Resume from hibernate needs to clean any text executed by the kernel with
the MMU off to the PoC. Collect these functions together into the
.idmap.text section as all this code is tightly coupled and also needs
the same cleaning after resume.
Data is more complicated, secondary_holding_pen_release is written with
the MMU on, clean and invalidated, then read with the MMU off. In contrast
__boot_cpu_mode is written with the MMU off, the corresponding cache line
is invalidated, so when we read it with the MMU on we don't get stale data.
These cache maintenance operations conflict with each other if the values
are within a Cache Writeback Granule (CWG) of each other.
Collect the data into two sections .mmuoff.data.read and .mmuoff.data.write,
the linker script ensures mmuoff.data.write section is aligned to the
architectural maximum CWG of 2KB.
Signed-off-by: James Morse <james.morse@arm.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Each time new section markers are added, kernel/vmlinux.ld.S is updated,
and new extern char __start_foo[] definitions are scattered through the
tree.
Create asm/include/sections.h to collect these definitions (and include
the existing asm-generic version).
Signed-off-by: James Morse <james.morse@arm.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Whenever we are hitting a kprobe from a none-kprobe debug exception handler,
we hit an infinite occurrences of "Unexpected kernel single-step exception
at EL1"
PSTATE.D is debug exception mask bit. It is set whenever we enter into an
exception mode. When it is set then Watchpoint, Breakpoint, and Software
Step exceptions are masked. However, software Breakpoint Instruction
exceptions can never be masked. Therefore, if we ever execute a BRK
instruction, irrespective of D-bit setting, we will be receiving a
corresponding breakpoint exception.
For example:
- We are executing kprobe pre/post handler, and kprobe has been inserted in
one of the instruction of a function called by handler. So, it executes
BRK instruction and we land into the case of KPROBE_REENTER. (This case is
already handled by current code)
- We are executing uprobe handler or any other BRK handler such as in
WARN_ON (BRK BUG_BRK_IMM), and we trace that path using kprobe.So, we
enter into kprobe breakpoint handler,from another BRK handler.(This case
is not being handled currently)
In all such cases kprobe breakpoint exception will be raised when we were
already in debug exception mode. SPSR's D bit (bit 9) shows the value of
PSTATE.D immediately before the exception was taken. So, in above example
cases we would find it set in kprobe breakpoint handler. Single step
exception will always be followed by a kprobe breakpoint exception.However,
it will only be raised gracefully if we clear D bit while returning from
breakpoint exception. If D bit is set then, it results into undefined
exception and when it's handler enables dbg then single step exception is
generated, however it will never be handled(because address does not match
and therefore treated as unexpected).
This patch clears D-flag unconditionally in setup_singlestep, so that we can
always get single step exception correctly after returning from breakpoint
exception. Additionally, it also removes D-flag set statement for
KPROBE_REENTER return path, because debug exception for KPROBE_REENTER will
always take place in a debug exception state. So, D-flag will already be set
in this case.
Acked-by: Sandeepa Prabhu <sandeepa.s.prabhu@gmail.com>
Acked-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Pratyush Anand <panand@redhat.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
When CONFIG_RANDOMIZE_BASE is selected, we modify the page tables to remap the
kernel at a newly-chosen VA range. We do this with the MMU disabled, but do not
invalidate TLBs prior to re-enabling the MMU with the new tables. Thus the old
mappings entries may still live in TLBs, and we risk violating
Break-Before-Make requirements, leading to TLB conflicts and/or other issues.
We invalidate TLBs when we uninsall the idmap in early setup code, but prior to
this we are subject to issues relating to the Break-Before-Make violation.
Avoid these issues by invalidating the TLBs before the new mappings can be
used by the hardware.
Fixes: f80fb3a3d5 ("arm64: add support for kernel ASLR")
Cc: <stable@vger.kernel.org> # 4.6+
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Storing this value will help prevent unwinders from getting out of sync
with the function graph tracer ret_stack. Now instead of needing a
stateful iterator, they can compare the return address pointer to find
the right ret_stack entry.
Note that an array of 50 ftrace_ret_stack structs is allocated for every
task. So when an arch implements this, it will add either 200 or 400
bytes of memory usage per task (depending on whether it's a 32-bit or
64-bit platform).
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Byungchul Park <byungchul.park@lge.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Nilay Vaish <nilayvaish@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/a95cfcc39e8f26b89a430c56926af0bb217bc0a1.1471607358.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Make HAVE_FUNCTION_GRAPH_FP_TEST a normal define, independent from
kconfig. This removes some config file pollution and simplifies the
checking for the fp test.
Suggested-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Byungchul Park <byungchul.park@lge.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Nilay Vaish <nilayvaish@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/2c4e5f05054d6d367f702fd153af7a0109dd5c81.1471607358.git.jpoimboe@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Currently, x25 and x26 hold the physical addresses of idmap_pg_dir
and swapper_pg_dir, respectively, when running early boot code. But
having registers with 'global' scope in files that contain different
sections with different lifetimes, and that are called by different
CPUs at different times is a bit messy, especially since stashing the
values does not buy us anything in terms of code size or clarity.
So simply replace each reference to x25 or x26 with an adrp instruction
referring to idmap_pg_dir or swapper_pg_dir directly.
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
These objects are set during initialization, thereafter are read only.
Previously I only want to mark vdso_pages, vdso_spec, vectors_page and
cpu_ops as __read_mostly from performance point of view. Then inspired
by Kees's patch[1] to apply more __ro_after_init for arm, I think it's
better to mark them as __ro_after_init. What's more, I find some more
objects are also read only after init. So apply __ro_after_init to all
of them.
This patch also removes global vdso_pagelist and tries to clean up
vdso_spec[] assignment code.
[1] http://www.spinics.net/lists/arm-kernel/msg523188.html
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Jisheng Zhang <jszhang@marvell.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
The vm_special_mapping spec which is used for aarch32 vectors page is
never modified, so mark it as const.
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Jisheng Zhang <jszhang@marvell.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
It is not needed after booting, this patch moves the alloc_vectors_page
function to the __init section.
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Jisheng Zhang <jszhang@marvell.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Use the builtin_platform_driver() to simplify code.
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Currently ret_fast_syscall, work_pending, and ret_to_user form an ad-hoc
state machine that can be difficult to reason about due to duplicated
code and a large number of branch targets.
This patch factors the common logic out into the existing
do_notify_resume function, converting the code to C in the process,
making the code more legible.
This patch tries to closely mirror the existing behaviour while using
the usual C control flow primitives. As local_irq_{disable,enable} may
be instrumented, we balance exception entry (where we will almost most
likely enable IRQs) with a call to trace_hardirqs_on just before the
return to userspace.
Signed-off-by: Chris Metcalf <cmetcalf@mellanox.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
In break_before_make_ttbr_switch we perform broadcast TLB maintenance
for the inner shareable domain, and use a DSB ISH to complete this.
However, at the point we execute this, secondary CPUs are either
physically offline, or executing code outside of the kernel. Upon
entering the kernel, secondary CPUs will invalidate their TLBs before
enabling their MMUs.
Thus we do not need to invalidate TLBs of other CPUs, and as with
idmap_cpu_replace_ttbr1 we can reduce the scope of maintenance to the
TLBs of the local CPU. This keeps our TLB maintenance code consistent,
and is a minor optimisation.
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Acked-by: James Morse <james.morse@arm.com>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Literal loads of virtual addresses are subject to runtime relocation when
CONFIG_RELOCATABLE=y, and given that the relocation routines run with the
MMU and caches enabled, literal loads of relocated values performed with
the MMU off are not guaranteed to return the latest value unless the
memory covering the literal is cleaned to the PoC explicitly.
So defer the literal load until after the MMU has been enabled, just like
we do for primary_switch() and secondary_switch() in head.S.
Fixes: 1e48ef7fcc ("arm64: add support for building vmlinux as a relocatable PIE binary")
Cc: <stable@vger.kernel.org> # 4.6+
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
In create_safe_exec_page(), we create a copy of the hibernate exit text,
along with some page tables to map this via TTBR0. We then install the
new tables in TTBR0.
In swsusp_arch_resume() we call create_safe_exec_page() before trying a
number of operations which may fail (e.g. copying the linear map page
tables). If these fail, we bail out of swsusp_arch_resume() and return
an error code, but leave TTBR0 as-is. Subsequently, the core hibernate
code will call free_basic_memory_bitmaps(), which will free all of the
memory allocations we made, including the page tables installed in
TTBR0.
Thus, we may have TTBR0 pointing at dangling freed memory for some
period of time. If the hibernate attempt was triggered by a user
requesting a hibernate test via the reboot syscall, we may return to
userspace with the clobbered TTBR0 value.
Avoid these issues by reorganising swsusp_arch_resume() such that we
have no failure paths after create_safe_exec_page(). We also add a check
that the zero page allocation succeeded, matching what we have for other
allocations.
Fixes: 82869ac57b ("arm64: kernel: Add support for hibernate/suspend-to-disk")
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: James Morse <james.morse@arm.com>
Cc: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: <stable@vger.kernel.org> # 4.7+
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
In create_safe_exec_page we install a set of global mappings in TTBR0,
then subsequently invalidate TLBs. While TTBR0 points at the zero page,
and the TLBs should be free of stale global entries, we may have stale
ASID-tagged entries (e.g. from the EFI runtime services mappings) for
the same VAs. Per the ARM ARM these ASID-tagged entries may conflict
with newly-allocated global entries, and we must follow a
Break-Before-Make approach to avoid issues resulting from this.
This patch reworks create_safe_exec_page to invalidate TLBs while the
zero page is still in place, ensuring that there are no potential
conflicts when the new TTBR0 value is installed. As a single CPU is
online while this code executes, we do not need to perform broadcast TLB
maintenance, and can call local_flush_tlb_all(), which also subsumes
some barriers. The remaining assembly is converted to use write_sysreg()
and isb().
Other than this, we safely manipulate TTBRs in the hibernate dance. The
code we install as part of the new TTBR0 mapping (the hibernated
kernel's swsusp_arch_suspend_exit) installs a zero page into TTBR1,
invalidates TLBs, then installs its preferred value. Upon being restored
to the middle of swsusp_arch_suspend, the new image will call
__cpu_suspend_exit, which will call cpu_uninstall_idmap, installing the
zero page in TTBR0 and invalidating all TLB entries.
Fixes: 82869ac57b ("arm64: kernel: Add support for hibernate/suspend-to-disk")
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: James Morse <james.morse@arm.com>
Tested-by: James Morse <james.morse@arm.com>
Cc: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: <stable@vger.kernel.org> # 4.7+
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Executing from a non-executable area gives an ugly message:
lkdtm: Performing direct entry EXEC_RODATA
lkdtm: attempting ok execution at ffff0000084c0e08
lkdtm: attempting bad execution at ffff000008880700
Bad mode in Synchronous Abort handler detected on CPU2, code 0x8400000e -- IABT (current EL)
CPU: 2 PID: 998 Comm: sh Not tainted 4.7.0-rc2+ #13
Hardware name: linux,dummy-virt (DT)
task: ffff800077e35780 ti: ffff800077970000 task.ti: ffff800077970000
PC is at lkdtm_rodata_do_nothing+0x0/0x8
LR is at execute_location+0x74/0x88
The 'IABT (current EL)' indicates the error but it's a bit cryptic
without knowledge of the ARM ARM. There is also no indication of the
specific address which triggered the fault. The increase in kernel
page permissions makes hitting this case more likely as well.
