mem_cgroup_id_get() was introduced in commit 73f576c04b ("mm:memcontrol:
fix cgroup creation failure after many small jobs").
Later, it no longer has any user since the commits,
1f47b61fb4 ("mm: memcontrol: fix swap counter leak on swapout from offline cgroup")
58fa2a5512 ("mm: memcontrol: add sanity checks for memcg->id.ref on get/put")
so safe to remove it.
Link: http://lkml.kernel.org/r/1568648453-5482-1-git-send-email-cai@lca.pw
Signed-off-by: Qian Cai <cai@lca.pw>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 72f0184c8a ("mm, memcg: remove hotplug locking from try_charge")
introduced css_tryget()/css_put() calls in drain_all_stock(), which are
supposed to protect the target memory cgroup from being released during
the mem_cgroup_is_descendant() call.
However, it's not completely safe. In theory, memcg can go away between
reading stock->cached pointer and calling css_tryget().
This can happen if drain_all_stock() races with drain_local_stock()
performed on the remote cpu as a result of a work, scheduled by the
previous invocation of drain_all_stock().
The race is a bit theoretical and there are few chances to trigger it, but
the current code looks a bit confusing, so it makes sense to fix it
anyway. The code looks like as if css_tryget() and css_put() are used to
protect stocks drainage. It's not necessary because stocked pages are
holding references to the cached cgroup. And it obviously won't work for
works, scheduled on other cpus.
So, let's read the stock->cached pointer and evaluate the memory cgroup
inside a rcu read section, and get rid of css_tryget()/css_put() calls.
Link: http://lkml.kernel.org/r/20190802192241.3253165-1-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We're trying to use memory.high to limit workloads, but have found that
containment can frequently fail completely and cause OOM situations
outside of the cgroup. This happens especially with swap space -- either
when none is configured, or swap is full. These failures often also don't
have enough warning to allow one to react, whether for a human or for a
daemon monitoring PSI.
Here is output from a simple program showing how long it takes in usec
(column 2) to allocate a megabyte of anonymous memory (column 1) when a
cgroup is already beyond its memory high setting, and no swap is
available:
[root@ktst ~]# systemd-run -p MemoryHigh=100M -p MemorySwapMax=1 \
> --wait -t timeout 300 /root/mdf
[...]
95 1035
96 1038
97 1000
98 1036
99 1048
100 1590
101 1968
102 1776
103 1863
104 1757
105 1921
106 1893
107 1760
108 1748
109 1843
110 1716
111 1924
112 1776
113 1831
114 1766
115 1836
116 1588
117 1912
118 1802
119 1857
120 1731
[...]
[System OOM in 2-3 seconds]
The delay does go up extremely marginally past the 100MB memory.high
threshold, as now we spend time scanning before returning to usermode, but
it's nowhere near enough to contain growth. It also doesn't get worse the
more pages you have, since it only considers nr_pages.
The current situation goes against both the expectations of users of
memory.high, and our intentions as cgroup v2 developers. In
cgroup-v2.txt, we claim that we will throttle and only under "extreme
conditions" will memory.high protection be breached. Likewise, cgroup v2
users generally also expect that memory.high should throttle workloads as
they exceed their high threshold. However, as seen above, this isn't
always how it works in practice -- even on banal setups like those with no
swap, or where swap has become exhausted, we can end up with memory.high
being breached and us having no weapons left in our arsenal to combat
runaway growth with, since reclaim is futile.
It's also hard for system monitoring software or users to tell how bad the
situation is, as "high" events for the memcg may in some cases be benign,
and in others be catastrophic. The current status quo is that we fail
containment in a way that doesn't provide any advance warning that things
are about to go horribly wrong (for example, we are about to invoke the
kernel OOM killer).
This patch introduces explicit throttling when reclaim is failing to keep
memcg size contained at the memory.high setting. It does so by applying
an exponential delay curve derived from the memcg's overage compared to
memory.high. In the normal case where the memcg is either below or only
marginally over its memory.high setting, no throttling will be performed.
This composes well with system health monitoring and remediation, as these
allocator delays are factored into PSI's memory pressure calculations.
This both creates a mechanism system administrators or applications
consuming the PSI interface to trivially see that the memcg in question is
struggling and use that to make more reasonable decisions, and permits
them enough time to act. Either of these can act with significantly more
nuance than that we can provide using the system OOM killer.
This is a similar idea to memory.oom_control in cgroup v1 which would put
the cgroup to sleep if the threshold was violated, but it's also
significantly improved as it results in visible memory pressure, and also
doesn't schedule indefinitely, which previously made tracing and other
introspection difficult (ie. it's clamped at 2*HZ per allocation through
MEMCG_MAX_HIGH_DELAY_JIFFIES).
Contrast the previous results with a kernel with this patch:
[root@ktst ~]# systemd-run -p MemoryHigh=100M -p MemorySwapMax=1 \
> --wait -t timeout 300 /root/mdf
[...]
95 1002
96 1000
97 1002
98 1003
99 1000
100 1043
101 84724
102 330628
103 610511
104 1016265
105 1503969
106 2391692
107 2872061
108 3248003
109 4791904
110 5759832
111 6912509
112 8127818
113 9472203
114 12287622
115 12480079
116 14144008
117 15808029
118 16384500
119 16383242
120 16384979
[...]
As you can see, in the normal case, memory allocation takes around 1000
usec. However, as we exceed our memory.high, things start to increase
exponentially, but fairly leniently at first. Our first megabyte over
memory.high takes us 0.16 seconds, then the next is 0.46 seconds, then the
next is almost an entire second. This gets worse until we reach our
eventual 2*HZ clamp per batch, resulting in 16 seconds per megabyte.
However, this is still making forward progress, so permits tracing or
further analysis with programs like GDB.
We use an exponential curve for our delay penalty for a few reasons:
1. We run mem_cgroup_handle_over_high to potentially do reclaim after
we've already performed allocations, which means that temporarily
going over memory.high by a small amount may be perfectly legitimate,
even for compliant workloads. We don't want to unduly penalise such
cases.
2. An exponential curve (as opposed to a static or linear delay) allows
ramping up memory pressure stats more gradually, which can be useful
to work out that you have set memory.high too low, without destroying
application performance entirely.
This patch expands on earlier work by Johannes Weiner. Thanks!
[akpm@linux-foundation.org: fix max() warning]
[akpm@linux-foundation.org: fix __udivdi3 ref on 32-bit]
[akpm@linux-foundation.org: fix it even more]
[chris@chrisdown.name: fix 64-bit divide even more]
Link: http://lkml.kernel.org/r/20190723180700.GA29459@chrisdown.name
Signed-off-by: Chris Down <chris@chrisdown.name>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Nathan Chancellor <natechancellor@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Replace 1 << compound_order(page) with compound_nr(page). Minor
improvements in readability.
Link: http://lkml.kernel.org/r/20190721104612.19120-4-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is more cleanup and consolidation of the hmm APIs and the very
strongly related mmu_notifier interfaces. Many places across the tree
using these interfaces are touched in the process. Beyond that a cleanup
to the page walker API and a few memremap related changes round out the
series:
- General improvement of hmm_range_fault() and related APIs, more
documentation, bug fixes from testing, API simplification &
consolidation, and unused API removal
- Simplify the hmm related kconfigs to HMM_MIRROR and DEVICE_PRIVATE, and
make them internal kconfig selects
- Hoist a lot of code related to mmu notifier attachment out of drivers by
using a refcount get/put attachment idiom and remove the convoluted
mmu_notifier_unregister_no_release() and related APIs.
- General API improvement for the migrate_vma API and revision of its only
user in nouveau
- Annotate mmu_notifiers with lockdep and sleeping region debugging
Two series unrelated to HMM or mmu_notifiers came along due to
dependencies:
- Allow pagemap's memremap_pages family of APIs to work without providing
a struct device
- Make walk_page_range() and related use a constant structure for function
pointers
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEfB7FMLh+8QxL+6i3OG33FX4gmxoFAl1/nnkACgkQOG33FX4g
mxqaRg//c6FqowV1pQlLutvAOAgMdpzfZ9eaaDKngy9RVQxz+k/MmJrdRH/p/mMA
Pq93A1XfwtraGKErHegFXGEDk4XhOustVAVFwvjyXO41dTUdoFVUkti6ftbrl/rS
6CT+X90jlvrwdRY7QBeuo7lxx7z8Qkqbk1O1kc1IOracjKfNJS+y6LTamy6weM3g
tIMHI65PkxpRzN36DV9uCN5dMwFzJ73DWHp1b0acnDIigkl6u5zp6orAJVWRjyQX
nmEd3/IOvdxaubAoAvboNS5CyVb4yS9xshWWMbH6AulKJv3Glca1Aa7QuSpBoN8v
wy4c9+umzqRgzgUJUe1xwN9P49oBNhJpgBSu8MUlgBA4IOc3rDl/Tw0b5KCFVfkH
yHkp8n6MP8VsRrzXTC6Kx0vdjIkAO8SUeylVJczAcVSyHIo6/JUJCVDeFLSTVymh
EGWJ7zX2iRhUbssJ6/izQTTQyCH3YIyZ5QtqByWuX2U7ZrfkqS3/EnBW1Q+j+gPF
Z2yW8iT6k0iENw6s8psE9czexuywa/Lttz94IyNlOQ8rJTiQqB9wLaAvg9hvUk7a
kuspL+JGIZkrL3ouCeO/VA6xnaP+Q7nR8geWBRb8zKGHmtWrb5Gwmt6t+vTnCC2l
olIDebrnnxwfBQhEJ5219W+M1pBpjiTpqK/UdBd92A4+sOOhOD0=
=FRGg
-----END PGP SIGNATURE-----
Merge tag 'for-linus-hmm' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma
Pull hmm updates from Jason Gunthorpe:
"This is more cleanup and consolidation of the hmm APIs and the very
strongly related mmu_notifier interfaces. Many places across the tree
using these interfaces are touched in the process. Beyond that a
cleanup to the page walker API and a few memremap related changes
round out the series:
- General improvement of hmm_range_fault() and related APIs, more
documentation, bug fixes from testing, API simplification &
consolidation, and unused API removal
- Simplify the hmm related kconfigs to HMM_MIRROR and DEVICE_PRIVATE,
and make them internal kconfig selects
- Hoist a lot of code related to mmu notifier attachment out of
drivers by using a refcount get/put attachment idiom and remove the
convoluted mmu_notifier_unregister_no_release() and related APIs.
- General API improvement for the migrate_vma API and revision of its
only user in nouveau
- Annotate mmu_notifiers with lockdep and sleeping region debugging
Two series unrelated to HMM or mmu_notifiers came along due to
dependencies:
- Allow pagemap's memremap_pages family of APIs to work without
providing a struct device
- Make walk_page_range() and related use a constant structure for
function pointers"
* tag 'for-linus-hmm' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma: (75 commits)
libnvdimm: Enable unit test infrastructure compile checks
mm, notifier: Catch sleeping/blocking for !blockable
kernel.h: Add non_block_start/end()
drm/radeon: guard against calling an unpaired radeon_mn_unregister()
csky: add missing brackets in a macro for tlb.h
pagewalk: use lockdep_assert_held for locking validation
pagewalk: separate function pointers from iterator data
mm: split out a new pagewalk.h header from mm.h
mm/mmu_notifiers: annotate with might_sleep()
mm/mmu_notifiers: prime lockdep
mm/mmu_notifiers: add a lockdep map for invalidate_range_start/end
mm/mmu_notifiers: remove the __mmu_notifier_invalidate_range_start/end exports
mm/hmm: hmm_range_fault() infinite loop
mm/hmm: hmm_range_fault() NULL pointer bug
mm/hmm: fix hmm_range_fault()'s handling of swapped out pages
mm/mmu_notifiers: remove unregister_no_release
RDMA/odp: remove ib_ucontext from ib_umem
RDMA/odp: use mmu_notifier_get/put for 'struct ib_ucontext_per_mm'
RDMA/mlx5: Use odp instead of mr->umem in pagefault_mr
RDMA/mlx5: Use ib_umem_start instead of umem.address
...
-----BEGIN PGP SIGNATURE-----
iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAl1/no0QHGF4Ym9lQGtl
cm5lbC5kawAKCRD301j7KXHgpmo9EACFXMbdNmEEUMyRSdOkVLlr7ZlTyQi1tLpB
YESDPxdBfybzpi0qa8JSaysGIfvSkSjmSAqBqrWPmASOSOL6CK4bbA4fTYbgPplk
XeHUdgGiG34oCQUn8Xil5reYaTm7I6LQWnWTpVa5fIhAyUYaGJL+987ykoGmpQmB
Dvf3YSc+8H0RTp9PCMVd6UCGPkZbVlLImGad3PF5ULvTEaE4RCXC2aiAgh0p1l5A
J2CkRZ+/mio3zN2O4YN7VdPGfr1Wo1iZ834xbIGLegv1miHXagFk7jwTcC7zIt5t
oSnJnqIg3iCe7SpWt4Bkzw/zy/2UqaspifbCMgw8vychlViVRUHFO5h85Yboo7kQ
OMLEQPcwjm6dTHv5h1iXF9LW1O7NoiYmmgvApU9uOo1HUrl1X7PZ3JEfUsVHxkOO
T4D5igf0Krsl1eAbiwEUQzy7vFZ8PlRHqrHgK+fkyotzHu1BJR7OQkYygEfGFOB/
EfMxplGDpmibYGuWCwDX2bPAmLV3SPUQENReHrfPJRDt5TD1UkFpVGv/PLLhbr0p
cLYI78DKpDSigBpVMmwq5nTYpnex33eyDTTA8C0sakcsdzdmU5qv30y3wm4nTiep
f6gZo6IMXwRg/rCgVVrd9SKQAr/8wEzVlsDW3qyi2pVT8sHIgm0tFv7paihXGdDV
xsKgmTrQQQ==
=Qt+h
-----END PGP SIGNATURE-----
Merge tag 'for-5.4/block-2019-09-16' of git://git.kernel.dk/linux-block
Pull block updates from Jens Axboe:
- Two NVMe pull requests:
- ana log parse fix from Anton
- nvme quirks support for Apple devices from Ben
- fix missing bio completion tracing for multipath stack devices
from Hannes and Mikhail
- IP TOS settings for nvme rdma and tcp transports from Israel
- rq_dma_dir cleanups from Israel
- tracing for Get LBA Status command from Minwoo
- Some nvme-tcp cleanups from Minwoo, Potnuri and Myself
- Some consolidation between the fabrics transports for handling
the CAP register
- reset race with ns scanning fix for fabrics (move fabrics
commands to a dedicated request queue with a different lifetime
from the admin request queue)."
