Convert existing users of pte_numa and friends to the new helper. Note
that the kernel is broken after this patch is applied until the other page
table modifiers are also altered. This patch layout is to make review
easier.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Acked-by: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Tested-by: Sasha Levin <sasha.levin@oracle.com>
Cc: Dave Jones <davej@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Kirill Shutemov <kirill.shutemov@linux.intel.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Automatic NUMA balancing depends on being able to protect PTEs to trap a
fault and gather reference locality information. Very broadly speaking
it would mark PTEs as not present and use another bit to distinguish
between NUMA hinting faults and other types of faults. It was
universally loved by everybody and caused no problems whatsoever. That
last sentence might be a lie.
This series is very heavily based on patches from Linus and Aneesh to
replace the existing PTE/PMD NUMA helper functions with normal change
protections. I did alter and add parts of it but I consider them
relatively minor contributions. At their suggestion, acked-bys are in
there but I've no problem converting them to Signed-off-by if requested.
AFAIK, this has received no testing on ppc64 and I'm depending on Aneesh
for that. I tested trinity under kvm-tool and passed and ran a few
other basic tests. At the time of writing, only the short-lived tests
have completed but testing of V2 indicated that long-term testing had no
surprises. In most cases I'm leaving out detail as it's not that
interesting.
specjbb single JVM: There was negligible performance difference in the
benchmark itself for short runs. However, system activity is
higher and interrupts are much higher over time -- possibly TLB
flushes. Migrations are also higher. Overall, this is more overhead
but considering the problems faced with the old approach I think
we just have to suck it up and find another way of reducing the
overhead.
specjbb multi JVM: Negligible performance difference to the actual benchmark
but like the single JVM case, the system overhead is noticeably
higher. Again, interrupts are a major factor.
autonumabench: This was all over the place and about all that can be
reasonably concluded is that it's different but not necessarily
better or worse.
autonumabench
3.18.0-rc5 3.18.0-rc5
mmotm-20141119 protnone-v3r3
User NUMA01 32380.24 ( 0.00%) 21642.92 ( 33.16%)
User NUMA01_THEADLOCAL 22481.02 ( 0.00%) 22283.22 ( 0.88%)
User NUMA02 3137.00 ( 0.00%) 3116.54 ( 0.65%)
User NUMA02_SMT 1614.03 ( 0.00%) 1543.53 ( 4.37%)
System NUMA01 322.97 ( 0.00%) 1465.89 (-353.88%)
System NUMA01_THEADLOCAL 91.87 ( 0.00%) 49.32 ( 46.32%)
System NUMA02 37.83 ( 0.00%) 14.61 ( 61.38%)
System NUMA02_SMT 7.36 ( 0.00%) 7.45 ( -1.22%)
Elapsed NUMA01 716.63 ( 0.00%) 599.29 ( 16.37%)
Elapsed NUMA01_THEADLOCAL 553.98 ( 0.00%) 539.94 ( 2.53%)
Elapsed NUMA02 83.85 ( 0.00%) 83.04 ( 0.97%)
Elapsed NUMA02_SMT 86.57 ( 0.00%) 79.15 ( 8.57%)
CPU NUMA01 4563.00 ( 0.00%) 3855.00 ( 15.52%)
CPU NUMA01_THEADLOCAL 4074.00 ( 0.00%) 4136.00 ( -1.52%)
CPU NUMA02 3785.00 ( 0.00%) 3770.00 ( 0.40%)
CPU NUMA02_SMT 1872.00 ( 0.00%) 1959.00 ( -4.65%)
System CPU usage of NUMA01 is worse but it's an adverse workload on this
machine so I'm reluctant to conclude that it's a problem that matters. On
the other workloads that are sensible on this machine, system CPU usage is
great. Overall time to complete the benchmark is comparable
3.18.0-rc5 3.18.0-rc5
mmotm-20141119protnone-v3r3
User 59612.50 48586.44
System 460.22 1537.45
Elapsed 1442.20 1304.29
NUMA alloc hit 5075182 5743353
NUMA alloc miss 0 0
NUMA interleave hit 0 0
NUMA alloc local 5075174 5743339
NUMA base PTE updates 637061448 443106883
NUMA huge PMD updates 1243434 864747
NUMA page range updates 1273699656 885857347
NUMA hint faults 1658116 1214277
NUMA hint local faults 959487 754113
NUMA hint local percent 57 62
NUMA pages migrated 5467056 61676398
The NUMA pages migrated look terrible but when I looked at a graph of the
activity over time I see that the massive spike in migration activity was
during NUMA01. This correlates with high system CPU usage and could be
simply down to bad luck but any modifications that affect that workload
would be related to scan rates and migrations, not the protection
mechanism. For all other workloads, migration activity was comparable.
Overall, headline performance figures are comparable but the overhead is
higher, mostly in interrupts. To some extent, higher overhead from this
approach was anticipated but not to this degree. It's going to be
necessary to reduce this again with a separate series in the future. It's
still worth going ahead with this series though as it's likely to avoid
constant headaches with Xen and is probably easier to maintain.
This patch (of 10):
A transhuge NUMA hinting fault may find the page is migrating and should
wait until migration completes. The check is race-prone because the pmd
is deferenced outside of the page lock and while the race is tiny, it'll
be larger if the PMD is cleared while marking PMDs for hinting fault.
This patch closes the race.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Dave Jones <davej@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Kirill Shutemov <kirill.shutemov@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch aims to improve THP collapse rates, by allowing THP collapse in
the presence of read-only ptes, like those left in place by do_swap_page
after a read fault.
Currently THP can collapse 4kB pages into a THP when there are up to
khugepaged_max_ptes_none pte_none ptes in a 2MB range. This patch applies
the same limit for read-only ptes.
The patch was tested with a test program that allocates 800MB of memory,
writes to it, and then sleeps. I force the system to swap out all but
190MB of the program by touching other memory. Afterwards, the test
program does a mix of reads and writes to its memory, and the memory gets
swapped back in.
Without the patch, only the memory that did not get swapped out remained
in THPs, which corresponds to 24% of the memory of the program. The
percentage did not increase over time.
With this patch, after 5 minutes of waiting khugepaged had collapsed 50%
of the program's memory back into THPs.
Test results:
With the patch:
After swapped out:
cat /proc/pid/smaps:
Anonymous: 100464 kB
AnonHugePages: 100352 kB
Swap: 699540 kB
Fraction: 99,88
cat /proc/meminfo:
AnonPages: 1754448 kB
AnonHugePages: 1716224 kB
Fraction: 97,82
After swapped in:
In a few seconds:
cat /proc/pid/smaps:
Anonymous: 800004 kB
AnonHugePages: 145408 kB
Swap: 0 kB
Fraction: 18,17
cat /proc/meminfo:
AnonPages: 2455016 kB
AnonHugePages: 1761280 kB
Fraction: 71,74
In 5 minutes:
cat /proc/pid/smaps
Anonymous: 800004 kB
AnonHugePages: 407552 kB
Swap: 0 kB
Fraction: 50,94
cat /proc/meminfo:
AnonPages: 2456872 kB
AnonHugePages: 2023424 kB
Fraction: 82,35
Without the patch:
After swapped out:
cat /proc/pid/smaps:
Anonymous: 190660 kB
AnonHugePages: 190464 kB
Swap: 609344 kB
Fraction: 99,89
cat /proc/meminfo:
AnonPages: 1740456 kB
AnonHugePages: 1667072 kB
Fraction: 95,78
After swapped in:
cat /proc/pid/smaps:
Anonymous: 800004 kB
AnonHugePages: 190464 kB
Swap: 0 kB
Fraction: 23,80
cat /proc/meminfo:
AnonPages: 2350032 kB
AnonHugePages: 1667072 kB
Fraction: 70,93
I waited 10 minutes the fractions did not change without the patch.
Signed-off-by: Ebru Akagunduz <ebru.akagunduz@gmail.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Acked-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch makes do_mincore() use walk_page_vma(), which reduces many
lines of code by using common page table walk code.
[daeseok.youn@gmail.com: remove unneeded variable 'err']
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Pavel Emelyanov <xemul@parallels.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Daeseok Youn <daeseok.youn@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This make sure that we try to allocate hugepages from local node if
allowed by mempolicy. If we can't, we fallback to small page allocation
based on mempolicy. This is based on the observation that allocating
pages on local node is more beneficial than allocating hugepages on remote
node.
With this patch applied we may find transparent huge page allocation
failures if the current node doesn't have enough freee hugepages. Before
this patch such failures result in us retrying the allocation on other
nodes in the numa node mask.
[akpm@linux-foundation.org: fix comment, add CONFIG_TRANSPARENT_HUGEPAGE dependency]
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add KPF_ZERO_PAGE flag for zero_page, so that userspace processes can
detect zero_page in /proc/kpageflags, and then do memory analysis more
accurately.
Signed-off-by: Yalin Wang <yalin.wang@sonymobile.com>
Acked-by: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull drm updates from Dave Airlie:
"Highlights:
- AMD KFD driver merge
This is the AMD HSA interface for exposing a lowlevel interface for
GPGPU use. They have an open source userspace built on top of this
interface, and the code looks as good as it was going to get out of
tree.
- Initial atomic modesetting work
The need for an atomic modesetting interface to allow userspace to
try and send a complete set of modesetting state to the driver has
arisen, and been suffering from neglect this past year. No more,
the start of the common code and changes for msm driver to use it
are in this tree. Ongoing work to get the userspace ioctl finished
and the code clean will probably wait until next kernel.
- DisplayID 1.3 and tiled monitor exposed to userspace.
Tiled monitor property is now exposed for userspace to make use of.
- Rockchip drm driver merged.
- imx gpu driver moved out of staging
Other stuff:
- core:
panel - MIPI DSI + new panels.
expose suggested x/y properties for virtual GPUs
- i915:
Initial Skylake (SKL) support
gen3/4 reset work
start of dri1/ums removal
infoframe tracking
fixes for lots of things.
- nouveau:
tegra k1 voltage support
GM204 modesetting support
GT21x memory reclocking work
- radeon:
CI dpm fixes
GPUVM improvements
Initial DPM fan control
- rcar-du:
HDMI support added
removed some support for old boards
slave encoder driver for Analog Devices adv7511
- exynos:
Exynos4415 SoC support
- msm:
a4xx gpu support
atomic helper conversion
- tegra:
iommu support
universal plane support
ganged-mode DSI support
- sti:
HDMI i2c improvements
- vmwgfx:
some late fixes.
