In commit bb952bb98a there was the accidental
deletion of a statement from call_sbin_request_key() to render the process
keyring ID to a text string so that it can be passed to /sbin/request-key.
With gcc 4.6.0 this causes the following warning:
CC security/keys/request_key.o
security/keys/request_key.c: In function 'call_sbin_request_key':
security/keys/request_key.c:102:15: warning: variable 'prkey' set but not used
This patch reinstates that statement.
Without this statement, /sbin/request-key will get some random rubbish from the
stack as that parameter.
Signed-off-by: Justin P. Mattock <justinmattock@gmail.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
keyctl_describe_key() turns the key reference it gets into a usable key pointer
and assigns that to a variable called 'key', which it then ignores in favour of
recomputing the key pointer each time it needs it. Make it use the precomputed
pointer instead.
Without this patch, gcc 4.6 reports that the variable key is set but not used:
building with gcc 4.6 I'm getting a warning message:
CC security/keys/keyctl.o
security/keys/keyctl.c: In function 'keyctl_describe_key':
security/keys/keyctl.c:472:14: warning: variable 'key' set but not used
Reported-by: Justin P. Mattock <justinmattock@gmail.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
Make /proc/keys check to see if the calling process possesses each key before
performing the security check. The possession check can be skipped if the key
doesn't have the possessor-view permission bit set.
This causes the keys a process possesses to show up in /proc/keys, even if they
don't have matching user/group/other view permissions.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
Authorise a process to perform keyctl_set_timeout() on an uninstantiated key if
that process has the authorisation key for it.
This allows the instantiator to set the timeout on a key it is instantiating -
provided it does it before instantiating the key.
For instance, the test upcall script provided with the keyutils package could
be modified to set the expiry to an hour hence before instantiating the key:
[/usr/share/keyutils/request-key-debug.sh]
if [ "$3" != "neg" ]
then
+ keyctl timeout $1 3600
keyctl instantiate $1 "Debug $3" $4 || exit 1
else
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
This is from a Smatch check I'm writing.
strncpy_from_user() returns -EFAULT on error so the first change just
silences a warning but doesn't change how the code works.
The other change is a bug fix because install_thread_keyring_to_cred()
can return a variety of errors such as -EINVAL, -EEXIST, -ENOMEM or
-EKEYREVOKED.
Signed-off-by: Dan Carpenter <error27@gmail.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
No functional changes.
keyctl_session_to_parent() is the only user of signal->count which needs
the correct value. Change it to use thread_group_empty() instead, this
must be strictly equivalent under tasklist, and imho looks better.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: David Howells <dhowells@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Acked-by: Roland McGrath <roland@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
call_usermodehelper_keys() uses call_usermodehelper_setkeys() to change
subprocess_info->cred in advance. Now that we have info->init() we can
change this code to set tgcred->session_keyring in context of execing
kernel thread.
Note: since currently call_usermodehelper_keys() is never called with
UMH_NO_WAIT, call_usermodehelper_keys()->key_get() and umh_keys_cleanup()
are not really needed, we could rely on install_session_keyring_to_cred()
which does key_get() on success.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Neil Horman <nhorman@tuxdriver.com>
Acked-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
- C99 knows about USHRT_MAX/SHRT_MAX/SHRT_MIN, not
USHORT_MAX/SHORT_MAX/SHORT_MIN.
- Make SHRT_MIN of type s16, not int, for consistency.
[akpm@linux-foundation.org: fix drivers/dma/timb_dma.c]
[akpm@linux-foundation.org: fix security/keys/keyring.c]
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Acked-by: WANG Cong <xiyou.wangcong@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We were using the wrong variable here so the error codes weren't being returned
properly. The original code returns -ENOKEY.
Signed-off-by: Dan Carpenter <error27@gmail.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
Do preallocation for __key_link() so that the various callers in request_key.c
can deal with any errors from this source before attempting to construct a key.
This allows them to assume that the actual linkage step is guaranteed to be
successful.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
Errors from construct_alloc_key() shouldn't just be ignored in the way they are
by construct_key_and_link(). The only error that can be ignored so is
EINPROGRESS as that is used to indicate that we've found a key and don't need
to construct one.
We don't, however, handle ENOMEM, EDQUOT or EACCES to indicate allocation
failures of one sort or another.
Reported-by: Vegard Nossum <vegard.nossum@gmail.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
keyring_serialise_link_sem is only needed for keyring->keyring links as it's
used to prevent cycle detection from being avoided by parallel keyring
additions.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
call_sbin_request_key() creates a keyring and then attempts to insert a link to
the authorisation key into that keyring, but does so without holding a write
lock on the keyring semaphore.
It will normally get away with this because it hasn't told anyone that the
keyring exists yet. The new keyring, however, has had its serial number
published, which means it can be accessed directly by that handle.
This was found by a previous patch that adds RCU lockdep checks to the code
that reads the keyring payload pointer, which includes a check that the keyring
semaphore is actually locked.
Without this patch, the following command:
keyctl request2 user b a @s
will provoke the following lockdep warning is displayed in dmesg:
===================================================
[ INFO: suspicious rcu_dereference_check() usage. ]
---------------------------------------------------
security/keys/keyring.c:727 invoked rcu_dereference_check() without protection!
other info that might help us debug this:
rcu_scheduler_active = 1, debug_locks = 0
2 locks held by keyctl/2076:
#0: (key_types_sem){.+.+.+}, at: [<ffffffff811a5b29>] key_type_lookup+0x1c/0x71
#1: (keyring_serialise_link_sem){+.+.+.}, at: [<ffffffff811a6d1e>] __key_link+0x4d/0x3c5
stack backtrace:
Pid: 2076, comm: keyctl Not tainted 2.6.34-rc6-cachefs #54
Call Trace:
[<ffffffff81051fdc>] lockdep_rcu_dereference+0xaa/0xb2
[<ffffffff811a6d1e>] ? __key_link+0x4d/0x3c5
[<ffffffff811a6e6f>] __key_link+0x19e/0x3c5
[<ffffffff811a5952>] ? __key_instantiate_and_link+0xb1/0xdc
[<ffffffff811a59bf>] ? key_instantiate_and_link+0x42/0x5f
[<ffffffff811aa0dc>] call_sbin_request_key+0xe7/0x33b
[<ffffffff8139376a>] ? mutex_unlock+0x9/0xb
[<ffffffff811a5952>] ? __key_instantiate_and_link+0xb1/0xdc
[<ffffffff811a59bf>] ? key_instantiate_and_link+0x42/0x5f
[<ffffffff811aa6fa>] ? request_key_auth_new+0x1c2/0x23c
[<ffffffff810aaf15>] ? cache_alloc_debugcheck_after+0x108/0x173
[<ffffffff811a9d00>] ? request_key_and_link+0x146/0x300
[<ffffffff810ac568>] ? kmem_cache_alloc+0xe1/0x118
[<ffffffff811a9e45>] request_key_and_link+0x28b/0x300
[<ffffffff811a89ac>] sys_request_key+0xf7/0x14a
[<ffffffff81052c0b>] ? trace_hardirqs_on_caller+0x10c/0x130
[<ffffffff81394fb9>] ? trace_hardirqs_on_thunk+0x3a/0x3f
[<ffffffff81001eeb>] system_call_fastpath+0x16/0x1b
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
The keyring key type code should use RCU dereference wrappers, even when it
holds the keyring's key semaphore.
Reported-by: Vegard Nossum <vegard.nossum@gmail.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
key_gc_keyring() needs to either hold the RCU read lock or hold the keyring
semaphore if it's going to scan the keyring's list. Given that it only needs
to read the key list, and it's doing so under a spinlock, the RCU read lock is
the thing to use.
Furthermore, the RCU check added in e7b0a61b79 is
incorrect as holding the spinlock on key_serial_lock is not grounds for
assuming a keyring's pointer list can be read safely. Instead, a simple
rcu_dereference() inside of the previously mentioned RCU read lock is what we
want.
Reported-by: Serge E. Hallyn <serue@us.ibm.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Acked-by: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/security-testing-2.6:
keys: don't need to use RCU in keyring_read() as semaphore is held
The request_key() system call and request_key_and_link() should make a
link from an existing key to the destination keyring (if supplied), not
just from a new key to the destination keyring.
This can be tested by:
ring=`keyctl newring fred @s`
keyctl request2 user debug:a a
keyctl request user debug:a $ring
keyctl list $ring
If it says:
keyring is empty
then it didn't work. If it shows something like:
1 key in keyring:
1070462727: --alswrv 0 0 user: debug:a
then it did.
request_key() system call is meant to recursively search all your keyrings for
the key you desire, and, optionally, if it doesn't exist, call out to userspace
to create one for you.
If request_key() finds or creates a key, it should, optionally, create a link
to that key from the destination keyring specified.
Therefore, if, after a successful call to request_key() with a desination
keyring specified, you see the destination keyring empty, the code didn't work
correctly.
If you see the found key in the keyring, then it did - which is what the patch
is required for.