Handling the case in the vectors gives a much more familiar looking
error message:
lkdtm: Performing direct entry EXEC_RODATA
lkdtm: attempting ok execution at ffff0000084c0840
lkdtm: attempting bad execution at ffff000008880680
Unable to handle kernel paging request at virtual address ffff000008880680
pgd = ffff8000089b2000
[ffff000008880680] *pgd=00000000489b4003, *pud=0000000048904003, *pmd=0000000000000000
Internal error: Oops: 8400000e [#1] PREEMPT SMP
Modules linked in:
CPU: 1 PID: 997 Comm: sh Not tainted 4.7.0-rc1+ #24
Hardware name: linux,dummy-virt (DT)
task: ffff800077f9f080 ti: ffff800008a1c000 task.ti: ffff800008a1c000
PC is at lkdtm_rodata_do_nothing+0x0/0x8
LR is at execute_location+0x74/0x88
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Laura Abbott <labbott@redhat.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Because the arm64 calling standard allows stacked function arguments to be
anywhere in the stack frame, do not attempt to duplicate the stack frame for
jprobes handler functions.
Documentation changes to describe this issue have been broken out into a
separate patch in order to simultaneously address them in other
architecture(s).
Signed-off-by: David A. Long <dave.long@linaro.org>
Acked-by: Masami Hiramatsu <mhiramat@kernel.org>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Enable the hard limit of cpu count by set boot options nr_cpus=x
on arm64, and make a minor change about message when total number
of cpu exceeds the limit.
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reported-by: Shiyuan Hu <hushiyuan@huawei.com>
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
- Fix HugeTLB leak due to CoW and PTE_RDONLY mismatch
- Avoid accessing unmapped FDT fields when checking validity
- Correctly account for vDSO AUX entry in ARCH_DLINFO
- Fix kallsyms with absolute expressions in linker script
- Kill unnecessary symbol-based relocs in vmlinux
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABCgAGBQJXpFZ5AAoJELescNyEwWM0PI4IALsTuHRzClOSMDLiqMUj8t+5
WNAcqybxAjCOVxAHckhweju++TeJBxcRH1nvBoNwiHIdHTv4fq1TZ3PeEq9kWMg5
JbKjYjvd9dW8k6LXMya8iXCYtG3kzbNejkNpOTVebC86yvas1IiEjNb/ztPdhJeM
HBSOkhfk8RcskfNxhuscZzGXbbdH9/R+XSTNRHN/RwCZH8PlInmduD9BbMvDhZyP
NLFonD2IgQ4as1kYG/HdIcw0BamHiURjd043+gyoqMvm7JjPksRzlQnr91SMkX17
LykXjHYPi2Me3aTrZ1NtkUNd5FHLHZ6/b9Wg6nA19d5KWkd3ER9uSJqGxkkbnt0=
=dtGK
-----END PGP SIGNATURE-----
Merge tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 fixes from Will Deacon:
- fix HugeTLB leak due to CoW and PTE_RDONLY mismatch
- avoid accessing unmapped FDT fields when checking validity
- correctly account for vDSO AUX entry in ARCH_DLINFO
- fix kallsyms with absolute expressions in linker script
- kill unnecessary symbol-based relocs in vmlinux
* tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux:
arm64: Fix copy-on-write referencing in HugeTLB
arm64: mm: avoid fdt_check_header() before the FDT is fully mapped
arm64: Define AT_VECTOR_SIZE_ARCH for ARCH_DLINFO
arm64: relocatable: suppress R_AARCH64_ABS64 relocations in vmlinux
arm64: vmlinux.lds: make __rela_offset and __dynsym_offset ABSOLUTE
VGIC implementation.
- s390: support for trapping software breakpoints, nested virtualization
(vSIE), the STHYI opcode, initial extensions for CPU model support.
- MIPS: support for MIPS64 hosts (32-bit guests only) and lots of cleanups,
preliminary to this and the upcoming support for hardware virtualization
extensions.
- x86: support for execute-only mappings in nested EPT; reduced vmexit
latency for TSC deadline timer (by about 30%) on Intel hosts; support for
more than 255 vCPUs.
- PPC: bugfixes.
The ugly bit is the conflicts. A couple of them are simple conflicts due
to 4.7 fixes, but most of them are with other trees. There was definitely
too much reliance on Acked-by here. Some conflicts are for KVM patches
where _I_ gave my Acked-by, but the worst are for this pull request's
patches that touch files outside arch/*/kvm. KVM submaintainers should
probably learn to synchronize better with arch maintainers, with the
latter providing topic branches whenever possible instead of Acked-by.
This is what we do with arch/x86. And I should learn to refuse pull
requests when linux-next sends scary signals, even if that means that
submaintainers have to rebase their branches.
Anyhow, here's the list:
- arch/x86/kvm/vmx.c: handle_pcommit and EXIT_REASON_PCOMMIT was removed
by the nvdimm tree. This tree adds handle_preemption_timer and
EXIT_REASON_PREEMPTION_TIMER at the same place. In general all mentions
of pcommit have to go.
There is also a conflict between a stable fix and this patch, where the
stable fix removed the vmx_create_pml_buffer function and its call.
- virt/kvm/kvm_main.c: kvm_cpu_notifier was removed by the hotplug tree.
This tree adds kvm_io_bus_get_dev at the same place.
- virt/kvm/arm/vgic.c: a few final bugfixes went into 4.7 before the
file was completely removed for 4.8.
- include/linux/irqchip/arm-gic-v3.h: this one is entirely our fault;
this is a change that should have gone in through the irqchip tree and
pulled by kvm-arm. I think I would have rejected this kvm-arm pull
request. The KVM version is the right one, except that it lacks
GITS_BASER_PAGES_SHIFT.
- arch/powerpc: what a mess. For the idle_book3s.S conflict, the KVM
tree is the right one; everything else is trivial. In this case I am
not quite sure what went wrong. The commit that is causing the mess
(fd7bacbca4, "KVM: PPC: Book3S HV: Fix TB corruption in guest exit
path on HMI interrupt", 2016-05-15) touches both arch/powerpc/kernel/
and arch/powerpc/kvm/. It's large, but at 396 insertions/5 deletions
I guessed that it wasn't really possible to split it and that the 5
deletions wouldn't conflict. That wasn't the case.
- arch/s390: also messy. First is hypfs_diag.c where the KVM tree
moved some code and the s390 tree patched it. You have to reapply the
relevant part of commits 6c22c98637, plus all of e030c1125e, to
arch/s390/kernel/diag.c. Or pick the linux-next conflict
resolution from http://marc.info/?l=kvm&m=146717549531603&w=2.
Second, there is a conflict in gmap.c between a stable fix and 4.8.
The KVM version here is the correct one.
I have pushed my resolution at refs/heads/merge-20160802 (commit
3d1f53419842) at git://git.kernel.org/pub/scm/virt/kvm/kvm.git.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJXoGm7AAoJEL/70l94x66DugQIAIj703ePAFepB/fCrKHkZZia
SGrsBdvAtNsOhr7FQ5qvvjLxiv/cv7CymeuJivX8H+4kuUHUllDzey+RPHYHD9X7
U6n1PdCH9F15a3IXc8tDjlDdOMNIKJixYuq1UyNZMU6NFwl00+TZf9JF8A2US65b
x/41W98ilL6nNBAsoDVmCLtPNWAqQ3lajaZELGfcqRQ9ZGKcAYOaLFXHv2YHf2XC
qIDMf+slBGSQ66UoATnYV2gAopNlWbZ7n0vO6tE2KyvhHZ1m399aBX1+k8la/0JI
69r+Tz7ZHUSFtmlmyByi5IAB87myy2WQHyAPwj+4vwJkDGPcl0TrupzbG7+T05Y=
=42ti
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
- ARM: GICv3 ITS emulation and various fixes. Removal of the
old VGIC implementation.
- s390: support for trapping software breakpoints, nested
virtualization (vSIE), the STHYI opcode, initial extensions
for CPU model support.
- MIPS: support for MIPS64 hosts (32-bit guests only) and lots
of cleanups, preliminary to this and the upcoming support for
hardware virtualization extensions.
- x86: support for execute-only mappings in nested EPT; reduced
vmexit latency for TSC deadline timer (by about 30%) on Intel
hosts; support for more than 255 vCPUs.
- PPC: bugfixes.
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (302 commits)
KVM: PPC: Introduce KVM_CAP_PPC_HTM
MIPS: Select HAVE_KVM for MIPS64_R{2,6}
MIPS: KVM: Reset CP0_PageMask during host TLB flush
MIPS: KVM: Fix ptr->int cast via KVM_GUEST_KSEGX()
MIPS: KVM: Sign extend MFC0/RDHWR results
MIPS: KVM: Fix 64-bit big endian dynamic translation
MIPS: KVM: Fail if ebase doesn't fit in CP0_EBase
MIPS: KVM: Use 64-bit CP0_EBase when appropriate
MIPS: KVM: Set CP0_Status.KX on MIPS64
MIPS: KVM: Make entry code MIPS64 friendly
MIPS: KVM: Use kmap instead of CKSEG0ADDR()
MIPS: KVM: Use virt_to_phys() to get commpage PFN
MIPS: Fix definition of KSEGX() for 64-bit
KVM: VMX: Add VMCS to CPU's loaded VMCSs before VMPTRLD
kvm: x86: nVMX: maintain internal copy of current VMCS
KVM: PPC: Book3S HV: Save/restore TM state in H_CEDE
KVM: PPC: Book3S HV: Pull out TM state save/restore into separate procedures
KVM: arm64: vgic-its: Simplify MAPI error handling
KVM: arm64: vgic-its: Make vgic_its_cmd_handle_mapi similar to other handlers
KVM: arm64: vgic-its: Turn device_id validation into generic ID validation
...
* pci/resource:
unicore32/PCI: Remove pci=firmware command line parameter handling
ARM/PCI: Remove arch-specific pcibios_enable_device()
ARM64/PCI: Remove arch-specific pcibios_enable_device()
MIPS/PCI: Claim bus resources on PCI_PROBE_ONLY set-ups
ARM/PCI: Claim bus resources on PCI_PROBE_ONLY set-ups
PCI: generic: Claim bus resources on PCI_PROBE_ONLY set-ups
PCI: Add generic pci_bus_claim_resources()
alx: Use pci_(request|release)_mem_regions
ethernet/intel: Use pci_(request|release)_mem_regions
GenWQE: Use pci_(request|release)_mem_regions
lpfc: Use pci_(request|release)_mem_regions
NVMe: Use pci_(request|release)_mem_regions
PCI: Add helpers to request/release memory and I/O regions
PCI: Extending pci=resource_alignment to specify device/vendor IDs
sparc/PCI: Implement pci_resource_to_user() with pcibios_resource_to_bus()
powerpc/pci: Implement pci_resource_to_user() with pcibios_resource_to_bus()
microblaze/PCI: Implement pci_resource_to_user() with pcibios_resource_to_bus()
PCI: Unify pci_resource_to_user() declarations
microblaze/PCI: Remove useless __pci_mmap_set_pgprot()
powerpc/pci: Remove __pci_mmap_set_pgprot()
PCI: Ignore write combining when mapping I/O port space
- Removal of most of_platform_populate() calls in arch code. Now the DT
core code calls it in the default case and platforms only need to call
it if they have special needs.
- Use pr_fmt on all the DT core print statements.
- CoreSight binding doc improvements to block name descriptions.
- Add dt_to_config script which can parse dts files and list
corresponding kernel config options.