- controller reset and namespace scan races fixes
- nvme discovery log change uevent support
- naming improvements from Keith
- multiple discovery controllers reject fix from James
- some regular cleanups from various people
- Series fixing (and re-fixing) null_blk debug printing and nr_devices
checks (André)
- A few pull requests from Song, with fixes from Andy, Guoqing,
Guilherme, Neil, Nigel, and Yufen.
- REQ_OP_ZONE_RESET_ALL support (Chaitanya)
- Bio merge handling unification (Christoph)
- Pick default elevator correctly for devices with special needs
(Damien)
- Block stats fixes (Hou)
- Timeout and support devices nbd fixes (Mike)
- Series fixing races around elevator switching and device add/remove
(Ming)
- sed-opal cleanups (Revanth)
- Per device weight support for BFQ (Fam)
- Support for blk-iocost, a new model that can properly account cost of
IO workloads. (Tejun)
- blk-cgroup writeback fixes (Tejun)
- paride queue init fixes (zhengbin)
- blk_set_runtime_active() cleanup (Stanley)
- Block segment mapping optimizations (Bart)
- lightnvm fixes (Hans/Minwoo/YueHaibing)
- Various little fixes and cleanups
* tag 'for-5.4/block-2019-09-16' of git://git.kernel.dk/linux-block: (186 commits)
null_blk: format pr_* logs with pr_fmt
null_blk: match the type of parameter nr_devices
null_blk: do not fail the module load with zero devices
block: also check RQF_STATS in blk_mq_need_time_stamp()
block: make rq sector size accessible for block stats
bfq: Fix bfq linkage error
raid5: use bio_end_sector in r5_next_bio
raid5: remove STRIPE_OPS_REQ_PENDING
md: add feature flag MD_FEATURE_RAID0_LAYOUT
md/raid0: avoid RAID0 data corruption due to layout confusion.
raid5: don't set STRIPE_HANDLE to stripe which is in batch list
raid5: don't increment read_errors on EILSEQ return
nvmet: fix a wrong error status returned in error log page
nvme: send discovery log page change events to userspace
nvme: add uevent variables for controller devices
nvme: enable aen regardless of the presence of I/O queues
nvme-fabrics: allow discovery subsystems accept a kato
nvmet: Use PTR_ERR_OR_ZERO() in nvmet_init_discovery()
nvme: Remove redundant assignment of cq vector
nvme: Assign subsys instance from first ctrl
...
The mm_walk structure currently mixed data and code. Split out the
operations vectors into a new mm_walk_ops structure, and while we are
changing the API also declare the mm_walk structure inside the
walk_page_range and walk_page_vma functions.
Based on patch from Linus Torvalds.
Link: https://lore.kernel.org/r/20190828141955.22210-3-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Thomas Hellstrom <thellstrom@vmware.com>
Reviewed-by: Steven Price <steven.price@arm.com>
Reviewed-by: Jason Gunthorpe <jgg@mellanox.com>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
Add a new header for the two handful of users of the walk_page_range /
walk_page_vma interface instead of polluting all users of mm.h with it.
Link: https://lore.kernel.org/r/20190828141955.22210-2-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Thomas Hellstrom <thellstrom@vmware.com>
Reviewed-by: Steven Price <steven.price@arm.com>
Reviewed-by: Jason Gunthorpe <jgg@mellanox.com>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
Instead of using raw_cpu_read() use per_cpu() to read the actual data of
the corresponding cpu otherwise we will be reading the data of the
current cpu for the number of online CPUs.
Link: http://lkml.kernel.org/r/20190829203110.129263-1-shakeelb@google.com
Fixes: bb65f89b7d ("mm: memcontrol: flush percpu vmevents before releasing memcg")
Fixes: c350a99ea2 ("mm: memcontrol: flush percpu vmstats before releasing memcg")
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Roman Gushchin <guro@fb.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 766a4c19d8 ("mm/memcontrol.c: keep local VM counters in sync
with the hierarchical ones") effectively decreased the precision of
per-memcg vmstats_local and per-memcg-per-node lruvec percpu counters.
That's good for displaying in memory.stat, but brings a serious
regression into the reclaim process.
One issue I've discovered and debugged is the following:
lruvec_lru_size() can return 0 instead of the actual number of pages in
the lru list, preventing the kernel to reclaim last remaining pages.
Result is yet another dying memory cgroups flooding. The opposite is
also happening: scanning an empty lru list is the waste of cpu time.
Also, inactive_list_is_low() can return incorrect values, preventing the
active lru from being scanned and freed. It can fail both because the
size of active and inactive lists are inaccurate, and because the number
of workingset refaults isn't precise. In other words, the result is
pretty random.
I'm not sure, if using the approximate number of slab pages in
count_shadow_number() is acceptable, but issues described above are
enough to partially revert the patch.
Let's keep per-memcg vmstat_local batched (they are only used for
displaying stats to the userspace), but keep lruvec stats precise. This
change fixes the dead memcg flooding on my setup.
Link: http://lkml.kernel.org/r/20190817004726.2530670-1-guro@fb.com
Fixes: 766a4c19d8 ("mm/memcontrol.c: keep local VM counters in sync with the hierarchical ones")
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Yafang Shao <laoar.shao@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
I've noticed that the "slab" value in memory.stat is sometimes 0, even
if some children memory cgroups have a non-zero "slab" value. The
following investigation showed that this is the result of the kmem_cache
reparenting in combination with the per-cpu batching of slab vmstats.
At the offlining some vmstat value may leave in the percpu cache, not
being propagated upwards by the cgroup hierarchy. It means that stats
on ancestor levels are lower than actual. Later when slab pages are
released, the precise number of pages is substracted on the parent
level, making the value negative. We don't show negative values, 0 is
printed instead.
To fix this issue, let's flush percpu slab memcg and lruvec stats on
memcg offlining. This guarantees that numbers on all ancestor levels
are accurate and match the actual number of outstanding slab pages.
Link: http://lkml.kernel.org/r/20190819202338.363363-3-guro@fb.com
Fixes: fb2f2b0adb ("mm: memcg/slab: reparent memcg kmem_caches on cgroup removal")
Signed-off-by: Roman Gushchin <guro@fb.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
cgroup foreign inode handling has quite a bit of heuristics and
internal states which sometimes makes it difficult to understand
what's going on. Add tracepoints to improve visibility.
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
There's an inherent mismatch between memcg and writeback. The former
trackes ownership per-page while the latter per-inode. This was a
deliberate design decision because honoring per-page ownership in the
writeback path is complicated, may lead to higher CPU and IO overheads
and deemed unnecessary given that write-sharing an inode across
different cgroups isn't a common use-case.
Combined with inode majority-writer ownership switching, this works
well enough in most cases but there are some pathological cases. For
example, let's say there are two cgroups A and B which keep writing to
different but confined parts of the same inode. B owns the inode and
A's memory is limited far below B's. A's dirty ratio can rise enough
to trigger balance_dirty_pages() sleeps but B's can be low enough to
avoid triggering background writeback. A will be slowed down without
a way to make writeback of the dirty pages happen.
This patch implements foreign dirty recording and foreign mechanism so
that when a memcg encounters a condition as above it can trigger
flushes on bdi_writebacks which can clean its pages. Please see the
comment on top of mem_cgroup_track_foreign_dirty_slowpath() for
details.
A reproducer follows.
write-range.c::
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/types.h>
static const char *usage = "write-range FILE START SIZE\n";
int main(int argc, char **argv)
{
int fd;
unsigned long start, size, end, pos;
char *endp;
char buf[4096];
if (argc < 4) {
fprintf(stderr, usage);
return 1;
}
fd = open(argv[1], O_WRONLY);
if (fd < 0) {
perror("open");
return 1;
}
start = strtoul(argv[2], &endp, 0);
if (*endp != '\0') {
fprintf(stderr, usage);
return 1;
}
size = strtoul(argv[3], &endp, 0);
if (*endp != '\0') {
fprintf(stderr, usage);
return 1;
}
end = start + size;
while (1) {
for (pos = start; pos < end; ) {
long bread, bwritten = 0;
if (lseek(fd, pos, SEEK_SET) < 0) {
perror("lseek");
return 1;
}
bread = read(0, buf, sizeof(buf) < end - pos ?
sizeof(buf) : end - pos);
if (bread < 0) {
perror("read");
return 1;
}
if (bread == 0)
return 0;
while (bwritten < bread) {
long this;
this = write(fd, buf + bwritten,
bread - bwritten);
if (this < 0) {
perror("write");
return 1;
}
bwritten += this;
pos += bwritten;
}
}
}
}
repro.sh::
#!/bin/bash
set -e
set -x
sysctl -w vm.dirty_expire_centisecs=300000
sysctl -w vm.dirty_writeback_centisecs=300000
sysctl -w vm.dirtytime_expire_seconds=300000
echo 3 > /proc/sys/vm/drop_caches
TEST=/sys/fs/cgroup/test
A=$TEST/A
B=$TEST/B
mkdir -p $A $B
echo "+memory +io" > $TEST/cgroup.subtree_control
echo $((1<<30)) > $A/memory.high
echo $((32<<30)) > $B/memory.high
rm -f testfile
touch testfile
fallocate -l 4G testfile
echo "Starting B"
(echo $BASHPID > $B/cgroup.procs
pv -q --rate-limit 70M < /dev/urandom | ./write-range testfile $((2<<30)) $((2<<30))) &
echo "Waiting 10s to ensure B claims the testfile inode"
sleep 5
sync
sleep 5
sync
echo "Starting A"
(echo $BASHPID > $A/cgroup.procs
pv < /dev/urandom | ./write-range testfile 0 $((2<<30)))
v2: Added comments explaining why the specific intervals are being used.
v3: Use 0 @nr when calling cgroup_writeback_by_id() to use best-effort
flushing while avoding possible livelocks.
v4: Use get_jiffies_64() and time_before/after64() instead of raw
jiffies_64 and arthimetic comparisons as suggested by Jan.
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Similar to vmstats, percpu caching of local vmevents leads to an
accumulation of errors on non-leaf levels. This happens because some
leftovers may remain in percpu caches, so that they are never propagated
up by the cgroup tree and just disappear into nonexistence with on
releasing of the memory cgroup.
To fix this issue let's accumulate and propagate percpu vmevents values
before releasing the memory cgroup similar to what we're doing with
vmstats.
Since on cpu hotplug we do flush percpu vmstats anyway, we can iterate
only over online cpus.
Link: http://lkml.kernel.org/r/20190819202338.363363-4-guro@fb.com
Fixes: 42a3003535 ("mm: memcontrol: fix recursive statistics correctness & scalabilty")
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Percpu caching of local vmstats with the conditional propagation by the
cgroup tree leads to an accumulation of errors on non-leaf levels.
Let's imagine two nested memory cgroups A and A/B. Say, a process
belonging to A/B allocates 100 pagecache pages on the CPU 0. The percpu
cache will spill 3 times, so that 32*3=96 pages will be accounted to A/B
and A atomic vmstat counters, 4 pages will remain in the percpu cache.
Imagine A/B is nearby memory.max, so that every following allocation
triggers a direct reclaim on the local CPU. Say, each such attempt will
free 16 pages on a new cpu. That means every percpu cache will have -16
pages, except the first one, which will have 4 - 16 = -12. A/B and A
atomic counters will not be touched at all.
Now a user removes A/B. All percpu caches are freed and corresponding
vmstat numbers are forgotten. A has 96 pages more than expected.
As memory cgroups are created and destroyed, errors do accumulate. Even
1-2 pages differences can accumulate into large numbers.
To fix this issue let's accumulate and propagate percpu vmstat values
before releasing the memory cgroup. At this point these numbers are
stable and cannot be changed.
Since on cpu hotplug we do flush percpu vmstats anyway, we can iterate
only over online cpus.
Link: http://lkml.kernel.org/r/20190819202338.363363-2-guro@fb.com
Fixes: 42a3003535 ("mm: memcontrol: fix recursive statistics correctness & scalabilty")
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Memcg counters for shadow nodes are broken because the memcg pointer is
obtained in a wrong way. The following approach is used:
virt_to_page(xa_node)->mem_cgroup
Since commit 4d96ba3530 ("mm: memcg/slab: stop setting
page->mem_cgroup pointer for slab pages") page->mem_cgroup pointer isn't
set for slab pages, so memcg_from_slab_page() should be used instead.
Also I doubt that it ever worked correctly: virt_to_head_page() should
be used instead of virt_to_page(). Otherwise objects residing on tail
pages are not accounted, because only the head page contains a valid
mem_cgroup pointer. That was a case since the introduction of these
counters by the commit 68d48e6a2d ("mm: workingset: add vmstat counter
for shadow nodes").
Link: http://lkml.kernel.org/r/20190801233532.138743-1-guro@fb.com
Fixes: 4d96ba3530 ("mm: memcg/slab: stop setting page->mem_cgroup pointer for slab pages")
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
After commit 815744d751 ("mm: memcontrol: don't batch updates of local
VM stats and events"), the local VM counter are not in sync with the
hierarchical ones.
Below is one example in a leaf memcg on my server (with 8 CPUs):
inactive_file 3567570944
total_inactive_file 3568029696
We find that the deviation is very great because the 'val' in
__mod_memcg_state() is in pages while the effective value in
memcg_stat_show() is in bytes.
So the maximum of this deviation between local VM stats and total VM
stats can be (32 * number_of_cpu * PAGE_SIZE), that may be an
unacceptably great value.
We should keep the local VM stats in sync with the total stats. In
order to keep this behavior the same across counters, this patch updates
__mod_lruvec_state() and __count_memcg_events() as well.
Link: http://lkml.kernel.org/r/1562851979-10610-1-git-send-email-laoar.shao@gmail.com
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Yafang Shao <shaoyafang@didiglobal.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Improvements and bug fixes for the hmm interface in the kernel:
- Improve clarity, locking and APIs related to the 'hmm mirror' feature
merged last cycle. In linux-next we now see AMDGPU and nouveau to be
using this API.
- Remove old or transitional hmm APIs. These are hold overs from the past
with no users, or APIs that existed only to manage cross tree conflicts.