Signed-off-by: David Howells <dhowells@redhat.com>
Cc: James Morris <jmorris@namei.org>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
keyring_read() doesn't need to use rcu_dereference() to access the keyring
payload as the caller holds the key semaphore to prevent modifications
from happening whilst the data is read out.
This should solve the following warning:
===================================================
[ INFO: suspicious rcu_dereference_check() usage. ]
---------------------------------------------------
security/keys/keyring.c:204 invoked rcu_dereference_check() without protection!
other info that might help us debug this:
rcu_scheduler_active = 1, debug_locks = 0
1 lock held by keyctl/2144:
#0: (&key->sem){+++++.}, at: [<ffffffff81177f7c>] keyctl_read_key+0x9c/0xcf
stack backtrace:
Pid: 2144, comm: keyctl Not tainted 2.6.34-rc2-cachefs #113
Call Trace:
[<ffffffff8105121f>] lockdep_rcu_dereference+0xaa/0xb2
[<ffffffff811762d5>] keyring_read+0x4d/0xe7
[<ffffffff81177f8c>] keyctl_read_key+0xac/0xcf
[<ffffffff811788d4>] sys_keyctl+0x75/0xb9
[<ffffffff81001eeb>] system_call_fastpath+0x16/0x1b
Signed-off-by: David Howells <dhowells@redhat.com>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: James Morris <jmorris@namei.org>
Fix the following RCU warning:
===================================================
[ INFO: suspicious rcu_dereference_check() usage. ]
---------------------------------------------------
security/keys/request_key.c:116 invoked rcu_dereference_check() without protection!
This was caused by doing:
[root@andromeda ~]# keyctl newring fred @s
539196288
[root@andromeda ~]# keyctl request2 user a a 539196288
request_key: Required key not available
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
This fixes to include <linux/uaccess.h> instead <asm/uaccess.h> and some
code style issues like to put a else sentence below close brace '}' and
to replace a tab instead of some space characters.
Signed-off-by: Chihau Chau <chihau@gmail.com>
Acked-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
Fix some coding styles in security/keys/keyring.c
Signed-off-by: Zhitong Wang <zhitong.wangzt@alibaba-inc.com>
Signed-off-by: James Morris <jmorris@namei.org>
As of commit ee18d64c1f ("KEYS: Add a keyctl to
install a process's session keyring on its parent [try #6]"), CONFIG_KEYS=y
fails to build on architectures that haven't implemented TIF_NOTIFY_RESUME yet:
security/keys/keyctl.c: In function 'keyctl_session_to_parent':
security/keys/keyctl.c:1312: error: 'TIF_NOTIFY_RESUME' undeclared (first use in this function)
security/keys/keyctl.c:1312: error: (Each undeclared identifier is reported only once
security/keys/keyctl.c:1312: error: for each function it appears in.)
Make KEYCTL_SESSION_TO_PARENT depend on TIF_NOTIFY_RESUME until
m68k, and xtensa have implemented it.
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: James Morris <jmorris@namei.org>
Acked-by: Mike Frysinger <vapier@gentoo.org>
Return the PTR_ERR of the correct pointer.
Signed-off-by: Roel Kluin <roel.kluin@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
For consistency drop & in front of every proc_handler. Explicity
taking the address is unnecessary and it prevents optimizations
like stubbing the proc_handlers to NULL.
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Joe Perches <joe@perches.com>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Now that sys_sysctl is a generic wrapper around /proc/sys .ctl_name
and .strategy members of sysctl tables are dead code. Remove them.
Cc: David Howells <dhowells@redhat.com>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
The destination keyring specified to request_key() and co. is made available to
the process that instantiates the key (the slave process started by
/sbin/request-key typically). This is passed in the request_key_auth struct as
the dest_keyring member.
keyctl_instantiate_key and keyctl_negate_key() call get_instantiation_keyring()
to get the keyring to attach the newly constructed key to at the end of
instantiation. This may be given a specific keyring into which a link will be
made later, or it may be asked to find the keyring passed to request_key(). In
the former case, it returns a keyring with the refcount incremented by
lookup_user_key(); in the latter case, it returns the keyring from the
request_key_auth struct - and does _not_ increment the refcount.
The latter case will eventually result in an oops when the keyring prematurely
runs out of references and gets destroyed. The effect may take some time to
show up as the key is destroyed lazily.
To fix this, the keyring returned by get_instantiation_keyring() must always
have its refcount incremented, no matter where it comes from.
This can be tested by setting /etc/request-key.conf to:
#OP TYPE DESCRIPTION CALLOUT INFO PROGRAM ARG1 ARG2 ARG3 ...
#====== ======= =============== =============== ===============================
create * test:* * |/bin/false %u %g %d %{user:_display}
negate * * * /bin/keyctl negate %k 10 @u
and then doing:
keyctl add user _display aaaaaaaa @u
while keyctl request2 user test:x test:x @u &&
keyctl list @u;
do
keyctl request2 user test:x test:x @u;
sleep 31;
keyctl list @u;
done
which will oops eventually. Changing the negate line to have @u rather than
%S at the end is important as that forces the latter case by passing a special
keyring ID rather than an actual keyring ID.
Reported-by: Alexander Zangerl <az@bond.edu.au>
Signed-off-by: David Howells <dhowells@redhat.com>
Tested-by: Alexander Zangerl <az@bond.edu.au>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The key garbage collector sets a timer to start a new collection cycle at the
point the earliest key to expire should be considered garbage. However, it
currently only does this if the key it is considering hasn't yet expired.
If the key being considering has expired, but hasn't yet reached the collection
time then it is ignored, and won't be collected until some other key provokes a
round of collection.
Make the garbage collector set the timer for the earliest key that hasn't yet
passed its collection time, rather than the earliest key that hasn't yet
expired.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
Fix a number of problems with the new key garbage collector:
(1) A rogue semicolon in keyring_gc() was causing the initial count of dead
keys to be miscalculated.
(2) A missing return in keyring_gc() meant that under certain circumstances,
the keyring semaphore would be unlocked twice.
(3) The key serial tree iterator (key_garbage_collector()) part of the garbage
collector has been modified to:
(a) Complete each scan of the keyrings before setting the new timer.
(b) Only set the new timer for keys that have yet to expire. This means
that the new timer is now calculated correctly, and the gc doesn't
get into a loop continually scanning for keys that have expired, and
preventing other things from happening, like RCU cleaning up the old
keyring contents.
(c) Perform an extra scan if any keys were garbage collected in this one
as a key might become garbage during a scan, and (b) could mean we
don't set the timer again.
(4) Made key_schedule_gc() take the time at which to do a collection run,
rather than the time at which the key expires. This means the collection
of dead keys (key type unregistered) can happen immediately.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
When we exit early from keyctl_session_to_parent because of permissions or
because the session keyring is the same as the parent, we need to unlock the
tasklist.
The missing unlock causes the system to hang completely when using
keyctl(KEYCTL_SESSION_TO_PARENT) with a keyring shared with the parent.
Signed-off-by: Marc Dionne <marc.c.dionne@gmail.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
Add a keyctl to install a process's session keyring onto its parent. This
replaces the parent's session keyring. Because the COW credential code does
not permit one process to change another process's credentials directly, the
change is deferred until userspace next starts executing again. Normally this
will be after a wait*() syscall.
To support this, three new security hooks have been provided:
cred_alloc_blank() to allocate unset security creds, cred_transfer() to fill in
the blank security creds and key_session_to_parent() - which asks the LSM if
the process may replace its parent's session keyring.
The replacement may only happen if the process has the same ownership details
as its parent, and the process has LINK permission on the session keyring, and
the session keyring is owned by the process, and the LSM permits it.
Note that this requires alteration to each architecture's notify_resume path.
This has been done for all arches barring blackfin, m68k* and xtensa, all of
which need assembly alteration to support TIF_NOTIFY_RESUME. This allows the
replacement to be performed at the point the parent process resumes userspace
execution.
This allows the userspace AFS pioctl emulation to fully emulate newpag() and
the VIOCSETTOK and VIOCSETTOK2 pioctls, all of which require the ability to
alter the parent process's PAG membership. However, since kAFS doesn't use
PAGs per se, but rather dumps the keys into the session keyring, the session
keyring of the parent must be replaced if, for example, VIOCSETTOK is passed
the newpag flag.