- Fix memory leak hit with a PowerMac DT.
- Correct a bunch of STMicro compatible strings to use the correct
vendor prefix.
- Fix DA9052 PMIC binding doc to match what is actually used in dts
files.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJXm9KcAAoJEPr7XbWNvGHDRT4QAIIIOSB4AWHardnMLROgGge9
aOQKZ/05O9feOcxYKe8FkQbcH+IujJjrUL+yrRD36yGQPAyBP21gtcmmfrkCcwFM
kH915f/JbGvXpfwEf8dcarHhzYH6FFJiQGduPpWfwSSWynx+xq5EKPwCqYzMg8bN
SExxt7vUx1MKFOExZ0K8BNCo8VMVLUWQoJ1DNeJDuL25Op4EU3i2l1HQNYV/3XDk
BSA3x7Lw3GjrWEH20VWYn2Azq1OFLY+E2FC2lnG4nbkk5X8dZbUH9PR1Sk7uTQDj
uxTjWe59NBpliCxKSAbMbTAU/WwSB1pJ0I+zDJBiQsdFT+nb5F4zOrs3qSKHa/A9
Rv6AC8k5gdSMrDB1dOspfF2vWvOOInXgNV4/Kza0D92mbCpwyUuF+vhE6rfcMrZU
OiD7rj2/fvO7Y9fUAhrp6zrfrOfH9B1Z9vS+940AlK96YwPE2+J0SA2vBxR/wg8H
7fj4Ud5X+SFisXWQhh5Wlv0W9o6e7C7fsi8vpkQ7gufmezLFWVnJKsUfQaxGEwhG
Hkhm9kuSHHMd+6dEnn2756DnNfJAtQv6rSR0/QR4Lf9y5L4dvR3kAQIci8X/nx4P
sIk+IJWGZG6wziZq59hh+SO6HEqdSNuvh+5sbR0iUimdE/1HsDBdPiocXf/r8iwK
NY9nGeZPRrXmFgdpoZfm
=wLMr
-----END PGP SIGNATURE-----
Merge tag 'devicetree-for-4.8' of git://git.kernel.org/pub/scm/linux/kernel/git/robh/linux
Pull DeviceTree updates from Rob Herring:
- remove most of_platform_populate() calls in arch code. Now the DT
core code calls it in the default case and platforms only need to
call it if they have special needs
- use pr_fmt on all the DT core print statements
- CoreSight binding doc improvements to block name descriptions
- add dt_to_config script which can parse dts files and list
corresponding kernel config options
- fix memory leak hit with a PowerMac DT
- correct a bunch of STMicro compatible strings to use the correct
vendor prefix
- fix DA9052 PMIC binding doc to match what is actually used in dts
files
* tag 'devicetree-for-4.8' of git://git.kernel.org/pub/scm/linux/kernel/git/robh/linux: (35 commits)
documentation: da9052: Update regulator bindings names to match DA9052/53 DTS expectations
xtensa: Partially Revert "xtensa: Remove unnecessary of_platform_populate with default match table"
xtensa: Fix build error due to missing include file
MIPS: ath79: Add missing include file
Fix spelling errors in Documentation/devicetree
ARM: dts: fix STMicroelectronics compatible strings
powerpc/dts: fix STMicroelectronics compatible strings
Documentation: dt: i2c: use correct STMicroelectronics vendor prefix
scripts/dtc: dt_to_config - kernel config options for a devicetree
of: fdt: mark unflattened tree as detached
of: overlay: add resolver error prints
coresight: document binding acronyms
Documentation/devicetree: document cavium-pip rx-delay/tx-delay properties
of: use pr_fmt prefix for all console printing
of/irq: Mark initialised interrupt controllers as populated
of: fix memory leak related to safe_name()
Revert "of/platform: export of_default_bus_match_table"
of: unittest: use of_platform_default_populate() to populate default bus
memory: omap-gpmc: use of_platform_default_populate() to populate default bus
bus: uniphier-system-bus: use of_platform_default_populate() to populate default bus
...
Pull security subsystem updates from James Morris:
"Highlights:
- TPM core and driver updates/fixes
- IPv6 security labeling (CALIPSO)
- Lots of Apparmor fixes
- Seccomp: remove 2-phase API, close hole where ptrace can change
syscall #"
* 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/linux-security: (156 commits)
apparmor: fix SECURITY_APPARMOR_HASH_DEFAULT parameter handling
tpm: Add TPM 2.0 support to the Nuvoton i2c driver (NPCT6xx family)
tpm: Factor out common startup code
tpm: use devm_add_action_or_reset
tpm2_i2c_nuvoton: add irq validity check
tpm: read burstcount from TPM_STS in one 32-bit transaction
tpm: fix byte-order for the value read by tpm2_get_tpm_pt
tpm_tis_core: convert max timeouts from msec to jiffies
apparmor: fix arg_size computation for when setprocattr is null terminated
apparmor: fix oops, validate buffer size in apparmor_setprocattr()
apparmor: do not expose kernel stack
apparmor: fix module parameters can be changed after policy is locked
apparmor: fix oops in profile_unpack() when policy_db is not present
apparmor: don't check for vmalloc_addr if kvzalloc() failed
apparmor: add missing id bounds check on dfa verification
apparmor: allow SYS_CAP_RESOURCE to be sufficient to prlimit another task
apparmor: use list_next_entry instead of list_entry_next
apparmor: fix refcount race when finding a child profile
apparmor: fix ref count leak when profile sha1 hash is read
apparmor: check that xindex is in trans_table bounds
...
Pull smp hotplug updates from Thomas Gleixner:
"This is the next part of the hotplug rework.
- Convert all notifiers with a priority assigned
- Convert all CPU_STARTING/DYING notifiers
The final removal of the STARTING/DYING infrastructure will happen
when the merge window closes.
Another 700 hundred line of unpenetrable maze gone :)"
* 'smp-hotplug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (70 commits)
timers/core: Correct callback order during CPU hot plug
leds/trigger/cpu: Move from CPU_STARTING to ONLINE level
powerpc/numa: Convert to hotplug state machine
arm/perf: Fix hotplug state machine conversion
irqchip/armada: Avoid unused function warnings
ARC/time: Convert to hotplug state machine
clocksource/atlas7: Convert to hotplug state machine
clocksource/armada-370-xp: Convert to hotplug state machine
clocksource/exynos_mct: Convert to hotplug state machine
clocksource/arm_global_timer: Convert to hotplug state machine
rcu: Convert rcutree to hotplug state machine
KVM/arm/arm64/vgic-new: Convert to hotplug state machine
smp/cfd: Convert core to hotplug state machine
x86/x2apic: Convert to CPU hotplug state machine
profile: Convert to hotplug state machine
timers/core: Convert to hotplug state machine
hrtimer: Convert to hotplug state machine
x86/tboot: Convert to hotplug state machine
arm64/armv8 deprecated: Convert to hotplug state machine
hwtracing/coresight-etm4x: Convert to hotplug state machine
...
The linker routines that we rely on to produce a relocatable PIE binary
treat it as a shared ELF object in some ways, i.e., it emits symbol based
R_AARCH64_ABS64 relocations into the final binary since doing so would be
appropriate when linking a shared library that is subject to symbol
preemption. (This means that an executable can override certain symbols
that are exported by a shared library it is linked with, and that the
shared library *must* update all its internal references as well, and point
them to the version provided by the executable.)
Symbol preemption does not occur for OS hosted PIE executables, let alone
for vmlinux, and so we would prefer to get rid of these symbol based
relocations. This would allow us to simplify the relocation routines, and
to strip the .dynsym, .dynstr and .hash sections from the binary. (Note
that these are tiny, and are placed in the .init segment, but they clutter
up the vmlinux binary.)
Note that these R_AARCH64_ABS64 relocations are only emitted for absolute
references to symbols defined in the linker script, all other relocatable
quantities are covered by anonymous R_AARCH64_RELATIVE relocations that
simply list the offsets to all 64-bit values in the binary that need to be
fixed up based on the offset between the link time and run time addresses.
Fortunately, GNU ld has a -Bsymbolic option, which is intended for shared
libraries to allow them to ignore symbol preemption, and unconditionally
bind all internal symbol references to its own definitions. So set it for
our PIE binary as well, and get rid of the asoociated sections and the
relocation code that processes them.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
[will: fixed conflict with __dynsym_offset linker script entry]
Signed-off-by: Will Deacon <will.deacon@arm.com>
Due to the untyped KIMAGE_VADDR constant, the linker may not notice
that the __rela_offset and __dynsym_offset expressions are absolute
values (i.e., are not subject to relocation). This does not matter for
KASLR, but it does confuse kallsyms in relative mode, since it uses
the lowest non-absolute symbol address as the anchor point, and expects
all other symbol addresses to be within 4 GB of it.
Fix this by qualifying these expressions as ABSOLUTE() explicitly.
Fixes: 0cd3defe0a ("arm64: kernel: perform relocation processing from ID map")
Cc: <stable@vger.kernel.org>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
- ACPI support for guests on ARM platforms.
- Generic steal time support for arm and x86.
- Support cases where kernel cpu is not Xen VCPU number (e.g., if
in-guest kexec is used).
- Use the system workqueue instead of a custom workqueue in various
places.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJXmLlrAAoJEFxbo/MsZsTRvRQH/1wOMF8BmlbZfR7H3qwDfjst
ApNifCiZE08xDtWBlwUaBFAQxyflQS9BBiNZDVK0sysIdXeOdpWV7V0ZjRoLL+xr
czsaaGXDcmXxJxApoMDVuT7FeP6rEk6LVAYRoHpVjJjMZGW3BbX1vZaMW4DXl2WM
9YNaF2Lj+rpc1f8iG31nUxwkpmcXFog6ct4tu7HiyCFT3hDkHt/a4ghuBdQItCkd
vqBa1pTpcGtQBhSmWzlylN/PV2+NKcRd+kGiwd09/O/rNzogTMCTTWeHKAtMpPYb
Cu6oSqJtlK5o0vtr0qyLSWEGIoyjE2gE92s0wN3iCzFY1PldqdsxUO622nIj+6o=
=G6q3
-----END PGP SIGNATURE-----
Merge tag 'for-linus-4.8-rc0-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip
Pull xen updates from David Vrabel:
"Features and fixes for 4.8-rc0:
- ACPI support for guests on ARM platforms.
- Generic steal time support for arm and x86.
- Support cases where kernel cpu is not Xen VCPU number (e.g., if
in-guest kexec is used).
- Use the system workqueue instead of a custom workqueue in various
places"
* tag 'for-linus-4.8-rc0-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip: (47 commits)
xen: add static initialization of steal_clock op to xen_time_ops
xen/pvhvm: run xen_vcpu_setup() for the boot CPU
xen/evtchn: use xen_vcpu_id mapping
xen/events: fifo: use xen_vcpu_id mapping
xen/events: use xen_vcpu_id mapping in events_base
x86/xen: use xen_vcpu_id mapping when pointing vcpu_info to shared_info
x86/xen: use xen_vcpu_id mapping for HYPERVISOR_vcpu_op
xen: introduce xen_vcpu_id mapping
x86/acpi: store ACPI ids from MADT for future usage
x86/xen: update cpuid.h from Xen-4.7
xen/evtchn: add IOCTL_EVTCHN_RESTRICT
xen-blkback: really don't leak mode property
xen-blkback: constify instance of "struct attribute_group"
xen-blkfront: prefer xenbus_scanf() over xenbus_gather()
xen-blkback: prefer xenbus_scanf() over xenbus_gather()
xen: support runqueue steal time on xen
arm/xen: add support for vm_assist hypercall
xen: update xen headers
xen-pciback: drop superfluous variables
xen-pciback: short-circuit read path used for merging write values
...