- qxl:
use suggested x/y properties"
* 'drm-next' of git://people.freedesktop.org/~airlied/linux: (969 commits)
drm: sti: fix module compilation issue
drm/i915: save/restore GMBUS freq across suspend/resume on gen4
drm: sti: correctly cleanup CRTC and planes
drm: sti: add HQVDP plane
drm: sti: add cursor plane
drm: sti: enable auxiliary CRTC
drm: sti: fix delay in VTG programming
drm: sti: prepare sti_tvout to support auxiliary crtc
drm: sti: use drm_crtc_vblank_{on/off} instead of drm_vblank_{on/off}
drm: sti: fix hdmi avi infoframe
drm: sti: remove event lock while disabling vblank
drm: sti: simplify gdp code
drm: sti: clear all mixer control
drm: sti: remove gpio for HDMI hot plug detection
drm: sti: allow to change hdmi ddc i2c adapter
drm/doc: Document drm_add_modes_noedid() usage
drm/i915: Remove '& 0xffff' from the mask given to WA_REG()
drm/i915: Invert the mask and val arguments in wa_add() and WA_REG()
drm: Zero out DRM object memory upon cleanup
drm/i915/bdw: Fix the write setting up the WIZ hashing mode
...
Pull s390 updates from Martin Schwidefsky:
"The most notable change for this pull request is the ftrace rework
from Heiko. It brings a small performance improvement and the ground
work to support a new gcc option to replace the mcount blocks with a
single nop.
Two new s390 specific system calls are added to emulate user space
mmio for PCI, an artifact of the how PCI memory is accessed.
Two patches for the memory management with changes to common code.
For KVM mm_forbids_zeropage is added which disables the empty zero
page for an mm that is used by a KVM process. And an optimization,
pmdp_get_and_clear_full is added analog to ptep_get_and_clear_full.
Some micro optimization for the cmpxchg and the spinlock code.
And as usual bug fixes and cleanups"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux: (46 commits)
s390/cputime: fix 31-bit compile
s390/scm_block: make the number of reqs per HW req configurable
s390/scm_block: handle multiple requests in one HW request
s390/scm_block: allocate aidaw pages only when necessary
s390/scm_block: use mempool to manage aidaw requests
s390/eadm: change timeout value
s390/mm: fix memory leak of ptlock in pmd_free_tlb
s390: use local symbol names in entry[64].S
s390/ptrace: always include vector registers in core files
s390/simd: clear vector register pointer on fork/clone
s390: translate cputime magic constants to macros
s390/idle: convert open coded idle time seqcount
s390/idle: add missing irq off lockdep annotation
s390/debug: avoid function call for debug_sprintf_*
s390/kprobes: fix instruction copy for out of line execution
s390: remove diag 44 calls from cpu_relax()
s390/dasd: retry partition detection
s390/dasd: fix list corruption for sleep_on requests
s390/dasd: fix infinite term I/O loop
s390/dasd: remove unused code
...
Zero pages can be used only in anonymous mappings, which never have
writable vma->vm_page_prot: see protection_map in mm/mmap.c and __PX1X
definitions.
Let's drop redundant pmd_wrprotect() in set_huge_zero_page().
Signed-off-by: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If an anonymous mapping is not allowed to fault thp memory and then
madvise(MADV_HUGEPAGE) is used after fault, khugepaged will never
collapse this memory into thp memory.
This occurs because the madvise(2) handler for thp, hugepage_madvise(),
clears VM_NOHUGEPAGE on the stack and it isn't stored in vma->vm_flags
until the final action of madvise_behavior(). This causes the
khugepaged_enter_vma_merge() to be a no-op in hugepage_madvise() when
the vma had previously had VM_NOHUGEPAGE set.
Fix this by passing the correct vma flags to the khugepaged mm slot
handler. There's no chance khugepaged can run on this vma until after
madvise_behavior() returns since we hold mm->mmap_sem.
It would be possible to clear VM_NOHUGEPAGE directly from vma->vm_flags
in hugepage_advise(), but I didn't want to introduce special case
behavior into madvise_behavior(). I think it's best to just let it
always set vma->vm_flags itself.
Signed-off-by: David Rientjes <rientjes@google.com>
Reported-by: Suleiman Souhlal <suleiman@google.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Compound page should be freed by put_page() or free_pages() with correct
order. Not doing so will cause tail pages leaked.
The compound order can be obtained by compound_order() or use
HPAGE_PMD_ORDER in our case. Some people would argue the latter is
faster but I prefer the former which is more general.
This bug was observed not just on our servers (the worst case we saw is
11G leaked on a 48G machine) but also on our workstations running Ubuntu
based distro.
$ cat /proc/vmstat | grep thp_zero_page_alloc
thp_zero_page_alloc 55
thp_zero_page_alloc_failed 0
This means there is (thp_zero_page_alloc - 1) * (2M - 4K) memory leaked.
Fixes: 97ae17497e ("thp: implement refcounting for huge zero page")
Signed-off-by: Yu Zhao <yuzhao@google.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: David Rientjes <rientjes@google.com>
Cc: Bob Liu <lliubbo@gmail.com>
Cc: <stable@vger.kernel.org> [3.8+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Analog to ptep_get_and_clear_full define a variant of the
pmpd_get_and_clear primitive which gets the full hint from the
mmu_gather struct. This allows s390 to avoid a costly instruction
when destroying an address space.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Add a new function stub to allow architectures to disable for
an mm_structthe backing of non-present, anonymous pages with
read-only empty zero pages.
Signed-off-by: Dominik Dingel <dingel@linux.vnet.ibm.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Dump the contents of the relevant struct_mm when we hit the bug condition.
Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Trivially convert a few VM_BUG_ON calls to VM_BUG_ON_VMA to extract
more information when they trigger.
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Konstantin Khlebnikov <khlebnikov@openvz.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Michel Lespinasse <walken@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When allocating huge page for collapsing, khugepaged currently holds
mmap_sem for reading on the mm where collapsing occurs. Afterwards the
read lock is dropped before write lock is taken on the same mmap_sem.
Holding mmap_sem during whole huge page allocation is therefore useless,
the vma needs to be rechecked after taking the write lock anyway.
Furthemore, huge page allocation might involve a rather long sync
compaction, and thus block any mmap_sem writers and i.e. affect workloads
that perform frequent m(un)map or mprotect oterations.
This patch simply releases the read lock before allocating a huge page.
It also deletes an outdated comment that assumed vma must be stable, as it
was using alloc_hugepage_vma(). This is no longer true since commit
9f1b868a13 ("mm: thp: khugepaged: add policy for finding target node").
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Minchan Kim <minchan@kernel.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch reverts 1ba6e0b50b ("mm: numa: split_huge_page: transfer the
NUMA type from the pmd to the pte"). If a huge page is being split due
a protection change and the tail will be in a PROT_NONE vma then NUMA
hinting PTEs are temporarily created in the protected VMA.
VM_RW|VM_PROTNONE
|-----------------|
^
split here
In the specific case above, it should get fixed up by change_pte_range()
but there is a window of opportunity for weirdness to happen. Similarly,
if a huge page is shrunk and split during a protection update but before
pmd_numa is cleared then a pte_numa can be left behind.
Instead of adding complexity trying to deal with the case, this patch
will not mark PTEs NUMA when splitting a huge page. NUMA hinting faults
will not be triggered which is marginal in comparison to the complexity
in dealing with the corner cases during THP split.
Cc: stable@vger.kernel.org
Signed-off-by: Mel Gorman <mgorman@suse.de>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
These patches rework memcg charge lifetime to integrate more naturally
with the lifetime of user pages. This drastically simplifies the code and
reduces charging and uncharging overhead. The most expensive part of
charging and uncharging is the page_cgroup bit spinlock, which is removed
entirely after this series.
Here are the top-10 profile entries of a stress test that reads a 128G
sparse file on a freshly booted box, without even a dedicated cgroup (i.e.
executing in the root memcg). Before:
15.36% cat [kernel.kallsyms] [k] copy_user_generic_string
13.31% cat [kernel.kallsyms] [k] memset
11.48% cat [kernel.kallsyms] [k] do_mpage_readpage
4.23% cat [kernel.kallsyms] [k] get_page_from_freelist
2.38% cat [kernel.kallsyms] [k] put_page
2.32% cat [kernel.kallsyms] [k] __mem_cgroup_commit_charge
2.18% kswapd0 [kernel.kallsyms] [k] __mem_cgroup_uncharge_common
1.92% kswapd0 [kernel.kallsyms] [k] shrink_page_list
1.86% cat [kernel.kallsyms] [k] __radix_tree_lookup
1.62% cat [kernel.kallsyms] [k] __pagevec_lru_add_fn
After:
15.67% cat [kernel.kallsyms] [k] copy_user_generic_string
13.48% cat [kernel.kallsyms] [k] memset
11.42% cat [kernel.kallsyms] [k] do_mpage_readpage
3.98% cat [kernel.kallsyms] [k] get_page_from_freelist
2.46% cat [kernel.kallsyms] [k] put_page
2.13% kswapd0 [kernel.kallsyms] [k] shrink_page_list
1.88% cat [kernel.kallsyms] [k] __radix_tree_lookup
1.67% cat [kernel.kallsyms] [k] __pagevec_lru_add_fn
1.39% kswapd0 [kernel.kallsyms] [k] free_pcppages_bulk
1.30% cat [kernel.kallsyms] [k] kfree
As you can see, the memcg footprint has shrunk quite a bit.
text data bss dec hex filename
37970 9892 400 48262 bc86 mm/memcontrol.o.old
35239 9892 400 45531 b1db mm/memcontrol.o
This patch (of 4):
The memcg charge API charges pages before they are rmapped - i.e. have an
actual "type" - and so every callsite needs its own set of charge and
uncharge functions to know what type is being operated on. Worse,
uncharge has to happen from a context that is still type-specific, rather
than at the end of the page's lifetime with exclusive access, and so
requires a lot of synchronization.