This can be tested with the following program:
#include <stdio.h>
#include <stdlib.h>
#include <keyutils.h>
#define KEYCTL_SESSION_TO_PARENT 18
#define OSERROR(X, S) do { if ((long)(X) == -1) { perror(S); exit(1); } } while(0)
int main(int argc, char **argv)
{
key_serial_t keyring, key;
long ret;
keyring = keyctl_join_session_keyring(argv[1]);
OSERROR(keyring, "keyctl_join_session_keyring");
key = add_key("user", "a", "b", 1, keyring);
OSERROR(key, "add_key");
ret = keyctl(KEYCTL_SESSION_TO_PARENT);
OSERROR(ret, "KEYCTL_SESSION_TO_PARENT");
return 0;
}
Compiled and linked with -lkeyutils, you should see something like:
[dhowells@andromeda ~]$ keyctl show
Session Keyring
-3 --alswrv 4043 4043 keyring: _ses
355907932 --alswrv 4043 -1 \_ keyring: _uid.4043
[dhowells@andromeda ~]$ /tmp/newpag
[dhowells@andromeda ~]$ keyctl show
Session Keyring
-3 --alswrv 4043 4043 keyring: _ses
1055658746 --alswrv 4043 4043 \_ user: a
[dhowells@andromeda ~]$ /tmp/newpag hello
[dhowells@andromeda ~]$ keyctl show
Session Keyring
-3 --alswrv 4043 4043 keyring: hello
340417692 --alswrv 4043 4043 \_ user: a
Where the test program creates a new session keyring, sticks a user key named
'a' into it and then installs it on its parent.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
Do some whitespace cleanups in the key management code.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
Make the file position maintained by /proc/keys represent the ID of the key
just read rather than the number of keys read. This should make it faster to
perform a lookup as we don't have to scan the key ID tree from the beginning to
find the current position.
Signed-off-by: Serge E. Hallyn <serue@us.ibm.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
Add garbage collection for dead, revoked and expired keys. This involved
erasing all links to such keys from keyrings that point to them. At that
point, the key will be deleted in the normal manner.
Keyrings from which garbage collection occurs are shrunk and their quota
consumption reduced as appropriate.
Dead keys (for which the key type has been removed) will be garbage collected
immediately.
Revoked and expired keys will hang around for a number of seconds, as set in
/proc/sys/kernel/keys/gc_delay before being automatically removed. The default
is 5 minutes.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
Set the KEY_FLAG_DEAD flag on keys for which the type has been removed. This
causes the key_permission() function to return EKEYREVOKED in response to
various commands. It does not, however, prevent unlinking or clearing of
keyrings from detaching the key.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
Allow keyctl_revoke() to operate on keys that have SETATTR but not WRITE
permission, rather than only on keys that have WRITE permission.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
Allow keys for which the key type has been removed to be unlinked. Currently
dead-type keys can only be disposed of by completely clearing the keyrings
that point to them.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
- is_single_threaded(task) is not safe unless task == current,
we can't use task->signal or task->mm.
- it doesn't make sense unless task == current, the task can
fork right after the check.
Rename it to current_is_single_threaded() and kill the argument.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
Annotate seqfile ops with __releases and __acquires to stop sparse
complaining about unbalanced locking.
Signed-off-by: James Morris <jmorris@namei.org>
Reviewed-by: Serge Hallyn <serue@us.ibm.com>
When request_key() is called, without there being any standard process
keyrings on which to fall back if a destination keyring is not specified, an
oops is liable to occur when construct_alloc_key() calls down_write() on
dest_keyring's semaphore.
Due to function inlining this may be seen as an oops in down_write() as called
from request_key_and_link().
This situation crops up during boot, where request_key() is called from within
the kernel (such as in CIFS mounts) where nobody is actually logged in, and so
PAM has not had a chance to create a session keyring and user keyrings to act
as the fallback.
To fix this, make construct_alloc_key() not attempt to cache a key if there is
no fallback key if no destination keyring is given specifically.
Signed-off-by: David Howells <dhowells@redhat.com>
Tested-by: Jeff Layton <jlayton@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Restrict the /proc/keys and /proc/key-users output to keys
belonging to the same user namespace as the reading task.
We may want to make this more complicated - so that any
keys in a user-namespace which is belongs to the reading
task are also shown. But let's see if anyone wants that
first.
Signed-off-by: Serge E. Hallyn <serue@us.ibm.com>
Acked-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
When listing keys, do not return keys belonging to the
same uid in another user namespace. Otherwise uid 500
in another user namespace will return keyrings called
uid.500 for another user namespace.
Signed-off-by: Serge E. Hallyn <serue@us.ibm.com>
Acked-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
If a key is owned by another user namespace, then treat the
key as though it is owned by both another uid and gid.
Signed-off-by: Serge E. Hallyn <serue@us.ibm.com>
Acked-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
per-uid keys were looked by uid only. Use the user namespace
to distinguish the same uid in different namespaces.
This does not address key_permission. So a task can for instance
try to join a keyring owned by the same uid in another namespace.
That will be handled by a separate patch.
Signed-off-by: Serge E. Hallyn <serue@us.ibm.com>
Acked-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
Fix the following sparse warning:
CC security/keys/key.o
security/keys/keyctl.c:1297:10: warning: incorrect type in argument 2 (different address spaces)
security/keys/keyctl.c:1297:10: expected char [noderef] <asn:1>*buffer
security/keys/keyctl.c:1297:10: got char *<noident>
which appears to be caused by lack of __user annotation to the cast of
a syscall argument.
Signed-off-by: James Morris <jmorris@namei.org>
Acked-by: David Howells <dhowells@redhat.com>
Fix variable uninitialisation warnings introduced in:
commit 8bbf4976b5
Author: David Howells <dhowells@redhat.com>
Date: Fri Nov 14 10:39:14 2008 +1100
KEYS: Alter use of key instantiation link-to-keyring argument
As:
security/keys/keyctl.c: In function 'keyctl_negate_key':
security/keys/keyctl.c:976: warning: 'dest_keyring' may be used uninitialized in this function
security/keys/keyctl.c: In function 'keyctl_instantiate_key':
security/keys/keyctl.c:898: warning: 'dest_keyring' may be used uninitialized in this function
Some versions of gcc notice that get_instantiation_key() doesn't always set
*_dest_keyring, but fail to observe that if this happens then *_dest_keyring
will not be read by the caller.
Reported-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
Make execve() take advantage of copy-on-write credentials, allowing it to set
up the credentials in advance, and then commit the whole lot after the point
of no return.
This patch and the preceding patches have been tested with the LTP SELinux
testsuite.
This patch makes several logical sets of alteration:
(1) execve().
The credential bits from struct linux_binprm are, for the most part,
replaced with a single credentials pointer (bprm->cred). This means that
all the creds can be calculated in advance and then applied at the point
of no return with no possibility of failure.
I would like to replace bprm->cap_effective with:
cap_isclear(bprm->cap_effective)
but this seems impossible due to special behaviour for processes of pid 1
(they always retain their parent's capability masks where normally they'd
be changed - see cap_bprm_set_creds()).
The following sequence of events now happens:
(a) At the start of do_execve, the current task's cred_exec_mutex is
locked to prevent PTRACE_ATTACH from obsoleting the calculation of
creds that we make.
(a) prepare_exec_creds() is then called to make a copy of the current
task's credentials and prepare it. This copy is then assigned to
bprm->cred.
This renders security_bprm_alloc() and security_bprm_free()
unnecessary, and so they've been removed.
(b) The determination of unsafe execution is now performed immediately
after (a) rather than later on in the code. The result is stored in
bprm->unsafe for future reference.
(c) prepare_binprm() is called, possibly multiple times.
(i) This applies the result of set[ug]id binaries to the new creds
attached to bprm->cred. Personality bit clearance is recorded,
but now deferred on the basis that the exec procedure may yet
fail.
(ii) This then calls the new security_bprm_set_creds(). This should
calculate the new LSM and capability credentials into *bprm->cred.
This folds together security_bprm_set() and parts of
security_bprm_apply_creds() (these two have been removed).
Anything that might fail must be done at this point.
(iii) bprm->cred_prepared is set to 1.
bprm->cred_prepared is 0 on the first pass of the security
calculations, and 1 on all subsequent passes. This allows SELinux
in (ii) to base its calculations only on the initial script and
not on the interpreter.
(d) flush_old_exec() is called to commit the task to execution. This
performs the following steps with regard to credentials:
(i) Clear pdeath_signal and set dumpable on certain circumstances that
may not be covered by commit_creds().
(ii) Clear any bits in current->personality that were deferred from
(c.i).
(e) install_exec_creds() [compute_creds() as was] is called to install the
new credentials. This performs the following steps with regard to
credentials:
(i) Calls security_bprm_committing_creds() to apply any security
requirements, such as flushing unauthorised files in SELinux, that
must be done before the credentials are changed.
This is made up of bits of security_bprm_apply_creds() and
security_bprm_post_apply_creds(), both of which have been removed.
This function is not allowed to fail; anything that might fail
must have been done in (c.ii).
(ii) Calls commit_creds() to apply the new credentials in a single
assignment (more or less). Possibly pdeath_signal and dumpable
should be part of struct creds.
(iii) Unlocks the task's cred_replace_mutex, thus allowing
PTRACE_ATTACH to take place.
(iv) Clears The bprm->cred pointer as the credentials it was holding
are now immutable.
(v) Calls security_bprm_committed_creds() to apply any security
alterations that must be done after the creds have been changed.
SELinux uses this to flush signals and signal handlers.
(f) If an error occurs before (d.i), bprm_free() will call abort_creds()
to destroy the proposed new credentials and will then unlock
cred_replace_mutex. No changes to the credentials will have been
made.
(2) LSM interface.
A number of functions have been changed, added or removed:
(*) security_bprm_alloc(), ->bprm_alloc_security()
(*) security_bprm_free(), ->bprm_free_security()
Removed in favour of preparing new credentials and modifying those.