- Kexec support for arm64
- Kprobes support
- Expose MIDR_EL1 and REVIDR_EL1 CPU identification registers to sysfs
- Trapping of user space cache maintenance operations and emulation in
the kernel (CPU errata workaround)
- Clean-up of the early page tables creation (kernel linear mapping, EFI
run-time maps) to avoid splitting larger blocks (e.g. pmds) into
smaller ones (e.g. ptes)
- VDSO support for CLOCK_MONOTONIC_RAW in clock_gettime()
- ARCH_HAS_KCOV enabled for arm64
- Optimise IP checksum helpers
- SWIOTLB optimisation to only allocate/initialise the buffer if the
available RAM is beyond the 32-bit mask
- Properly handle the "nosmp" command line argument
- Fix for the initialisation of the CPU debug state during early boot
- vdso-offsets.h build dependency workaround
- Build fix when RANDOMIZE_BASE is enabled with MODULES off
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJXmF/UAAoJEGvWsS0AyF7x+jwP/2fErtX6FTXmdG0c3HBkTpuy
gEuzN2ByWbP6Io+unLC6NvbQQb1q6c73PTqjsoeMHUx2o8YK3jgWEBcC+7AuepoZ
YGl3r08e75a/fGrgNwEQQC1lNlgjpog4kzVDh5ji6oRXNq+OkjJGUtRPe3gBoqxv
NAjviciID/MegQaq4SaMd26AmnjuUGKogo5vlIaXK0SemX9it+ytW7eLAXuVY+gW
EvO3Nxk0Y5oZKJF8qRw6oLSmw1bwn2dD26OgfXfCiI30QBookRyWIoXRedUOZmJq
D0+Tipd7muO4PbjlxS8aY/wd/alfnM5+TJ6HpGDo+Y1BDauXfiXMf3ktDFE5QvJB
KgtICmC0stWwbDT35dHvz8sETsrCMA2Q/IMrnyxG+nj9BxVQU7rbNrxfCXesJy7Q
4EsQbcTyJwu+ECildBezfoei99XbFZyWk2vKSkTCFKzgwXpftGFaffgZ3DIzBAHH
IjecDqIFENC8ymrjyAgrGjeFG+2WB/DBgoSS3Baiz6xwQqC4wFMnI3jPECtJjb/U
6e13f+onXu5lF1YFKAiRjGmqa/G1ZMr+uKZFsembuGqsZdAPkzzUHyAE9g4JVO8p
t3gc3/M3T7oLSHuw4xi1/Ow5VGb2UvbslFrp7OpuFZ7CJAvhKlHL5rPe385utsFE
7++5WHXHAegeJCDNAKY2
=iJOY
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Catalin Marinas:
- Kexec support for arm64
- Kprobes support
- Expose MIDR_EL1 and REVIDR_EL1 CPU identification registers to sysfs
- Trapping of user space cache maintenance operations and emulation in
the kernel (CPU errata workaround)
- Clean-up of the early page tables creation (kernel linear mapping,
EFI run-time maps) to avoid splitting larger blocks (e.g. pmds) into
smaller ones (e.g. ptes)
- VDSO support for CLOCK_MONOTONIC_RAW in clock_gettime()
- ARCH_HAS_KCOV enabled for arm64
- Optimise IP checksum helpers
- SWIOTLB optimisation to only allocate/initialise the buffer if the
available RAM is beyond the 32-bit mask
- Properly handle the "nosmp" command line argument
- Fix for the initialisation of the CPU debug state during early boot
- vdso-offsets.h build dependency workaround
- Build fix when RANDOMIZE_BASE is enabled with MODULES off
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (64 commits)
arm64: arm: Fix-up the removal of the arm64 regs_query_register_name() prototype
arm64: Only select ARM64_MODULE_PLTS if MODULES=y
arm64: mm: run pgtable_page_ctor() on non-swapper translation table pages
arm64: mm: make create_mapping_late() non-allocating
arm64: Honor nosmp kernel command line option
arm64: Fix incorrect per-cpu usage for boot CPU
arm64: kprobes: Add KASAN instrumentation around stack accesses
arm64: kprobes: Cleanup jprobe_return
arm64: kprobes: Fix overflow when saving stack
arm64: kprobes: WARN if attempting to step with PSTATE.D=1
arm64: debug: remove unused local_dbg_{enable, disable} macros
arm64: debug: remove redundant spsr manipulation
arm64: debug: unmask PSTATE.D earlier
arm64: localise Image objcopy flags
arm64: ptrace: remove extra define for CPSR's E bit
kprobes: Add arm64 case in kprobe example module
arm64: Add kernel return probes support (kretprobes)
arm64: Add trampoline code for kretprobes
arm64: kprobes instruction simulation support
arm64: Treat all entry code as non-kprobe-able
...
* acpi-processor:
ACPI: enable ACPI_PROCESSOR_IDLE on ARM64
arm64: add support for ACPI Low Power Idle(LPI)
drivers: firmware: psci: initialise idle states using ACPI LPI
cpuidle: introduce CPU_PM_CPU_IDLE_ENTER macro for ARM{32, 64}
arm64: cpuidle: drop __init section marker to arm_cpuidle_init
ACPI / processor_idle: Add support for Low Power Idle(LPI) states
ACPI / processor_idle: introduce ACPI_PROCESSOR_CSTATE
* acpi-cppc:
mailbox: pcc: Add PCC request and free channel declarations
ACPI / CPPC: Prevent cpc_desc_ptr points to the invalid data
ACPI: CPPC: Return error if _CPC is invalid on a CPU
* acpi-apei:
ACPI / APEI: Add Boot Error Record Table (BERT) support
ACPI / einj: Make error paths more talkative
ACPI / einj: Convert EINJ_PFX to proper pr_fmt
* acpi-sleep:
ACPI: Execute _PTS before system reboot
* acpi-tables:
ACPI: Rename configfs.c to acpi_configfs.c to prevent link error
ACPI: add support for loading SSDTs via configfs
ACPI: add support for configfs
efi / ACPI: load SSTDs from EFI variables
spi / ACPI: add support for ACPI reconfigure notifications
i2c / ACPI: add support for ACPI reconfigure notifications
ACPI: add support for ACPI reconfiguration notifiers
ACPI / scan: fix enumeration (visited) flags for bus rescans
ACPI / documentation: add SSDT overlays documentation
ACPI: ARM64: support for ACPI_TABLE_UPGRADE
ACPI / tables: introduce ARCH_HAS_ACPI_TABLE_UPGRADE
ACPI / tables: move arch-specific symbol to asm/acpi.h
ACPI / tables: table upgrade: refactor function definitions
ACPI / tables: table upgrade: use cacheable map for tables
Conflicts:
arch/arm64/include/asm/acpi.h
This patch adds appropriate callbacks to support ACPI Low Power Idle
(LPI) on ARM64.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Signed-off-by: Sudeep Holla <sudeep.holla@arm.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Commit ea389daa7f (arm64: cpuidle: add __init section marker to
arm_cpuidle_init) added the __init annotation to arm_cpuidle_init
as it was not needed after booting which was correct at that time.
However with the introduction of ACPI LPI support, this will be used
from cpuhotplug path in ACPI processor driver.
This patch drops the __init annotation from arm_cpuidle_init to avoid
the following warning:
WARNING: vmlinux.o(.text+0x113c8): Section mismatch in reference from the
function acpi_processor_ffh_lpi_probe() to the function
.init.text:arm_cpuidle_init()
The function acpi_processor_ffh_lpi_probe() references
the function __init arm_cpuidle_init().
This is often because acpi_processor_ffh_lpi_probe() lacks a __init
annotation or the annotation of arm_cpuidle_init is wrong.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Signed-off-by: Sudeep Holla <sudeep.holla@arm.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
* kprobes:
arm64: kprobes: Add KASAN instrumentation around stack accesses
arm64: kprobes: Cleanup jprobe_return
arm64: kprobes: Fix overflow when saving stack
arm64: kprobes: WARN if attempting to step with PSTATE.D=1
kprobes: Add arm64 case in kprobe example module
arm64: Add kernel return probes support (kretprobes)
arm64: Add trampoline code for kretprobes
arm64: kprobes instruction simulation support
arm64: Treat all entry code as non-kprobe-able
arm64: Blacklist non-kprobe-able symbol
arm64: Kprobes with single stepping support
arm64: add conditional instruction simulation support
arm64: Add more test functions to insn.c
arm64: Add HAVE_REGS_AND_STACK_ACCESS_API feature
Passing "nosmp" should boot the kernel with a single processor, without
provision to enable secondary CPUs even if they are present. "nosmp" is
implemented by setting maxcpus=0. At the moment we still mark the secondary
CPUs present even with nosmp, which allows the userspace to bring them
up. This patch corrects the smp_prepare_cpus() to honor the maxcpus == 0.
Commit 44dbcc93ab ("arm64: Fix behavior of maxcpus=N") fixed the
behavior for maxcpus >= 1, but broke maxcpus = 0.
Fixes: 44dbcc93ab ("arm64: Fix behavior of maxcpus=N")
Cc: <stable@vger.kernel.org> # 4.7+
Cc: Will Deacon <will.deacon@arm.com>
Cc: James Morse <james.morse@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
[catalin.marinas@arm.com: updated code comment]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
In smp_prepare_boot_cpu(), we invoke cpuinfo_store_boot_cpu to store
the cpuinfo in a per-cpu ptr, before initialising the per-cpu offset for
the boot CPU. This patch reorders the sequence to make sure we initialise
the per-cpu offset before accessing the per-cpu area.
Commit 4b998ff188 ("arm64: Delay cpuinfo_store_boot_cpu") fixed the
issue where we modified the per-cpu area even before the kernel initialises
the per-cpu areas, but failed to wait until the boot cpu updated it's
offset.
Fixes: 4b998ff188 ("arm64: Delay cpuinfo_store_boot_cpu")
Cc: <stable@vger.kernel.org> # 4.4+
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
jprobe_return seems to have aged badly. Comments referring to
non-existent behaviours, and a dangerous habit of messing
with registers without telling the compiler.
This patches applies the following remedies:
- Fix the comments to describe the actual behaviour
- Tidy up the asm sequence to directly assign the
stack pointer without clobbering extra registers
- Mark the rest of the function as unreachable() so
that the compiler knows that there is no need for
an epilogue
- Stop making jprobe_return_break a global function
(you really don't want to call that guy, and it isn't
even a function).
Tested with tcp_probe.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The MIN_STACK_SIZE macro tries evaluate how much stack space needs
to be saved in the jprobes_stack array, sized at 128 bytes.
When using the IRQ stack, said macro can happily return up to
IRQ_STACK_SIZE, which is 16kB. Mayhem follows.
This patch fixes things by getting rid of the crazy macro and
limiting the copy to be at most the size of the jprobes_stack
array, no matter which stack we're on.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Stepping with PSTATE.D=1 is bad news. The step won't generate a debug
exception and we'll likely walk off into random data structures. This
should never happen, but when it does, it's a PITA to debug. Add a
WARN_ON to shout if we realise this is about to take place.
Signed-off-by: Will Deacon <will.deacon@arm.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
There is no need to explicitly clear the SS bit immediately before
setting it unconditionally.
