Commit Graph

8 Commits

Author SHA1 Message Date
Mark Rutland 6aa7de0591 locking/atomics: COCCINELLE/treewide: Convert trivial ACCESS_ONCE() patterns to READ_ONCE()/WRITE_ONCE()
Please do not apply this to mainline directly, instead please re-run the
coccinelle script shown below and apply its output.

For several reasons, it is desirable to use {READ,WRITE}_ONCE() in
preference to ACCESS_ONCE(), and new code is expected to use one of the
former. So far, there's been no reason to change most existing uses of
ACCESS_ONCE(), as these aren't harmful, and changing them results in
churn.

However, for some features, the read/write distinction is critical to
correct operation. To distinguish these cases, separate read/write
accessors must be used. This patch migrates (most) remaining
ACCESS_ONCE() instances to {READ,WRITE}_ONCE(), using the following
coccinelle script:

----
// Convert trivial ACCESS_ONCE() uses to equivalent READ_ONCE() and
// WRITE_ONCE()

// $ make coccicheck COCCI=/home/mark/once.cocci SPFLAGS="--include-headers" MODE=patch

virtual patch

@ depends on patch @
expression E1, E2;
@@

- ACCESS_ONCE(E1) = E2
+ WRITE_ONCE(E1, E2)

@ depends on patch @
expression E;
@@

- ACCESS_ONCE(E)
+ READ_ONCE(E)
----

Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: davem@davemloft.net
Cc: linux-arch@vger.kernel.org
Cc: mpe@ellerman.id.au
Cc: shuah@kernel.org
Cc: snitzer@redhat.com
Cc: thor.thayer@linux.intel.com
Cc: tj@kernel.org
Cc: viro@zeniv.linux.org.uk
Cc: will.deacon@arm.com
Link: http://lkml.kernel.org/r/1508792849-3115-19-git-send-email-paulmck@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-10-25 11:01:08 +02:00
Takashi Sakamoto a02cb8f8de ALSA: firewire: remove support for 16 bit PCM samples in playback substream
In IEC 61883-6, AM824 is described as format of data block. In this
format, one data block consists of several data channels, which is aligned
to 32 bit. One data channel has 8 bit label field and 24 bit data field.
PCM frames are transferred in Multi Bit Linear Audio (MBLA) data channel.
This channel can include 16/20/24 bit PCM sample.

As long as I know, models which support IEC 61883-1/6 doesn't allow to
switch bit length of PCM sample in MBLA data channel. They always
transmit/receive PCM frames of 24 bit length. This can be seen for the
other models which support protocols similar to IEC 61883-1/6.

On the other hand, current drivers for these protocols supports 16 bit
length PCM sample in playback substream. In this case, PCM sample is put
into the MBLA data channel with 8 bit padding in LSB side. Although 16
bit PCM sample is major because it's in CD format, this doesn't represent
device capability as is.

This commit removes support for 16 bit PCM samples in playback substream.

Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp>
Acked-by: Clemens Ladisch <clemens@ladisch.de>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
2017-05-22 16:24:08 +02:00
Takashi Sakamoto 8820a4cf0c ALSA: firewire-digi00x: handle all MIDI messages on streaming packets
At a commit 9dc5d31cdc ("ALSA: firewire-digi00x: handle MIDI messages in
isochronous packets"), a functionality to handle MIDI messages on
isochronous packet was supported. But this includes some of my
misunderstanding. This commit is to fix them.

For digi00x series, first data channel of data blocks in rx/tx packet
includes MIDI messages. The data channel has 0x80 in 8 bit of its MSB,
however it's against IEC 61883-6. Unique data format is applied:
 - Upper 4 bits of LSB represent port number.
  - 0x0: port 1.
  - 0x2: port 2.
  - 0xe: console port.
 - Lower 4 bits of LSB represent the number of included MIDI message bytes;
   0x0/0x1/0x2.
 - Two bytes of middle of this data channel have MIDI bytes.

