The cookie is not used at all, remove it and update the usage in io.c
and afs/write.c (which is the only user outside of fscache currently)
at the same time.
[DH: Amended the documentation also]
Signed-off-by: Yue Hu <huyue2@coolpad.com>
Signed-off-by: David Howells <dhowells@redhat.com>
cc: linux-cachefs@redhat.com
Link: https://listman.redhat.com/archives/linux-cachefs/2022-April/006659.html
Convert all users of fscache_set_page_dirty to use fscache_dirty_folio.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Tested-by: Damien Le Moal <damien.lemoal@opensource.wdc.com>
Acked-by: Damien Le Moal <damien.lemoal@opensource.wdc.com>
Tested-by: Mike Marshall <hubcap@omnibond.com> # orangefs
Tested-by: David Howells <dhowells@redhat.com> # afs
Cachefiles has a problem in that it needs to keep the backing file for a
cookie open whilst there are local modifications pending that need to be
written to it. However, we don't want to keep the file open indefinitely,
as that causes EMFILE/ENFILE/ENOMEM problems.
Reopening the cache file, however, is a problem if this is being done due
to writeback triggered by exit(). Some filesystems will oops if we try to
open a file in that context because they want to access current->fs or
other resources that have already been dismantled.
To get around this, I added the following:
(1) An inode flag, I_PINNING_FSCACHE_WB, to be set on a network filesystem
inode to indicate that we have a usage count on the cookie caching
that inode.
(2) A flag in struct writeback_control, unpinned_fscache_wb, that is set
when __writeback_single_inode() clears the last dirty page from
i_pages - at which point it clears I_PINNING_FSCACHE_WB and sets this
flag.
This has to be done here so that clearing I_PINNING_FSCACHE_WB can be
done atomically with the check of PAGECACHE_TAG_DIRTY that clears
I_DIRTY_PAGES.
(3) A function, fscache_set_page_dirty(), which if it is not set, sets
I_PINNING_FSCACHE_WB and calls fscache_use_cookie() to pin the cache
resources.
(4) A function, fscache_unpin_writeback(), to be called by ->write_inode()
to unuse the cookie.
(5) A function, fscache_clear_inode_writeback(), to be called when the
inode is evicted, before clear_inode() is called. This cleans up any
lingering I_PINNING_FSCACHE_WB.
The network filesystem can then use these tools to make sure that
fscache_write_to_cache() can write locally modified data to the cache as
well as to the server.
For the future, I'm working on write helpers for netfs lib that should
allow this facility to be removed by keeping track of the dirty regions
separately - but that's incomplete at the moment and is also going to be
affected by folios, one way or another, since it deals with pages
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Jeff Layton <jlayton@kernel.org>
cc: linux-cachefs@redhat.com
Link: https://lore.kernel.org/r/163819615157.215744.17623791756928043114.stgit@warthog.procyon.org.uk/ # v1
Link: https://lore.kernel.org/r/163906917856.143852.8224898306177154573.stgit@warthog.procyon.org.uk/ # v2
Link: https://lore.kernel.org/r/163967124567.1823006.14188359004568060298.stgit@warthog.procyon.org.uk/ # v3
Link: https://lore.kernel.org/r/164021524705.640689.17824932021727663017.stgit@warthog.procyon.org.uk/ # v4
Provide a higher-level function than fscache_write() to perform a write
from an inode's pagecache to the cache, whilst fending off concurrent
writes by means of the PG_fscache mark on a page:
void fscache_write_to_cache(struct fscache_cookie *cookie,
struct address_space *mapping,
loff_t start,
size_t len,
loff_t i_size,
netfs_io_terminated_t term_func,
void *term_func_priv,
bool caching);
If caching is false, this function does nothing except call (*term_func)()
if given. It assumes that, in such a case, PG_fscache will not have been
set on the pages.
Otherwise, if caching is true, this function requires the source pages to
have had PG_fscache set on them before calling. start and len define the
region of the file to be modified and i_size indicates the new file size.
The source pages are extracted from the mapping.
term_func and term_func_priv work as for fscache_write(). The PG_fscache
marks will be cleared at the end of the operation, before term_func is
called or the function otherwise returns.
There is an additonal helper function to clear the PG_fscache bits from a
range of pages:
void fscache_clear_page_bits(struct fscache_cookie *cookie,
struct address_space *mapping,
loff_t start, size_t len,
bool caching);
If caching is true, the pages to be managed are expected to be located on
mapping in the range defined by start and len. If caching is false, it
does nothing.
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Jeff Layton <jlayton@kernel.org>
cc: linux-cachefs@redhat.com
Link: https://lore.kernel.org/r/163819614155.215744.5528123235123721230.stgit@warthog.procyon.org.uk/ # v1
Link: https://lore.kernel.org/r/163906916346.143852.15632773570362489926.stgit@warthog.procyon.org.uk/ # v2
Link: https://lore.kernel.org/r/163967123599.1823006.12946816026724657428.stgit@warthog.procyon.org.uk/ # v3
Link: https://lore.kernel.org/r/164021522672.640689.4381958316198807813.stgit@warthog.procyon.org.uk/ # v4
Provide a function to begin a read operation:
int fscache_begin_read_operation(
struct netfs_cache_resources *cres,
struct fscache_cookie *cookie)
This is primarily intended to be called by network filesystems on behalf of
netfslib, but may also be called to use the I/O access functions directly.
It attaches the resources required by the cache to cres struct from the
supplied cookie.
This holds access to the cache behind the cookie for the duration of the
operation and forces cache withdrawal and cookie invalidation to perform
synchronisation on the operation. cres->inval_counter is set from the
cookie at this point so that it can be compared at the end of the
operation.
Note that this does not guarantee that the cache state is fully set up and
able to perform I/O immediately; looking up and creation may be left in
progress in the background. The operations intended to be called by the
network filesystem, such as reading and writing, are expected to wait for
the cookie to move to the correct state.
This will, however, potentially sleep, waiting for a certain minimum state
to be set or for operations such as invalidate to advance far enough that
I/O can resume.
Also provide a function for the cache to call to wait for the cache object
to get to a state where it can be used for certain things:
bool fscache_wait_for_operation(struct netfs_cache_resources *cres,
enum fscache_want_stage stage);
This looks at the cache resources provided by the begin function and waits
for them to get to an appropriate stage. There's a choice of wanting just
some parameters (FSCACHE_WANT_PARAM) or the ability to do I/O
(FSCACHE_WANT_READ or FSCACHE_WANT_WRITE).
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Jeff Layton <jlayton@kernel.org>
cc: linux-cachefs@redhat.com
Link: https://lore.kernel.org/r/163819603692.215744.146724961588817028.stgit@warthog.procyon.org.uk/ # v1
Link: https://lore.kernel.org/r/163906910672.143852.13856103384424986357.stgit@warthog.procyon.org.uk/ # v2
Link: https://lore.kernel.org/r/163967110245.1823006.2239170567540431836.stgit@warthog.procyon.org.uk/ # v3
Link: https://lore.kernel.org/r/164021513617.640689.16627329360866150606.stgit@warthog.procyon.org.uk/ # v4