There are still a few more of these cleanups that didn't make the merge
window cut off.
- Improve some core mm APIs:
* export alloc_pages_vma() for driver use
* refactor into devm_request_free_mem_region() to manage
DEVICE_PRIVATE resource reservations
* refactor duplicative driver code into the core dev_pagemap
struct
- Remove hmm wrappers of improved core mm APIs, instead have drivers use
the simplified API directly
- Remove DEVICE_PUBLIC
- Simplify the kconfig flow for the hmm users and core code
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEfB7FMLh+8QxL+6i3OG33FX4gmxoFAl0k1zkACgkQOG33FX4g
mxrO+w//QF/yI/9Hh30RWEBq8W107cODkDlaT0Z/7cVEXfGetZzIUpqzxnJofRfQ
xTw1XmYkc9WpJe/mTTuFZFewNQwWuMM6X0Xi25fV438/Y64EclevlcJTeD49TIH1
CIMsz8bX7CnCEq5sz+UypLg9LPnaD9L/JLyuSbyjqjms/o+yzqa7ji7p/DSINuhZ
Qva9OZL1ZSEDJfNGi8uGpYBqryHoBAonIL12R9sCF5pbJEnHfWrH7C06q7AWOAjQ
4vjN/p3F4L9l/v2IQ26Kn/S0AhmN7n3GT//0K66e2gJPfXa8fxRKGuFn/Kd79EGL
YPASn5iu3cM23up1XkbMNtzacL8yiIeTOcMdqw26OaOClojy/9OJduv5AChe6qL/
VUQIAn1zvPsJTyC5U7mhmkrGuTpP6ivHpxtcaUp+Ovvi1cyK40nLCmSNvLnbN5ES
bxbb0SjE4uupDG5qU6Yct/hFp6uVMSxMqXZOb9Xy8ZBkbMsJyVOLj71G1/rVIfPU
hO1AChX5CRG1eJoMo6oBIpiwmSvcOaPp3dqIOQZvwMOqrO869LR8qv7RXyh/g9gi
FAEKnwLl4GK3YtEO4Kt/1YI5DXYjSFUbfgAs0SPsRKS6hK2+RgRk2M/B/5dAX0/d
lgOf9WPODPwiSXBYLtJB8qHVDX0DIY8faOyTx6BYIKClUtgbBI8=
=wKvp
-----END PGP SIGNATURE-----
Merge tag 'for-linus-hmm' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma
Pull HMM updates from Jason Gunthorpe:
"Improvements and bug fixes for the hmm interface in the kernel:
- Improve clarity, locking and APIs related to the 'hmm mirror'
feature merged last cycle. In linux-next we now see AMDGPU and
nouveau to be using this API.
- Remove old or transitional hmm APIs. These are hold overs from the
past with no users, or APIs that existed only to manage cross tree
conflicts. There are still a few more of these cleanups that didn't
make the merge window cut off.
- Improve some core mm APIs:
- export alloc_pages_vma() for driver use
- refactor into devm_request_free_mem_region() to manage
DEVICE_PRIVATE resource reservations
- refactor duplicative driver code into the core dev_pagemap
struct
- Remove hmm wrappers of improved core mm APIs, instead have drivers
use the simplified API directly
- Remove DEVICE_PUBLIC
- Simplify the kconfig flow for the hmm users and core code"
* tag 'for-linus-hmm' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma: (42 commits)
mm: don't select MIGRATE_VMA_HELPER from HMM_MIRROR
mm: remove the HMM config option
mm: sort out the DEVICE_PRIVATE Kconfig mess
mm: simplify ZONE_DEVICE page private data
mm: remove hmm_devmem_add
mm: remove hmm_vma_alloc_locked_page
nouveau: use devm_memremap_pages directly
nouveau: use alloc_page_vma directly
PCI/P2PDMA: use the dev_pagemap internal refcount
device-dax: use the dev_pagemap internal refcount
memremap: provide an optional internal refcount in struct dev_pagemap
memremap: replace the altmap_valid field with a PGMAP_ALTMAP_VALID flag
memremap: remove the data field in struct dev_pagemap
memremap: add a migrate_to_ram method to struct dev_pagemap_ops
memremap: lift the devmap_enable manipulation into devm_memremap_pages
memremap: pass a struct dev_pagemap to ->kill and ->cleanup
memremap: move dev_pagemap callbacks into a separate structure
memremap: validate the pagemap type passed to devm_memremap_pages
mm: factor out a devm_request_free_mem_region helper
mm: export alloc_pages_vma
...
oom_unkillable_task() can be called from three different contexts i.e.
global OOM, memcg OOM and oom_score procfs interface. At the moment
oom_unkillable_task() does a task_in_mem_cgroup() check on the given
process. Since there is no reason to perform task_in_mem_cgroup()
check for global OOM and oom_score procfs interface, those contexts
provide NULL memcg and skips the task_in_mem_cgroup() check. However
for memcg OOM context, the oom_unkillable_task() is always called from
mem_cgroup_scan_tasks() and thus task_in_mem_cgroup() check becomes
redundant and effectively dead code. So, just remove the
task_in_mem_cgroup() check altogether.
Link: http://lkml.kernel.org/r/20190624212631.87212-2-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Acked-by: Roman Gushchin <guro@fb.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Paul Jackson <pj@sgi.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since commit c03cd7738a ("cgroup: Include dying leaders with live
threads in PROCS iterations") corrected how CSS_TASK_ITER_PROCS works,
mem_cgroup_scan_tasks() can use CSS_TASK_ITER_PROCS in order to check
only one thread from each thread group.
[penguin-kernel@I-love.SAKURA.ne.jp: remove thread group leader check in oom_evaluate_task()]
Link: http://lkml.kernel.org/r/1560853257-14934-1-git-send-email-penguin-kernel@I-love.SAKURA.ne.jp
Link: http://lkml.kernel.org/r/c763afc8-f0ae-756a-56a7-395f625b95fc@i-love.sakura.ne.jp
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Let's reparent non-root kmem_caches on memcg offlining. This allows us to
release the memory cgroup without waiting for the last outstanding kernel
object (e.g. dentry used by another application).
Since the parent cgroup is already charged, everything we need to do is to
splice the list of kmem_caches to the parent's kmem_caches list, swap the
memcg pointer, drop the css refcounter for each kmem_cache and adjust the
parent's css refcounter.
Please, note that kmem_cache->memcg_params.memcg isn't a stable pointer
anymore. It's safe to read it under rcu_read_lock(), cgroup_mutex held,
or any other way that protects the memory cgroup from being released.
We can race with the slab allocation and deallocation paths. It's not a
big problem: parent's charge and slab global stats are always correct, and
we don't care anymore about the child usage and global stats. The child
cgroup is already offline, so we don't use or show it anywhere.
Local slab stats (NR_SLAB_RECLAIMABLE and NR_SLAB_UNRECLAIMABLE) aren't
used anywhere except count_shadow_nodes(). But even there it won't break
anything: after reparenting "nodes" will be 0 on child level (because
we're already reparenting shrinker lists), and on parent level page stats
always were 0, and this patch won't change anything.
[guro@fb.com: properly handle kmem_caches reparented to root_mem_cgroup]
Link: http://lkml.kernel.org/r/20190620213427.1691847-1-guro@fb.com
Link: http://lkml.kernel.org/r/20190611231813.3148843-11-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Waiman Long <longman@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Andrei Vagin <avagin@gmail.com>
Cc: Qian Cai <cai@lca.pw>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Every slab page charged to a non-root memory cgroup has a pointer to the
memory cgroup and holds a reference to it, which protects a non-empty
memory cgroup from being released. At the same time the page has a
pointer to the corresponding kmem_cache, and also hold a reference to the
kmem_cache. And kmem_cache by itself holds a reference to the cgroup.
So there is clearly some redundancy, which allows to stop setting the
page->mem_cgroup pointer and rely on getting memcg pointer indirectly via
kmem_cache. Further it will allow to change this pointer easier, without
a need to go over all charged pages.
So let's stop setting page->mem_cgroup pointer for slab pages, and stop
using the css refcounter directly for protecting the memory cgroup from
going away. Instead rely on kmem_cache as an intermediate object.
Make sure that vmstats and shrinker lists are working as previously, as
well as /proc/kpagecgroup interface.
Link: http://lkml.kernel.org/r/20190611231813.3148843-10-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Waiman Long <longman@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Andrei Vagin <avagin@gmail.com>
Cc: Qian Cai <cai@lca.pw>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently each charged slab page holds a reference to the cgroup to which
it's charged. Kmem_caches are held by the memcg and are released all
together with the memory cgroup. It means that none of kmem_caches are
released unless at least one reference to the memcg exists, which is very
far from optimal.
Let's rework it in a way that allows releasing individual kmem_caches as
soon as the cgroup is offline, the kmem_cache is empty and there are no
pending allocations.
To make it possible, let's introduce a new percpu refcounter for non-root
kmem caches. The counter is initialized to the percpu mode, and is
switched to the atomic mode during kmem_cache deactivation. The counter
is bumped for every charged page and also for every running allocation.
So the kmem_cache can't be released unless all allocations complete.
To shutdown non-active empty kmem_caches, let's reuse the work queue,
previously used for the kmem_cache deactivation. Once the reference
counter reaches 0, let's schedule an asynchronous kmem_cache release.
* I used the following simple approach to test the performance
(stolen from another patchset by T. Harding):
time find / -name fname-no-exist
echo 2 > /proc/sys/vm/drop_caches
repeat 10 times
Results:
orig patched
real 0m1.455s real 0m1.355s
user 0m0.206s user 0m0.219s
sys 0m0.855s sys 0m0.807s
real 0m1.487s real 0m1.699s
user 0m0.221s user 0m0.256s
sys 0m0.806s sys 0m0.948s
real 0m1.515s real 0m1.505s
user 0m0.183s user 0m0.215s
sys 0m0.876s sys 0m0.858s
real 0m1.291s real 0m1.380s
user 0m0.193s user 0m0.198s
sys 0m0.843s sys 0m0.786s
real 0m1.364s real 0m1.374s
user 0m0.180s user 0m0.182s
sys 0m0.868s sys 0m0.806s
real 0m1.352s real 0m1.312s
user 0m0.201s user 0m0.212s
sys 0m0.820s sys 0m0.761s
real 0m1.302s real 0m1.349s
user 0m0.205s user 0m0.203s
sys 0m0.803s sys 0m0.792s
real 0m1.334s real 0m1.301s
user 0m0.194s user 0m0.201s
sys 0m0.806s sys 0m0.779s
real 0m1.426s real 0m1.434s
user 0m0.216s user 0m0.181s
sys 0m0.824s sys 0m0.864s
real 0m1.350s real 0m1.295s
user 0m0.200s user 0m0.190s
sys 0m0.842s sys 0m0.811s
So it looks like the difference is not noticeable in this test.
[cai@lca.pw: fix an use-after-free in kmemcg_workfn()]
Link: http://lkml.kernel.org/r/1560977573-10715-1-git-send-email-cai@lca.pw
Link: http://lkml.kernel.org/r/20190611231813.3148843-9-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Qian Cai <cai@lca.pw>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Waiman Long <longman@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Andrei Vagin <avagin@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Let's separate the page counter modification code out of
__memcg_kmem_uncharge() in a way similar to what
__memcg_kmem_charge() and __memcg_kmem_charge_memcg() work.
This will allow to reuse this code later using a new
memcg_kmem_uncharge_memcg() wrapper, which calls
__memcg_kmem_uncharge_memcg() if memcg_kmem_enabled()
check is passed.
Link: http://lkml.kernel.org/r/20190611231813.3148843-5-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Waiman Long <longman@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Andrei Vagin <avagin@gmail.com>
Cc: Qian Cai <cai@lca.pw>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The memory controller in cgroup v2 exposes memory.events file for each
memcg which shows the number of times events like low, high, max, oom
and oom_kill have happened for the whole tree rooted at that memcg.
Users can also poll or register notification to monitor the changes in
that file. Any event at any level of the tree rooted at memcg will
notify all the listeners along the path till root_mem_cgroup. There are
existing users which depend on this behavior.
However there are users which are only interested in the events
happening at a specific level of the memcg tree and not in the events in
the underlying tree rooted at that memcg. One such use-case is a
centralized resource monitor which can dynamically adjust the limits of
the jobs running on a system. The jobs can create their sub-hierarchy
for their own sub-tasks. The centralized monitor is only interested in
the events at the top level memcgs of the jobs as it can then act and
adjust the limits of the jobs. Using the current memory.events for such
centralized monitor is very inconvenient. The monitor will keep
receiving events which it is not interested and to find if the received
event is interesting, it has to read memory.event files of the next
level and compare it with the top level one. So, let's introduce
memory.events.local to the memcg which shows and notify for the events
at the memcg level.
Now, does memory.stat and memory.pressure need their local versions. IMHO
no due to the no internal process contraint of the cgroup v2. The
memory.stat file of the top level memcg of a job shows the stats and
vmevents of the whole tree. The local stats or vmevents of the top level
memcg will only change if there is a process running in that memcg but v2
does not allow that. Similarly for memory.pressure there will not be any
process in the internal nodes and thus no chance of local pressure.
Link: http://lkml.kernel.org/r/20190527174643.209172-1-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Roman Gushchin <guro@fb.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Chris Down <chris@chrisdown.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The documentation of __GFP_RETRY_MAYFAIL clearly mentioned that the OOM
killer will not be triggered and indeed the page alloc does not invoke OOM
killer for such allocations. However we do trigger memcg OOM killer for
__GFP_RETRY_MAYFAIL. Fix that. This flag will used later to not trigger
oom-killer in the charging path for fanotify and inotify event
allocations.
Link: http://lkml.kernel.org/r/20190514212259.156585-1-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Amir Goldstein <amir73il@gmail.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When we calculate total statistics for memcg1_stats and memcg1_events,
we use the the index 'i' in the for loop as the events index. Actually
we should use memcg1_stats[i] and memcg1_events[i] as the events index.
Link: http://lkml.kernel.org/r/1562116978-19539-1-git-send-email-laoar.shao@gmail.com
Fixes: 42a3003535 ("mm: memcontrol: fix recursive statistics correctness & scalabilty").