Especially, MIDI messages from/to console surface are also transferred by
isochronous packets, as well as physical MIDI ports.

Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
2017-04-05 21:34:10 +02:00
Takashi Sakamoto 62f00e40b0 ALSA: firewire-lib: enable the same feature as CIP_SKIP_INIT_DBC_CHECK flag
In former commit, drivers in ALSA firewire stack always starts IT context
before IR context. If IR context starts after packets are transmitted by
peer unit, packet discontinuity may be detected because the context starts
in the middle of packet streaming. This situation is rare because IT
context usually starts immediately. However, it's better to solve this
issue. This is suppressed with CIP_SKIP_INIT_DBC_CHECK flag.

This commit enables the same feature as CIP_SKIP_INIT_DBC_CHECK.

Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
2016-05-10 17:04:01 +02:00
Geert Uytterhoeven b8cb3750ce ALSA: firewire-digi00x: Drop bogus const type qualifier on dot_scrt()
sound/firewire/digi00x/amdtp-dot.c:67: warning: type qualifiers ignored on function return type

Drop the bogus "const" type qualifier on the return type of dot_scrt()
to fix this.

Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
Reviewed-by: Takashi Sakamoto <o-takashi@sakamocchi.jp>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
2016-02-09 12:16:52 +01:00
Takashi Sakamoto 9dc5d31cdc ALSA: firewire-digi00x: handle MIDI messages in isochronous packets
In Digi 002/003 protocol, MIDI messages are transferred in the last data
channel of data blocks. Although this data channel has a label of 0x80,
it's not fully MIDI conformant data channel especially because the Counter
field always zero independently of included MIDI bytes. The 4th byte of
the data channel in LSB tells the number of included MIDI bytes. This byte
also includes the number of MIDI port. Therefore, the data format in this
data channel is:
 * 1st: 0x80 as label
 * 2nd: MIDI bytes
 * 3rd: 0 or MIDI bytes
 * 4th: the number of MIDI byte and the number of MIDI port

This commit adds support of MIDI messages in data block processing layer.

Like AM824 data format, this data channel has a capability to transfer
more MIDI messages than the capability of phisical MIDI bus. Therefore, a
throttle for data rate is  required to prevent devices' internal buffer to
overflow.

Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
2015-10-11 18:25:57 +02:00
Takashi Sakamoto 17385a386c ALSA: firewire-digi00x: use in-kernel representation for the type of 8 bits
Original code for 'DoubleOhThree' encoding was written with '__u8' type,
while the type is usually used to export something to userspace.

This commit replaces the type with 'u8'.

Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
2015-10-11 18:25:46 +02:00
Takashi Sakamoto 163ae6f3f3 ALSA: firewire-digi00x: add data block processing layer
Digi 002/003 family uses its own format for data blocks. The format is
quite similar to AM824 in IEC 61883-6, while there're some differences:

 * The Valid Bit Length (VBL) code is always 0x40 in Multi-bit Linear Audio
   (MBLA) data channel.
 * The first data channel includes MIDI messages, against IEC 61883-6
   recommendation.
 * The Counter field is always zero in MIDI conformant data channel.
 * Sequence multiplexing in IEC 61883-6 is not applied to the MIDI
   conformant data channel.
 * PCM samples are scrambled in received AMDTP packets. We call the way
   as Double-Oh-Three (DOT). The algorithm was discovered by
   Robin Gareus and Damien Zammit in 2012.

This commit adds data processing layer to satisfy these differences.

There's a quirk about transmission mode for received packets. When this
driver applies non-blocking mode to outgoing packets with isochronous
channel 2 or more, after 15 to 20 seconds since playbacking, any PCM
samples causes noisy sound on the device. With isochronous channel 0 or 1,
this doesn't occur. As long as I investigated, this quirk is not observed
when applying blocking mode to the received packets.

This driver applies blocking mode to outgoing packets, while non-blocking
mode to incoming packgets.

Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp>
Signed-off-by: Takashi Iwai <tiwai@suse.de>
2015-09-30 15:34:25 +02:00