Reported-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Clearing PSTATE.D is one of the requirements for generating a debug
exception. The arm64 booting protocol requires that PSTATE.D is set,
since many of the debug registers (for example, the hw_breakpoint
registers) are UNKNOWN out of reset and could potentially generate
spurious, fatal debug exceptions in early boot code if PSTATE.D was
clear. Once the debug registers have been safely initialised, PSTATE.D
is cleared, however this is currently broken for two reasons:
(1) The boot CPU clears PSTATE.D in a postcore_initcall and secondary
CPUs clear PSTATE.D in secondary_start_kernel. Since the initcall
runs after SMP (and the scheduler) have been initialised, there is
no guarantee that it is actually running on the boot CPU. In this
case, the boot CPU is left with PSTATE.D set and is not capable of
generating debug exceptions.
(2) In a preemptible kernel, we may explicitly schedule on the IRQ
return path to EL1. If an IRQ occurs with PSTATE.D set in the idle
thread, then we may schedule the kthread_init thread, run the
postcore_initcall to clear PSTATE.D and then context switch back
to the idle thread before returning from the IRQ. The exception
return path will then restore PSTATE.D from the stack, and set it
again.
This patch fixes the problem by moving the clearing of PSTATE.D earlier
to proc.S. This has the desirable effect of clearing it in one place for
all CPUs, long before we have to worry about the scheduler or any
exception handling. We ensure that the previous reset of MDSCR_EL1 has
completed before unmasking the exception, so that any spurious
exceptions resulting from UNKNOWN debug registers are not generated.
Without this patch applied, the kprobes selftests have been seen to fail
under KVM, where we end up attempting to step the OOL instruction buffer
with PSTATE.D set and therefore fail to complete the step.
Cc: <stable@vger.kernel.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Reported-by: Catalin Marinas <catalin.marinas@arm.com>
Tested-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Tested-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The pre-handler of this special 'trampoline' kprobe executes the return
probe handler functions and restores original return address in ELR_EL1.
This way the saved pt_regs still hold the original register context to be
carried back to the probed kernel function.
Signed-off-by: Sandeepa Prabhu <sandeepa.s.prabhu@gmail.com>
Signed-off-by: David A. Long <dave.long@linaro.org>
Acked-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The trampoline code is used by kretprobes to capture a return from a probed
function. This is done by saving the registers, calling the handler, and
restoring the registers. The code then returns to the original saved caller
return address. It is necessary to do this directly instead of using a
software breakpoint because the code used in processing that breakpoint
could itself be kprobe'd and cause a problematic reentry into the debug
exception handler.
Signed-off-by: William Cohen <wcohen@redhat.com>
Signed-off-by: David A. Long <dave.long@linaro.org>
Acked-by: Masami Hiramatsu <mhiramat@kernel.org>
[catalin.marinas@arm.com: removed unnecessary masking of the PSTATE bits]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Kprobes needs simulation of instructions that cannot be stepped
from a different memory location, e.g.: those instructions
that uses PC-relative addressing. In simulation, the behaviour
of the instruction is implemented using a copy of pt_regs.
The following instruction categories are simulated:
- All branching instructions(conditional, register, and immediate)
- Literal access instructions(load-literal, adr/adrp)
Conditional execution is limited to branching instructions in
ARM v8. If conditions at PSTATE do not match the condition fields
of opcode, the instruction is effectively NOP.
Thanks to Will Cohen for assorted suggested changes.
Signed-off-by: Sandeepa Prabhu <sandeepa.s.prabhu@gmail.com>
Signed-off-by: William Cohen <wcohen@redhat.com>
Signed-off-by: David A. Long <dave.long@linaro.org>
Acked-by: Masami Hiramatsu <mhiramat@kernel.org>
[catalin.marinas@arm.com: removed linux/module.h include]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Entry symbols are not kprobe safe. So blacklist them for kprobing.
Signed-off-by: Pratyush Anand <panand@redhat.com>
Signed-off-by: David A. Long <dave.long@linaro.org>
Acked-by: Masami Hiramatsu <mhiramat@kernel.org>
[catalin.marinas@arm.com: Do not include syscall wrappers in .entry.text]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Add all function symbols which are called from do_debug_exception under
NOKPROBE_SYMBOL, as they can not kprobed.
Signed-off-by: Pratyush Anand <panand@redhat.com>
Acked-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Add support for basic kernel probes(kprobes) and jump probes
(jprobes) for ARM64.
Kprobes utilizes software breakpoint and single step debug
exceptions supported on ARM v8.
A software breakpoint is placed at the probe address to trap the
kernel execution into the kprobe handler.
ARM v8 supports enabling single stepping before the break exception
return (ERET), with next PC in exception return address (ELR_EL1). The
kprobe handler prepares an executable memory slot for out-of-line
execution with a copy of the original instruction being probed, and
enables single stepping. The PC is set to the out-of-line slot address
before the ERET. With this scheme, the instruction is executed with the
exact same register context except for the PC (and DAIF) registers.
Debug mask (PSTATE.D) is enabled only when single stepping a recursive
kprobe, e.g.: during kprobes reenter so that probed instruction can be
single stepped within the kprobe handler -exception- context.
The recursion depth of kprobe is always 2, i.e. upon probe re-entry,
any further re-entry is prevented by not calling handlers and the case
counted as a missed kprobe).
Single stepping from the x-o-l slot has a drawback for PC-relative accesses
like branching and symbolic literals access as the offset from the new PC
(slot address) may not be ensured to fit in the immediate value of
the opcode. Such instructions need simulation, so reject
probing them.
Instructions generating exceptions or cpu mode change are rejected
for probing.
Exclusive load/store instructions are rejected too. Additionally, the
code is checked to see if it is inside an exclusive load/store sequence
(code from Pratyush).
System instructions are mostly enabled for stepping, except MSR/MRS
accesses to "DAIF" flags in PSTATE, which are not safe for
probing.
This also changes arch/arm64/include/asm/ptrace.h to use
include/asm-generic/ptrace.h.
Thanks to Steve Capper and Pratyush Anand for several suggested
Changes.
Signed-off-by: Sandeepa Prabhu <sandeepa.s.prabhu@gmail.com>
Signed-off-by: David A. Long <dave.long@linaro.org>
Signed-off-by: Pratyush Anand <panand@redhat.com>
Acked-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Cease using the arm32 arm_check_condition() function and replace it with
a local version for use in deprecated instruction support on arm64. Also
make the function table used by this available for future use by kprobes
and/or uprobes.
This function is derived from code written by Sandeepa Prabhu.
Signed-off-by: Sandeepa Prabhu <sandeepa.s.prabhu@gmail.com>
Signed-off-by: David A. Long <dave.long@linaro.org>
Acked-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Certain instructions are hard to execute correctly out-of-line (as in
kprobes). Test functions are added to insn.[hc] to identify these. The
instructions include any that use PC-relative addressing, change the PC,
or change interrupt masking. For efficiency and simplicity test
functions are also added for small collections of related instructions.
Signed-off-by: David A. Long <dave.long@linaro.org>
Acked-by: Masami Hiramatsu <mhiramat@kernel.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Add HAVE_REGS_AND_STACK_ACCESS_API feature for arm64, including supporting
functions and defines.
Signed-off-by: David A. Long <dave.long@linaro.org>
Acked-by: Masami Hiramatsu <mhiramat@kernel.org>
[catalin.marinas@arm.com: Remove unused functions]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
It can be useful for JIT software to be aware of MIDR_EL1 and
REVIDR_EL1 to ascertain the presence of any core errata that could
affect code generation.
This patch exposes these registers through sysfs:
/sys/devices/system/cpu/cpu$ID/regs/identification/midr_el1
/sys/devices/system/cpu/cpu$ID/regs/identification/revidr_el1
where $ID is the cpu number. For big.LITTLE systems, one can have a
mixture of cores (e.g. Cortex A53 and Cortex A57), thus all CPUs need
to be enumerated.
If the kernel does not have valid information to populate these entries
with, an empty string is returned to userspace.
Cc: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Steve Capper <steve.capper@linaro.org>
[suzuki.poulose@arm.com: ABI documentation updates, hotplug notifiers, kobject changes]
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
So far the arm64 clock_gettime() vDSO implementation only supported
the following clocks, falling back to the syscall for the others:
- CLOCK_REALTIME{,_COARSE}
- CLOCK_MONOTONIC{,_COARSE}
This patch adds support for the CLOCK_MONOTONIC_RAW clock, taking
advantage of the recent refactoring of the vDSO time functions. Like
the non-_COARSE clocks, this only works when the "arch_sys_counter"
clocksource is in use (allowing us to read the current time from the
virtual counter register), otherwise we also have to fall back to the
syscall.
Most of the data is shared with CLOCK_MONOTONIC, and the algorithm is
similar. The reference implementation in kernel/time/timekeeping.c
shows that:
- CLOCK_MONOTONIC = tk->wall_to_monotonic + tk->xtime_sec +
timekeeping_get_ns(&tk->tkr_mono)
- CLOCK_MONOTONIC_RAW = tk->raw_time + timekeeping_get_ns(&tk->tkr_raw)
- tkr_mono and tkr_raw are identical (in particular, same
clocksource), except these members:
* mult (only mono's multiplier is NTP-adjusted)
* xtime_nsec (always 0 for raw)
Therefore, tk->raw_time and tkr_raw->mult are now also stored in the
vDSO data page.
Cc: Ali Saidi <ali.saidi@arm.com>
Signed-off-by: Kevin Brodsky <kevin.brodsky@arm.com>
Reviewed-by: Dave Martin <dave.martin@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Time functions are directly implemented in assembly in arm64, and it
is desirable to keep it this way for performance reasons (everything
fits in registers, so that the stack is not used at all). However, the
current implementation is quite difficult to read and understand (even
considering it's assembly). Additionally, due to the structure of
__kernel_clock_gettime, which heavily uses conditional branches to
share code between the different clocks, it is difficult to support a
new clock without making the branches even harder to follow.
This commit completely refactors the structure of clock_gettime (and
gettimeofday along the way) while keeping exactly the same algorithms.
We no longer try to share code; instead, macros provide common
operations. This new approach comes with a number of advantages:
- In clock_gettime, clock implementations are no longer interspersed,
making them much more readable. Additionally, macros only use
registers passed as arguments or reserved with .req, this way it is
easy to make sure that registers are properly allocated. To avoid a
large number of branches in a given execution path, a jump table is
used; a normal execution uses 3 unconditional branches.
- __do_get_tspec has been replaced with 2 macros (get_ts_clock_mono,
get_clock_shifted_nsec) and explicit loading of data from the vDSO
page. Consequently, clock_gettime and gettimeofday are now leaf
functions, and saving x30 (lr) is no longer necessary.
- Variables protected by tb_seq_count are now loaded all at once,
allowing to merge the seqcnt_read macro into seqcnt_check.
- For CLOCK_REALTIME_COARSE, removed an unused load of the wall to
monotonic timespec.
- For CLOCK_MONOTONIC_COARSE, removed a few shift instructions.
Obviously, the downside of sharing less code is an increase in code
size. However since the vDSO has its own code page, this does not
really matter, as long as the size of the DSO remains below 4 kB. For
now this should be all right:
Before After
vdso.so size (B) 2776 3000
Signed-off-by: Kevin Brodsky <kevin.brodsky@arm.com>
Reviewed-by: Dave Martin <dave.martin@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
arm64/kernel/{vdso,signal}.c include vdso-offsets.h, as well as any
file that includes asm/vdso.h. Therefore, vdso-offsets.h must be
generated before these files are compiled.