Signed-off-by: Yafang Shao <laoar.shao@gmail.com
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Yafang Shao <shaoyafang@didiglobal.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The code hasn't been used since it was added to the tree, and doesn't
appear to actually be usable.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jason Gunthorpe <jgg@mellanox.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Tested-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
The kernel test robot noticed a 26% will-it-scale pagefault regression
from commit 42a3003535 ("mm: memcontrol: fix recursive statistics
correctness & scalabilty"). This appears to be caused by bouncing the
additional cachelines from the new hierarchical statistics counters.
We can fix this by getting rid of the batched local counters instead.
Originally, there were *only* group-local counters, and they were fully
maintained per cpu. A reader of a stats file high up in the cgroup tree
would have to walk the entire subtree and collect each level's per-cpu
counters to get the recursive view. This was prohibitively expensive,
and so we switched to per-cpu batched updates of the local counters
during a983b5ebee ("mm: memcontrol: fix excessive complexity in
memory.stat reporting"), reducing the complexity from nr_subgroups *
nr_cpus to nr_subgroups.
With growing machines and cgroup trees, the tree walk itself became too
expensive for monitoring top-level groups, and this is when the culprit
patch added hierarchy counters on each cgroup level. When the per-cpu
batch size would be reached, both the local and the hierarchy counters
would get batch-updated from the per-cpu delta simultaneously.
This makes local and hierarchical counter reads blazingly fast, but it
unfortunately makes the write-side too cache line intense.
Since local counter reads were never a problem - we only centralized
them to accelerate the hierarchy walk - and use of the local counters
are becoming rarer due to replacement with hierarchical views (ongoing
rework in the page reclaim and workingset code), we can make those local
counters unbatched per-cpu counters again.
The scheme will then be as such:
when a memcg statistic changes, the writer will:
- update the local counter (per-cpu)
- update the batch counter (per-cpu). If the batch is full:
- spill the batch into the group's atomic_t
- spill the batch into all ancestors' atomic_ts
- empty out the batch counter (per-cpu)
when a local memcg counter is read, the reader will:
- collect the local counter from all cpus
when a hiearchy memcg counter is read, the reader will:
- read the atomic_t
We might be able to simplify this further and make the recursive
counters unbatched per-cpu counters as well (batch upward propagation,
but leave per-cpu collection to the readers), but that will require a
more in-depth analysis and testing of all the callsites. Deal with the
immediate regression for now.
Link: http://lkml.kernel.org/r/20190521151647.GB2870@cmpxchg.org
Fixes: 42a3003535 ("mm: memcontrol: fix recursive statistics correctness & scalabilty")
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reported-by: kernel test robot <rong.a.chen@intel.com>
Tested-by: kernel test robot <rong.a.chen@intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Based on 3 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license as published by
the free software foundation either version 2 of the license or at
your option any later version this program is distributed in the
hope that it will be useful but without any warranty without even
the implied warranty of merchantability or fitness for a particular
purpose see the gnu general public license for more details
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license as published by
the free software foundation either version 2 of the license or at
your option any later version [author] [kishon] [vijay] [abraham]
[i] [kishon]@[ti] [com] this program is distributed in the hope that
it will be useful but without any warranty without even the implied
warranty of merchantability or fitness for a particular purpose see
the gnu general public license for more details
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license as published by
the free software foundation either version 2 of the license or at
your option any later version [author] [graeme] [gregory]
[gg]@[slimlogic] [co] [uk] [author] [kishon] [vijay] [abraham] [i]
[kishon]@[ti] [com] [based] [on] [twl6030]_[usb] [c] [author] [hema]
[hk] [hemahk]@[ti] [com] this program is distributed in the hope
that it will be useful but without any warranty without even the
implied warranty of merchantability or fitness for a particular
purpose see the gnu general public license for more details
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-or-later
has been chosen to replace the boilerplate/reference in 1105 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Richard Fontana <rfontana@redhat.com>
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190527070033.202006027@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
When a cgroup is reclaimed on behalf of a configured limit, reclaim
needs to round-robin through all NUMA nodes that hold pages of the memcg
in question. However, when assembling the mask of candidate NUMA nodes,
the code only consults the *local* cgroup LRU counters, not the
recursive counters for the entire subtree. Cgroup limits are frequently
configured against intermediate cgroups that do not have memory on their
own LRUs. In this case, the node mask will always come up empty and
reclaim falls back to scanning only the current node.
If a cgroup subtree has some memory on one node but the processes are
bound to another node afterwards, the limit reclaim will never age or
reclaim that memory anymore.
To fix this, use the recursive LRU counts for a cgroup subtree to
determine which nodes hold memory of that cgroup.
The code has been broken like this forever, so it doesn't seem to be a
problem in practice. I just noticed it while reviewing the way the LRU
counters are used in general.
Link: http://lkml.kernel.org/r/20190412151507.2769-5-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Roman Gushchin <guro@fb.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Right now, when somebody needs to know the recursive memory statistics
and events of a cgroup subtree, they need to walk the entire subtree and
sum up the counters manually.
There are two issues with this:
1. When a cgroup gets deleted, its stats are lost. The state counters
should all be 0 at that point, of course, but the events are not.
When this happens, the event counters, which are supposed to be
monotonic, can go backwards in the parent cgroups.
2. During regular operation, we always have a certain number of lazily
freed cgroups sitting around that have been deleted, have no tasks,
but have a few cache pages remaining. These groups' statistics do not
change until we eventually hit memory pressure, but somebody
watching, say, memory.stat on an ancestor has to iterate those every
time.
This patch addresses both issues by introducing recursive counters at
each level that are propagated from the write side when stats change.
Upward propagation happens when the per-cpu caches spill over into the
local atomic counter. This is the same thing we do during charge and
uncharge, except that the latter uses atomic RMWs, which are more
expensive; stat changes happen at around the same rate. In a sparse
file test (page faults and reclaim at maximum CPU speed) with 5 cgroup
nesting levels, perf shows __mod_memcg_page state at ~1%.
Link: http://lkml.kernel.org/r/20190412151507.2769-4-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Roman Gushchin <guro@fb.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
These are getting too big to be inlined in every callsite. They were
stolen from vmstat.c, which already out-of-lines them, and they have
only been growing since. The callsites aren't that hot, either.
Move __mod_memcg_state()
__mod_lruvec_state() and
__count_memcg_events() out of line and add kerneldoc comments.
Link: http://lkml.kernel.org/r/20190412151507.2769-3-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Roman Gushchin <guro@fb.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm: memcontrol: memory.stat cost & correctness".
The cgroup memory.stat file holds recursive statistics for the entire
subtree. The current implementation does this tree walk on-demand
whenever the file is read. This is giving us problems in production.
1. The cost of aggregating the statistics on-demand is high. A lot of
system service cgroups are mostly idle and their stats don't change
between reads, yet we always have to check them. There are also always
some lazily-dying cgroups sitting around that are pinned by a handful
of remaining page cache; the same applies to them.
In an application that periodically monitors memory.stat in our
fleet, we have seen the aggregation consume up to 5% CPU time.
2. When cgroups die and disappear from the cgroup tree, so do their
accumulated vm events. The result is that the event counters at
higher-level cgroups can go backwards and confuse some of our
automation, let alone people looking at the graphs over time.
To address both issues, this patch series changes the stat
implementation to spill counts upwards when the counters change.
The upward spilling is batched using the existing per-cpu cache. In a
sparse file stress test with 5 level cgroup nesting, the additional cost
of the flushing was negligible (a little under 1% of CPU at 100% CPU
utilization, compared to the 5% of reading memory.stat during regular
operation).
This patch (of 4):
memcg_page_state(), lruvec_page_state(), memcg_sum_events() are
currently returning the state of the local memcg or lruvec, not the
recursive state.
In practice there is a demand for both versions, although the callers
that want the recursive counts currently sum them up by hand.
Per default, cgroups are considered recursive entities and generally we
expect more users of the recursive counters, with the local counts being
special cases. To reflect that in the name, add a _local suffix to the
current implementations.
The following patch will re-incarnate these functions with recursive
semantics, but with an O(1) implementation.
[hannes@cmpxchg.org: fix bisection hole]
Link: http://lkml.kernel.org/r/20190417160347.GC23013@cmpxchg.org
Link: http://lkml.kernel.org/r/20190412151507.2769-2-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Roman Gushchin <guro@fb.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
I spent literally an hour trying to work out why an earlier version of
my memory.events aggregation code doesn't work properly, only to find
out I was calling memcg->events instead of memcg->memory_events, which
is fairly confusing.
This naming seems in need of reworking, so make it harder to do the
wrong thing by using vmevents instead of events, which makes it more
clear that these are vm counters rather than memcg-specific counters.
There are also a few other inconsistent names in both the percpu and
aggregated structs, so these are all cleaned up to be more coherent and
easy to understand.
This commit contains code cleanup only: there are no logic changes.
[akpm@linux-foundation.org: fix it for preceding changes]
Link: http://lkml.kernel.org/r/20190208224319.GA23801@chrisdown.name
Signed-off-by: Chris Down <chris@chrisdown.name>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Dennis Zhou <dennis@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Only memcg_numa_stat_show() uses those wrappers and the lru bitmasks,
group them together.
Link: http://lkml.kernel.org/r/20190228163020.24100-7-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Roman Gushchin <guro@fb.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mem_cgroup_nr_lru_pages() is just a convenience wrapper around
memcg_page_state() that takes bitmasks of lru indexes and aggregates the
counts for those.
Replace callsites where the bitmask is simple enough with direct
memcg_page_state() call(s).
Link: http://lkml.kernel.org/r/20190228163020.24100-6-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Roman Gushchin <guro@fb.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mem_cgroup_node_nr_lru_pages() is just a convenience wrapper around
lruvec_page_state() that takes bitmasks of lru indexes and aggregates the
counts for those.
Replace callsites where the bitmask is simple enough with direct
lruvec_page_state() calls.
This removes the last extern user of mem_cgroup_node_nr_lru_pages(), so
make that function private again, too.
Link: http://lkml.kernel.org/r/20190228163020.24100-5-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Roman Gushchin <guro@fb.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Instead of adding up the node counters, use memcg_page_state() to get the
memcg state directly. This is a bit cheaper and more stream-lined.
Link: http://lkml.kernel.org/r/20190228163020.24100-4-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Roman Gushchin <guro@fb.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Instead of adding up the zone counters, use lruvec_page_state() to get the
node state directly. This is a bit cheaper and more stream-lined.
Link: http://lkml.kernel.org/r/20190228163020.24100-3-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Roman Gushchin <guro@fb.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since commit a983b5ebee ("mm: memcontrol: fix excessive complexity in
memory.stat reporting") memcg dirty and writeback counters are managed
as:
1) per-memcg per-cpu values in range of [-32..32]
2) per-memcg atomic counter
When a per-cpu counter cannot fit in [-32..32] it's flushed to the
atomic. Stat readers only check the atomic. Thus readers such as
balance_dirty_pages() may see a nontrivial error margin: 32 pages per
cpu.
Assuming 100 cpus:
4k x86 page_size: 13 MiB error per memcg
64k ppc page_size: 200 MiB error per memcg
Considering that dirty+writeback are used together for some decisions the
errors double.
This inaccuracy can lead to undeserved oom kills. One nasty case is
when all per-cpu counters hold positive values offsetting an atomic
negative value (i.e. per_cpu[*]=32, atomic=n_cpu*-32).
balance_dirty_pages() only consults the atomic and does not consider
throttling the next n_cpu*32 dirty pages. If the file_lru is in the
13..200 MiB range then there's absolutely no dirty throttling, which
burdens vmscan with only dirty+writeback pages thus resorting to oom
kill.
It could be argued that tiny containers are not supported, but it's more
subtle. It's the amount the space available for file lru that matters.
If a container has memory.max-200MiB of non reclaimable memory, then it
will also suffer such oom kills on a 100 cpu machine.
The following test reliably ooms without this patch. This patch avoids
oom kills.
$ cat test
mount -t cgroup2 none /dev/cgroup
cd /dev/cgroup
echo +io +memory > cgroup.subtree_control
mkdir test
cd test
echo 10M > memory.max
(echo $BASHPID > cgroup.procs && exec /memcg-writeback-stress /foo)
(echo $BASHPID > cgroup.procs && exec dd if=/dev/zero of=/foo bs=2M count=100)
$ cat memcg-writeback-stress.c
/*
* Dirty pages from all but one cpu.
* Clean pages from the non dirtying cpu.
* This is to stress per cpu counter imbalance.
* On a 100 cpu machine:
* - per memcg per cpu dirty count is 32 pages for each of 99 cpus
* - per memcg atomic is -99*32 pages
* - thus the complete dirty limit: sum of all counters 0
* - balance_dirty_pages() only sees atomic count -99*32 pages, which
* it max()s to 0.
* - So a workload can dirty -99*32 pages before balance_dirty_pages()
* cares.
*/
#define _GNU_SOURCE
#include <err.h>
#include <fcntl.h>
#include <sched.h>
#include <stdlib.h>
#include <stdio.h>
#include <sys/stat.h>
#include <sys/sysinfo.h>
#include <sys/types.h>
#include <unistd.h>
static char *buf;
static int bufSize;
static void set_affinity(int cpu)
{
cpu_set_t affinity;
CPU_ZERO(&affinity);
CPU_SET(cpu, &affinity);
if (sched_setaffinity(0, sizeof(affinity), &affinity))
err(1, "sched_setaffinity");
}
static void dirty_on(int output_fd, int cpu)
{
int i, wrote;
set_affinity(cpu);
for (i = 0; i < 32; i++) {
for (wrote = 0; wrote < bufSize; ) {
int ret = write(output_fd, buf+wrote, bufSize-wrote);
if (ret == -1)
err(1, "write");
wrote += ret;
}
}
}
int main(int argc, char **argv)
{
int cpu, flush_cpu = 1, output_fd;
const char *output;
if (argc != 2)
errx(1, "usage: output_file");
output = argv[1];
bufSize = getpagesize();
buf = malloc(getpagesize());
if (buf == NULL)
errx(1, "malloc failed");
output_fd = open(output, O_CREAT|O_RDWR);
if (output_fd == -1)
err(1, "open(%s)", output);
for (cpu = 0; cpu < get_nprocs(); cpu++) {
if (cpu != flush_cpu)
dirty_on(output_fd, cpu);
}
set_affinity(flush_cpu);
if (fsync(output_fd))
err(1, "fsync(%s)", output);
if (close(output_fd))
err(1, "close(%s)", output);
free(buf);
}
Make balance_dirty_pages() and wb_over_bg_thresh() work harder to
collect exact per memcg counters. This avoids the aforementioned oom
kills.