Rewrite the charge API to provide a generic set of try_charge(),
commit_charge() and cancel_charge() transaction operations, much like
what's currently done for swap-in:
mem_cgroup_try_charge() attempts to reserve a charge, reclaiming
pages from the memcg if necessary.
mem_cgroup_commit_charge() commits the page to the charge once it
has a valid page->mapping and PageAnon() reliably tells the type.
mem_cgroup_cancel_charge() aborts the transaction.
This reduces the charge API and enables subsequent patches to
drastically simplify uncharging.
As pages need to be committed after rmap is established but before they
are added to the LRU, page_add_new_anon_rmap() must stop doing LRU
additions again. Revive lru_cache_add_active_or_unevictable().
[hughd@google.com: fix shmem_unuse]
[hughd@google.com: Add comments on the private use of -EAGAIN]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Commit 9f1b868a13 ("mm: thp: khugepaged: add policy for finding target
node") improved the previous khugepaged logic which allocated a
transparent hugepages from the node of the first page being collapsed.
However, it is still possible to collapse pages to remote memory which
may suffer from additional access latency. With the current policy, it
is possible that 255 pages (with PAGE_SHIFT == 12) will be collapsed
remotely if the majority are allocated from that node.
When zone_reclaim_mode is enabled, it means the VM should make every
attempt to allocate locally to prevent NUMA performance degradation. In
this case, we do not want to collapse hugepages to remote nodes that
would suffer from increased access latency. Thus, when
zone_reclaim_mode is enabled, only allow collapsing to nodes with
RECLAIM_DISTANCE or less.
There is no functional change for systems that disable
zone_reclaim_mode.
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Bob Liu <bob.liu@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Transparent huge page charges prefer falling back to regular pages
rather than spending a lot of time in direct reclaim.
Desired reclaim behavior is usually declared in the gfp mask, but THP
charges use GFP_KERNEL and then rely on the fact that OOM is disabled
for THP charges, and that OOM-disabled charges don't retry reclaim.
Needless to say, this is anything but obvious and quite error prone.
Convert THP charges to use GFP_TRANSHUGE instead, which implies
__GFP_NORETRY, to indicate the low-latency requirement.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In some architectures like x86, atomic_add() is a full memory barrier.
In that case, an additional smp_mb() is just a waste of time. This
patch replaces that smp_mb() by smp_mb__after_atomic() which will avoid
the redundant memory barrier in some architectures.
With a 3.16-rc1 based kernel, this patch reduced the execution time of
breaking 1000 transparent huge pages from 38,245us to 30,964us. A
reduction of 19% which is quite sizeable. It also reduces the %cpu time
of the __split_huge_page_refcount function in the perf profile from
2.18% to 1.15%.
Signed-off-by: Waiman Long <Waiman.Long@hp.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Scott J Norton <scott.norton@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In __split_huge_page_map(), the check for page_mapcount(page) is
invariant within the for loop. Because of the fact that the macro is
implemented using atomic_read(), the redundant check cannot be optimized
away by the compiler leading to unnecessary read to the page structure.
This patch moves the invariant bug check out of the loop so that it will
be done only once. On a 3.16-rc1 based kernel, the execution time of a
microbenchmark that broke up 1000 transparent huge pages using munmap()
had an execution time of 38,245us and 38,548us with and without the
patch respectively. The performance gain is about 1%.
Signed-off-by: Waiman Long <Waiman.Long@hp.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Scott J Norton <scott.norton@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Trinity has reported:
BUG: unable to handle kernel NULL pointer dereference at 0000000000000018
IP: __lock_acquire (kernel/locking/lockdep.c:3070 (discriminator 1))
CPU: 6 PID: 16173 Comm: trinity-c364 Tainted: G W
3.15.0-rc1-next-20140415-sasha-00020-gaa90d09 #398
lock_acquire (arch/x86/include/asm/current.h:14
kernel/locking/lockdep.c:3602)
_raw_spin_lock (include/linux/spinlock_api_smp.h:143
kernel/locking/spinlock.c:151)
remove_migration_pte (mm/migrate.c:137)
rmap_walk (mm/rmap.c:1628 mm/rmap.c:1699)
remove_migration_ptes (mm/migrate.c:224)
migrate_pages (mm/migrate.c:922 mm/migrate.c:960 mm/migrate.c:1126)
migrate_misplaced_page (mm/migrate.c:1733)
__handle_mm_fault (mm/memory.c:3762 mm/memory.c:3812 mm/memory.c:3925)
handle_mm_fault (mm/memory.c:3948)
__get_user_pages (mm/memory.c:1851)
__mlock_vma_pages_range (mm/mlock.c:255)
__mm_populate (mm/mlock.c:711)
SyS_mlockall (include/linux/mm.h:1799 mm/mlock.c:817 mm/mlock.c:791)
I believe this comes about because, whereas collapsing and splitting THP
functions take anon_vma lock in write mode (which excludes concurrent
rmap walks), faulting THP functions (write protection and misplaced
NUMA) do not - and mostly they do not need to.
But they do use a pmdp_clear_flush(), set_pmd_at() sequence which, for
an instant (indeed, for a long instant, given the inter-CPU TLB flush in
there), leaves *pmd neither present not trans_huge.
Which can confuse a concurrent rmap walk, as when removing migration
ptes, seen in the dumped trace. Although that rmap walk has a 4k page
to insert, anon_vmas containing THPs are in no way segregated from
4k-page anon_vmas, so the 4k-intent mm_find_pmd() does need to cope with
that instant when a trans_huge pmd is temporarily absent.
I don't think we need strengthen the locking at the THP end: it's easily
handled with an ACCESS_ONCE() before testing both conditions.
And since mm_find_pmd() had only one caller who wanted a THP rather than
a pmd, let's slightly repurpose it to fail when it hits a THP or
non-present pmd, and open code split_huge_page_address() again.
Signed-off-by: Hugh Dickins <hughd@google.com>
Reported-by: Sasha Levin <sasha.levin@oracle.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Bob Liu <bob.liu@oracle.com>
Cc: Christoph Lameter <cl@gentwo.org>
Cc: Dave Jones <davej@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Trinity has for over a year been reporting a CONFIG_DEBUG_PAGEALLOC oops
in copy_page_rep() called from copy_user_huge_page() called from
do_huge_pmd_wp_page().
I believe this is a DEBUG_PAGEALLOC false positive, due to the source
page being split, and a tail page freed, while copy is in progress; and
not a problem without DEBUG_PAGEALLOC, since the pmd_same() check will
prevent a miscopy from being made visible.
Fix by adding get_user_huge_page() and put_user_huge_page(): reducing to
the usual get_page() and put_page() on head page in the usual config;
but get and put references to all of the tail pages when
DEBUG_PAGEALLOC.
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reported-by: Sasha Levin <sasha.levin@oracle.com>
Tested-by: Sasha Levin <sasha.levin@oracle.com>
Cc: Dave Jones <davej@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It was using a mix of pr_foo() and printk(KERN_ERR ...).
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It doesn't make sense to have two assert checks for each invariant: one
for printing and one for BUG().
Let's trigger BUG() if we print error message.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Sasha Levin has reported two THP BUGs[1][2]. I believe both of them
have the same root cause. Let's look to them one by one.
The first bug[1] is "kernel BUG at mm/huge_memory.c:1829!". It's
BUG_ON(mapcount != page_mapcount(page)) in __split_huge_page(). From my
testing I see that page_mapcount() is higher than mapcount here.
I think it happens due to race between zap_huge_pmd() and
page_check_address_pmd(). page_check_address_pmd() misses PMD which is
under zap:
CPU0 CPU1
zap_huge_pmd()
pmdp_get_and_clear()
__split_huge_page()
anon_vma_interval_tree_foreach()
__split_huge_page_splitting()
page_check_address_pmd()
mm_find_pmd()
/*
* We check if PMD present without taking ptl: no
* serialization against zap_huge_pmd(). We miss this PMD,
* it's not accounted to 'mapcount' in __split_huge_page().
*/
pmd_present(pmd) == 0
BUG_ON(mapcount != page_mapcount(page)) // CRASH!!!
page_remove_rmap(page)
atomic_add_negative(-1, &page->_mapcount)
The second bug[2] is "kernel BUG at mm/huge_memory.c:1371!".
It's VM_BUG_ON_PAGE(!PageHead(page), page) in zap_huge_pmd().
This happens in similar way:
CPU0 CPU1
zap_huge_pmd()
pmdp_get_and_clear()
page_remove_rmap(page)
atomic_add_negative(-1, &page->_mapcount)
__split_huge_page()
anon_vma_interval_tree_foreach()
__split_huge_page_splitting()
page_check_address_pmd()
mm_find_pmd()
pmd_present(pmd) == 0 /* The same comment as above */
/*
* No crash this time since we already decremented page->_mapcount in
* zap_huge_pmd().
*/
BUG_ON(mapcount != page_mapcount(page))
/*
* We split the compound page here into small pages without
* serialization against zap_huge_pmd()
*/
__split_huge_page_refcount()
VM_BUG_ON_PAGE(!PageHead(page), page); // CRASH!!!
So my understanding the problem is pmd_present() check in mm_find_pmd()
without taking page table lock.
The bug was introduced by me commit with commit 117b0791ac. Sorry for
that. :(
Let's open code mm_find_pmd() in page_check_address_pmd() and do the
check under page table lock.
Note that __page_check_address() does the same for PTE entires
if sync != 0.
I've stress tested split and zap code paths for 36+ hours by now and
don't see crashes with the patch applied. Before it took <20 min to
trigger the first bug and few hours for second one (if we ignore
first).
[1] https://lkml.kernel.org/g/<53440991.9090001@oracle.com>
[2] https://lkml.kernel.org/g/<5310C56C.60709@oracle.com>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reported-by: Sasha Levin <sasha.levin@oracle.com>
Tested-by: Sasha Levin <sasha.levin@oracle.com>
Cc: Bob Liu <lliubbo@gmail.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michel Lespinasse <walken@google.com>
Cc: Dave Jones <davej@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: <stable@vger.kernel.org> [3.13+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
mem_cgroup_newpage_charge is used only for charging anonymous memory so
it is better to rename it to mem_cgroup_charge_anon.
mem_cgroup_cache_charge is used for file backed memory so rename it to
mem_cgroup_charge_file.