(*) security_bprm_apply_creds(), ->bprm_apply_creds()
(*) security_bprm_post_apply_creds(), ->bprm_post_apply_creds()
Removed; split between security_bprm_set_creds(),
security_bprm_committing_creds() and security_bprm_committed_creds().
(*) security_bprm_set(), ->bprm_set_security()
Removed; folded into security_bprm_set_creds().
(*) security_bprm_set_creds(), ->bprm_set_creds()
New. The new credentials in bprm->creds should be checked and set up
as appropriate. bprm->cred_prepared is 0 on the first call, 1 on the
second and subsequent calls.
(*) security_bprm_committing_creds(), ->bprm_committing_creds()
(*) security_bprm_committed_creds(), ->bprm_committed_creds()
New. Apply the security effects of the new credentials. This
includes closing unauthorised files in SELinux. This function may not
fail. When the former is called, the creds haven't yet been applied
to the process; when the latter is called, they have.
The former may access bprm->cred, the latter may not.
(3) SELinux.
SELinux has a number of changes, in addition to those to support the LSM
interface changes mentioned above:
(a) The bprm_security_struct struct has been removed in favour of using
the credentials-under-construction approach.
(c) flush_unauthorized_files() now takes a cred pointer and passes it on
to inode_has_perm(), file_has_perm() and dentry_open().
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
Inaugurate copy-on-write credentials management. This uses RCU to manage the
credentials pointer in the task_struct with respect to accesses by other tasks.
A process may only modify its own credentials, and so does not need locking to
access or modify its own credentials.
A mutex (cred_replace_mutex) is added to the task_struct to control the effect
of PTRACE_ATTACHED on credential calculations, particularly with respect to
execve().
With this patch, the contents of an active credentials struct may not be
changed directly; rather a new set of credentials must be prepared, modified
and committed using something like the following sequence of events:
struct cred *new = prepare_creds();
int ret = blah(new);
if (ret < 0) {
abort_creds(new);
return ret;
}
return commit_creds(new);
There are some exceptions to this rule: the keyrings pointed to by the active
credentials may be instantiated - keyrings violate the COW rule as managing
COW keyrings is tricky, given that it is possible for a task to directly alter
the keys in a keyring in use by another task.
To help enforce this, various pointers to sets of credentials, such as those in
the task_struct, are declared const. The purpose of this is compile-time
discouragement of altering credentials through those pointers. Once a set of
credentials has been made public through one of these pointers, it may not be
modified, except under special circumstances:
(1) Its reference count may incremented and decremented.
(2) The keyrings to which it points may be modified, but not replaced.
The only safe way to modify anything else is to create a replacement and commit
using the functions described in Documentation/credentials.txt (which will be
added by a later patch).
This patch and the preceding patches have been tested with the LTP SELinux
testsuite.
This patch makes several logical sets of alteration:
(1) execve().
This now prepares and commits credentials in various places in the
security code rather than altering the current creds directly.
(2) Temporary credential overrides.
do_coredump() and sys_faccessat() now prepare their own credentials and
temporarily override the ones currently on the acting thread, whilst
preventing interference from other threads by holding cred_replace_mutex
on the thread being dumped.
This will be replaced in a future patch by something that hands down the
credentials directly to the functions being called, rather than altering
the task's objective credentials.
(3) LSM interface.
A number of functions have been changed, added or removed:
(*) security_capset_check(), ->capset_check()
(*) security_capset_set(), ->capset_set()
Removed in favour of security_capset().
(*) security_capset(), ->capset()
New. This is passed a pointer to the new creds, a pointer to the old
creds and the proposed capability sets. It should fill in the new
creds or return an error. All pointers, barring the pointer to the
new creds, are now const.
(*) security_bprm_apply_creds(), ->bprm_apply_creds()
Changed; now returns a value, which will cause the process to be
killed if it's an error.
(*) security_task_alloc(), ->task_alloc_security()
Removed in favour of security_prepare_creds().
(*) security_cred_free(), ->cred_free()
New. Free security data attached to cred->security.
(*) security_prepare_creds(), ->cred_prepare()
New. Duplicate any security data attached to cred->security.
(*) security_commit_creds(), ->cred_commit()
New. Apply any security effects for the upcoming installation of new
security by commit_creds().
(*) security_task_post_setuid(), ->task_post_setuid()
Removed in favour of security_task_fix_setuid().
(*) security_task_fix_setuid(), ->task_fix_setuid()
Fix up the proposed new credentials for setuid(). This is used by
cap_set_fix_setuid() to implicitly adjust capabilities in line with
setuid() changes. Changes are made to the new credentials, rather
than the task itself as in security_task_post_setuid().
(*) security_task_reparent_to_init(), ->task_reparent_to_init()
Removed. Instead the task being reparented to init is referred
directly to init's credentials.
NOTE! This results in the loss of some state: SELinux's osid no
longer records the sid of the thread that forked it.
(*) security_key_alloc(), ->key_alloc()
(*) security_key_permission(), ->key_permission()
Changed. These now take cred pointers rather than task pointers to
refer to the security context.
(4) sys_capset().
This has been simplified and uses less locking. The LSM functions it
calls have been merged.
(5) reparent_to_kthreadd().
This gives the current thread the same credentials as init by simply using
commit_thread() to point that way.
(6) __sigqueue_alloc() and switch_uid()
__sigqueue_alloc() can't stop the target task from changing its creds
beneath it, so this function gets a reference to the currently applicable
user_struct which it then passes into the sigqueue struct it returns if
successful.
switch_uid() is now called from commit_creds(), and possibly should be
folded into that. commit_creds() should take care of protecting
__sigqueue_alloc().
(7) [sg]et[ug]id() and co and [sg]et_current_groups.
The set functions now all use prepare_creds(), commit_creds() and
abort_creds() to build and check a new set of credentials before applying
it.
security_task_set[ug]id() is called inside the prepared section. This
guarantees that nothing else will affect the creds until we've finished.
The calling of set_dumpable() has been moved into commit_creds().
Much of the functionality of set_user() has been moved into
commit_creds().
The get functions all simply access the data directly.
(8) security_task_prctl() and cap_task_prctl().
security_task_prctl() has been modified to return -ENOSYS if it doesn't
want to handle a function, or otherwise return the return value directly
rather than through an argument.
Additionally, cap_task_prctl() now prepares a new set of credentials, even
if it doesn't end up using it.
(9) Keyrings.
A number of changes have been made to the keyrings code:
(a) switch_uid_keyring(), copy_keys(), exit_keys() and suid_keys() have
all been dropped and built in to the credentials functions directly.
They may want separating out again later.
(b) key_alloc() and search_process_keyrings() now take a cred pointer
rather than a task pointer to specify the security context.
(c) copy_creds() gives a new thread within the same thread group a new
thread keyring if its parent had one, otherwise it discards the thread
keyring.
(d) The authorisation key now points directly to the credentials to extend
the search into rather pointing to the task that carries them.
(e) Installing thread, process or session keyrings causes a new set of
credentials to be created, even though it's not strictly necessary for
process or session keyrings (they're shared).
(10) Usermode helper.
The usermode helper code now carries a cred struct pointer in its
subprocess_info struct instead of a new session keyring pointer. This set
of credentials is derived from init_cred and installed on the new process
after it has been cloned.
call_usermodehelper_setup() allocates the new credentials and
call_usermodehelper_freeinfo() discards them if they haven't been used. A
special cred function (prepare_usermodeinfo_creds()) is provided
specifically for call_usermodehelper_setup() to call.
call_usermodehelper_setkeys() adjusts the credentials to sport the
supplied keyring as the new session keyring.
(11) SELinux.
SELinux has a number of changes, in addition to those to support the LSM
interface changes mentioned above:
(a) selinux_setprocattr() no longer does its check for whether the
current ptracer can access processes with the new SID inside the lock
that covers getting the ptracer's SID. Whilst this lock ensures that
the check is done with the ptracer pinned, the result is only valid
until the lock is released, so there's no point doing it inside the
lock.
(12) is_single_threaded().
This function has been extracted from selinux_setprocattr() and put into
a file of its own in the lib/ directory as join_session_keyring() now
wants to use it too.
The code in SELinux just checked to see whether a task shared mm_structs
with other tasks (CLONE_VM), but that isn't good enough. We really want
to know if they're part of the same thread group (CLONE_THREAD).
(13) nfsd.
The NFS server daemon now has to use the COW credentials to set the
credentials it is going to use. It really needs to pass the credentials
down to the functions it calls, but it can't do that until other patches
in this series have been applied.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Signed-off-by: James Morris <jmorris@namei.org>
Separate per-task-group keyrings from signal_struct and dangle their anchor
from the cred struct rather than the signal_struct.
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: James Morris <jmorris@namei.org>
Signed-off-by: James Morris <jmorris@namei.org>
Use RCU to access another task's creds and to release a task's own creds.
This means that it will be possible for the credentials of a task to be
replaced without another task (a) requiring a full lock to read them, and (b)
seeing deallocated memory.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
Wrap current->cred and a few other accessors to hide their actual
implementation.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
Separate the task security context from task_struct. At this point, the
security data is temporarily embedded in the task_struct with two pointers
pointing to it.