This does not affect the overhead of memory.stat, which still reads the
single atomic counter.
Why not use percpu_counter? memcg already handles cpus going offline, so
no need for that overhead from percpu_counter. And the percpu_counter
spinlocks are more heavyweight than is required.
It probably also makes sense to use exact dirty and writeback counters
in memcg oom reports. But that is saved for later.
Link: http://lkml.kernel.org/r/20190329174609.164344-1-gthelen@google.com
Signed-off-by: Greg Thelen <gthelen@google.com>
Reviewed-by: Roman Gushchin <guro@fb.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: <stable@vger.kernel.org> [4.16+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 230671533d ("mm: memory.low hierarchical behavior") missed an
asterisk in one of the comments.
mm/memcontrol.c:5774: warning: bad line: | 0, otherwise.
Link: http://lkml.kernel.org/r/20190301143734.94393-1-cai@lca.pw
Acked-by: Souptick Joarder <jrdr.linux@gmail.com>
Signed-off-by: Qian Cai <cai@lca.pw>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We have common pattern to access lru_lock from a page pointer:
zone_lru_lock(page_zone(page))
Which is silly, because it unfolds to this:
&NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]->zone_pgdat->lru_lock
while we can simply do
&NODE_DATA(page_to_nid(page))->lru_lock
Remove zone_lru_lock() function, since it's only complicate things. Use
'page_pgdat(page)->lru_lock' pattern instead.
[aryabinin@virtuozzo.com: a slightly better version of __split_huge_page()]
Link: http://lkml.kernel.org/r/20190301121651.7741-1-aryabinin@virtuozzo.com
Link: http://lkml.kernel.org/r/20190228083329.31892-2-aryabinin@virtuozzo.com
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: William Kucharski <william.kucharski@oracle.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently THP allocation events data is fairly opaque, since you can
only get it system-wide. This patch makes it easier to reason about
transparent hugepage behaviour on a per-memcg basis.
For anonymous THP-backed pages, we already have MEMCG_RSS_HUGE in v1,
which is used for v1's rss_huge [sic]. This is reused here as it's
fairly involved to untangle NR_ANON_THPS right now to make it per-memcg,
since right now some of this is delegated to rmap before we have any
memcg actually assigned to the page. It's a good idea to rework that,
but let's leave untangling THP allocation for a future patch.
[akpm@linux-foundation.org: fix build]
[chris@chrisdown.name: fix memcontrol build when THP is disabled]
Link: http://lkml.kernel.org/r/20190131160802.GA5777@chrisdown.name
Link: http://lkml.kernel.org/r/20190129205852.GA7310@chrisdown.name
Signed-off-by: Chris Down <chris@chrisdown.name>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If a memory cgroup contains a single process with many threads
(including different process group sharing the mm) then it is possible
to trigger a race when the oom killer complains that there are no oom
elible tasks and complain into the log which is both annoying and
confusing because there is no actual problem. The race looks as
follows:
P1 oom_reaper P2
try_charge try_charge
mem_cgroup_out_of_memory
mutex_lock(oom_lock)
out_of_memory
oom_kill_process(P1,P2)
wake_oom_reaper
mutex_unlock(oom_lock)
oom_reap_task
mutex_lock(oom_lock)
select_bad_process # no victim
The problem is more visible with many threads.
Fix this by checking for fatal_signal_pending from
mem_cgroup_out_of_memory when the oom_lock is already held.
The oom bypass is safe because we do the same early in the try_charge
path already. The situation migh have changed in the mean time. It
should be safe to check for fatal_signal_pending and tsk_is_oom_victim
but for a better code readability abstract the current charge bypass
condition into should_force_charge and reuse it from that path. "
Link: http://lkml.kernel.org/r/01370f70-e1f6-ebe4-b95e-0df21a0bc15e@i-love.sakura.ne.jp
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Kirill Tkhai <ktkhai@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
memcg has a significant number of files exposed to kernfs where their
value is either exposed directly or is "max" in the case of
PAGE_COUNTER_MAX.
This patch makes this generic by providing a single function to do this
work. In combination with the previous patch adding
mem_cgroup_from_seq, this makes all of the seq_show feeder functions
significantly more simple.
Link: http://lkml.kernel.org/r/20190124194100.GA31425@chrisdown.name
Signed-off-by: Chris Down <chris@chrisdown.name>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is the start of a series of patches similar to my earlier
DEFINE_MEMCG_MAX_OR_VAL work, but with less Macro Magic(tm).
There are a bunch of places we go from seq_file to mem_cgroup, which
currently requires manually getting the css, then getting the mem_cgroup
from the css. It's in enough places now that having mem_cgroup_from_seq
makes sense (and also makes the next patch a bit nicer).
Link: http://lkml.kernel.org/r/20190124194050.GA31341@chrisdown.name
Signed-off-by: Chris Down <chris@chrisdown.name>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
One of the more common cases of allocation size calculations is finding
the size of a structure that has a zero-sized array at the end, along
with memory for some number of elements for that array. For example:
struct foo {
int stuff;
void *entry[];
};
instance = kmalloc(sizeof(struct foo) + sizeof(void *) * count, GFP_KERNEL);
Instead of leaving these open-coded and prone to type mistakes, we can
now use the new struct_size() helper:
instance = kmalloc(struct_size(instance, entry, count), GFP_KERNEL);
This code was detected with the help of Coccinelle.
Link: http://lkml.kernel.org/r/20190104183726.GA6374@embeddedor
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Move the memcg_kmem_enabled() checks into memcg kmem charge/uncharge
functions, so, the users don't have to explicitly check that condition.
This is purely code cleanup patch without any functional change. Only
the order of checks in memcg_charge_slab() can potentially be changed
but the functionally it will be same. This should not matter as
memcg_charge_slab() is not in the hot path.
Link: http://lkml.kernel.org/r/20190103161203.162375-1-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Burt Holzman has noticed that memcg v1 doesn't notify about OOM events via
eventfd anymore. The reason is that 29ef680ae7 ("memcg, oom: move
out_of_memory back to the charge path") has moved the oom handling back to
the charge path. While doing so the notification was left behind in
mem_cgroup_oom_synchronize.
Fix the issue by replicating the oom hierarchy locking and the
notification.
Link: http://lkml.kernel.org/r/20181224091107.18354-1-mhocko@kernel.org
Fixes: 29ef680ae7 ("memcg, oom: move out_of_memory back to the charge path")
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Burt Holzman <burt@fnal.gov>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com
Cc: <stable@vger.kernel.org> [4.19+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The current oom report doesn't display victim's memcg context during the
global OOM situation. While this information is not strictly needed, it
can be really helpful for containerized environments to locate which
container has lost a process. Now that we have a single line for the oom
context, we can trivially add both the oom memcg (this can be either
global_oom or a specific memcg which hits its hard limits) and task_memcg
which is the victim's memcg.
Below is the single line output in the oom report after this patch.
- global oom context information:
oom-kill:constraint=<constraint>,nodemask=<nodemask>,cpuset=<cpuset>,mems_allowed=<mems_allowed>,global_oom,task_memcg=<memcg>,task=<comm>,pid=<pid>,uid=<uid>
- memcg oom context information:
oom-kill:constraint=<constraint>,nodemask=<nodemask>,cpuset=<cpuset>,mems_allowed=<mems_allowed>,oom_memcg=<memcg>,task_memcg=<memcg>,task=<comm>,pid=<pid>,uid=<uid>
[penguin-kernel@I-love.SAKURA.ne.jp: use pr_cont() in mem_cgroup_print_oom_context()]
Link: http://lkml.kernel.org/r/201812190723.wBJ7NdkN032628@www262.sakura.ne.jp
Link: http://lkml.kernel.org/r/1542799799-36184-2-git-send-email-ufo19890607@gmail.com
Signed-off-by: yuzhoujian <yuzhoujian@didichuxing.com>
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: David Rientjes <rientjes@google.com>
Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Cc: Roman Gushchin <guro@fb.com>
Cc: Yang Shi <yang.s@alibaba-inc.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Mike Galbraith reported a regression caused by the commit 9b6f7e163c
("mm: rework memcg kernel stack accounting") on a system with
"cgroup_disable=memory" boot option: the system panics with the following
stack trace:
BUG: unable to handle kernel NULL pointer dereference at 00000000000000f8
PGD 0 P4D 0
Oops: 0002 [#1] PREEMPT SMP PTI
CPU: 0 PID: 1 Comm: systemd Not tainted 4.19.0-preempt+ #410
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ?-20180531_142017-buildhw-08.phx2.fed4
RIP: 0010:page_counter_try_charge+0x22/0xc0
Code: 41 5d c3 c3 0f 1f 40 00 0f 1f 44 00 00 48 85 ff 0f 84 a7 00 00 00 41 56 48 89 f8 49 89 fe 49
Call Trace:
try_charge+0xcb/0x780
memcg_kmem_charge_memcg+0x28/0x80
memcg_kmem_charge+0x8b/0x1d0
copy_process.part.41+0x1ca/0x2070
_do_fork+0xd7/0x3d0
do_syscall_64+0x5a/0x180
entry_SYSCALL_64_after_hwframe+0x49/0xbe
The problem occurs because get_mem_cgroup_from_current() returns the NULL
pointer if memory controller is disabled. Let's check if this is a case
at the beginning of memcg_kmem_charge() and just return 0 if
mem_cgroup_disabled() returns true. This is how we handle this case in
many other places in the memory controller code.
Link: http://lkml.kernel.org/r/20181029215123.17830-1-guro@fb.com
Fixes: 9b6f7e163c ("mm: rework memcg kernel stack accounting")
Signed-off-by: Roman Gushchin <guro@fb.com>
Reported-by: Mike Galbraith <efault@gmx.de>
Acked-by: Rik van Riel <riel@surriel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull XArray conversion from Matthew Wilcox:
"The XArray provides an improved interface to the radix tree data
structure, providing locking as part of the API, specifying GFP flags
at allocation time, eliminating preloading, less re-walking the tree,
more efficient iterations and not exposing RCU-protected pointers to
its users.
This patch set
1. Introduces the XArray implementation
2. Converts the pagecache to use it
3. Converts memremap to use it
The page cache is the most complex and important user of the radix
tree, so converting it was most important. Converting the memremap
code removes the only other user of the multiorder code, which allows
us to remove the radix tree code that supported it.
I have 40+ followup patches to convert many other users of the radix
tree over to the XArray, but I'd like to get this part in first. The
other conversions haven't been in linux-next and aren't suitable for
applying yet, but you can see them in the xarray-conv branch if you're
interested"
* 'xarray' of git://git.infradead.org/users/willy/linux-dax: (90 commits)
radix tree: Remove multiorder support
radix tree test: Convert multiorder tests to XArray
radix tree tests: Convert item_delete_rcu to XArray
radix tree tests: Convert item_kill_tree to XArray
radix tree tests: Move item_insert_order
radix tree test suite: Remove multiorder benchmarking
radix tree test suite: Remove __item_insert
memremap: Convert to XArray
xarray: Add range store functionality
xarray: Move multiorder_check to in-kernel tests
xarray: Move multiorder_shrink to kernel tests
xarray: Move multiorder account test in-kernel
radix tree test suite: Convert iteration test to XArray
radix tree test suite: Convert tag_tagged_items to XArray
radix tree: Remove radix_tree_clear_tags
radix tree: Remove radix_tree_maybe_preload_order
radix tree: Remove split/join code
radix tree: Remove radix_tree_update_node_t
page cache: Finish XArray conversion
dax: Convert page fault handlers to XArray
...
It was reported that on some of our machines containers were restarted
with OOM symptoms without an obvious reason. Despite there were almost no
memory pressure and plenty of page cache, MEMCG_OOM event was raised
occasionally, causing the container management software to think, that OOM
has happened. However, no tasks have been killed.
The following investigation showed that the problem is caused by a failing
attempt to charge a high-order page. In such case, the OOM killer is
never invoked. As shown below, it can happen under conditions, which are
very far from a real OOM: e.g. there is plenty of clean page cache and no
memory pressure.
There is no sense in raising an OOM event in this case, as it might
confuse a user and lead to wrong and excessive actions (e.g. restart the
workload, as in my case).
Let's look at the charging path in try_charge(). If the memory usage is
about memory.max, which is absolutely natural for most memory cgroups, we
try to reclaim some pages. Even if we were able to reclaim enough memory
for the allocation, the following check can fail due to a race with
another concurrent allocation:
if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
goto retry;
For regular pages the following condition will save us from triggering
the OOM:
if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
goto retry;
But for high-order allocation this condition will intentionally fail. The
reason behind is that we'll likely fall to regular pages anyway, so it's
ok and even preferred to return ENOMEM.
In this case the idea of raising MEMCG_OOM looks dubious.
Fix this by moving MEMCG_OOM raising to mem_cgroup_oom() after allocation
order check, so that the event won't be raised for high order allocations.
This change doesn't affect regular pages allocation and charging.
Link: http://lkml.kernel.org/r/20181004214050.7417-1-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Michal Hocko <mhocko@kernel.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This will allow to use generic refcount_t interfaces to check counters
overflow instead of currently existing VM_BUG_ON(). The only difference
after the patch is VM_BUG_ON() may cause BUG(), while refcount_t fires
with WARN(). But this seems not to be significant here, since such the
problems are usually caught by syzbot with panic-on-warn enabled.
Link: http://lkml.kernel.org/r/153910718919.7006.13400779039257185427.stgit@localhost.localdomain
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Andrea Parri <andrea.parri@amarulasolutions.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The flag memcg_kmem_skip_account was added during the era of opt-out kmem
accounting. There is no need for such flag in the opt-in world as there
aren't any __GFP_ACCOUNT allocations within memcg_create_cache_enqueue().
Link: http://lkml.kernel.org/r/20180919004501.178023-1-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Greg Thelen <gthelen@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The refault stats go better with the page fault stats, and are of
higher interest than the stats on LRU operations. In fact they used to
be grouped together; when the LRU operation stats were added later on,
they were wedged in between.
Move them back together. Documentation/admin-guide/cgroup-v2.rst
already lists them in the right order.