The current rules in arm64/kernel/Makefile do not actually enforce
this, because even though $(obj)/vdso is listed as a prerequisite for
vdso-offsets.h, this does not result in the intended effect of
building the vdso subdirectory (before all the other objects). As a
consequence, depending on the order in which the rules are followed,
vdso-offsets.h is updated or not before arm64/kernel/{vdso,signal}.o
are built. The current rules also impose an unnecessary dependency on
vdso-offsets.h for all arm64/kernel/*.o, resulting in unnecessary
rebuilds. This is made obvious when using make -j:
touch arch/arm64/kernel/vdso/gettimeofday.S && make -j$NCPUS arch/arm64/kernel
will sometimes result in none of arm64/kernel/*.o being
rebuilt, sometimes all of them, or even just some of them.
It is quite difficult to ensure that a header is generated before it
is used with recursive Makefiles by using normal rules. Instead,
arch-specific generated headers are normally built in the archprepare
recipe in the arch Makefile (see for instance arch/ia64/Makefile).
Unfortunately, asm-offsets.h is included in gettimeofday.S, and must
therefore be generated before vdso-offsets.h, which is not the case if
archprepare is used. For this reason, a rule run after archprepare has
to be used.
This commit adds rules in arm64/Makefile to build vdso-offsets.h
during the prepare step, ensuring that vdso-offsets.h is generated
before building anything. It also removes the now-unnecessary
dependencies on vdso-offsets.h in arm64/kernel/Makefile. Finally, it
removes the duplication of asm-offsets.h between arm64/kernel/vdso/
and include/generated/ and makes include/generated/vdso-offsets.h a
target in arm64/kernel/vdso/Makefile.
Cc: Will Deacon <will.deacon@arm.com>
Cc: Michal Marek <mmarek@suse.com>
Signed-off-by: Kevin Brodsky <kevin.brodsky@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This reverts commit 90f777beb7.
While this commit was aimed at fixing the dependencies, with a large
make -j the vdso-offsets.h file is not generated, leading to build
failures.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
arch/arm64/kernel/{vdso,signal}.c include generated/vdso-offsets.h, and
therefore the symbol offsets must be generated before these files are
compiled.
The current rules in arm64/kernel/Makefile do not actually enforce
this, because even though $(obj)/vdso is listed as a prerequisite for
vdso-offsets.h, this does not result in the intended effect of
building the vdso subdirectory (before all the other objects). As a
consequence, depending on the order in which the rules are followed,
vdso-offsets.h is updated or not before arm64/kernel/{vdso,signal}.o
are built. The current rules also impose an unnecessary dependency on
vdso-offsets.h for all arm64/kernel/*.o, resulting in unnecessary
rebuilds.
This patch removes the arch/arm64/kernel/vdso/vdso-offsets.h file
generation, leaving only the include/generated/vdso-offsets.h one. It
adds a forced dependency check of the vdso-offsets.h file in
arch/arm64/kernel/Makefile which, if not up to date according to the
arch/arm64/kernel/vdso/Makefile rules (depending on vdso.so.dbg), will
trigger the vdso/ subdirectory build and vdso-offsets.h re-generation.
Automatic kbuild dependency rules between kernel/{vdso,signal}.c rules
and vdso-offsets.h will guarantee that the vDSO object is built first,
followed by the generated symbol offsets header file.
Reported-by: Kevin Brodsky <kevin.brodsky@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Cavium erratum 27456 commit 104a0c02e8
("arm64: Add workaround for Cavium erratum 27456")
is applicable for thunderx-81xx pass1.0 SoC as well.
Adding code to enable to 81xx.
Signed-off-by: Ganapatrao Kulkarni <gkulkarni@cavium.com>
Reviewed-by: Andrew Pinski <apinski@cavium.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
If we take an exception while at EL1, the exception handler inherits
the original context's addr_limit and PSTATE.UAO values. To be consistent
always reset addr_limit and PSTATE.UAO on (re-)entry to EL1. This
prevents accidental re-use of the original context's addr_limit.
Based on a similar patch for arm from Russell King.
Cc: <stable@vger.kernel.org> # 4.6-
Acked-by: Will Deacon <will.deacon@arm.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Move xen_early_init() before efi_init(), then when calling efi_init()
could initialize Xen specific UEFI.
Check if it runs on Xen hypervisor through the flat dts.
Cc: Russell King <linux@arm.linux.org.uk>
Signed-off-by: Shannon Zhao <shannon.zhao@linaro.org>
Reviewed-by: Stefano Stabellini <stefano.stabellini@eu.citrix.com>
Reviewed-by: Julien Grall <julien.grall@arm.com>
Tested-by: Julien Grall <julien.grall@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Add the code that enables the switch to the lower HYP VA range.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
When running the OS with a page size > 4 KB, we need to round up mappings
for regions that are not aligned to the OS's page size. We already avoid
block mappings for EfiRuntimeServicesCode/Data regions for other reasons,
but in the unlikely event that other unaliged regions exists that have the
EFI_MEMORY_RUNTIME attribute set, ensure that unaligned regions are always
mapped down to pages. This way, the overlapping page is guaranteed not to
be covered by a block mapping that needs to be split.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
To avoid triggering diagnostics in the MMU code that are finicky about
splitting block mappings into more granular mappings, ensure that regions
that are likely to appear in the Memory Attributes table as well as the
UEFI memory map are always mapped down to pages. This way, we can use
apply_to_page_range() instead of create_pgd_mapping() for the second pass,
which cannot split or merge block entries, and operates strictly on PTEs.
Note that this aligns the arm64 Memory Attributes table handling code with
the ARM code, which already uses apply_to_page_range() to set the strict
permissions.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Add a bool parameter 'allow_block_mappings' to create_pgd_mapping() and
the various helper functions that it descends into, to give the caller
control over whether block entries may be used to create the mapping.
The UEFI runtime mapping routines will use this to avoid creating block
entries that would need to split up into page entries when applying the
permissions listed in the Memory Attributes firmware table.
This also replaces the block_mappings_allowed() helper function that was
added for DEBUG_PAGEALLOC functionality, but the resulting code is
functionally equivalent (given that debug_page_alloc does not operate on
EFI page table entries anyway)
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The ARM errata 819472, 826319, 827319 and 824069 for affected
Cortex-A53 cores demand to promote "dc cvau" instructions to
"dc civac". Since we allow userspace to also emit those instructions,
we should make sure that "dc cvau" gets promoted there too.
So lets grasp the nettle here and actually trap every userland cache
maintenance instruction once we detect at least one affected core in
the system.
We then emulate the instruction by executing it on behalf of userland,
promoting "dc cvau" to "dc civac" on the way and injecting access
fault back into userspace.
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
[catalin.marinas@arm.com: s/set_segfault/arm64_notify_segfault/]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The code for injecting a signal into userland if a trapped instruction
fails emulation due to a _userland_ error (like an illegal address)
will be used more often with the next patch.
Factor out the core functionality into a separate function and use
that both for the existing trap handler and for the deprecated
instructions emulation.
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
[catalin.marinas@arm.com: s/set_segfault/arm64_notify_segfault/]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Currently we call the (optional) enable function for CPU _features_
only. As CPU _errata_ descriptions share the same data structure and
having an enable function is useful for errata as well (for instance
to set bits in SCTLR), lets call it when enumerating erratas too.
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
As Kees Cook notes in the ARM counterpart of this patch [0]:
The _etext position is defined to be the end of the kernel text code,
and should not include any part of the data segments. This interferes
with things that might check memory ranges and expect executable code
up to _etext.
In particular, Kees is referring to the HARDENED_USERCOPY patch set [1],
which rejects attempts to call copy_to_user() on kernel ranges containing
executable code, but does allow access to the .rodata segment. Regardless
of whether one may or may not agree with the distinction, it makes sense
for _etext to have the same meaning across architectures.
So let's put _etext where it belongs, between .text and .rodata, and fix
up existing references to use __init_begin instead, which unlike _end_rodata
includes the exception and notes sections as well.
The _etext references in kaslr.c are left untouched, since its references
to [_stext, _etext) are meant to capture potential jump instruction targets,
and so disregarding .rodata is actually an improvement here.
[0] http://article.gmane.org/gmane.linux.kernel/2245084
[1] http://thread.gmane.org/gmane.linux.kernel.hardened.devel/2502
Reported-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
To aid in debugging kexec problems or when adding new functionality to
kexec add a new routine kexec_image_info() and several inline pr_debug
statements.
Signed-off-by: Geoff Levand <geoff@infradead.org>
Reviewed-by: James Morse <james.morse@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Add three new files, kexec.h, machine_kexec.c and relocate_kernel.S to the
arm64 architecture that add support for the kexec re-boot mechanism
(CONFIG_KEXEC) on arm64 platforms.
Signed-off-by: Geoff Levand <geoff@infradead.org>
Reviewed-by: James Morse <james.morse@arm.com>
[catalin.marinas@arm.com: removed dead code following James Morse's comments]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Commit 68234df4ea ("arm64: kill flush_cache_all()") removed the global
arm64 routines cpu_reset() and cpu_soft_restart() needed by the arm64
kexec and kdump support. Add back a simplified version of
cpu_soft_restart() with some changes needed for kexec in the new files
cpu_reset.S, and cpu_reset.h.
When a CPU is reset it needs to be put into the exception level it had when
it entered the kernel. Update cpu_soft_restart() to accept an argument
which signals if the reset address should be entered at EL1 or EL2, and
add a new hypercall HVC_SOFT_RESTART which is used for the EL2 switch.
Signed-off-by: Geoff Levand <geoff@infradead.org>
Reviewed-by: James Morse <james.morse@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
kernel/smp.c has a fancy counter that keeps track of the number of CPUs
it marked as not-present and left in cpu_park_loop(). If there are any
CPUs spinning in here, features like kexec or hibernate may release them
by overwriting this memory.
This problem also occurs on machines using spin-tables to release
secondary cores.
After commit 44dbcc93ab ("arm64: Fix behavior of maxcpus=N")
we bring all known cpus into the secondary holding pen, meaning this
memory can't be re-used by kexec or hibernate.
Add a function cpus_are_stuck_in_kernel() to determine if either of these
cases have occurred.
Signed-off-by: James Morse <james.morse@arm.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
[catalin.marinas@arm.com: cherry-picked from mainline for kexec dependency]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
On systems with PCI_PROBE_ONLY set, we rely on BAR assignments from
firmware. Previously we did not insert those resources into the resource
tree, so we had to skip pci_enable_resources() because it fails if
resources are not in the resource tree.
Now that we *do* insert resources even when PCI_PROBE_ONLY is set, we no
longer need the ARM64-specific pcibios_enable_device(). Remove it so we
use the generic version.
[bhelgaas: changelog]
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Will Deacon <will.deacon@arm.com>
CC: Arnd Bergmann <arnd@arndb.de>
CC: Catalin Marinas <catalin.marinas@arm.com>
After patch "of/platform: Add common method to populate default bus",
it is possible for arch code to remove unnecessary callers of
of_platform_populate with default match table.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Signed-off-by: Rob Herring <robh@kernel.org>
The of_iommu_init() is called multiple times by arch code,
make it postcore_initcall_sync, then we can drop relevant
calls fully.
Note, the IOMMUs should have a chance to perform some basic
initialisation before we start adding masters to them. So
postcore_initcall_sync is good choice, it ensures of_iommu_init()
called before of_platform_populate.