Note that the Alpha arch is altered as it refers to (E)UID and (E)GID in
entry.S via asm-offsets.
With comment fixes Signed-off-by: Marc Dionne <marc.c.dionne@gmail.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: James Morris <jmorris@namei.org>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
Alter the use of the key instantiation and negation functions' link-to-keyring
arguments. Currently this specifies a keyring in the target process to link
the key into, creating the keyring if it doesn't exist. This, however, can be
a problem for copy-on-write credentials as it means that the instantiating
process can alter the credentials of the requesting process.
This patch alters the behaviour such that:
(1) If keyctl_instantiate_key() or keyctl_negate_key() are given a specific
keyring by ID (ringid >= 0), then that keyring will be used.
(2) If keyctl_instantiate_key() or keyctl_negate_key() are given one of the
special constants that refer to the requesting process's keyrings
(KEY_SPEC_*_KEYRING, all <= 0), then:
(a) If sys_request_key() was given a keyring to use (destringid) then the
key will be attached to that keyring.
(b) If sys_request_key() was given a NULL keyring, then the key being
instantiated will be attached to the default keyring as set by
keyctl_set_reqkey_keyring().
(3) No extra link will be made.
Decision point (1) follows current behaviour, and allows those instantiators
who've searched for a specifically named keyring in the requestor's keyring so
as to partition the keys by type to still have their named keyrings.
Decision point (2) allows the requestor to make sure that the key or keys that
get produced by request_key() go where they want, whilst allowing the
instantiator to request that the key is retained. This is mainly useful for
situations where the instantiator makes a secondary request, the key for which
should be retained by the initial requestor:
+-----------+ +--------------+ +--------------+
| | | | | |
| Requestor |------->| Instantiator |------->| Instantiator |
| | | | | |
+-----------+ +--------------+ +--------------+
request_key() request_key()
This might be useful, for example, in Kerberos, where the requestor requests a
ticket, and then the ticket instantiator requests the TGT, which someone else
then has to go and fetch. The TGT, however, should be retained in the
keyrings of the requestor, not the first instantiator. To make this explict
an extra special keyring constant is also added.
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: James Morris <jmorris@namei.org>
Signed-off-by: James Morris <jmorris@namei.org>
Disperse the bits of linux/key_ui.h as the reason they were put here (keyfs)
didn't get in.
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: James Morris <jmorris@namei.org>
Signed-off-by: James Morris <jmorris@namei.org>
Wrap access to task credentials so that they can be separated more easily from
the task_struct during the introduction of COW creds.
Change most current->(|e|s|fs)[ug]id to current_(|e|s|fs)[ug]id().
Change some task->e?[ug]id to task_e?[ug]id(). In some places it makes more
sense to use RCU directly rather than a convenient wrapper; these will be
addressed by later patches.
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: James Morris <jmorris@namei.org>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Signed-off-by: James Morris <jmorris@namei.org>
This semaphore doesn't appear to be used, so remove it.
Signed-off-by: Daniel Walker <dwalker@mvista.com>
Cc: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since these two source files invoke kmalloc(), they should explicitly
include <linux/slab.h>.
Signed-off-by: Robert P. J. Day <rpjday@crashcourse.ca>
Cc: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Make the keyring quotas controllable through /proc/sys files:
(*) /proc/sys/kernel/keys/root_maxkeys
/proc/sys/kernel/keys/root_maxbytes
Maximum number of keys that root may have and the maximum total number of
bytes of data that root may have stored in those keys.
(*) /proc/sys/kernel/keys/maxkeys
/proc/sys/kernel/keys/maxbytes
Maximum number of keys that each non-root user may have and the maximum
total number of bytes of data that each of those users may have stored in
their keys.
Also increase the quotas as a number of people have been complaining that it's
not big enough. I'm not sure that it's big enough now either, but on the
other hand, it can now be set in /etc/sysctl.conf.
Signed-off-by: David Howells <dhowells@redhat.com>
Cc: <kwc@citi.umich.edu>
Cc: <arunsr@cse.iitk.ac.in>
Cc: <dwalsh@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Don't generate the per-UID user and user session keyrings unless they're
explicitly accessed. This solves a problem during a login process whereby
set*uid() is called before the SELinux PAM module, resulting in the per-UID
keyrings having the wrong security labels.
This also cures the problem of multiple per-UID keyrings sometimes appearing
due to PAM modules (including pam_keyinit) setuiding and causing user_structs
to come into and go out of existence whilst the session keyring pins the user
keyring. This is achieved by first searching for extant per-UID keyrings
before inventing new ones.
The serial bound argument is also dropped from find_keyring_by_name() as it's
not currently made use of (setting it to 0 disables the feature).
Signed-off-by: David Howells <dhowells@redhat.com>
Cc: <kwc@citi.umich.edu>
Cc: <arunsr@cse.iitk.ac.in>
Cc: <dwalsh@redhat.com>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: James Morris <jmorris@namei.org>
Cc: Chris Wright <chrisw@sous-sol.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The key_create_or_update() function provided by the keyring code has a default
set of permissions that are always applied to the key when created. This
might not be desirable to all clients.
Here's a patch that adds a "perm" parameter to the function to address this,
which can be set to KEY_PERM_UNDEF to revert to the current behaviour.
Signed-off-by: Arun Raghavan <arunsr@cse.iitk.ac.in>
Signed-off-by: David Howells <dhowells@redhat.com>
Cc: Satyam Sharma <ssatyam@cse.iitk.ac.in>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add a keyctl() function to get the security label of a key.
The following is added to Documentation/keys.txt:
(*) Get the LSM security context attached to a key.
long keyctl(KEYCTL_GET_SECURITY, key_serial_t key, char *buffer,
size_t buflen)
This function returns a string that represents the LSM security context
attached to a key in the buffer provided.
Unless there's an error, it always returns the amount of data it could
produce, even if that's too big for the buffer, but it won't copy more
than requested to userspace. If the buffer pointer is NULL then no copy
will take place.
A NUL character is included at the end of the string if the buffer is
sufficiently big. This is included in the returned count. If no LSM is
in force then an empty string will be returned.
A process must have view permission on the key for this function to be
successful.
[akpm@linux-foundation.org: declare keyctl_get_security()]
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Stephen Smalley <sds@tycho.nsa.gov>
Cc: Paul Moore <paul.moore@hp.com>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: James Morris <jmorris@namei.org>
Cc: Kevin Coffman <kwc@citi.umich.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Allow the callout data to be passed as a blob rather than a string for
internal kernel services that call any request_key_*() interface other than
request_key(). request_key() itself still takes a NUL-terminated string.
The functions that change are:
request_key_with_auxdata()
request_key_async()
request_key_async_with_auxdata()
Signed-off-by: David Howells <dhowells@redhat.com>
Cc: Paul Moore <paul.moore@hp.com>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: James Morris <jmorris@namei.org>
Cc: Kevin Coffman <kwc@citi.umich.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Check the starting keyring as part of the search to (a) see if that is what
we're searching for, and (b) to check it is still valid for searching.
The scenario: User in process A does things that cause things to be created in
its process session keyring. The user then does an su to another user and
starts a new process, B. The two processes now share the same process session
keyring.
Process B does an NFS access which results in an upcall to gssd. When gssd
attempts to instantiate the context key (to be linked into the process session
keyring), it is denied access even though it has an authorization key.
The order of calls is:
keyctl_instantiate_key()
lookup_user_key() (the default: case)
search_process_keyrings(current)
search_process_keyrings(rka->context) (recursive call)
keyring_search_aux()
keyring_search_aux() verifies the keys and keyrings underneath the top-level
keyring it is given, but that top-level keyring is neither fully validated nor
checked to see if it is the thing being searched for.
This patch changes keyring_search_aux() to:
1) do more validation on the top keyring it is given and
2) check whether that top-level keyring is the thing being searched for
Signed-off-by: Kevin Coffman <kwc@citi.umich.edu>
Signed-off-by: David Howells <dhowells@redhat.com>
Cc: Paul Moore <paul.moore@hp.com>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: James Morris <jmorris@namei.org>
Cc: Kevin Coffman <kwc@citi.umich.edu>
Cc: Trond Myklebust <trond.myklebust@fys.uio.no>
Cc: "J. Bruce Fields" <bfields@fieldses.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Increase the size of a payload that can be used to instantiate a key in
add_key() and keyctl_instantiate_key(). This permits huge CIFS SPNEGO blobs
to be passed around. The limit is raised to 1MB. If kmalloc() can't allocate
a buffer of sufficient size, vmalloc() will be tried instead.
Signed-off-by: David Howells <dhowells@redhat.com>
Cc: Paul Moore <paul.moore@hp.com>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Cc: James Morris <jmorris@namei.org>
Cc: Kevin Coffman <kwc@citi.umich.edu>
Cc: Steven French <sfrench@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
__FUNCTION__ is gcc-specific, use __func__
Signed-off-by: Harvey Harrison <harvey.harrison@gmail.com>
Cc: James Morris <jmorris@namei.org>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: James Morris <jmorris@namei.org>
Make request_key() and co fundamentally asynchronous to make it easier for
NFS to make use of them. There are now accessor functions that do
asynchronous constructions, a wait function to wait for construction to
complete, and a completion function for the key type to indicate completion
of construction.