Link: http://lkml.kernel.org/r/20181010140239.GA2527@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Memcg charge is batched using per-cpu stocks, so an offline memcg can be
pinned by a cached charge up to a moment, when a process belonging to some
other cgroup will charge some memory on the same cpu. In other words,
cached charges can prevent a memory cgroup from being reclaimed for some
time, without any clear need.
Let's optimize it by explicit draining of all stocks on css offlining. As
draining is performed asynchronously, and is skipped if any parallel
draining is happening, it's cheap.
Link: http://lkml.kernel.org/r/20180827162621.30187-2-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Michal Hocko <mhocko@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Introduce xarray value entries and tagged pointers to replace radix
tree exceptional entries. This is a slight change in encoding to allow
the use of an extra bit (we can now store BITS_PER_LONG - 1 bits in a
value entry). It is also a change in emphasis; exceptional entries are
intimidating and different. As the comment explains, you can choose
to store values or pointers in the xarray and they are both first-class
citizens.
Signed-off-by: Matthew Wilcox <willy@infradead.org>
Reviewed-by: Josef Bacik <jbacik@fb.com>
When the memcg OOM killer runs out of killable tasks, it currently
prints a WARN with no further OOM context. This has caused some user
confusion.
Warnings indicate a kernel problem. In a reported case, however, the
situation was triggered by a nonsensical memcg configuration (hard limit
set to 0). But without any VM context this wasn't obvious from the
report, and it took some back and forth on the mailing list to identify
what is actually a trivial issue.
Handle this OOM condition like we handle it in the global OOM killer:
dump the full OOM context and tell the user we ran out of tasks.
This way the user can identify misconfigurations easily by themselves
and rectify the problem - without having to go through the hassle of
running into an obscure but unsettling warning, finding the appropriate
kernel mailing list and waiting for a kernel developer to remote-analyze
that the memcg configuration caused this.
If users cannot make sense of why the OOM killer was triggered or why it
failed, they will still report it to the mailing list, we know that from
experience. So in case there is an actual kernel bug causing this,
kernel developers will very likely hear about it.
Link: http://lkml.kernel.org/r/20180821160406.22578-1-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For some workloads an intervention from the OOM killer can be painful.
Killing a random task can bring the workload into an inconsistent state.
Historically, there are two common solutions for this
problem:
1) enabling panic_on_oom,
2) using a userspace daemon to monitor OOMs and kill
all outstanding processes.
Both approaches have their downsides: rebooting on each OOM is an obvious
waste of capacity, and handling all in userspace is tricky and requires a
userspace agent, which will monitor all cgroups for OOMs.
In most cases an in-kernel after-OOM cleaning-up mechanism can eliminate
the necessity of enabling panic_on_oom. Also, it can simplify the cgroup
management for userspace applications.
This commit introduces a new knob for cgroup v2 memory controller:
memory.oom.group. The knob determines whether the cgroup should be
treated as an indivisible workload by the OOM killer. If set, all tasks
belonging to the cgroup or to its descendants (if the memory cgroup is not
a leaf cgroup) are killed together or not at all.
To determine which cgroup has to be killed, we do traverse the cgroup
hierarchy from the victim task's cgroup up to the OOMing cgroup (or root)
and looking for the highest-level cgroup with memory.oom.group set.
Tasks with the OOM protection (oom_score_adj set to -1000) are treated as
an exception and are never killed.
This patch doesn't change the OOM victim selection algorithm.
Link: http://lkml.kernel.org/r/20180802003201.817-4-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently cgroup-v1's memcg_stat_show traverses the memcg tree ~17 times
to collect the stats while cgroup-v2's memory_stat_show traverses the
memcg tree thrice. On a large machine, a couple thousand memcgs is very
normal and if the churn is high and memcgs stick around during to several
reasons, tens of thousands of nodes in memcg tree can exist. This patch
has refactored and shared the stat collection code between cgroup-v1 and
cgroup-v2 and has reduced the tree traversal to just one.
I ran a simple benchmark which reads the root_mem_cgroup's stat file
1000 times in the presense of 2500 memcgs on cgroup-v1. The results are:
Without the patch:
$ time ./read-root-stat-1000-times
real 0m1.663s
user 0m0.000s
sys 0m1.660s
With the patch:
$ time ./read-root-stat-1000-times
real 0m0.468s
user 0m0.000s
sys 0m0.467s
Link: http://lkml.kernel.org/r/20180724224635.143944-1-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Bruce Merry <bmerry@ska.ac.za>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
To avoid further unneed calls of do_shrink_slab() for shrinkers, which
already do not have any charged objects in a memcg, their bits have to
be cleared.
This patch introduces a lockless mechanism to do that without races
without parallel list lru add. After do_shrink_slab() returns
SHRINK_EMPTY the first time, we clear the bit and call it once again.
Then we restore the bit, if the new return value is different.
Note, that single smp_mb__after_atomic() in shrink_slab_memcg() covers
two situations:
1)list_lru_add() shrink_slab_memcg
list_add_tail() for_each_set_bit() <--- read bit
do_shrink_slab() <--- missed list update (no barrier)
<MB> <MB>
set_bit() do_shrink_slab() <--- seen list update
This situation, when the first do_shrink_slab() sees set bit, but it
doesn't see list update (i.e., race with the first element queueing), is
rare. So we don't add <MB> before the first call of do_shrink_slab()
instead of this to do not slow down generic case. Also, it's need the
second call as seen in below in (2).
2)list_lru_add() shrink_slab_memcg()
list_add_tail() ...
set_bit() ...
... for_each_set_bit()
do_shrink_slab() do_shrink_slab()
clear_bit() ...
... ...
list_lru_add() ...
list_add_tail() clear_bit()
<MB> <MB>
set_bit() do_shrink_slab()
The barriers guarantee that the second do_shrink_slab() in the right
side task sees list update if really cleared the bit. This case is
drawn in the code comment.
[Results/performance of the patchset]
After the whole patchset applied the below test shows signify increase
of performance:
$echo 1 > /sys/fs/cgroup/memory/memory.use_hierarchy
$mkdir /sys/fs/cgroup/memory/ct
$echo 4000M > /sys/fs/cgroup/memory/ct/memory.kmem.limit_in_bytes
$for i in `seq 0 4000`; do mkdir /sys/fs/cgroup/memory/ct/$i;
echo $$ > /sys/fs/cgroup/memory/ct/$i/cgroup.procs;
mkdir -p s/$i; mount -t tmpfs $i s/$i;
touch s/$i/file; done
Then, 5 sequential calls of drop caches:
$time echo 3 > /proc/sys/vm/drop_caches
1)Before:
0.00user 13.78system 0:13.78elapsed 99%CPU
0.00user 5.59system 0:05.60elapsed 99%CPU
0.00user 5.48system 0:05.48elapsed 99%CPU
0.00user 8.35system 0:08.35elapsed 99%CPU
0.00user 8.34system 0:08.35elapsed 99%CPU
2)After
0.00user 1.10system 0:01.10elapsed 99%CPU
0.00user 0.00system 0:00.01elapsed 64%CPU
0.00user 0.01system 0:00.01elapsed 82%CPU
0.00user 0.00system 0:00.01elapsed 64%CPU
0.00user 0.01system 0:00.01elapsed 82%CPU
The results show the performance increases at least in 548 times.
Shakeel Butt tested this patchset with fork-bomb on his configuration:
> I created 255 memcgs, 255 ext4 mounts and made each memcg create a
> file containing few KiBs on corresponding mount. Then in a separate
> memcg of 200 MiB limit ran a fork-bomb.
>
> I ran the "perf record -ag -- sleep 60" and below are the results:
>
> Without the patch series:
> Samples: 4M of event 'cycles', Event count (approx.): 3279403076005
> + 36.40% fb.sh [kernel.kallsyms] [k] shrink_slab
> + 18.97% fb.sh [kernel.kallsyms] [k] list_lru_count_one
> + 6.75% fb.sh [kernel.kallsyms] [k] super_cache_count
> + 0.49% fb.sh [kernel.kallsyms] [k] down_read_trylock
> + 0.44% fb.sh [kernel.kallsyms] [k] mem_cgroup_iter
> + 0.27% fb.sh [kernel.kallsyms] [k] up_read
> + 0.21% fb.sh [kernel.kallsyms] [k] osq_lock
> + 0.13% fb.sh [kernel.kallsyms] [k] shmem_unused_huge_count
> + 0.08% fb.sh [kernel.kallsyms] [k] shrink_node_memcg
> + 0.08% fb.sh [kernel.kallsyms] [k] shrink_node
>
> With the patch series:
> Samples: 4M of event 'cycles', Event count (approx.): 2756866824946
> + 47.49% fb.sh [kernel.kallsyms] [k] down_read_trylock
> + 30.72% fb.sh [kernel.kallsyms] [k] up_read
> + 9.51% fb.sh [kernel.kallsyms] [k] mem_cgroup_iter
> + 1.69% fb.sh [kernel.kallsyms] [k] shrink_node_memcg
> + 1.35% fb.sh [kernel.kallsyms] [k] mem_cgroup_protected
> + 1.05% fb.sh [kernel.kallsyms] [k] queued_spin_lock_slowpath
> + 0.85% fb.sh [kernel.kallsyms] [k] _raw_spin_lock
> + 0.78% fb.sh [kernel.kallsyms] [k] lruvec_lru_size
> + 0.57% fb.sh [kernel.kallsyms] [k] shrink_node
> + 0.54% fb.sh [kernel.kallsyms] [k] queue_work_on
> + 0.46% fb.sh [kernel.kallsyms] [k] shrink_slab_memcg
[ktkhai@virtuozzo.com: v9]
Link: http://lkml.kernel.org/r/153112561772.4097.11011071937553113003.stgit@localhost.localdomain
Link: http://lkml.kernel.org/r/153063070859.1818.11870882950920963480.stgit@localhost.localdomain
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Tested-by: Shakeel Butt <shakeelb@google.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Josef Bacik <jbacik@fb.com>
Cc: Li RongQing <lirongqing@baidu.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Matthias Kaehlcke <mka@chromium.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Philippe Ombredanne <pombredanne@nexb.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Sahitya Tummala <stummala@codeaurora.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Waiman Long <longman@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Introduce set_shrinker_bit() function to set shrinker-related bit in
memcg shrinker bitmap, and set the bit after the first item is added and
in case of reparenting destroyed memcg's items.
This will allow next patch to make shrinkers be called only, in case of
they have charged objects at the moment, and to improve shrink_slab()
performance.
[ktkhai@virtuozzo.com: v9]
Link: http://lkml.kernel.org/r/153112557572.4097.17315791419810749985.stgit@localhost.localdomain
Link: http://lkml.kernel.org/r/153063065671.1818.15914674956134687268.stgit@localhost.localdomain
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Tested-by: Shakeel Butt <shakeelb@google.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Josef Bacik <jbacik@fb.com>
Cc: Li RongQing <lirongqing@baidu.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Matthias Kaehlcke <mka@chromium.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Philippe Ombredanne <pombredanne@nexb.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Sahitya Tummala <stummala@codeaurora.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Waiman Long <longman@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is just refactoring to allow the next patches to have dst_memcg
pointer in memcg_drain_list_lru_node().
Link: http://lkml.kernel.org/r/153063062118.1818.2761273817739499749.stgit@localhost.localdomain
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Tested-by: Shakeel Butt <shakeelb@google.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Josef Bacik <jbacik@fb.com>
Cc: Li RongQing <lirongqing@baidu.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Matthias Kaehlcke <mka@chromium.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Philippe Ombredanne <pombredanne@nexb.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Sahitya Tummala <stummala@codeaurora.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Waiman Long <longman@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Imagine a big node with many cpus, memory cgroups and containers. Let
we have 200 containers, every container has 10 mounts, and 10 cgroups.
All container tasks don't touch foreign containers mounts. If there is
intensive pages write, and global reclaim happens, a writing task has to
iterate over all memcgs to shrink slab, before it's able to go to
shrink_page_list().
Iteration over all the memcg slabs is very expensive: the task has to
visit 200 * 10 = 2000 shrinkers for every memcg, and since there are
2000 memcgs, the total calls are 2000 * 2000 = 4000000.
So, the shrinker makes 4 million do_shrink_slab() calls just to try to
isolate SWAP_CLUSTER_MAX pages in one of the actively writing memcg via
shrink_page_list(). I've observed a node spending almost 100% in
kernel, making useless iteration over already shrinked slab.
This patch adds bitmap of memcg-aware shrinkers to memcg. The size of
the bitmap depends on bitmap_nr_ids, and during memcg life it's
maintained to be enough to fit bitmap_nr_ids shrinkers. Every bit in
the map is related to corresponding shrinker id.
Next patches will maintain set bit only for really charged memcg. This
will allow shrink_slab() to increase its performance in significant way.
See the last patch for the numbers.
[ktkhai@virtuozzo.com: v9]
Link: http://lkml.kernel.org/r/153112549031.4097.3576147070498769979.stgit@localhost.localdomain
[ktkhai@virtuozzo.com: add comment to mem_cgroup_css_online()]
Link: http://lkml.kernel.org/r/521f9e5f-c436-b388-fe83-4dc870bfb489@virtuozzo.com
Link: http://lkml.kernel.org/r/153063056619.1818.12550500883688681076.stgit@localhost.localdomain
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Tested-by: Shakeel Butt <shakeelb@google.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Josef Bacik <jbacik@fb.com>
Cc: Li RongQing <lirongqing@baidu.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Matthias Kaehlcke <mka@chromium.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Philippe Ombredanne <pombredanne@nexb.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Sahitya Tummala <stummala@codeaurora.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Waiman Long <longman@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Next patch requires these defines are above their current position, so
here they are moved to declarations.
Link: http://lkml.kernel.org/r/153063055665.1818.5200425793649695598.stgit@localhost.localdomain
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Tested-by: Shakeel Butt <shakeelb@google.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Josef Bacik <jbacik@fb.com>
Cc: Li RongQing <lirongqing@baidu.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Matthias Kaehlcke <mka@chromium.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Philippe Ombredanne <pombredanne@nexb.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Sahitya Tummala <stummala@codeaurora.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Waiman Long <longman@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Introduce new config option, which is used to replace repeating
CONFIG_MEMCG && !CONFIG_SLOB pattern. Next patches add a little more
memcg+kmem related code, so let's keep the defines more clearly.