Acked-by: Rich Felker <dalias@libc.org>
Tested-by: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Rich Felker <dalias@libc.org>
Cc: Rob Herring <robh+dt@kernel.org>
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Acked-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Rob Herring <robh@kernel.org>
Hibernate relies on cpu hotplug to prevent secondary cores executing
the kernel text while it is being restored.
Add a call to cpus_are_stuck_in_kernel() to determine if there are
CPUs not counted by 'num_online_cpus()', and prevent hibernate in this
case.
Fixes: 82869ac57b ("arm64: kernel: Add support for hibernate/suspend-to-disk")
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
kernel/smp.c has a fancy counter that keeps track of the number of CPUs
it marked as not-present and left in cpu_park_loop(). If there are any
CPUs spinning in here, features like kexec or hibernate may release them
by overwriting this memory.
This problem also occurs on machines using spin-tables to release
secondary cores.
After commit 44dbcc93ab ("arm64: Fix behavior of maxcpus=N")
we bring all known cpus into the secondary holding pen, meaning this
memory can't be re-used by kexec or hibernate.
Add a function cpus_are_stuck_in_kernel() to determine if either of these
cases have occurred.
Signed-off-by: James Morse <james.morse@arm.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
This patch adds support for ACPI_TABLE_UPGRADE for ARM64
To access initrd image we need to move initialization
of linear mapping a bit earlier.
The implementation of the feature acpi_table_upgrade()
(drivers/acpi/tables.c) works with initrd data represented as an array
in virtual memory. It uses some library utility to find the redefined
tables in that array and iterates over it to copy the data to new
allocated memory. So to access the initrd data via fixmap
we need to rewrite it considerably.
In x86 arch, kernel memory is already mapped by the time when
acpi_table_upgrade() and acpi_boot_table_init() are called so I
think that we can just move this mapping one function earlier too.
Signed-off-by: Jon Masters <jcm@redhat.com>
Signed-off-by: Aleksey Makarov <aleksey.makarov@linaro.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Currently we treat ESR_EL1 bit 24 as software-defined for distinguishing
instruction aborts from data aborts, but this bit is architecturally
RES0 for instruction aborts, and could be allocated for an arbitrary
purpose in future. Additionally, we hard-code the value in entry.S
without the mnemonic, making the code difficult to understand.
Instead, remove ESR_LNX_EXEC, and distinguish aborts based on the esr,
which we already pass to the sole use of ESR_LNX_EXEC. A new helper,
is_el0_instruction_abort() is added to make the logic clear. Any
instruction aborts taken from EL1 will already have been handled by
bad_mode, so we need not handle that case in the helper.
For consistency, the existing permission_fault helper is renamed to
is_permission_fault, and the return type is changed to bool. There
should be no functional changes as the return value was a boolean
expression, and the result is only used in another boolean expression.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Dave P Martin <dave.martin@arm.com>
Cc: Huang Shijie <shijie.huang@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Several places open-code extraction of the EC field from an ESR_ELx
value, in subtly different ways. This is unfortunate duplication and
variation, and the precise logic used to extract the field is a
distraction.
This patch adds a new macro, ESR_ELx_EC(), to extract the EC field from
an ESR_ELx value in a consistent fashion.
Existing open-coded extractions in core arm64 code are moved over to the
new helper. KVM code is left as-is for the moment.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Huang Shijie <shijie.huang@arm.com>
Cc: Dave P Martin <dave.martin@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Currently dump_mem attempts to dump memory in 64-bit chunks when
reporting a failure in 64-bit code, or 32-bit chunks when reporting a
failure in 32-bit code. We added code to handle these two cases
separately in commit e147ae6d7f ("arm64: modify the dump mem for
64 bit addresses").
However, in all cases dump_mem is called, the failing context is a
kernel rather than user context. Additionally dump_mem is assumed to
only be used for kernel contexts, as internally it switches to
KERNEL_DS, and its callers pass kernel stack bounds.
This patch removes the redundant 32-bit chunk logic and associated
compat parameter, largely reverting the aforementioned commit. For the
call in __die(), the check of in_interrupt() is removed also, as __die()
is only called in response to faults from the kernel's exception level,
and thus the !user_mode(regs) check is sufficient. Were this not the
case, the used of task_stack_page(tsk) to generate the stack bounds
would be erroneous.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The upstream commit 1771c6e1a5
("x86/kasan: instrument user memory access API") added KASAN instrument to
x86 user memory access API, so added such instrument to ARM64 too.
Define __copy_to/from_user in C in order to add kasan_check_read/write call,
rename assembly implementation to __arch_copy_to/from_user.
Tested by test_kasan module.
Acked-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Yang Shi <yang.shi@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Current versions of gdb do not interoperate cleanly with kgdb on arm64
systems because gdb and kgdb do not use the same register description.
This patch modifies kgdb to work with recent releases of gdb (>= 7.8.1).
Compatibility with gdb (after the patch is applied) is as follows:
gdb-7.6 and earlier Ok
gdb-7.7 series Works if user provides custom target description
gdb-7.8(.0) Works if user provides custom target description
gdb-7.8.1 and later Ok
When commit 44679a4f14 ("arm64: KGDB: Add step debugging support") was
introduced it was paired with a gdb patch that made an incompatible
change to the gdbserver protocol. This patch was eventually merged into
the gdb sources:
https://sourceware.org/git/gitweb.cgi?p=binutils-gdb.git;a=commit;h=a4d9ba85ec5597a6a556afe26b712e878374b9dd
The change to the protocol was mostly made to simplify big-endian support
inside the kernel gdb stub. Unfortunately the gdb project released
gdb-7.7.x and gdb-7.8.0 before the protocol incompatibility was identified
and reversed:
https://sourceware.org/git/gitweb.cgi?p=binutils-gdb.git;a=commit;h=bdc144174bcb11e808b4e73089b850cf9620a7ee
This leaves us in a position where kgdb still uses the no-longer-used
protocol; gdb-7.8.1, which restored the original behaviour, was
released on 2014-10-29.
I don't believe it is possible to detect/correct the protocol
incompatiblity which means the kernel must take a view about which
version of the gdb remote protocol is "correct". This patch takes the
view that the original/current version of the protocol is correct
and that version found in gdb-7.7.x and gdb-7.8.0 is anomalous.
Signed-off-by: Daniel Thompson <daniel.thompson@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Close the hole where ptrace can change a syscall out from under seccomp.
Signed-off-by: Kees Cook <keescook@chromium.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: linux-arm-kernel@lists.infradead.org
Currently, if arch code wants to supply seccomp_data directly to
seccomp (which is generally much faster than having seccomp do it
using the syscall_get_xyz() API), it has to use the two-phase
seccomp hooks. Add it to the easy hooks, too.
Cc: linux-arch@vger.kernel.org
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
If the kernel is set to show unhandled signals, and a user task does not
handle a SIGILL as a result of an instruction abort, we will attempt to
log the offending instruction with dump_instr before killing the task.
We use dump_instr to log the encoding of the offending userspace
instruction. However, dump_instr is also used to dump instructions from
kernel space, and internally always switches to KERNEL_DS before dumping
the instruction with get_user. When both PAN and UAO are in use, reading
a user instruction via get_user while in KERNEL_DS will result in a
permission fault, which leads to an Oops.
As we have regs corresponding to the context of the original instruction
abort, we can inspect this and only flip to KERNEL_DS if the original
abort was taken from the kernel, avoiding this issue. At the same time,
remove the redundant (and incorrect) comments regarding the order
dump_mem and dump_instr are called in.
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: <stable@vger.kernel.org> #4.6+
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reported-by: Vladimir Murzin <vladimir.murzin@arm.com>
Tested-by: Vladimir Murzin <vladimir.murzin@arm.com>
Fixes: 57f4959bad ("arm64: kernel: Add support for User Access Override")
Signed-off-by: Will Deacon <will.deacon@arm.com>
Implement pci_acpi_scan_root() and other arch-specific calls so ARM64 can
use ACPI to setup and enumerate PCI buses.
Use memory-mapped configuration space information from either the ACPI
_CBA method or the MCFG table and the ECAM library and generic ECAM config
accessor ops.
Implement acpi_pci_bus_find_domain_nr() to retrieve the domain number from
the acpi_pci_root structure.
Implement pcibios_add_bus() and pcibios_remove_bus() to call
acpi_pci_add_bus() and acpi_pci_remove_bus() for ACPI slot management and
other configuration.
Signed-off-by: Tomasz Nowicki <tn@semihalf.com>
Signed-off-by: Jayachandran C <jchandra@broadcom.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Reviewed-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
On ACPI systems, the PCI_Config OperationRegion allows AML to access PCI
configuration space. The ACPI CA AML interpreter uses performs config
space accesses with acpi_os_read_pci_configuration() and
acpi_os_write_pci_configuration(), which are OS-dependent functions
supplied by acpi/osl.c.
Implement the arch-specific raw_pci_read() and raw_pci_write() interfaces
used by acpi/osl.c for PCI_Config accesses.
N.B. PCI_Config accesses are not supported before PCI bus enumeration.
[bhelgaas: changelog]
Signed-off-by: Tomasz Nowicki <tn@semihalf.com>
Signed-off-by: Jayachandran C <jchandra@broadcom.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Reviewed-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
To enable PCI legacy IRQs on platforms booting with ACPI, arch code should
include ACPI-specific callbacks that parse and set-up the device IRQ
number, equivalent to the DT boot path. Owing to the current ACPI core scan
handlers implementation, ACPI PCI legacy IRQs bindings cannot be parsed at
device add time, since that would trigger ACPI scan handlers ordering
issues depending on how the ACPI tables are defined.
To solve this problem and consolidate FW PCI legacy IRQs parsing in one
single pcibios callback (pending final removal), this patch moves DT PCI
IRQ parsing to the pcibios_alloc_irq() callback (called by PCI core code at
driver probe time) and adds ACPI PCI legacy IRQs parsing to the same
callback too, so that FW PCI legacy IRQs parsing is confined in one single
arch callback that can be easily removed when code parsing PCI legacy IRQs
is consolidated and moved to core PCI code.
Suggested-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Signed-off-by: Tomasz Nowicki <tn@semihalf.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Extend pci_bus_find_domain_nr() so it can find the domain from either:
- ACPI, via the new acpi_pci_bus_find_domain_nr() interface, or
- DT, via of_pci_bus_find_domain_nr()
Note that this is only used for CONFIG_PCI_DOMAINS_GENERIC=y, so it does
not affect x86 or ia64.
[bhelgaas: changelog]
Signed-off-by: Tomasz Nowicki <tn@semihalf.com>
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
If we take an exception we don't expect (e.g. SError), we report this in
the bad_mode handler with pr_crit. Depending on the configured log
level, we may or may not log additional information in functions called
subsequently. Notably, the messages in dump_stack (including the CPU
number) are printed with KERN_DEFAULT and may not appear.
Some exceptions have an IMPLEMENTATION DEFINED ESR_ELx.ISS encoding, and
knowing the CPU number is crucial to correctly decode them. To ensure
that this is always possible, we should log the CPU number along with
the ESR_ELx value, so we are not reliant on subsequent logs or
additional printk configuration options.