Note that the construction queue is now gone. Instead, keys under
construction are linked in to the appropriate keyring in advance, and that
anyone encountering one must wait for it to be complete before they can use
it. This is done automatically for userspace.
The following auxiliary changes are also made:
(1) Key type implementation stuff is split from linux/key.h into
linux/key-type.h.
(2) AF_RXRPC provides a way to allocate null rxrpc-type keys so that AFS does
not need to call key_instantiate_and_link() directly.
(3) Adjust the debugging macros so that they're -Wformat checked even if
they are disabled, and make it so they can be enabled simply by defining
__KDEBUG to be consistent with other code of mine.
(3) Documentation.
[alan@lxorguk.ukuu.org.uk: keys: missing word in documentation]
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Alan Cox <alan@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Slab destructors were no longer supported after Christoph's
c59def9f22 change. They've been
BUGs for both slab and slub, and slob never supported them
either.
This rips out support for the dtor pointer from kmem_cache_create()
completely and fixes up every single callsite in the kernel (there were
about 224, not including the slab allocator definitions themselves,
or the documentation references).
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Rather than using a tri-state integer for the wait flag in
call_usermodehelper_exec, define a proper enum, and use that. I've
preserved the integer values so that any callers I've missed should
still work OK.
Signed-off-by: Jeremy Fitzhardinge <jeremy@xensource.com>
Cc: James Bottomley <James.Bottomley@HansenPartnership.com>
Cc: Randy Dunlap <randy.dunlap@oracle.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Andi Kleen <ak@suse.de>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Johannes Berg <johannes@sipsolutions.net>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Bjorn Helgaas <bjorn.helgaas@hp.com>
Cc: Joel Becker <joel.becker@oracle.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Kay Sievers <kay.sievers@vrfy.org>
Cc: Srivatsa Vaddagiri <vatsa@in.ibm.com>
Cc: Oleg Nesterov <oleg@tv-sign.ru>
Cc: David Howells <dhowells@redhat.com>
Export the keyring key type definition and document its availability.
Add alternative types into the key's type_data union to make it more useful.
Not all users necessarily want to use it as a list_head (AF_RXRPC doesn't, for
example), so make it clear that it can be used in other ways.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
After Al Viro (finally) succeeded in removing the sched.h #include in module.h
recently, it makes sense again to remove other superfluous sched.h includes.
There are quite a lot of files which include it but don't actually need
anything defined in there. Presumably these includes were once needed for
macros that used to live in sched.h, but moved to other header files in the
course of cleaning it up.
To ease the pain, this time I did not fiddle with any header files and only
removed #includes from .c-files, which tend to cause less trouble.
Compile tested against 2.6.20-rc2 and 2.6.20-rc2-mm2 (with offsets) on alpha,
arm, i386, ia64, mips, powerpc, and x86_64 with allnoconfig, defconfig,
allmodconfig, and allyesconfig as well as a few randconfigs on x86_64 and all
configs in arch/arm/configs on arm. I also checked that no new warnings were
introduced by the patch (actually, some warnings are removed that were emitted
by unnecessarily included header files).
Signed-off-by: Tim Schmielau <tim@physik3.uni-rostock.de>
Acked-by: Russell King <rmk+kernel@arm.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Many struct file_operations in the kernel can be "const". Marking them const
moves these to the .rodata section, which avoids false sharing with potential
dirty data. In addition it'll catch accidental writes at compile time to
these shared resources.
Signed-off-by: Arjan van de Ven <arjan@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix the key serial number collision avoidance code in key_alloc_serial().
This didn't use to be so much of a problem as the key serial numbers were
allocated from a simple incremental counter, and it would have to go through
two billion keys before it could possibly encounter a collision. However, now
that random numbers are used instead, collisions are much more likely.
This is fixed by finding a hole in the rbtree where the next unused serial
number ought to be and using that by going almost back to the top of the
insertion routine and redoing the insertion with the new serial number rather
than trying to be clever and attempting to work out the insertion point
pointer directly.
This fixes kernel BZ #7727.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Name some of the remaning 'old_style_spin_init' locks
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Replace all uses of kmem_cache_t with struct kmem_cache.
The patch was generated using the following script:
#!/bin/sh
#
# Replace one string by another in all the kernel sources.
#
set -e
for file in `find * -name "*.c" -o -name "*.h"|xargs grep -l $1`; do
quilt add $file
sed -e "1,\$s/$1/$2/g" $file >/tmp/$$
mv /tmp/$$ $file
quilt refresh
done
The script was run like this
sh replace kmem_cache_t "struct kmem_cache"
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
SLAB_KERNEL is an alias of GFP_KERNEL.
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Pass the work_struct pointer to the work function rather than context data.
The work function can use container_of() to work out the data.
For the cases where the container of the work_struct may go away the moment the
pending bit is cleared, it is made possible to defer the release of the
structure by deferring the clearing of the pending bit.
To make this work, an extra flag is introduced into the management side of the
work_struct. This governs auto-release of the structure upon execution.
Ordinarily, the work queue executor would release the work_struct for further
scheduling or deallocation by clearing the pending bit prior to jumping to the
work function. This means that, unless the driver makes some guarantee itself
that the work_struct won't go away, the work function may not access anything
else in the work_struct or its container lest they be deallocated.. This is a
problem if the auxiliary data is taken away (as done by the last patch).
However, if the pending bit is *not* cleared before jumping to the work
function, then the work function *may* access the work_struct and its container
with no problems. But then the work function must itself release the
work_struct by calling work_release().
In most cases, automatic release is fine, so this is the default. Special
initiators exist for the non-auto-release case (ending in _NAR).
Signed-Off-By: David Howells <dhowells@redhat.com>
The proposed NFS key type uses its own method of passing key requests to
userspace (upcalling) rather than invoking /sbin/request-key. This is
because the responsible userspace daemon should already be running and will
be contacted through rpc_pipefs.
This patch permits the NFS filesystem to pass auxiliary data to the upcall
operation (struct key_type::request_key) so that the upcaller can use a
pre-existing communications channel more easily.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-By: Kevin Coffman <kwc@citi.umich.edu>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Add more poison values to include/linux/poison.h. It's not clear to me
whether some others should be added or not, so I haven't added any of
these:
./include/linux/libata.h:#define ATA_TAG_POISON 0xfafbfcfdU
./arch/ppc/8260_io/fcc_enet.c:1918: memset((char *)(&(immap->im_dprambase[(mem_addr+64)])), 0x88, 32);
./drivers/usb/mon/mon_text.c:429: memset(mem, 0xe5, sizeof(struct mon_event_text));
./drivers/char/ftape/lowlevel/ftape-ctl.c:738: memset(ft_buffer[i]->address, 0xAA, FT_BUFF_SIZE);
./drivers/block/sx8.c:/* 0xf is just arbitrary, non-zero noise; this is sorta like poisoning */
Signed-off-by: Randy Dunlap <rdunlap@xenotime.net>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Restrict /proc/keys such that only those keys to which the current task is
granted View permission are presented.
The documentation is also updated to reflect these changes.
Signed-off-by: Michael LeMay <mdlemay@epoch.ncsc.mil>
Signed-off-by: James Morris <jmorris@namei.org>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Cause key_alloc_serial() to generate key serial numbers randomly rather than
in linear sequence.
Using an linear sequence permits a covert communication channel to be
established, in which one process can communicate with another by creating or
not creating new keys within a certain timeframe. The second process can
probe for the expected next key serial number and judge its existence by the
error returned.
This is a problem as the serial number namespace is globally shared between
all tasks, regardless of their context.
For more information on this topic, this old TCSEC guide is recommended:
http://www.radium.ncsc.mil/tpep/library/rainbow/NCSC-TG-030.html
Signed-off-by: Michael LeMay <mdlemay@epoch.ncsc.mil>
Signed-off-by: James Morris <jmorris@namei.org>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Let keyctl_chown() change a key's owner, including attempting to transfer the
quota burden to the new user.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Cause the keys linked to a keyring to be unlinked from it when revoked and it
causes the data attached to a user-defined key to be discarded when revoked.
This frees up most of the quota a key occupied at that point, rather than
waiting for the key to actually be destroyed.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Add the ability for key creation to overrun the user's quota in some
circumstances - notably when a session keyring is created and assigned to a
process that didn't previously have one.
This means it's still possible to log in, should PAM require the creation of a
new session keyring, and fix an overburdened key quota.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Add a revocation notification method to the key type and calls it whilst
the key's semaphore is still write-locked after setting the revocation
flag.
The patch then uses this to maintain a reference on the task_struct of the
process that calls request_key() for as long as the authorisation key
remains unrevoked.
This fixes a potential race between two processes both of which have
assumed the authority to instantiate a key (one may have forked the other
for example). The problem is that there's no locking around the check for
revocation of the auth key and the use of the task_struct it points to, nor
does the auth key keep a reference on the task_struct.