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The main motivation behind this patch is to provide a way to disable THP
for jobs where the code cannot be modified, and using a malloc hook with
madvise is not an option (i.e. statically allocated data). This patch
allows us to do just that, without affecting other jobs running on the
system.
We need to do this sort of thing for jobs where THP hurts performance,
due to the possibility of increased remote memory accesses that can be
created by situations such as the following:
When you touch 1 byte of an untouched, contiguous 2MB chunk, a THP will
be handed out, and the THP will be stuck on whatever node the chunk was
originally referenced from. If many remote nodes need to do work on
that same chunk, they'll be making remote accesses.
With THP disabled, 4K pages can be handed out to separate nodes as
they're needed, greatly reducing the amount of remote accesses to
memory.
This patch is based on some of my work combined with some
suggestions/patches given by Oleg Nesterov. The main goal here is to
add a prctl switch to allow us to disable to THP on a per mm_struct
basis.
Here's a bit of test data with the new patch in place...
First with the flag unset:
# perf stat -a ./prctl_wrapper_mmv3 0 ./thp_pthread -C 0 -m 0 -c 512 -b 256g
Setting thp_disabled for this task...
thp_disable: 0
Set thp_disabled state to 0
Process pid = 18027
PF/
MAX MIN TOTCPU/ TOT_PF/ TOT_PF/ WSEC/
TYPE: CPUS WALL WALL SYS USER TOTCPU CPU WALL_SEC SYS_SEC CPU NODES
512 1.120 0.060 0.000 0.110 0.110 0.000 28571428864 -9223372036854775808 55803572 23
Performance counter stats for './prctl_wrapper_mmv3_hack 0 ./thp_pthread -C 0 -m 0 -c 512 -b 256g':
273719072.841402 task-clock # 641.026 CPUs utilized [100.00%]
1,008,986 context-switches # 0.000 M/sec [100.00%]
7,717 CPU-migrations # 0.000 M/sec [100.00%]
1,698,932 page-faults # 0.000 M/sec
355,222,544,890,379 cycles # 1.298 GHz [100.00%]
536,445,412,234,588 stalled-cycles-frontend # 151.02% frontend cycles idle [100.00%]
409,110,531,310,223 stalled-cycles-backend # 115.17% backend cycles idle [100.00%]
148,286,797,266,411 instructions # 0.42 insns per cycle
# 3.62 stalled cycles per insn [100.00%]
27,061,793,159,503 branches # 98.867 M/sec [100.00%]
1,188,655,196 branch-misses # 0.00% of all branches
427.001706337 seconds time elapsed
Now with the flag set:
# perf stat -a ./prctl_wrapper_mmv3 1 ./thp_pthread -C 0 -m 0 -c 512 -b 256g
Setting thp_disabled for this task...
thp_disable: 1
Set thp_disabled state to 1
Process pid = 144957
PF/
MAX MIN TOTCPU/ TOT_PF/ TOT_PF/ WSEC/
TYPE: CPUS WALL WALL SYS USER TOTCPU CPU WALL_SEC SYS_SEC CPU NODES
512 0.620 0.260 0.250 0.320 0.570 0.001 51612901376 128000000000 100806448 23
Performance counter stats for './prctl_wrapper_mmv3_hack 1 ./thp_pthread -C 0 -m 0 -c 512 -b 256g':
138789390.540183 task-clock # 641.959 CPUs utilized [100.00%]
534,205 context-switches # 0.000 M/sec [100.00%]
4,595 CPU-migrations # 0.000 M/sec [100.00%]
63,133,119 page-faults # 0.000 M/sec
147,977,747,269,768 cycles # 1.066 GHz [100.00%]
200,524,196,493,108 stalled-cycles-frontend # 135.51% frontend cycles idle [100.00%]
105,175,163,716,388 stalled-cycles-backend # 71.07% backend cycles idle [100.00%]
180,916,213,503,160 instructions # 1.22 insns per cycle
# 1.11 stalled cycles per insn [100.00%]
26,999,511,005,868 branches # 194.536 M/sec [100.00%]
714,066,351 branch-misses # 0.00% of all branches
216.196778807 seconds time elapsed
As with previous versions of the patch, We're getting about a 2x
performance increase here. Here's a link to the test case I used, along
with the little wrapper to activate the flag:
http://oss.sgi.com/projects/memtests/thp_pthread_mmprctlv3.tar.gz
This patch (of 3):
Revert commit 8e72033f2a and add in code to fix up any issues caused
by the revert.
The revert is necessary because hugepage_madvise would return -EINVAL
when VM_NOHUGEPAGE is set, which will break subsequent chunks of this
patch set.
Here's a snip of an e-mail from Gerald detailing the original purpose of
this code, and providing justification for the revert:
"The intent of commit 8e72033f2a was to guard against any future
programming errors that may result in an madvice(MADV_HUGEPAGE) on
guest mappings, which would crash the kernel.
Martin suggested adding the bit to arch/s390/mm/pgtable.c, if
8e72033f2a was to be reverted, because that check will also prevent
a kernel crash in the case described above, it will now send a
SIGSEGV instead.
This would now also allow to do the madvise on other parts, if
needed, so it is a more flexible approach. One could also say that
it would have been better to do it this way right from the
beginning..."
Signed-off-by: Alex Thorlton <athorlton@sgi.com>
Suggested-by: Oleg Nesterov <oleg@redhat.com>
Tested-by: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
I've realized that there's no need for do_huge_pmd_wp_zero_page_fallback().
We can just split zero page with split_huge_page_pmd() and return
VM_FAULT_FALLBACK. handle_pte_fault() will handle write-protection
fault for us.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Daniel Borkmann reported a VM_BUG_ON assertion failing:
------------[ cut here ]------------
kernel BUG at mm/mlock.c:528!
invalid opcode: 0000 [#1] SMP
Modules linked in: ccm arc4 iwldvm [...]
video
CPU: 3 PID: 2266 Comm: netsniff-ng Not tainted 3.14.0-rc2+ #8
Hardware name: LENOVO 2429BP3/2429BP3, BIOS G4ET37WW (1.12 ) 05/29/2012
task: ffff8801f87f9820 ti: ffff88002cb44000 task.ti: ffff88002cb44000
RIP: 0010:[<ffffffff81171ad0>] [<ffffffff81171ad0>] munlock_vma_pages_range+0x2e0/0x2f0
Call Trace:
do_munmap+0x18f/0x3b0
vm_munmap+0x41/0x60
SyS_munmap+0x22/0x30
system_call_fastpath+0x1a/0x1f
RIP munlock_vma_pages_range+0x2e0/0x2f0
---[ end trace a0088dcf07ae10f2 ]---
because munlock_vma_pages_range() thinks it's unexpectedly in the middle
of a THP page. This can be reproduced with default config since 3.11
kernels. A reproducer can be found in the kernel's selftest directory
for networking by running ./psock_tpacket.
The problem is that an order=2 compound page (allocated by
alloc_one_pg_vec_page() is part of the munlocked VM_MIXEDMAP vma (mapped
by packet_mmap()) and mistaken for a THP page and assumed to be order=9.
The checks for THP in munlock came with commit ff6a6da60b ("mm:
accelerate munlock() treatment of THP pages"), i.e. since 3.9, but did
not trigger a bug. It just makes munlock_vma_pages_range() skip such
compound pages until the next 512-pages-aligned page, when it encounters
a head page. This is however not a problem for vma's where mlocking has
no effect anyway, but it can distort the accounting.
Since commit 7225522bb4 ("mm: munlock: batch non-THP page isolation
and munlock+putback using pagevec") this can trigger a VM_BUG_ON in
PageTransHuge() check.
This patch fixes the issue by adding VM_MIXEDMAP flag to VM_SPECIAL, a
list of flags that make vma's non-mlockable and non-mergeable. The
reasoning is that VM_MIXEDMAP vma's are similar to VM_PFNMAP, which is
already on the VM_SPECIAL list, and both are intended for non-LRU pages
where mlocking makes no sense anyway. Related Lkml discussion can be
found in [2].
[1] tools/testing/selftests/net/psock_tpacket
[2] https://lkml.org/lkml/2014/1/10/427
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Daniel Borkmann <dborkman@redhat.com>
Reported-by: Daniel Borkmann <dborkman@redhat.com>
Tested-by: Daniel Borkmann <dborkman@redhat.com>
Cc: Thomas Hellstrom <thellstrom@vmware.com>
Cc: John David Anglin <dave.anglin@bell.net>
Cc: HATAYAMA Daisuke <d.hatayama@jp.fujitsu.com>
Cc: Konstantin Khlebnikov <khlebnikov@openvz.org>
Cc: Carsten Otte <cotte@de.ibm.com>
Cc: Jared Hulbert <jaredeh@gmail.com>
Tested-by: Hannes Frederic Sowa <hannes@stressinduktion.org>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: <stable@vger.kernel.org> [3.11.x+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Masayoshi Mizuma reported a bug with the hang of an application under
the memcg limit. It happens on write-protection fault to huge zero page
If we successfully allocate a huge page to replace zero page but hit the
memcg limit we need to split the zero page with split_huge_page_pmd()
and fallback to small pages.
The other part of the problem is that VM_FAULT_OOM has special meaning
in do_huge_pmd_wp_page() context. __handle_mm_fault() expects the page
to be split if it sees VM_FAULT_OOM and it will will retry page fault
handling. This causes an infinite loop if the page was not split.
do_huge_pmd_wp_zero_page_fallback() can return VM_FAULT_OOM if it failed
to allocate one small page, so fallback to small pages will not help.
The solution for this part is to replace VM_FAULT_OOM with
VM_FAULT_FALLBACK is fallback required.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reported-by: Masayoshi Mizuma <m.mizuma@jp.fujitsu.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Archs like ppc64 doesn't do tlb flush in set_pte/pmd functions when using
a hash table MMU for various reasons (the flush is handled as part of
the PTE modification when necessary).
ppc64 thus doesn't implement flush_tlb_range for hash based MMUs.
Additionally ppc64 require the tlb flushing to be batched within ptl locks.
The reason to do that is to ensure that the hash page table is in sync with
linux page table.
We track the hpte index in linux pte and if we clear them without flushing
hash and drop the ptl lock, we can have another cpu update the pte and can
end up with duplicate entry in the hash table, which is fatal.
