encrypted-keys: check hex2bin result
...
There is no reason to keep a reference to the inode even if we unlock
it during transaction commit because we never drop a reference between
the ijoin and commit. Also use this fact to merge xfs_trans_ijoin_ref
back into xfs_trans_ijoin - the third argument decides if an unlock
is needed now.
I'm actually starting to wonder if allowing inodes to be unlocked
at transaction commit really is worth the effort. The only real
benefit is that they can be unlocked earlier when commiting a
synchronous transactions, but that could be solved by doing the
log force manually after the unlock, too.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
An attribute of inode can be fetched via xfs_vn_getattr() in XFS.
Currently it returns EIO, not negative value, when it failed. As a
result, the system call returns not negative value even though an
error occured. The stat(2), ls and mv commands cannot handle this
error and do not work correctly.
This patch fixes this bug, and returns -EIO, not EIO when an error
is detected in xfs_vn_getattr().
Signed-off-by: Mitsuo Hayasaka <mitsuo.hayasaka.hu@hitachi.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
We now have an i_dio_count filed and surrounding infrastructure to wait
for direct I/O completion instead of i_icount, and we have never needed
to iocount waits for buffered I/O given that we only set the page uptodate
after finishing all required work. Thus remove i_iocount, and replace
the actually needed waits with calls to inode_dio_wait.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Alex Elder <aelder@sgi.com>
The current code relies on the xfs_ioend_wait call later on to make sure
all I/O actually has completed. The xfs_ioend_wait call will go away soon,
so prepare for that by using the waiting filemap function.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Alex Elder <aelder@sgi.com>
During umount we do not add a dirty inode to the lru and wait for it to
become clean first, but force writeback of data and metadata with
I_WILL_FREE set. Currently there is no way for XFS to detect that the
inode has been redirtied for metadata operations, as we skip the
mark_inode_dirty call during teardown. Fix this by setting i_update_core
nanually in that case, so that the inode gets flushed during inode reclaim.
Alternatively we could enable calling mark_inode_dirty for inodes in
I_WILL_FREE state, and let the VFS dirty tracking handle this. I decided
against this as we will get better I/O patterns from reclaim compared to
the synchronous writeout in write_inode_now, and always marking the inode
dirty in some way from xfs_mark_inode_dirty is a better safetly net in
either case.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Alex Elder <aelder@sgi.com>
(cherry picked from commit da6742a5a4cc844a9982fdd936ddb537c0747856)
Signed-off-by: Alex Elder <aelder@sgi.com>
Use the move from Linux 2.6 to Linux 3.x as an excuse to kill the
annoying subdirectories in the XFS source code. Besides the large
amount of file rename the only changes are to the Makefile, a few
files including headers with the subdirectory prefix, and the binary
sysctl compat code that includes a header under fs/xfs/ from
kernel/.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>