Link: http://lkml.kernel.org/r/153063053670.1818.15013136946600481138.stgit@localhost.localdomain
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Tested-by: Shakeel Butt <shakeelb@google.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Josef Bacik <jbacik@fb.com>
Cc: Li RongQing <lirongqing@baidu.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Matthias Kaehlcke <mka@chromium.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Philippe Ombredanne <pombredanne@nexb.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Sahitya Tummala <stummala@codeaurora.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Waiman Long <longman@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 3812c8c8f3 ("mm: memcg: do not trap chargers with full
callstack on OOM") has changed the ENOMEM semantic of memcg charges.
Rather than invoking the oom killer from the charging context it delays
the oom killer to the page fault path (pagefault_out_of_memory). This
in turn means that many users (e.g. slab or g-u-p) will get ENOMEM when
the corresponding memcg hits the hard limit and the memcg is is OOM.
This is behavior is inconsistent with !memcg case where the oom killer
is invoked from the allocation context and the allocator keeps retrying
until it succeeds.
The difference in the behavior is user visible. mmap(MAP_POPULATE)
might result in not fully populated ranges while the mmap return code
doesn't tell that to the userspace. Random syscalls might fail with
ENOMEM etc.
The primary motivation of the different memcg oom semantic was the
deadlock avoidance. Things have changed since then, though. We have an
async oom teardown by the oom reaper now and so we do not have to rely
on the victim to tear down its memory anymore. Therefore we can return
to the original semantic as long as the memcg oom killer is not handed
over to the users space.
There is still one thing to be careful about here though. If the oom
killer is not able to make any forward progress - e.g. because there is
no eligible task to kill - then we have to bail out of the charge path
to prevent from same class of deadlocks. We have basically two options
here. Either we fail the charge with ENOMEM or force the charge and
allow overcharge. The first option has been considered more harmful
than useful because rare inconsistencies in the ENOMEM behavior is hard
to test for and error prone. Basically the same reason why the page
allocator doesn't fail allocations under such conditions. The later
might allow runaways but those should be really unlikely unless somebody
misconfigures the system. E.g. allowing to migrate tasks away from the
memcg to a different unlimited memcg with move_charge_at_immigrate
disabled.
Link: http://lkml.kernel.org/r/20180628151101.25307-1-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Greg Thelen <gthelen@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The buffer_head can consume a significant amount of system memory and is
directly related to the amount of page cache. In our production
environment we have observed that a lot of machines are spending a
significant amount of memory as buffer_head and can not be left as
system memory overhead.
Charging buffer_head is not as simple as adding __GFP_ACCOUNT to the
allocation. The buffer_heads can be allocated in a memcg different from
the memcg of the page for which buffer_heads are being allocated. One
concrete example is memory reclaim. The reclaim can trigger I/O of
pages of any memcg on the system. So, the right way to charge
buffer_head is to extract the memcg from the page for which buffer_heads
are being allocated and then use targeted memcg charging API.
[shakeelb@google.com: use __GFP_ACCOUNT for directed memcg charging]
Link: http://lkml.kernel.org/r/20180702220208.213380-1-shakeelb@google.com
Link: http://lkml.kernel.org/r/20180627191250.209150-3-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Jan Kara <jack@suse.cz>
Cc: Amir Goldstein <amir73il@gmail.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "Directed kmem charging", v8.
The Linux kernel's memory cgroup allows limiting the memory usage of the
jobs running on the system to provide isolation between the jobs. All
the kernel memory allocated in the context of the job and marked with
__GFP_ACCOUNT will also be included in the memory usage and be limited
by the job's limit.
The kernel memory can only be charged to the memcg of the process in
whose context kernel memory was allocated. However there are cases
where the allocated kernel memory should be charged to the memcg
different from the current processes's memcg. This patch series
contains two such concrete use-cases i.e. fsnotify and buffer_head.
The fsnotify event objects can consume a lot of system memory for large
or unlimited queues if there is either no or slow listener. The events
are allocated in the context of the event producer. However they should
be charged to the event consumer. Similarly the buffer_head objects can
be allocated in a memcg different from the memcg of the page for which
buffer_head objects are being allocated.
To solve this issue, this patch series introduces mechanism to charge
kernel memory to a given memcg. In case of fsnotify events, the memcg
of the consumer can be used for charging and for buffer_head, the memcg
of the page can be charged. For directed charging, the caller can use
the scope API memalloc_[un]use_memcg() to specify the memcg to charge
for all the __GFP_ACCOUNT allocations within the scope.
This patch (of 2):
A lot of memory can be consumed by the events generated for the huge or
unlimited queues if there is either no or slow listener. This can cause
system level memory pressure or OOMs. So, it's better to account the
fsnotify kmem caches to the memcg of the listener.
However the listener can be in a different memcg than the memcg of the
producer and these allocations happen in the context of the event
producer. This patch introduces remote memcg charging API which the
producer can use to charge the allocations to the memcg of the listener.
There are seven fsnotify kmem caches and among them allocations from
dnotify_struct_cache, dnotify_mark_cache, fanotify_mark_cache and
inotify_inode_mark_cachep happens in the context of syscall from the
listener. So, SLAB_ACCOUNT is enough for these caches.
The objects from fsnotify_mark_connector_cachep are not accounted as
they are small compared to the notification mark or events and it is
unclear whom to account connector to since it is shared by all events
attached to the inode.
The allocations from the event caches happen in the context of the event
producer. For such caches we will need to remote charge the allocations
to the listener's memcg. Thus we save the memcg reference in the
fsnotify_group structure of the listener.
This patch has also moved the members of fsnotify_group to keep the size
same, at least for 64 bit build, even with additional member by filling
the holes.
[shakeelb@google.com: use GFP_KERNEL_ACCOUNT rather than open-coding it]
Link: http://lkml.kernel.org/r/20180702215439.211597-1-shakeelb@google.com
Link: http://lkml.kernel.org/r/20180627191250.209150-2-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Jan Kara <jack@suse.cz>
Cc: Amir Goldstein <amir73il@gmail.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-----BEGIN PGP SIGNATURE-----
iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAltwvasQHGF4Ym9lQGtl
cm5lbC5kawAKCRD301j7KXHgpv65EACTq5gSLnJBI6ZPr1RAHruVDnjfzO2Veitl
tUtjm0XfWmnEiwQ3dYvnyhy99xbyaG3900d9BClCTlH6xaUdSiQkDpcKG/R2F36J
5mZitYukQcpFAQJWF8YKsTTE7JPl4VglCIDqYiC4+C3rOSVi8lrKn2qp4J4MMCFn
thRg3jCcq7c5s9Eigsop1pXWQSasubkXfk55Krcp4oybKYpYRKXXf74Mj14QAbwJ
QHN3VisyAUWoBRg7UQZo1Npe2oPk6bbnJypnjf8M0M2EnlvddEkIlHob91sodka8
6p4APOEu5cbyXOBCAQsw/koff14mb8aEadqeQA68WvXfIdX9ZjfxCX0OoC3sBEXk
yqJhZ0C980AM13zIBD8ejv4uasGcPca8W+47mE5P8sRiI++5kBsFWDZPCtUBna0X
2Kh24NsmEya9XRR5vsB84dsIPQ3tLMkxg/IgQRVDaSnfJz0c/+zm54xDyKRaFT4l
5iERk2WSkm9+8jNfVmWG0edrv6nRAXjpGwFfOCPh6/LCSCi4xQRULYN7sVzsX8ZK
FRjt24HftBI8mJbh4BtweJvg+ppVe1gAk3IO3HvxAQhv29Hz+uvFYe9kL+3N8LJA
Qosr9n9O4+wKYizJcDnw+5iPqCHfAwOm9th4pyedR+R7SmNcP3yNC8AbbheNBiF5
Zolos5H+JA==
=b9ib
-----END PGP SIGNATURE-----
Merge tag 'for-4.19/block-20180812' of git://git.kernel.dk/linux-block
Pull block updates from Jens Axboe:
"First pull request for this merge window, there will also be a
followup request with some stragglers.
This pull request contains:
- Fix for a thundering heard issue in the wbt block code (Anchal
Agarwal)
- A few NVMe pull requests:
* Improved tracepoints (Keith)
* Larger inline data support for RDMA (Steve Wise)
* RDMA setup/teardown fixes (Sagi)
* Effects log suppor for NVMe target (Chaitanya Kulkarni)
* Buffered IO suppor for NVMe target (Chaitanya Kulkarni)
* TP4004 (ANA) support (Christoph)
* Various NVMe fixes
- Block io-latency controller support. Much needed support for
properly containing block devices. (Josef)
- Series improving how we handle sense information on the stack
(Kees)
- Lightnvm fixes and updates/improvements (Mathias/Javier et al)
- Zoned device support for null_blk (Matias)
- AIX partition fixes (Mauricio Faria de Oliveira)
- DIF checksum code made generic (Max Gurtovoy)
- Add support for discard in iostats (Michael Callahan / Tejun)
- Set of updates for BFQ (Paolo)
- Removal of async write support for bsg (Christoph)
- Bio page dirtying and clone fixups (Christoph)
- Set of bcache fix/changes (via Coly)
- Series improving blk-mq queue setup/teardown speed (Ming)
- Series improving merging performance on blk-mq (Ming)
- Lots of other fixes and cleanups from a slew of folks"
* tag 'for-4.19/block-20180812' of git://git.kernel.dk/linux-block: (190 commits)
blkcg: Make blkg_root_lookup() work for queues in bypass mode
bcache: fix error setting writeback_rate through sysfs interface
null_blk: add lock drop/acquire annotation
Blk-throttle: reduce tail io latency when iops limit is enforced
block: paride: pd: mark expected switch fall-throughs
block: Ensure that a request queue is dissociated from the cgroup controller
block: Introduce blk_exit_queue()
blkcg: Introduce blkg_root_lookup()
block: Remove two superfluous #include directives
blk-mq: count the hctx as active before allocating tag
block: bvec_nr_vecs() returns value for wrong slab
bcache: trivial - remove tailing backslash in macro BTREE_FLAG
bcache: make the pr_err statement used for ENOENT only in sysfs_attatch section
bcache: set max writeback rate when I/O request is idle
bcache: add code comments for bset.c
bcache: fix mistaken comments in request.c
bcache: fix mistaken code comments in bcache.h
bcache: add a comment in super.c
bcache: avoid unncessary cache prefetch bch_btree_node_get()
bcache: display rate debug parameters to 0 when writeback is not running
...
-----BEGIN PGP SIGNATURE-----
iQFSBAABCAA8FiEEq68RxlopcLEwq+PEeb4+QwBBGIYFAltU8z0eHHRvcnZhbGRz
QGxpbnV4LWZvdW5kYXRpb24ub3JnAAoJEHm+PkMAQRiG5X8H/2fJr7m3k242+t76
sitwvx1eoPqTgryW59dRKm9IuXAGA+AjauvHzaz1QxomeQa50JghGWefD0eiJfkA
1AphQ/24EOiAbbVk084dAI/C2p122dE4D5Fy7CrfLnuouyrbFaZI5STbnrRct7sR
9deeYW0GDHO1Uenp4WDCj0baaqJqaevZ+7GG09DnWpya2nQtSkGBjqn6GpYmrfOU
mqFuxAX8mEOW6cwK16y/vYtnVjuuMAiZ63/OJ8AQ6d6ArGLwAsdn7f8Fn4I4tEr2
L0d3CRLUyegms4++Dmlu05k64buQu46WlPhjCZc5/Ts4kjrNxBuHejj2/jeSnUSt
vJJlibI=
=42a5
-----END PGP SIGNATURE-----
Merge tag 'v4.18-rc6' into for-4.19/block2
Pull in 4.18-rc6 to get the NVMe core AEN change to avoid a
merge conflict down the line.
Signed-of-by: Jens Axboe <axboe@kernel.dk>
In case of memcg_online_kmem() failure, memcg_cgroup::id remains hashed
in mem_cgroup_idr even after memcg memory is freed. This leads to leak
of ID in mem_cgroup_idr.
This patch adds removal into mem_cgroup_css_alloc(), which fixes the
problem. For better readability, it adds a generic helper which is used
in mem_cgroup_alloc() and mem_cgroup_id_put_many() as well.
Link: http://lkml.kernel.org/r/152354470916.22460.14397070748001974638.stgit@localhost.localdomain
Fixes 73f576c04b ("mm: memcontrol: fix cgroup creation failure after many small jobs")
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It was reported that a kernel crash happened in mem_cgroup_iter(), which
can be triggered if the legacy cgroup-v1 non-hierarchical mode is used.
Unable to handle kernel paging request at virtual address 6b6b6b6b6b6b8f
......
Call trace:
mem_cgroup_iter+0x2e0/0x6d4
shrink_zone+0x8c/0x324
balance_pgdat+0x450/0x640
kswapd+0x130/0x4b8
kthread+0xe8/0xfc
ret_from_fork+0x10/0x20
mem_cgroup_iter():
......
if (css_tryget(css)) <-- crash here
break;
......
The crashing reason is that mem_cgroup_iter() uses the memcg object whose
pointer is stored in iter->position, which has been freed before and
filled with POISON_FREE(0x6b).
And the root cause of the use-after-free issue is that
invalidate_reclaim_iterators() fails to reset the value of iter->position
to NULL when the css of the memcg is released in non- hierarchical mode.
Link: http://lkml.kernel.org/r/1531994807-25639-1-git-send-email-jing.xia@unisoc.com
Fixes: 6df38689e0 ("mm: memcontrol: fix possible memcg leak due to interrupted reclaim")
Signed-off-by: Jing Xia <jing.xia.mail@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: <chunyan.zhang@unisoc.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Memory allocations can induce swapping via kswapd or direct reclaim. If
we are having IO done for us by kswapd and don't actually go into direct
reclaim we may never get scheduled for throttling. So instead check to
see if our cgroup is congested, and if so schedule the throttling.
Before we return to user space the throttling stuff will only throttle
if we actually required it.
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Commit e27be240df ("mm: memcg: make sure memory.events is uptodate
when waking pollers") converted most of memcg event counters to
per-memcg atomics, which made them less confusing for a user. The
"oom_kill" counter remained untouched, so now it behaves differently
than other counters (including "oom"). This adds nothing but confusion.
Let's fix this by adding the MEMCG_OOM_KILL event, and follow the
MEMCG_OOM approach.
This also removes a hack from count_memcg_event_mm(), introduced earlier
specially for the OOM_KILL counter.