We also want to keep set_pte_at simpler by not requiring them to do hash
flush for performance reason. We do that by assuming that set_pte_at() is
never *ever* called on a PTE that is already valid.
This was the case until the NUMA code went in which broke that assumption.
Fix that by introducing a new pair of helpers to set _PAGE_NUMA in a
way similar to ptep/pmdp_set_wrprotect(), with a generic implementation
using set_pte_at() and a powerpc specific one using the appropriate
mechanism needed to keep the hash table in sync.
Acked-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Pull powerpc mremap fix from Ben Herrenschmidt:
"This is the patch that I had sent after -rc8 and which we decided to
wait before merging. It's based on a different tree than my -next
branch (it needs some pre-reqs that were in -rc4 or so while my -next
is based on -rc1) so I left it as a separate branch for your to pull.
It's identical to the request I did 2 or 3 weeks back.
This fixes crashes in mremap with THP on powerpc.
The fix however requires a small change in the generic code. It moves
a condition into a helper we can override from the arch which is
harmless, but it *also* slightly changes the order of the set_pmd and
the withdraw & deposit, which should be fine according to Kirill (who
wrote that code) but I agree -rc8 is a bit late...
It was acked by Kirill and Andrew told me to just merge it via powerpc"
* 'merge' of git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc:
powerpc/thp: Fix crash on mremap
Code that is obj-y (always built-in) or dependent on a bool Kconfig
(built-in or absent) can never be modular. So using module_init as an
alias for __initcall can be somewhat misleading.
Fix these up now, so that we can relocate module_init from init.h into
module.h in the future. If we don't do this, we'd have to add module.h
to obviously non-modular code, and that would be a worse thing.
The audit targets the following module_init users for change:
mm/ksm.c bool KSM
mm/mmap.c bool MMU
mm/huge_memory.c bool TRANSPARENT_HUGEPAGE
mm/mmu_notifier.c bool MMU_NOTIFIER
Note that direct use of __initcall is discouraged, vs. one of the
priority categorized subgroups. As __initcall gets mapped onto
device_initcall, our use of subsys_initcall (which makes sense for these
files) will thus change this registration from level 6-device to level
4-subsys (i.e. slightly earlier).
However no observable impact of that difference has been observed during
testing.
One might think that core_initcall (l2) or postcore_initcall (l3) would
be more appropriate for anything in mm/ but if we look at some actual
init functions themselves, we see things like:
mm/huge_memory.c --> hugepage_init --> hugepage_init_sysfs
mm/mmap.c --> init_user_reserve --> sysctl_user_reserve_kbytes
mm/ksm.c --> ksm_init --> sysfs_create_group
and hence the choice of subsys_initcall (l4) seems reasonable, and at
the same time minimizes the risk of changing the priority too
drastically all at once. We can adjust further in the future.
Also, several instances of missing ";" at EOL are fixed.
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
min_free_kbytes may be raised during THP's initialization. Sometimes,
this will change the value which was set by the user. Showing this
message will clarify this confusion.
Only show this message when changing a value which was set by the user
according to Michal Hocko's suggestion.
Show the old value of min_free_kbytes according to Dave Hansen's
suggestion. This will give user the chance to restore old value of
min_free_kbytes.
Signed-off-by: Han Pingtian <hanpt@linux.vnet.ibm.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Most of the VM_BUG_ON assertions are performed on a page. Usually, when
one of these assertions fails we'll get a BUG_ON with a call stack and
the registers.
I've recently noticed based on the requests to add a small piece of code
that dumps the page to various VM_BUG_ON sites that the page dump is
quite useful to people debugging issues in mm.
This patch adds a VM_BUG_ON_PAGE(cond, page) which beyond doing what
VM_BUG_ON() does, also dumps the page before executing the actual
BUG_ON.
[akpm@linux-foundation.org: fix up includes]
Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add calls to the new mmu_notifier_invalidate_range() function to all
places in the VMM that need it.
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Reviewed-by: Jérôme Glisse <jglisse@redhat.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Rik van Riel <riel@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Johannes Weiner <jweiner@redhat.com>
Cc: Jay Cornwall <Jay.Cornwall@amd.com>
Cc: Oded Gabbay <Oded.Gabbay@amd.com>
Cc: Suravee Suthikulpanit <Suravee.Suthikulpanit@amd.com>
Cc: Jesse Barnes <jbarnes@virtuousgeek.org>
Cc: David Woodhouse <dwmw2@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Oded Gabbay <oded.gabbay@amd.com>
This patch fix the below crash
NIP [c00000000004cee4] .__hash_page_thp+0x2a4/0x440
LR [c0000000000439ac] .hash_page+0x18c/0x5e0
...
Call Trace:
[c000000736103c40] [00001ffffb000000] 0x1ffffb000000(unreliable)
[437908.479693] [c000000736103d50] [c0000000000439ac] .hash_page+0x18c/0x5e0
[437908.479699] [c000000736103e30] [c00000000000924c] .do_hash_page+0x4c/0x58
On ppc64 we use the pgtable for storing the hpte slot information and
store address to the pgtable at a constant offset (PTRS_PER_PMD) from
pmd. On mremap, when we switch the pmd, we need to withdraw and deposit
the pgtable again, so that we find the pgtable at PTRS_PER_PMD offset
from new pmd.
We also want to move the withdraw and deposit before the set_pmd so
that, when page fault find the pmd as trans huge we can be sure that
pgtable can be located at the offset.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
We see General Protection Fault on RSI in copy_page_rep: that RSI is
what you get from a NULL struct page pointer.
RIP: 0010:[<ffffffff81154955>] [<ffffffff81154955>] copy_page_rep+0x5/0x10
RSP: 0000:ffff880136e15c00 EFLAGS: 00010286
RAX: ffff880000000000 RBX: ffff880136e14000 RCX: 0000000000000200
RDX: 6db6db6db6db6db7 RSI: db73880000000000 RDI: ffff880dd0c00000
RBP: ffff880136e15c18 R08: 0000000000000200 R09: 000000000005987c
R10: 000000000005987c R11: 0000000000000200 R12: 0000000000000001
R13: ffffea00305aa000 R14: 0000000000000000 R15: 0000000000000000
FS: 00007f195752f700(0000) GS:ffff880c7fc20000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000093010000 CR3: 00000001458e1000 CR4: 00000000000027e0
Call Trace:
copy_user_huge_page+0x93/0xab
do_huge_pmd_wp_page+0x710/0x815
handle_mm_fault+0x15d8/0x1d70
__do_page_fault+0x14d/0x840
do_page_fault+0x2f/0x90
page_fault+0x22/0x30
do_huge_pmd_wp_page() tests is_huge_zero_pmd(orig_pmd) four times: but
since shrink_huge_zero_page() can free the huge_zero_page, and we have
no hold of our own on it here (except where the fourth test holds
page_table_lock and has checked pmd_same), it's possible for it to
answer yes the first time, but no to the second or third test. Change
all those last three to tests for NULL page.
(Note: this is not the same issue as trinity's DEBUG_PAGEALLOC BUG
in copy_page_rep with RSI: ffff88009c422000, reported by Sasha Levin
in https://lkml.org/lkml/2013/3/29/103. I believe that one is due
to the source page being split, and a tail page freed, while copy
is in progress; and not a problem without DEBUG_PAGEALLOC, since
the pmd_same check will prevent a miscopy from being made visible.)
Fixes: 97ae17497e ("thp: implement refcounting for huge zero page")
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: stable@vger.kernel.org # v3.10 v3.11 v3.12
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Sasha Levin reported the following warning being triggered
WARNING: CPU: 28 PID: 35287 at mm/huge_memory.c:887 copy_huge_pmd+0x145/ 0x3a0()
Call Trace:
copy_huge_pmd+0x145/0x3a0
copy_page_range+0x3f2/0x560
dup_mmap+0x2c9/0x3d0
dup_mm+0xad/0x150
copy_process+0xa68/0x12e0
do_fork+0x96/0x270
SyS_clone+0x16/0x20
stub_clone+0x69/0x90
This warning was introduced by "mm: numa: Avoid unnecessary disruption
of NUMA hinting during migration" for paranoia reasons but the warning
is bogus. I was thinking of parallel races between NUMA hinting faults
and forks but this warning would also be triggered by a parallel reclaim
splitting a THP during a fork. Remote the bogus warning.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reported-by: Sasha Levin <sasha.levin@oracle.com>
Cc: Alex Thorlton <athorlton@sgi.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
THP migration can fail for a variety of reasons. Avoid flushing the TLB
to deal with THP migration races until the copy is ready to start.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Alex Thorlton <athorlton@sgi.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There are a few subtle races, between change_protection_range (used by
mprotect and change_prot_numa) on one side, and NUMA page migration and
compaction on the other side.
The basic race is that there is a time window between when the PTE gets
made non-present (PROT_NONE or NUMA), and the TLB is flushed.
During that time, a CPU may continue writing to the page.
This is fine most of the time, however compaction or the NUMA migration
code may come in, and migrate the page away.
When that happens, the CPU may continue writing, through the cached
translation, to what is no longer the current memory location of the
process.
This only affects x86, which has a somewhat optimistic pte_accessible.
All other architectures appear to be safe, and will either always flush,
or flush whenever there is a valid mapping, even with no permissions
(SPARC).
The basic race looks like this:
CPU A CPU B CPU C
load TLB entry
make entry PTE/PMD_NUMA
fault on entry
read/write old page
start migrating page
change PTE/PMD to new page
read/write old page [*]
flush TLB
reload TLB from new entry
read/write new page
lose data
[*] the old page may belong to a new user at this point!
The obvious fix is to flush remote TLB entries, by making sure that
pte_accessible aware of the fact that PROT_NONE and PROT_NUMA memory may
still be accessible if there is a TLB flush pending for the mm.
This should fix both NUMA migration and compaction.