Access to the "context" pointer in the auth key must thenceforth be done
with the auth key semaphore held. The revocation method is called with the
target key semaphore held write-locked and the search of the context
process's keyrings is done with the auth key semaphore read-locked.
The check for the revocation state of the auth key just prior to searching
it is done after the auth key is read-locked for the search. This ensures
that the auth key can't be revoked between the check and the search.
The revocation notification method is added so that the context task_struct
can be released as soon as instantiation happens rather than waiting for
the auth key to be destroyed, thus avoiding the unnecessary pinning of the
requesting process.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Introduce SELinux hooks to support the access key retention subsystem
within the kernel. Incorporate new flask headers from a modified version
of the SELinux reference policy, with support for the new security class
representing retained keys. Extend the "key_alloc" security hook with a
task parameter representing the intended ownership context for the key
being allocated. Attach security information to root's default keyrings
within the SELinux initialization routine.
Has passed David's testsuite.
Signed-off-by: Michael LeMay <mdlemay@epoch.ncsc.mil>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: James Morris <jmorris@namei.org>
Acked-by: Chris Wright <chrisw@sous-sol.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Remove an unnecessary memory barrier (implicit in rcu_dereference()) from
install_session_keyring().
install_session_keyring() is also rearranged a little to make it slightly
more efficient.
As install_*_keyring() may schedule (in synchronize_rcu() or
keyring_alloc()), they may not be entered with interrupts disabled - and so
there's no point saving the interrupt disablement state over the critical
section.
exec_keys() will also be invoked with interrupts enabled, and so that doesn't
need to save the interrupt state either.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This fixes the problem of an oops occuring when a user attempts to add a
key to a non-keyring key [CVE-2006-1522].
The problem is that __keyring_search_one() doesn't check that the
keyring it's been given is actually a keyring.
I've fixed this problem by:
(1) declaring that caller of __keyring_search_one() must guarantee that
the keyring is a keyring; and
(2) making key_create_or_update() check that the keyring is a keyring,
and return -ENOTDIR if it isn't.
This can be tested by:
keyctl add user b b `keyctl add user a a @s`
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Cause an attempt to add a duplicate non-updateable key (such as a keyring) to
a keyring to discard the extant copy in favour of the new one rather than
failing with EEXIST:
# do the test in an empty session
keyctl session
# create a new keyring called "a" and attach to session
keyctl newring a @s
# create another new keyring called "a" and attach to session,
# displacing the keyring added by the second command:
keyctl newring a @s
Without this patch, the third command will fail.
For updateable keys (such as those of "user" type), the update method will
still be called rather than a new key being created.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Make key quota detection generate an error if either quota is exceeded rather
than only if both quotas are exceeded.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Copies user-space string with strndup_user() and moves the type string
duplication code to a function (thus fixing a wrong check on the length of the
type.)
Signed-off-by: Davi Arnaut <davi.arnaut@gmail.com>
Cc: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Semaphore to mutex conversion.
The conversion was generated via scripts, and the result was validated
automatically via a script as well.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Cc: Stephen Smalley <sds@epoch.ncsc.mil>
Cc: James Morris <jmorris@namei.org>
Cc: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
In the small window between strnlen_user() and copy_from_user() userspace
could alter the terminating `\0' character.
Signed-off-by: Davi Arnaut <davi.arnaut@gmail.com>
Cc: David Howells <dhowells@redhat.com>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
- Move capable() from sched.h to capability.h;
- Use <linux/capability.h> where capable() is used
(in include/, block/, ipc/, kernel/, a few drivers/,
mm/, security/, & sound/;
many more drivers/ to go)
Signed-off-by: Randy Dunlap <rdunlap@xenotime.net>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Make it possible for a running process (such as gssapid) to be able to
instantiate a key, as was requested by Trond Myklebust for NFS4.
The patch makes the following changes:
(1) A new, optional key type method has been added. This permits a key type
to intercept requests at the point /sbin/request-key is about to be
spawned and do something else with them - passing them over the
rpc_pipefs files or netlink sockets for instance.
The uninstantiated key, the authorisation key and the intended operation
name are passed to the method.
(2) The callout_info is no longer passed as an argument to /sbin/request-key
to prevent unauthorised viewing of this data using ps or by looking in
/proc/pid/cmdline.
This means that the old /sbin/request-key program will not work with the
patched kernel as it will expect to see an extra argument that is no
longer there.
A revised keyutils package will be made available tomorrow.
(3) The callout_info is now attached to the authorisation key. Reading this
key will retrieve the information.
(4) A new field has been added to the task_struct. This holds the
authorisation key currently active for a thread. Searches now look here
for the caller's set of keys rather than looking for an auth key in the
lowest level of the session keyring.
This permits a thread to be servicing multiple requests at once and to
switch between them. Note that this is per-thread, not per-process, and
so is usable in multithreaded programs.
The setting of this field is inherited across fork and exec.
(5) A new keyctl function (KEYCTL_ASSUME_AUTHORITY) has been added that
permits a thread to assume the authority to deal with an uninstantiated
key. Assumption is only permitted if the authorisation key associated
with the uninstantiated key is somewhere in the thread's keyrings.
This function can also clear the assumption.
(6) A new magic key specifier has been added to refer to the currently
assumed authorisation key (KEY_SPEC_REQKEY_AUTH_KEY).
(7) Instantiation will only proceed if the appropriate authorisation key is
assumed first. The assumed authorisation key is discarded if
instantiation is successful.
(8) key_validate() is moved from the file of request_key functions to the
file of permissions functions.
(9) The documentation is updated.
From: <Valdis.Kletnieks@vt.edu>
Build fix.
Signed-off-by: David Howells <dhowells@redhat.com>
Cc: Trond Myklebust <trond.myklebust@fys.uio.no>
Cc: Alexander Zangerl <az@bond.edu.au>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Cause any links within a keyring to keys that match a key to be linked into
that keyring to be discarded as a link to the new key is added. The match is
contingent on the type and description strings being the same.
This permits requests, adds and searches to displace negative, expired,
revoked and dead keys easily. After some discussion it was concluded that
duplicate valid keys should probably be discarded also as they would otherwise
hide the new key.
Since request_key() is intended to be the primary method by which keys are
added to a keyring, duplicate valid keys wouldn't be an issue there as that
function would return an existing match in preference to creating a new key.
Signed-off-by: David Howells <dhowells@redhat.com>
Cc: Trond Myklebust <trond.myklebust@fys.uio.no>
Cc: Alexander Zangerl <az@bond.edu.au>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Add a new keyctl function that allows the expiry time to be set on a key or
removed from a key, provided the caller has attribute modification access.
Signed-off-by: David Howells <dhowells@redhat.com>
Cc: Trond Myklebust <trond.myklebust@fys.uio.no>
Cc: Alexander Zangerl <az@bond.edu.au>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
make needlessly global code static
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Cc: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Remove the key duplication stuff since there's nothing that uses it, no way
to get at it and it's awkward to deal with for LSM purposes.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Permit add_key() to once again update a matching key rather than adding a
new one if a matching key already exists in the target keyring.
This bug causes add_key() to always add a new key, displacing the old from
the target keyring.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This is the security/ part of the big kfree cleanup patch.
Remove pointless checks for NULL prior to calling kfree() in security/.
Signed-off-by: Jesper Juhl <jesper.juhl@gmail.com>
Acked-by: James Morris <jmorris@namei.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
The attached patch removes a couple of incorrect and obsolete '!' operators
left over from the conversion of the key permission functions from
true/false returns to zero/error returns.
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
The attached patch adds LSM hooks for key management facilities. The notable
changes are:
(1) The key struct now supports a security pointer for the use of security
modules. This will permit key labelling and restrictions on which
programs may access a key.
(2) Security modules get a chance to note (or abort) the allocation of a key.
(3) The key permission checking can now be enhanced by the security modules;
the permissions check consults LSM if all other checks bear out.
(4) The key permissions checking functions now return an error code rather
than a boolean value.
(5) An extra permission has been added to govern the modification of
attributes (UID, GID, permissions).
Note that there isn't an LSM hook specifically for each keyctl() operation,
but rather the permissions hook allows control of individual operations based
on the permission request bits.
Key management access control through LSM is enabled by automatically if both
CONFIG_KEYS and CONFIG_SECURITY are enabled.
This should be applied on top of the patch ensubjected:
[PATCH] Keys: Possessor permissions should be additive
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Chris Wright <chrisw@osdl.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Export user-defined key operations so that those who wish to define their
own key type based on the user-defined key operations may do so (as has
been requested).
The header file created has been placed into include/keys/user-type.h, thus
creating a directory where other key types may also be placed. Any
objections to doing this?
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-Off-By: Arjan van de Ven <arjan@infradead.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This patch makes the possessor permissions on a key additive with
user/group/other permissions on the same key.
This permits extra rights to be granted to the possessor of a key without
taking away any rights conferred by them owning the key or having common group
membership.