[akpm@linux-foundation.org: fix for droppage of memcg-replace-mm-owner-with-mm-memcg.patch]
Link: http://lkml.kernel.org/r/20180508124637.29984-1-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently an attempt to set swap.max into a value lower than the actual
swap usage fails, which causes configuration problems as there's no way
of lowering the configuration below the current usage short of turning
off swap entirely. This makes swap.max difficult to use and allows
delegatees to lock the delegator out of reducing swap allocation.
This patch updates swap_max_write() so that the limit can be lowered
below the current usage. It doesn't implement active reclaiming of swap
entries for the following reasons.
* mem_cgroup_swap_full() already tells the swap machinary to
aggressively reclaim swap entries if the usage is above 50% of
limit, so simply lowering the limit automatically triggers gradual
reclaim.
* Forcing back swapped out pages is likely to heavily impact the
workload and mess up the working set. Given that swap usually is a
lot less valuable and less scarce, letting the existing usage
dissipate over time through the above gradual reclaim and as they're
falted back in is likely the better behavior.
Link: http://lkml.kernel.org/r/20180523185041.GR1718769@devbig577.frc2.facebook.com
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Roman Gushchin <guro@fb.com>
Acked-by: Rik van Riel <riel@surriel.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Shaohua Li <shli@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Memory controller implements the memory.low best-effort memory
protection mechanism, which works perfectly in many cases and allows
protecting working sets of important workloads from sudden reclaim.
But its semantics has a significant limitation: it works only as long as
there is a supply of reclaimable memory. This makes it pretty useless
against any sort of slow memory leaks or memory usage increases. This
is especially true for swapless systems. If swap is enabled, memory
soft protection effectively postpones problems, allowing a leaking
application to fill all swap area, which makes no sense. The only
effective way to guarantee the memory protection in this case is to
invoke the OOM killer.
It's possible to handle this case in userspace by reacting on MEMCG_LOW
events; but there is still a place for a fail-safe in-kernel mechanism
to provide stronger guarantees.
This patch introduces the memory.min interface for cgroup v2 memory
controller. It works very similarly to memory.low (sharing the same
hierarchical behavior), except that it's not disabled if there is no
more reclaimable memory in the system.
If cgroup is not populated, its memory.min is ignored, because otherwise
even the OOM killer wouldn't be able to reclaim the protected memory,
and the system can stall.
[guro@fb.com: s/low/min/ in docs]
Link: http://lkml.kernel.org/r/20180510130758.GA9129@castle.DHCP.thefacebook.com
Link: http://lkml.kernel.org/r/20180509180734.GA4856@castle.DHCP.thefacebook.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Reviewed-by: Randy Dunlap <rdunlap@infradead.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The per-cpu memcg stock can retain a charge of upto 32 pages. On a
machine with large number of cpus, this can amount to a decent amount of
memory. Additionally force_empty interface might be triggering unneeded
memcg reclaims.
Link: http://lkml.kernel.org/r/20180507201651.165879-1-shakeelb@google.com
Signed-off-by: Junaid Shahid <junaids@google.com>
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Resizing the memcg limit for cgroup-v2 drains the stocks before
triggering the memcg reclaim. Do the same for cgroup-v1 to make the
behavior consistent.
Link: http://lkml.kernel.org/r/20180504205548.110696-1-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Mark memcg1_events static: it's only used by memcontrol.c. And mark it
const: it's not modified.
Link: http://lkml.kernel.org/r/20180503192940.94971-1-gthelen@google.com
Signed-off-by: Greg Thelen <gthelen@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mem_cgroup_cgwb_list is a very simple wrapper and it will never be used
outside of code under CONFIG_CGROUP_WRITEBACK. so use memcg->cgwb_list
directly.
Link: http://lkml.kernel.org/r/1524406173-212182-1-git-send-email-wanglong19@meituan.com
Signed-off-by: Wang Long <wanglong19@meituan.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Acked-by: Tejun Heo <tj@kernel.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If memcg's usage is equal to the memory.low value, avoid reclaiming from
this cgroup while there is a surplus of reclaimable memory.
This sounds more logical and also matches memory.high and memory.max
behavior: both are inclusive.
Empty cgroups are not considered protected, so MEMCG_LOW events are not
emitted for empty cgroups, if there is no more reclaimable memory in the
system.
Link: http://lkml.kernel.org/r/20180406122132.GA7185@castle
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch aims to address an issue in current memory.low semantics,
which makes it hard to use it in a hierarchy, where some leaf memory
cgroups are more valuable than others.
For example, there are memcgs A, A/B, A/C, A/D and A/E:
A A/memory.low = 2G, A/memory.current = 6G
//\\
BC DE B/memory.low = 3G B/memory.current = 2G
C/memory.low = 1G C/memory.current = 2G
D/memory.low = 0 D/memory.current = 2G
E/memory.low = 10G E/memory.current = 0
If we apply memory pressure, B, C and D are reclaimed at the same pace
while A's usage exceeds 2G. This is obviously wrong, as B's usage is
fully below B's memory.low, and C has 1G of protection as well. Also, A
is pushed to the size, which is less than A's 2G memory.low, which is
also wrong.
A simple bash script (provided below) can be used to reproduce
the problem. Current results are:
A: 1430097920
A/B: 711929856
A/C: 717426688
A/D: 741376
A/E: 0
To address the issue a concept of effective memory.low is introduced.
Effective memory.low is always equal or less than original memory.low.
In a case, when there is no memory.low overcommittment (and also for
top-level cgroups), these two values are equal.
Otherwise it's a part of parent's effective memory.low, calculated as a
cgroup's memory.low usage divided by sum of sibling's memory.low usages
(under memory.low usage I mean the size of actually protected memory:
memory.current if memory.current < memory.low, 0 otherwise). It's
necessary to track the actual usage, because otherwise an empty cgroup
with memory.low set (A/E in my example) will affect actual memory
distribution, which makes no sense. To avoid traversing the cgroup tree
twice, page_counters code is reused.
Calculating effective memory.low can be done in the reclaim path, as we
conveniently traversing the cgroup tree from top to bottom and check
memory.low on each level. So, it's a perfect place to calculate
effective memory low and save it to use it for children cgroups.
This also eliminates a need to traverse the cgroup tree from bottom to
top each time to check if parent's guarantee is not exceeded.
Setting/resetting effective memory.low is intentionally racy, but it's
fine and shouldn't lead to any significant differences in actual memory
distribution.
With this patch applied results are matching the expectations:
A: 2147930112
A/B: 1428721664
A/C: 718393344
A/D: 815104
A/E: 0
Test script:
#!/bin/bash
CGPATH="/sys/fs/cgroup"
truncate /file1 --size 2G
truncate /file2 --size 2G
truncate /file3 --size 2G
truncate /file4 --size 50G
mkdir "${CGPATH}/A"
echo "+memory" > "${CGPATH}/A/cgroup.subtree_control"
mkdir "${CGPATH}/A/B" "${CGPATH}/A/C" "${CGPATH}/A/D" "${CGPATH}/A/E"
echo 2G > "${CGPATH}/A/memory.low"
echo 3G > "${CGPATH}/A/B/memory.low"
echo 1G > "${CGPATH}/A/C/memory.low"
echo 0 > "${CGPATH}/A/D/memory.low"
echo 10G > "${CGPATH}/A/E/memory.low"
echo $$ > "${CGPATH}/A/B/cgroup.procs" && vmtouch -qt /file1
echo $$ > "${CGPATH}/A/C/cgroup.procs" && vmtouch -qt /file2
echo $$ > "${CGPATH}/A/D/cgroup.procs" && vmtouch -qt /file3
echo $$ > "${CGPATH}/cgroup.procs" && vmtouch -qt /file4
echo "A: " `cat "${CGPATH}/A/memory.current"`
echo "A/B: " `cat "${CGPATH}/A/B/memory.current"`
echo "A/C: " `cat "${CGPATH}/A/C/memory.current"`
echo "A/D: " `cat "${CGPATH}/A/D/memory.current"`
echo "A/E: " `cat "${CGPATH}/A/E/memory.current"`
rmdir "${CGPATH}/A/B" "${CGPATH}/A/C" "${CGPATH}/A/D" "${CGPATH}/A/E"
rmdir "${CGPATH}/A"
rm /file1 /file2 /file3 /file4
Link: http://lkml.kernel.org/r/20180405185921.4942-2-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch renames struct page_counter fields:
count -> usage
limit -> max
and the corresponding functions:
page_counter_limit() -> page_counter_set_max()
mem_cgroup_get_limit() -> mem_cgroup_get_max()
mem_cgroup_resize_limit() -> mem_cgroup_resize_max()
memcg_update_kmem_limit() -> memcg_update_kmem_max()
memcg_update_tcp_limit() -> memcg_update_tcp_max()
The idea behind this renaming is to have the direct matching
between memory cgroup knobs (low, high, max) and page_counters API.
This is pure renaming, this patch doesn't bring any functional change.
Link: http://lkml.kernel.org/r/20180405185921.4942-1-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add swap max and fail events so that userland can monitor and respond to
running out of swap.
I'm not too sure about the fail event. Right now, it's a bit confusing
which stats / events are recursive and which aren't and also which ones
reflect events which originate from a given cgroup and which targets the
cgroup. No idea what the right long term solution is and it could just
be that growing them organically is actually the only right thing to do.
Link: http://lkml.kernel.org/r/20180416231151.GI1911913@devbig577.frc2.facebook.com
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: <linux-api@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm, memcontrol: Implement memory.swap.events", v2.
This patchset implements memory.swap.events which contains max and fail
events so that userland can monitor and respond to swap running out.
This patch (of 2):
get_swap_page() is always followed by mem_cgroup_try_charge_swap().
This patch moves mem_cgroup_try_charge_swap() into get_swap_page() and
makes get_swap_page() call the function even after swap allocation
failure.
This simplifies the callers and consolidates memcg related logic and
will ease adding swap related memcg events.
Link: http://lkml.kernel.org/r/20180416230934.GH1911913@devbig577.frc2.facebook.com
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
These abstract out calls to the poll method in preparation for changes
in how we poll.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Remove the address_space ->tree_lock and use the xa_lock newly added to
the radix_tree_root. Rename the address_space ->page_tree to ->i_pages,
since we don't really care that it's a tree.
[willy@infradead.org: fix nds32, fs/dax.c]
Link: http://lkml.kernel.org/r/20180406145415.GB20605@bombadil.infradead.orgLink: http://lkml.kernel.org/r/20180313132639.17387-9-willy@infradead.org
Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com>
Acked-by: Jeff Layton <jlayton@redhat.com>
Cc: Darrick J. Wong <darrick.wong@oracle.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Ryusuke Konishi <konishi.ryusuke@lab.ntt.co.jp>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
syzbot has triggered a NULL ptr dereference when allocation fault
injection enforces a failure and alloc_mem_cgroup_per_node_info
initializes memcg->nodeinfo only half way through.
But __mem_cgroup_free still tries to free all per-node data and
dereferences pn->lruvec_stat_cpu unconditioanlly even if the specific
per-node data hasn't been initialized.
The bug is quite unlikely to hit because small allocations do not fail
and we would need quite some numa nodes to make struct
mem_cgroup_per_node large enough to cross the costly order.
Link: http://lkml.kernel.org/r/20180406100906.17790-1-mhocko@kernel.org
Reported-by: syzbot+8a5de3cce7cdc70e9ebe@syzkaller.appspotmail.com
Fixes: 00f3ca2c2d ("mm: memcontrol: per-lruvec stats infrastructure")
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit a983b5ebee ("mm: memcontrol: fix excessive complexity in
memory.stat reporting") added per-cpu drift to all memory cgroup stats
and events shown in memory.stat and memory.events.
For memory.stat this is acceptable. But memory.events issues file
notifications, and somebody polling the file for changes will be
confused when the counters in it are unchanged after a wakeup.
Luckily, the events in memory.events - MEMCG_LOW, MEMCG_HIGH, MEMCG_MAX,
MEMCG_OOM - are sufficiently rare and high-level that we don't need
per-cpu buffering for them: MEMCG_HIGH and MEMCG_MAX would be the most
frequent, but they're counting invocations of reclaim, which is a
complex operation that touches many shared cachelines.
This splits memory.events from the generic VM events and tracks them in
their own, unbuffered atomic counters. That's also cleaner, as it
eliminates the ugly enum nesting of VM and cgroup events.
[hannes@cmpxchg.org: "array subscript is above array bounds"]
Link: http://lkml.kernel.org/r/20180406155441.GA20806@cmpxchg.org
Link: http://lkml.kernel.org/r/20180405175507.GA24817@cmpxchg.org
Fixes: a983b5ebee ("mm: memcontrol: fix excessive complexity in memory.stat reporting")
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reported-by: Tejun Heo <tj@kernel.org>
Acked-by: Tejun Heo <tj@kernel.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A THP memcg charge can trigger the oom killer since 2516035499 ("mm,
thp: remove __GFP_NORETRY from khugepaged and madvised allocations").
We have used an explicit __GFP_NORETRY previously which ruled the OOM
killer automagically.
Memcg charge path should be semantically compliant with the allocation
path and that means that if we do not trigger the OOM killer for costly
orders which should do the same in the memcg charge path as well.
Otherwise we are forcing callers to distinguish the two and use
different gfp masks which is both non-intuitive and bug prone. As soon
as we get a costly high order kmalloc user we even do not have any means
to tell the memcg specific gfp mask to prevent from OOM because the
charging is deep within guts of the slab allocator.
The unexpected memcg OOM on THP has already been fixed upstream by
9d3c3354bb ("mm, thp: do not cause memcg oom for thp") but this is a
one-off fix rather than a generic solution. Teach mem_cgroup_oom to
bail out on costly order requests to fix the THP issue as well as any
other costly OOM eligible allocations to be added in future.
Also revert 9d3c3354bb because special gfp for THP is no longer
needed.
Link: http://lkml.kernel.org/r/20180403193129.22146-1-mhocko@kernel.org
Fixes: 2516035499 ("mm, thp: remove __GFP_NORETRY from khugepaged and madvised allocations")
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are a couple of places where parameter description and function
name do not match the actual code. Fix it.
Link: http://lkml.kernel.org/r/1520843448-17347-1-git-send-email-honglei.wang@oracle.com
Signed-off-by: Honglei Wang <honglei.wang@oracle.com>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>