[mgorman@suse.de: fix build]
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: Alex Thorlton <athorlton@sgi.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
do_huge_pmd_numa_page() handles the case where there is parallel THP
migration. However, by the time it is checked the NUMA hinting
information has already been disrupted. This patch adds an earlier
check with some helpers.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Alex Thorlton <athorlton@sgi.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
On a protection change it is no longer clear if the page should be still
accessible. This patch clears the NUMA hinting fault bits on a
protection change.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Alex Thorlton <athorlton@sgi.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The anon_vma lock prevents parallel THP splits and any associated
complexity that arises when handling splits during THP migration. This
patch checks if the lock was successfully acquired and bails from THP
migration if it failed for any reason.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Alex Thorlton <athorlton@sgi.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If the PMD is flushed then a parallel fault in handle_mm_fault() will
enter the pmd_none and do_huge_pmd_anonymous_page() path where it'll
attempt to insert a huge zero page. This is wasteful so the patch
avoids clearing the PMD when setting pmd_numa.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Alex Thorlton <athorlton@sgi.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Base pages are unmapped and flushed from cache and TLB during normal
page migration and replaced with a migration entry that causes any
parallel NUMA hinting fault or gup to block until migration completes.
THP does not unmap pages due to a lack of support for migration entries
at a PMD level. This allows races with get_user_pages and
get_user_pages_fast which commit 3f926ab945 ("mm: Close races between
THP migration and PMD numa clearing") made worse by introducing a
pmd_clear_flush().
This patch forces get_user_page (fast and normal) on a pmd_numa page to
go through the slow get_user_page path where it will serialise against
THP migration and properly account for the NUMA hinting fault. On the
migration side the page table lock is taken for each PTE update.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Alex Thorlton <athorlton@sgi.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Andrey Wagin reported crash on VM_BUG_ON() in pgtable_pmd_page_dtor() with
fallowing backtrace:
free_pgd_range+0x2bf/0x410
free_pgtables+0xce/0x120
unmap_region+0xe0/0x120
do_munmap+0x249/0x360
move_vma+0x144/0x270
SyS_mremap+0x3b9/0x510
system_call_fastpath+0x16/0x1b
The crash can be reproduce with this test case:
#define _GNU_SOURCE
#include <sys/mman.h>
#include <stdio.h>
#include <unistd.h>
#define MB (1024 * 1024UL)
#define GB (1024 * MB)
int main(int argc, char **argv)
{
char *p;
int i;
p = mmap((void *) GB, 10 * MB, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS | MAP_FIXED, -1, 0);
for (i = 0; i < 10 * MB; i += 4096)
p[i] = 1;
mremap(p, 10 * MB, 10 * MB, MREMAP_FIXED | MREMAP_MAYMOVE, 2 * GB);
return 0;
}
Due to split PMD lock, we now store preallocated PTE tables for THP
pages per-PMD table. It means we need to move them to other PMD table
if huge PMD moved there.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reported-by: Andrey Vagin <avagin@openvz.org>
Tested-by: Andrey Vagin <avagin@openvz.org>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With split ptlock it's important to know which lock
pmd_trans_huge_lock() took. This patch adds one more parameter to the
function to return the lock.
In most places migration to new api is trivial. Exception is
move_huge_pmd(): we need to take two locks if pmd tables are different.
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Tested-by: Alex Thorlton <athorlton@sgi.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "Eric W . Biederman" <ebiederm@xmission.com>
Cc: "Paul E . McKenney" <paulmck@linux.vnet.ibm.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Dave Jones <davej@redhat.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Robin Holt <robinmholt@gmail.com>
Cc: Sedat Dilek <sedat.dilek@gmail.com>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Khugepaged will scan/free HPAGE_PMD_NR normal pages and replace with a
hugepage which is allocated from the node of the first scanned normal
page, but this policy is too rough and may end with unexpected result to
upper users.
The problem is the original page-balancing among all nodes will be
broken after hugepaged started. Thinking about the case if the first
scanned normal page is allocated from node A, most of other scanned
normal pages are allocated from node B or C.. But hugepaged will always
allocate hugepage from node A which will cause extra memory pressure on
node A which is not the situation before khugepaged started.
This patch try to fix this problem by making khugepaged allocate
hugepage from the node which have max record of scaned normal pages hit,
so that the effect to original page-balancing can be minimized.
The other problem is if normal scanned pages are equally allocated from
Node A,B and C, after khugepaged started Node A will still suffer extra
memory pressure.
Andrew Davidoff reported a related issue several days ago. He wanted
his application interleaving among all nodes and "numactl
--interleave=all ./test" was used to run the testcase, but the result
wasn't not as expected.
cat /proc/2814/numa_maps:
7f50bd440000 interleave:0-3 anon=51403 dirty=51403 N0=435 N1=435 N2=435 N3=50098
The end result showed that most pages are from Node3 instead of
interleave among node0-3 which was unreasonable.
This patch also fix this issue by allocating hugepage round robin from
all nodes have the same record, after this patch the result was as
expected:
7f78399c0000 interleave:0-3 anon=51403 dirty=51403 N0=12723 N1=12723 N2=13235 N3=12722
The simple testcase is like this:
int main() {
char *p;
int i;
int j;
for (i=0; i < 200; i++) {
p = (char *)malloc(1048576);
printf("malloc done\n");
if (p == 0) {
printf("Out of memory\n");
return 1;
}
for (j=0; j < 1048576; j++) {
p[j] = 'A';
}
printf("touched memory\n");
sleep(1);
}
printf("enter sleep\n");
while(1) {
sleep(100);
}
}
[akpm@linux-foundation.org: make last_khugepaged_target_node local to khugepaged_find_target_node()]
Reported-by: Andrew Davidoff <davidoff@qedmf.net>
Tested-by: Andrew Davidoff <davidoff@qedmf.net>
Signed-off-by: Bob Liu <bob.liu@oracle.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Move alloc_hugepage() to a better place, no need for a seperate #ifndef
CONFIG_NUMA
Signed-off-by: Bob Liu <bob.liu@oracle.com>
Reviewed-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Andrew Davidoff <davidoff@qedmf.net>
Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since commit 13ece886d9 ("thp: transparent hugepage config choice"),
transparent hugepage support is disabled by default, and
TRANSPARENT_HUGEPAGE_ALWAYS is configured when TRANSPARENT_HUGEPAGE=y.
And since commit d39d33c332 ("thp: enable direct defrag"), defrag is
enable for all transparent hugepage page faults by default, not only in
MADV_HUGEPAGE regions.
Signed-off-by: Jianguo Wu <wujianguo@huawei.com>
Reviewed-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Resolve cherry-picking conflicts:
Conflicts:
mm/huge_memory.c
mm/memory.c
mm/mprotect.c
See this upstream merge commit for more details:
52469b4fcd Merge branch 'core-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Signed-off-by: Ingo Molnar <mingo@kernel.org>
THP migration uses the page lock to guard against parallel allocations
but there are cases like this still open
Task A Task B
--------------------- ---------------------
do_huge_pmd_numa_page do_huge_pmd_numa_page
lock_page
mpol_misplaced == -1
unlock_page
goto clear_pmdnuma
lock_page
mpol_misplaced == 2
migrate_misplaced_transhuge
pmd = pmd_mknonnuma
set_pmd_at
During hours of testing, one crashed with weird errors and while I have
no direct evidence, I suspect something like the race above happened.
This patch extends the page lock to being held until the pmd_numa is
cleared to prevent migration starting in parallel while the pmd_numa is
being cleared. It also flushes the old pmd entry and orders pagetable
insertion before rmap insertion.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Cc: <stable@kernel.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-9-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There are three callers of task_numa_fault():
- do_huge_pmd_numa_page():
Accounts against the current node, not the node where the
page resides, unless we migrated, in which case it accounts
against the node we migrated to.
- do_numa_page():
Accounts against the current node, not the node where the
page resides, unless we migrated, in which case it accounts
against the node we migrated to.
- do_pmd_numa_page():
Accounts not at all when the page isn't migrated, otherwise
accounts against the node we migrated towards.
This seems wrong to me; all three sites should have the same
sementaics, furthermore we should accounts against where the page
really is, we already know where the task is.
So modify all three sites to always account; we did after all receive
the fault; and always account to where the page is after migration,
regardless of success.
They all still differ on when they clear the PTE/PMD; ideally that
would get sorted too.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Cc: <stable@kernel.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-8-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
THP migrations are serialised by the page lock but on its own that does
not prevent THP splits. If the page is split during THP migration then
the pmd_same checks will prevent page table corruption but the unlock page
and other fix-ups potentially will cause corruption. This patch takes the
anon_vma lock to prevent parallel splits during migration.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Cc: <stable@kernel.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-7-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The locking for migrating THP is unusual. While normal page migration
prevents parallel accesses using a migration PTE, THP migration relies on
a combination of the page_table_lock, the page lock and the existance of
the NUMA hinting PTE to guarantee safety but there is a bug in the scheme.
If a THP page is currently being migrated and another thread traps a
fault on the same page it checks if the page is misplaced. If it is not,
then pmd_numa is cleared. The problem is that it checks if the page is
misplaced without holding the page lock meaning that the racing thread
can be migrating the THP when the second thread clears the NUMA bit
and faults a stale page.
This patch checks if the page is potentially being migrated and stalls
using the lock_page if it is potentially being migrated before checking
if the page is misplaced or not.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Cc: <stable@kernel.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-6-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
If another task handled a hinting fault in parallel then do not double
account for it.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Cc: <stable@kernel.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-5-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Occasionally we hit the BUG_ON(pmd_trans_huge(*pmd)) at the end of
__split_huge_page_pmd(): seen when doing madvise(,,MADV_DONTNEED).
It's invalid: we don't always have down_write of mmap_sem there: a racing
do_huge_pmd_wp_page() might have copied-on-write to another huge page
before our split_huge_page() got the anon_vma lock.
Forget the BUG_ON, just go back and try again if this happens.
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: David Rientjes <rientjes@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Adjust numa_scan_period in task_numa_placement, depending on how much
useful work the numa code can do. The more local faults there are in a
given scan window the longer the period (and hence the slower the scan rate)
during the next window. If there are excessive shared faults then the scan
period will decrease with the amount of scaling depending on whether the
ratio of shared/private faults. If the preferred node changes then the
scan rate is reset to recheck if the task is properly placed.
Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-59-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
And here's a little something to make sure not the whole world ends up
in a single group.
As while we don't migrate shared executable pages, we do scan/fault on
them. And since everybody links to libc, everybody ends up in the same
group.