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
The attached patch splits key permissions checking out of key-ui.h and
moves it into a .c file. It's quite large and called quite a lot, and
it's about to get bigger with the addition of LSM support for keys...
key_any_permission() is also discarded as it's no longer used.
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
The attached patch adds documentation for the process by which request-key
works, including how it permits helper processes to gain access to the
requestor's keyrings.
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Plug request_key_auth memleak. This can be triggered by unprivileged
users, so is local DoS.
Signed-off-by: Chris Wright <chrisw@osdl.org>
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
The attached patch adds extra permission grants to keys for the possessor of a
key in addition to the owner, group and other permissions bits. This makes
SUID binaries easier to support without going as far as labelling keys and key
targets using the LSM facilities.
This patch adds a second "pointer type" to key structures (struct key_ref *)
that can have the bottom bit of the address set to indicate the possession of
a key. This is propagated through searches from the keyring to the discovered
key. It has been made a separate type so that the compiler can spot attempts
to dereference a potentially incorrect pointer.
The "possession" attribute can't be attached to a key structure directly as
it's not an intrinsic property of a key.
Pointers to keys have been replaced with struct key_ref *'s wherever
possession information needs to be passed through.
This does assume that the bottom bit of the pointer will always be zero on
return from kmem_cache_alloc().
The key reference type has been made into a typedef so that at least it can be
located in the sources, even though it's basically a pointer to an undefined
type. I've also renamed the accessor functions to be more useful, and all
reference variables should now end in "_ref".
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
The attached patch makes sure that a keyring that failed to instantiate
properly is destroyed without oopsing [CAN-2005-2099].
The problem occurs in three stages:
(1) The key allocator initialises the type-specific data to all zeroes. In
the case of a keyring, this will become a link in the keyring name list
when the keyring is instantiated.
(2) If a user (any user) attempts to add a keyring with anything other than
an empty payload, the keyring instantiation function will fail with an
error and won't add the keyring to the name list.
(3) The keyring's destructor then sees that the keyring has a description
(name) and tries to remove the keyring from the name list, which oopses
because the link pointers are both zero.
This bug permits any user to take down a box trivially.
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
The attached patch prevents an error during the key session joining operation
from hanging future joins in the D state [CAN-2005-2098].
The problem is that the error handling path for the KEYCTL_JOIN_SESSION_KEYRING
operation has one error path that doesn't release the session management
semaphore. Further attempts to get the semaphore will then sleep for ever in
the D state.
This can happen in four situations, all involving an attempt to allocate a new
session keyring:
(1) ENOMEM.
(2) The users key quota being reached.
(3) A keyring name that is an empty string.
(4) A keyring name that is too long.
Any user may attempt this operation, and so any user can cause the problem to
occur.
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
This fixes five bugs in the key management syscall interface:
(1) add_key() returns 0 rather than EINVAL if the key type is "".
Checking the key type isn't "" should be left to lookup_user_key().
(2) request_key() returns ENOKEY rather than EPERM if the key type begins
with a ".".
lookup_user_key() can't do this because internal key types begin with a
".".
(3) Key revocation always returns 0, even if it fails.
(4) Key read can return EAGAIN rather than EACCES under some circumstances.
A key is permitted to by read by a process if it doesn't grant read
access, but it does grant search access and it is in the process's
keyrings. That search returns EAGAIN if it fails, and this needs
translating to EACCES.
(5) request_key() never adds the new key to the destination keyring if one is
supplied.
The wrong macro was being used to test for an error condition: PTR_ERR()
will always return true, whether or not there's an error; this should've
been IS_ERR().
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-Off-By: Linus Torvalds <torvalds@osdl.org>
The attached patch makes the keyring functions calculate the new size of a
keyring's payload based on the size of pointer to the key struct, not the size
of the key struct itself.
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2.6.12-rc6-mm1 has a few remaining synchronize_kernel()s, some (but not
all) in comments. This patch changes these synchronize_kernel() calls (and
comments) to synchronize_rcu() or synchronize_sched() as follows:
- arch/x86_64/kernel/mce.c mce_read(): change to synchronize_sched() to
handle races with machine-check exceptions (synchronize_rcu() would not cut
it given RCU implementations intended for hardcore realtime use.
- drivers/input/serio/i8042.c i8042_stop(): change to synchronize_sched() to
handle races with i8042_interrupt() interrupt handler. Again,
synchronize_rcu() would not cut it given RCU implementations intended for
hardcore realtime use.
- include/*/kdebug.h comments: change to synchronize_sched() to handle races
with NMIs. As before, synchronize_rcu() would not cut it...
- include/linux/list.h comment: change to synchronize_rcu(), since this
comment is for list_del_rcu().
- security/keys/key.c unregister_key_type(): change to synchronize_rcu(),
since this is interacting with RCU read side.
- security/keys/process_keys.c install_session_keyring(): change to
synchronize_rcu(), since this is interacting with RCU read side.
Signed-off-by: "Paul E. McKenney" <paulmck@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Export this symbol to GPL modules for eCryptfs: an out-of-tree GPL'ed
filesystem.
Signed off by: Michael Halcrow <mhalcrow@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
The attached patch makes the following changes:
(1) There's a new special key type called ".request_key_auth".
This is an authorisation key for when one process requests a key and
another process is started to construct it. This type of key cannot be
created by the user; nor can it be requested by kernel services.
Authorisation keys hold two references:
(a) Each refers to a key being constructed. When the key being
constructed is instantiated the authorisation key is revoked,
rendering it of no further use.
(b) The "authorising process". This is either:
(i) the process that called request_key(), or:
(ii) if the process that called request_key() itself had an
authorisation key in its session keyring, then the authorising
process referred to by that authorisation key will also be
referred to by the new authorisation key.
This means that the process that initiated a chain of key requests
will authorise the lot of them, and will, by default, wind up with
the keys obtained from them in its keyrings.
(2) request_key() creates an authorisation key which is then passed to
/sbin/request-key in as part of a new session keyring.
(3) When request_key() is searching for a key to hand back to the caller, if
it comes across an authorisation key in the session keyring of the
calling process, it will also search the keyrings of the process
specified therein and it will use the specified process's credentials
(fsuid, fsgid, groups) to do that rather than the calling process's
credentials.
This allows a process started by /sbin/request-key to find keys belonging
to the authorising process.
(4) A key can be read, even if the process executing KEYCTL_READ doesn't have
direct read or search permission if that key is contained within the
keyrings of a process specified by an authorisation key found within the
calling process's session keyring, and is searchable using the
credentials of the authorising process.
This allows a process started by /sbin/request-key to read keys belonging
to the authorising process.
(5) The magic KEY_SPEC_*_KEYRING key IDs when passed to KEYCTL_INSTANTIATE or
KEYCTL_NEGATE will specify a keyring of the authorising process, rather
than the process doing the instantiation.
(6) One of the process keyrings can be nominated as the default to which
request_key() should attach new keys if not otherwise specified. This is
done with KEYCTL_SET_REQKEY_KEYRING and one of the KEY_REQKEY_DEFL_*
constants. The current setting can also be read using this call.
(7) request_key() is partially interruptible. If it is waiting for another
process to finish constructing a key, it can be interrupted. This permits
a request-key cycle to be broken without recourse to rebooting.
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-Off-By: Benoit Boissinot <benoit.boissinot@ens-lyon.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
The attached patch uses RCU to manage the session keyring pointer in struct
signal_struct. This means that searching need not disable interrupts and get
a the sighand spinlock to access this pointer. Furthermore, by judicious use
of rcu_read_(un)lock(), this patch also avoids the need to take and put
refcounts on the session keyring itself, thus saving on even more atomic ops.
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
The attached patch makes it possible to pass a session keyring through to the
process spawned by call_usermodehelper(). This allows patch 3/3 to pass an
authorisation key through to /sbin/request-key, thus permitting better access
controls when doing just-in-time key creation.
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
The attached patch changes the key implementation in a number of ways:
(1) It removes the spinlock from the key structure.
(2) The key flags are now accessed using atomic bitops instead of
write-locking the key spinlock and using C bitwise operators.
The three instantiation flags are dealt with with the construction
semaphore held during the request_key/instantiate/negate sequence, thus
rendering the spinlock superfluous.
The key flags are also now bit numbers not bit masks.
(3) The key payload is now accessed using RCU. This permits the recursive
keyring search algorithm to be simplified greatly since no locks need be
taken other than the usual RCU preemption disablement. Searching now does
not require any locks or semaphores to be held; merely that the starting
keyring be pinned.
(4) The keyring payload now includes an RCU head so that it can be disposed
of by call_rcu(). This requires that the payload be copied on unlink to
prevent introducing races in copy-down vs search-up.
(5) The user key payload is now a structure with the data following it. It
includes an RCU head like the keyring payload and for the same reason. It
also contains a data length because the data length in the key may be
changed on another CPU whilst an RCU protected read is in progress on the
payload. This would then see the supposed RCU payload and the on-key data
length getting out of sync.
I'm tempted to drop the key's datalen entirely, except that it's used in
conjunction with quota management and so is a little tricky to get rid
of.
(6) Update the keys documentation.
Signed-Off-By: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!