Suggested-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Link: http://lkml.kernel.org/r/1381141781-10992-47-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Change the per page last fault tracking to use cpu,pid instead of
nid,pid. This will allow us to try and lookup the alternate task more
easily. Note that even though it is the cpu that is store in the page
flags that the mpol_misplaced decision is still based on the node.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Link: http://lkml.kernel.org/r/1381141781-10992-43-git-send-email-mgorman@suse.de
[ Fixed build failure on 32-bit systems. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Ideally it would be possible to distinguish between NUMA hinting faults that
are private to a task and those that are shared. If treated identically
there is a risk that shared pages bounce between nodes depending on
the order they are referenced by tasks. Ultimately what is desirable is
that task private pages remain local to the task while shared pages are
interleaved between sharing tasks running on different nodes to give good
average performance. This is further complicated by THP as even
applications that partition their data may not be partitioning on a huge
page boundary.
To start with, this patch assumes that multi-threaded or multi-process
applications partition their data and that in general the private accesses
are more important for cpu->memory locality in the general case. Also,
no new infrastructure is required to treat private pages properly but
interleaving for shared pages requires additional infrastructure.
To detect private accesses the pid of the last accessing task is required
but the storage requirements are a high. This patch borrows heavily from
Ingo Molnar's patch "numa, mm, sched: Implement last-CPU+PID hash tracking"
to encode some bits from the last accessing task in the page flags as
well as the node information. Collisions will occur but it is better than
just depending on the node information. Node information is then used to
determine if a page needs to migrate. The PID information is used to detect
private/shared accesses. The preferred NUMA node is selected based on where
the maximum number of approximately private faults were measured. Shared
faults are not taken into consideration for a few reasons.
First, if there are many tasks sharing the page then they'll all move
towards the same node. The node will be compute overloaded and then
scheduled away later only to bounce back again. Alternatively the shared
tasks would just bounce around nodes because the fault information is
effectively noise. Either way accounting for shared faults the same as
private faults can result in lower performance overall.
The second reason is based on a hypothetical workload that has a small
number of very important, heavily accessed private pages but a large shared
array. The shared array would dominate the number of faults and be selected
as a preferred node even though it's the wrong decision.
The third reason is that multiple threads in a process will race each
other to fault the shared page making the fault information unreliable.
Signed-off-by: Mel Gorman <mgorman@suse.de>
[ Fix complication error when !NUMA_BALANCING. ]
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-30-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently automatic NUMA balancing is unable to distinguish between false
shared versus private pages except by ignoring pages with an elevated
page_mapcount entirely. This avoids shared pages bouncing between the
nodes whose task is using them but that is ignored quite a lot of data.
This patch kicks away the training wheels in preparation for adding support
for identifying shared/private pages is now in place. The ordering is so
that the impact of the shared/private detection can be easily measured. Note
that the patch does not migrate shared, file-backed within vmas marked
VM_EXEC as these are generally shared library pages. Migrating such pages
is not beneficial as there is an expectation they are read-shared between
caches and iTLB and iCache pressure is generally low.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-28-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Ideally it would be possible to distinguish between NUMA hinting faults
that are private to a task and those that are shared. This patch prepares
infrastructure for separately accounting shared and private faults by
allocating the necessary buffers and passing in relevant information. For
now, all faults are treated as private and detection will be introduced
later.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-26-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The zero page is not replicated between nodes and is often shared between
processes. The data is read-only and likely to be cached in local CPUs
if heavily accessed meaning that the remote memory access cost is less
of a concern. This patch prevents trapping faults on the zero pages. For
tasks using the zero page this will reduce the number of PTE updates,
TLB flushes and hinting faults.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
[ Correct use of is_huge_zero_page]
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-13-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
NUMA PTE scanning is expensive both in terms of the scanning itself and
the TLB flush if there are any updates. The TLB flush is avoided if no
PTEs are updated but there is a bug where transhuge PMDs are considered
to be updated even if they were already pmd_numa. This patch addresses
the problem and TLB flushes should be reduced.
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-12-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
THP migration uses the page lock to guard against parallel allocations
but there are cases like this still open
Task A Task B
--------------------- ---------------------
do_huge_pmd_numa_page do_huge_pmd_numa_page
lock_page
mpol_misplaced == -1
unlock_page
goto clear_pmdnuma
lock_page
mpol_misplaced == 2
migrate_misplaced_transhuge
pmd = pmd_mknonnuma
set_pmd_at
During hours of testing, one crashed with weird errors and while I have
no direct evidence, I suspect something like the race above happened.
This patch extends the page lock to being held until the pmd_numa is
cleared to prevent migration starting in parallel while the pmd_numa is
being cleared. It also flushes the old pmd entry and orders pagetable
insertion before rmap insertion.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-9-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There are three callers of task_numa_fault():
- do_huge_pmd_numa_page():
Accounts against the current node, not the node where the
page resides, unless we migrated, in which case it accounts
against the node we migrated to.
- do_numa_page():
Accounts against the current node, not the node where the
page resides, unless we migrated, in which case it accounts
against the node we migrated to.
- do_pmd_numa_page():
Accounts not at all when the page isn't migrated, otherwise
accounts against the node we migrated towards.
This seems wrong to me; all three sites should have the same
sementaics, furthermore we should accounts against where the page
really is, we already know where the task is.
So modify all three sites to always account; we did after all receive
the fault; and always account to where the page is after migration,
regardless of success.
They all still differ on when they clear the PTE/PMD; ideally that
would get sorted too.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-8-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
THP migrations are serialised by the page lock but on its own that does
not prevent THP splits. If the page is split during THP migration then
the pmd_same checks will prevent page table corruption but the unlock page
and other fix-ups potentially will cause corruption. This patch takes the
anon_vma lock to prevent parallel splits during migration.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-7-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The locking for migrating THP is unusual. While normal page migration
prevents parallel accesses using a migration PTE, THP migration relies on
a combination of the page_table_lock, the page lock and the existance of
the NUMA hinting PTE to guarantee safety but there is a bug in the scheme.
If a THP page is currently being migrated and another thread traps a
fault on the same page it checks if the page is misplaced. If it is not,
then pmd_numa is cleared. The problem is that it checks if the page is
misplaced without holding the page lock meaning that the racing thread
can be migrating the THP when the second thread clears the NUMA bit
and faults a stale page.
This patch checks if the page is potentially being migrated and stalls
using the lock_page if it is potentially being migrated before checking
if the page is misplaced or not.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-6-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
If another task handled a hinting fault in parallel then do not double
account for it.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/r/1381141781-10992-5-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Fix a 80 column violation and a PTE vs PMD reference.
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Link: http://lkml.kernel.org/r/1381141781-10992-4-git-send-email-mgorman@suse.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Merge more patches from Andrew Morton:
"The rest of MM. Plus one misc cleanup"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (35 commits)
mm/Kconfig: add MMU dependency for MIGRATION.
kernel: replace strict_strto*() with kstrto*()
mm, thp: count thp_fault_fallback anytime thp fault fails
thp: consolidate code between handle_mm_fault() and do_huge_pmd_anonymous_page()
thp: do_huge_pmd_anonymous_page() cleanup
thp: move maybe_pmd_mkwrite() out of mk_huge_pmd()
mm: cleanup add_to_page_cache_locked()
thp: account anon transparent huge pages into NR_ANON_PAGES
truncate: drop 'oldsize' truncate_pagecache() parameter
mm: make lru_add_drain_all() selective
memcg: document cgroup dirty/writeback memory statistics
memcg: add per cgroup writeback pages accounting
memcg: check for proper lock held in mem_cgroup_update_page_stat
memcg: remove MEMCG_NR_FILE_MAPPED
memcg: reduce function dereference
memcg: avoid overflow caused by PAGE_ALIGN
memcg: rename RESOURCE_MAX to RES_COUNTER_MAX
memcg: correct RESOURCE_MAX to ULLONG_MAX
mm: memcg: do not trap chargers with full callstack on OOM
mm: memcg: rework and document OOM waiting and wakeup
...
Currently, thp_fault_fallback in vmstat only gets incremented if a
hugepage allocation fails. If current's memcg hits its limit or the page
fault handler returns an error, it is incorrectly accounted as a
successful thp_fault_alloc.
Count thp_fault_fallback anytime the page fault handler falls back to
using regular pages and only count thp_fault_alloc when a hugepage has
actually been faulted.
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Minor cleanup: unindent most code of the fucntion by inverting one
condition. It's preparation for the next patch.
No functional changes.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Hillf Danton <dhillf@gmail.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Hugh Dickins <hughd@google.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Matthew Wilcox <willy@linux.intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It's confusing that mk_huge_pmd() has semantics different from mk_pte() or
mk_pmd(). I spent some time on debugging issue cased by this
inconsistency.
Let's move maybe_pmd_mkwrite() out of mk_huge_pmd() and adjust prototype
to match mk_pte().
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Hugh Dickins <hughd@google.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Matthew Wilcox <willy@linux.intel.com>
Cc: Hillf Danton <dhillf@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We use NR_ANON_PAGES as base for reporting AnonPages to user. There's
not much sense in not accounting transparent huge pages there, but add
them on printing to user.
Let's account transparent huge pages in NR_ANON_PAGES in the first place.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Hugh Dickins <hughd@google.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Matthew Wilcox <willy@linux.intel.com>
Cc: Hillf Danton <dhillf@gmail.com>
Cc: Ning Qu <quning@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull vfs pile 4 from Al Viro:
"list_lru pile, mostly"
This came out of Andrew's pile, Al ended up doing the merge work so that
Andrew didn't have to.
Additionally, a few fixes.
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (42 commits)
super: fix for destroy lrus
list_lru: dynamically adjust node arrays
shrinker: Kill old ->shrink API.
shrinker: convert remaining shrinkers to count/scan API
staging/lustre/libcfs: cleanup linux-mem.h
staging/lustre/ptlrpc: convert to new shrinker API
staging/lustre/obdclass: convert lu_object shrinker to count/scan API
staging/lustre/ldlm: convert to shrinkers to count/scan API
hugepage: convert huge zero page shrinker to new shrinker API
i915: bail out earlier when shrinker cannot acquire mutex
drivers: convert shrinkers to new count/scan API
fs: convert fs shrinkers to new scan/count API
xfs: fix dquot isolation hang
xfs-convert-dquot-cache-lru-to-list_lru-fix
xfs: convert dquot cache lru to list_lru
xfs: rework buffer dispose list tracking
xfs-convert-buftarg-lru-to-generic-code-fix
xfs: convert buftarg LRU to generic code
fs: convert inode and dentry shrinking to be node aware
vmscan: per-node deferred work
...
In collapse_huge_page() there is a race window between releasing the
mmap_sem read lock and taking the mmap_sem write lock, so find_vma() may
return NULL. So check the return value to avoid NULL pointer dereference.
collapse_huge_page
khugepaged_alloc_page
up_read(&mm->mmap_sem)
down_write(&mm->mmap_sem)
vma = find_vma(mm, address)
Signed-off-by: Libin <huawei.libin@huawei.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Cc: <stable@vger.kernel.org> # v3.0+
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The use of strict_strtoul() is not preferred, because strict_strtoul() is
obsolete. Thus, kstrtoul() should be used.
Signed-off-by: Jingoo Han <jg1.han@samsung.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It consists of:
* returning long instead of int
* separating count from scan
* returning the number of freed entities in scan
Signed-off-by: Glauber Costa <glommer@openvz.org>
Reviewed-by: Greg Thelen <gthelen@google.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Dave Chinner <dchinner@redhat.com>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Cc: Arve Hjønnevåg <arve@android.com>
Cc: Carlos Maiolino <cmaiolino@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Chuck Lever <chuck.lever@oracle.com>
Cc: Daniel Vetter <daniel.vetter@ffwll.ch>
Cc: David Rientjes <rientjes@google.com>
Cc: Gleb Natapov <gleb@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: J. Bruce Fields <bfields@redhat.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Kent Overstreet <koverstreet@google.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Steven Whitehouse <swhiteho@redhat.com>
Cc: Thomas Hellstrom <thellstrom@vmware.com>
Cc: Trond Myklebust <Trond.Myklebust@netapp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
active/inactive lru lists can contain unevicable pages (i.e. ramfs pages
that have been placed on the LRU lists when first allocated), but these
pages must not have PageUnevictable set - otherwise shrink_[in]active_list
goes crazy:
kernel BUG at /home/space/kas/git/public/linux-next/mm/vmscan.c:1122!
1090 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1091 struct lruvec *lruvec, struct list_head *dst,
1092 unsigned long *nr_scanned, struct scan_control *sc,
1093 isolate_mode_t mode, enum lru_list lru)
1094 {
...
1108 switch (__isolate_lru_page(page, mode)) {
1109 case 0:
...
1116 case -EBUSY:
...
1121 default:
1122 BUG();
1123 }
1124 }
...
1130 }
__isolate_lru_page() returns EINVAL for PageUnevictable(page).
For lru_add_page_tail(), it means we should not set PageUnevictable()
for tail pages unless we're sure that it will go to LRU_UNEVICTABLE.
Let's just copy PG_active and PG_unevictable from head page in
__split_huge_page_refcount(), it will simplify lru_add_page_tail().
This will fix one more bug in lru_add_page_tail(): if
page_evictable(page_tail) is false and PageLRU(page) is true, page_tail
will go to the same lru as page, but nobody cares to sync page_tail
active/inactive state with page. So we can end up with inactive page on
active lru. The patch will fix it as well since we copy PG_active from
head page.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull powerpc updates from Ben Herrenschmidt:
"This is the powerpc changes for the 3.11 merge window. In addition to
the usual bug fixes and small updates, the main highlights are:
- Support for transparent huge pages by Aneesh Kumar for 64-bit
server processors. This allows the use of 16M pages as transparent
huge pages on kernels compiled with a 64K base page size.
- Base VFIO support for KVM on power by Alexey Kardashevskiy
- Wiring up of our nvram to the pstore infrastructure, including
putting compressed oopses in there by Aruna Balakrishnaiah
- Move, rework and improve our "EEH" (basically PCI error handling
and recovery) infrastructure. It is no longer specific to pseries
but is now usable by the new "powernv" platform as well (no
hypervisor) by Gavin Shan.
- I fixed some bugs in our math-emu instruction decoding and made it
usable to emulate some optional FP instructions on processors with
hard FP that lack them (such as fsqrt on Freescale embedded
processors).
- Support for Power8 "Event Based Branch" facility by Michael
Ellerman. This facility allows what is basically "userspace
interrupts" for performance monitor events.
- A bunch of Transactional Memory vs. Signals bug fixes and HW
breakpoint/watchpoint fixes by Michael Neuling.
And more ... I appologize in advance if I've failed to highlight
something that somebody deemed worth it."
* 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc: (156 commits)
pstore: Add hsize argument in write_buf call of pstore_ftrace_call
powerpc/fsl: add MPIC timer wakeup support
powerpc/mpic: create mpic subsystem object
powerpc/mpic: add global timer support
powerpc/mpic: add irq_set_wake support
powerpc/85xx: enable coreint for all the 64bit boards
powerpc/8xx: Erroneous double irq_eoi() on CPM IRQ in MPC8xx
powerpc/fsl: Enable CONFIG_E1000E in mpc85xx_smp_defconfig
powerpc/mpic: Add get_version API both for internal and external use
powerpc: Handle both new style and old style reserve maps
powerpc/hw_brk: Fix off by one error when validating DAWR region end
powerpc/pseries: Support compression of oops text via pstore
powerpc/pseries: Re-organise the oops compression code
pstore: Pass header size in the pstore write callback
powerpc/powernv: Fix iommu initialization again
powerpc/pseries: Inform the hypervisor we are using EBB regs
powerpc/perf: Add power8 EBB support
powerpc/perf: Core EBB support for 64-bit book3s
powerpc/perf: Drop MMCRA from thread_struct
powerpc/perf: Don't enable if we have zero events
...
The soft-dirty is a bit on a PTE which helps to track which pages a task
writes to. In order to do this tracking one should
1. Clear soft-dirty bits from PTEs ("echo 4 > /proc/PID/clear_refs)
2. Wait some time.
3. Read soft-dirty bits (55'th in /proc/PID/pagemap2 entries)
To do this tracking, the writable bit is cleared from PTEs when the
soft-dirty bit is. Thus, after this, when the task tries to modify a
page at some virtual address the #PF occurs and the kernel sets the
soft-dirty bit on the respective PTE.
Note, that although all the task's address space is marked as r/o after
the soft-dirty bits clear, the #PF-s that occur after that are processed
fast. This is so, since the pages are still mapped to physical memory,
and thus all the kernel does is finds this fact out and puts back
writable, dirty and soft-dirty bits on the PTE.
Another thing to note, is that when mremap moves PTEs they are marked
with soft-dirty as well, since from the user perspective mremap modifies
the virtual memory at mremap's new address.
Signed-off-by: Pavel Emelyanov <xemul@parallels.com>
Cc: Matt Mackall <mpm@selenic.com>
Cc: Xiao Guangrong <xiaoguangrong@linux.vnet.ibm.com>
Cc: Glauber Costa <glommer@parallels.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@gmail.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Architectures like powerpc use the deposited pgtable to store hash index
values. We need to make the deposted pgtable is visible to other cpus
before we are ready to take a hash fault.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
For architectures like ppc64 we look at deposited pgtable when calling
pmdp_get_and_clear. So do the pgtable_trans_huge_withdraw after finishing
pmdp related operations.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Gibson <david@gibson.dropbear.id.au>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
This will be later used by powerpc THP support. In powerpc we want to use
pgtable for storing the hash index values. So instead of adding them to
mm_context list, we would like to store them in the second half of pmd
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
We should use pmdp_set_access_flags to update access flags. Archs like
powerpc use extra checks(_PAGE_BUSY) when updating a hugepage PTE. A
set_pmd_at doesn't do those checks. We should use set_pmd_at only when
updating a none hugepage PTE.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>a
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
We should not use set_pmd_at to update pmd_t with pgtable_t pointer.
set_pmd_at is used to set pmd with huge pte entries and architectures
like ppc64, clear few flags from the pte when saving a new entry.
Without this change we observe bad pte errors like below on ppc64 with
THP enabled.
BUG: Bad page map in process ld mm=0xc000001ee39f4780 pte:7fc3f37848000001 pmd:c000001ec0000000
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Current implementation of huge zero page uses pfn value 0 to indicate
that the page hasn't allocated yet. It assumes that buddy page
allocator can't return page with pfn == 0.
Let's rework the code to store 'struct page *' of huge zero page, not
its pfn. This way we can avoid the weak assumption.
[akpm@linux-foundation.org: fix sparse warning]
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reported-by: Minchan Kim <minchan@kernel.org>
Acked-by: Minchan Kim <minchan@kernel.org>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In page reclaim, huge page is split. split_huge_page() adds tail pages
to LRU list. Since we are reclaiming a huge page, it's better we
reclaim all subpages of the huge page instead of just the head page.
This patch adds split tail pages to shrink page list so the tail pages
can be reclaimed soon.
Before this patch, run a swap workload:
thp_fault_alloc 3492
thp_fault_fallback 608
thp_collapse_alloc 6
thp_collapse_alloc_failed 0
thp_split 916
With this patch:
thp_fault_alloc 4085
thp_fault_fallback 16
thp_collapse_alloc 90
thp_collapse_alloc_failed 0
thp_split 1272
fallback allocation is reduced a lot.
[akpm@linux-foundation.org: fix CONFIG_SWAP=n build]
Signed-off-by: Shaohua Li <shli@fusionio.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently the memory barrier in __do_huge_pmd_anonymous_page doesn't
work. Because lru_cache_add_lru uses pagevec so it could miss spinlock
easily so above rule was broken so user might see inconsistent data.
I was not first person who pointed out the problem. Mel and Peter
pointed out a few months ago and Peter pointed out further that even
spin_lock/unlock can't make sure of it:
http://marc.info/?t=134333512700004
In particular:
*A = a;
LOCK
UNLOCK
*B = b;
may occur as:
LOCK, STORE *B, STORE *A, UNLOCK
At last, Hugh pointed out that even we don't need memory barrier in
there because __SetPageUpdate already have done it from Nick's commit
0ed361dec3 ("mm: fix PageUptodate data race") explicitly.
So this patch fixes comment on THP and adds same comment for
do_anonymous_page, too because everybody except Hugh was missing that.
It means we need a comment about that.
Signed-off-by: Minchan Kim <minchan@kernel.org>
Acked-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>