This patch logs the CPU number in bad_mode such that it is possible for
a developer to decode these exceptions, provided access to sufficient
documentation.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reported-by: Al Grant <Al.Grant@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dave Martin <dave.martin@arm.com>
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
This patch brings the PER_LINUX32 /proc/cpuinfo format more in line with
the 32-bit ARM one by providing an additional line:
model name : ARMv8 Processor rev X (v8l)
Cc: <stable@vger.kernel.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Introduce a new file to hold ACPI based NUMA information parsing from
SRAT and SLIT.
SRAT includes the CPU ACPI ID to Proximity Domain mappings and memory
ranges to Proximity Domain mapping. SLIT has the information of inter
node distances(relative number for access latency).
Signed-off-by: Hanjun Guo <hanjun.guo@linaro.org>
Signed-off-by: Ganapatrao Kulkarni <gkulkarni@caviumnetworks.com>
[rrichter@cavium.com Reworked for numa v10 series ]
Signed-off-by: Robert Richter <rrichter@cavium.com>
[david.daney@cavium.com reorderd and combinded with other patches in
Hanjun Guo's original set, removed get_mpidr_in_madt() and use
acpi_map_madt_entry() instead.]
Signed-off-by: David Daney <david.daney@cavium.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Tested-by: Dennis Chen <dennis.chen@arm.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Pull perf updates from Ingo Molnar:
"Mostly tooling and PMU driver fixes, but also a number of late updates
such as the reworking of the call-chain size limiting logic to make
call-graph recording more robust, plus tooling side changes for the
new 'backwards ring-buffer' extension to the perf ring-buffer"
* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (34 commits)
perf record: Read from backward ring buffer
perf record: Rename variable to make code clear
perf record: Prevent reading invalid data in record__mmap_read
perf evlist: Add API to pause/resume
perf trace: Use the ptr->name beautifier as default for "filename" args
perf trace: Use the fd->name beautifier as default for "fd" args
perf report: Add srcline_from/to branch sort keys
perf evsel: Record fd into perf_mmap
perf evsel: Add overwrite attribute and check write_backward
perf tools: Set buildid dir under symfs when --symfs is provided
perf trace: Only auto set call-graph to "dwarf" when syscalls are being traced
perf annotate: Sort list of recognised instructions
perf annotate: Fix identification of ARM blt and bls instructions
perf tools: Fix usage of max_stack sysctl
perf callchain: Stop validating callchains by the max_stack sysctl
perf trace: Fix exit_group() formatting
perf top: Use machine->kptr_restrict_warned
perf trace: Warn when trying to resolve kernel addresses with kptr_restrict=1
perf machine: Do not bail out if not managing to read ref reloc symbol
perf/x86/intel/p4: Trival indentation fix, remove space
...
most architectures are relying on mmap_sem for write in their
arch_setup_additional_pages. If the waiting task gets killed by the oom
killer it would block oom_reaper from asynchronous address space reclaim
and reduce the chances of timely OOM resolving. Wait for the lock in
the killable mode and return with EINTR if the task got killed while
waiting.
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Andy Lutomirski <luto@amacapital.net> [x86 vdso]
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Define HAVE_EXIT_THREAD for archs which want to do something in
exit_thread. For others, let's define exit_thread as an empty inline.
This is a cleanup before we change the prototype of exit_thread to
accept a task parameter.
[akpm@linux-foundation.org: fix mips]
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
Cc: Aurelien Jacquiot <a-jacquiot@ti.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chen Liqin <liqin.linux@gmail.com>
Cc: Chris Metcalf <cmetcalf@mellanox.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: David Howells <dhowells@redhat.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Guan Xuetao <gxt@mprc.pku.edu.cn>
Cc: Haavard Skinnemoen <hskinnemoen@gmail.com>
Cc: Hans-Christian Egtvedt <egtvedt@samfundet.no>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Helge Deller <deller@gmx.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: James Hogan <james.hogan@imgtec.com>
Cc: Jeff Dike <jdike@addtoit.com>
Cc: Jesper Nilsson <jesper.nilsson@axis.com>
Cc: Jiri Slaby <jslaby@suse.cz>
Cc: Jonas Bonn <jonas@southpole.se>
Cc: Koichi Yasutake <yasutake.koichi@jp.panasonic.com>
Cc: Lennox Wu <lennox.wu@gmail.com>
Cc: Ley Foon Tan <lftan@altera.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Mikael Starvik <starvik@axis.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Rich Felker <dalias@libc.org>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Richard Kuo <rkuo@codeaurora.org>
Cc: Richard Weinberger <richard@nod.at>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Steven Miao <realmz6@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
User visible:
- Honour the kernel.perf_event_max_stack knob more precisely by not counting
PERF_CONTEXT_{KERNEL,USER} when deciding when to stop adding entries to
the perf_sample->ip_callchain[] array (Arnaldo Carvalho de Melo)
- Fix identation of 'stalled-backend-cycles' in 'perf stat' (Namhyung Kim)
- Update runtime using 'cpu-clock' event in 'perf stat' (Namhyung Kim)
- Use 'cpu-clock' for cpu targets in 'perf stat' (Namhyung Kim)
- Avoid fractional digits for integer scales in 'perf stat' (Andi Kleen)
- Store vdso buildid unconditionally, as it appears in callchains and
we're not checking those when creating the build-id table, so we
end up not being able to resolve VDSO symbols when doing analysis
on a different machine than the one where recording was done, possibly
of a different arch even (arm -> x86_64) (He Kuang)
Infrastructure:
- Generalize max_stack sysctl handler, will be used for configuring
multiple kernel knobs related to callchains (Arnaldo Carvalho de Melo)
Cleanups:
- Introduce DSO__NAME_KALLSYMS and DSO__NAME_KCORE, to stop using
open coded strings (Masami Hiramatsu)
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2
iQIcBAABCAAGBQJXOn7eAAoJENZQFvNTUqpAsOAP/3f/XJekPQAnMcKRBp2noCuj
nRu1kBltVJyP8iOU5PKSJwel4F9ykNNMl+/rzzxHDo13IM8uc+HnZOJZ6e9mJIJ1
xqjdqM4EDlYYoFApJzCjTK6CMlevCazosdQT1bbmMDYVPc2uQR/GnutFrzqf/Plg
hEougIGtfrdy85g95CRdxpy2yMwDK4EwsiDRm9ib1hnuamQZl97buWemBVqSJmLY
p82E2aMU5Fv5+B8AO4I7V88ZmgpmryjxpM+LjffgNUDSKsSHrlG4NiQ3znV1bgst
Rc++w78+qxoIozOu6/IX8eSI2L/1eyM/yQ6Qre0KuvYXCl+NopTAYSSJlaA4tyHF
c55z7HucuyATN3PrFRHlbWUT/RMIVC0j0lnZOc7SJLl90hJQ+nv0iZcbYwMbeHu1
3LGlcd9jDwQYiClbaT9ATxZJ8B9An0/k/HJdatbAHN0wRomP2Ozz/qD2nmEbUwpV
sCyLOo/LJkvVkuUjSg6ZiOArNIk4iTSPSAUV+SAL6YOEOZMAX5ISUJQ174+zFC9a
gqtVsCXvwLIsndXb8ys1r9/fit/MUci0OzKX3SG1K765+E4Bk23KcAgMNbM/a7lp
ZmHDXMC+yBYcnYNnaxkp7c55CWUlKGOeR4e+KmB99KoeIleYgPhD2UM5beo61TmN
yUEPtiiFiZmTRkiAu83R
=7OdF
-----END PGP SIGNATURE-----
Merge tag 'perf-core-for-mingo-20160516' of git://git.kernel.org/pub/scm/linux/kernel/git/acme/linux into perf/core
Pull perf/core improvements and fixes from Arnaldo Carvalho de Melo:
User visible changes:
- Honour the kernel.perf_event_max_stack knob more precisely by not counting
PERF_CONTEXT_{KERNEL,USER} when deciding when to stop adding entries to
the perf_sample->ip_callchain[] array (Arnaldo Carvalho de Melo)
- Fix identation of 'stalled-backend-cycles' in 'perf stat' (Namhyung Kim)
- Update runtime using 'cpu-clock' event in 'perf stat' (Namhyung Kim)
- Use 'cpu-clock' for cpu targets in 'perf stat' (Namhyung Kim)
- Avoid fractional digits for integer scales in 'perf stat' (Andi Kleen)
- Store vdso buildid unconditionally, as it appears in callchains and
we're not checking those when creating the build-id table, so we
end up not being able to resolve VDSO symbols when doing analysis
on a different machine than the one where recording was done, possibly
of a different arch even (arm -> x86_64) (He Kuang)
Infrastructure changes:
- Generalize max_stack sysctl handler, will be used for configuring
multiple kernel knobs related to callchains (Arnaldo Carvalho de Melo)
Cleanups:
- Introduce DSO__NAME_KALLSYMS and DSO__NAME_KCORE, to stop using
open coded strings (Masami Hiramatsu)
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We will use it to count how many addresses are in the entry->ip[] array,
excluding PERF_CONTEXT_{KERNEL,USER,etc} entries, so that we can really
return the number of entries specified by the user via the relevant
sysctl, kernel.perf_event_max_contexts, or via the per event
perf_event_attr.sample_max_stack knob.
This way we keep the perf_sample->ip_callchain->nr meaning, that is the
number of entries, be it real addresses or PERF_CONTEXT_ entries, while
honouring the max_stack knobs, i.e. the end result will be max_stack
entries if we have at least that many entries in a given stack trace.
Cc: David Ahern <dsahern@gmail.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: http://lkml.kernel.org/n/tip-s8teto51tdqvlfhefndtat9r@git.kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
This makes perf_callchain_{user,kernel}() receive the max stack
as context for the perf_callchain_entry, instead of accessing
the global sysctl_perf_event_max_stack.
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Brendan Gregg <brendan.d.gregg@gmail.com>
Cc: David Ahern <dsahern@gmail.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: He Kuang <hekuang@huawei.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Milian Wolff <milian.wolff@kdab.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: Wang Nan <wangnan0@huawei.com>
Cc: Zefan Li <lizefan@huawei.com>
Link: http://lkml.kernel.org/n/tip-kolmn1yo40p7jhswxwrc7rrd@git.kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
- Support for the PMU in Broadcom's Vulcan CPU
- Dynamic event detection using the PMCEIDn_EL0 ID registers
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABCgAGBQJXNhyFAAoJELescNyEwWM0A0gIAL52VQid16PvLgEO4g6mzv5B
S1ef/y45342R/DYczcUSFboMPuqYSxZ/i7dCwpvLUKX/YjyqQrrGvvS4IYOS99Mp
/OAcf8eTyzzVpJiGQetta3q20gNHGXOxd48R1zcgt+bbEax89lyHQul0A8+rPWLq
RZhEI6Hcq9fb70AjXjWvDxdbbJhtDKc8BGuptygOEqc8LO3mrb1J60TclU629XOH
Jn4Vdu5f6Rx8hPFdw5HXn+Vdheymphz0qj1lyGCQS4Am97bM5J/54a/A4tyHnHuQ
s9Y26NIAvrktp9wCMlXGQhYL94e1rZowXCWxF98D9XrlIzYORIdf/OZ5DCS8LCA=
=0ntf
-----END PGP SIGNATURE-----
Merge tag 'arm64-perf' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 perf updates from Will Deacon:
"The main addition here is support for Broadcom's Vulcan core using the
architected ID registers for discovering supported events.
- Support for the PMU in Broadcom's Vulcan CPU
- Dynamic event detection using the PMCEIDn_EL0 ID registers"
* tag 'arm64-perf' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux:
arm64: perf: don't expose CHAIN event in sysfs
arm64/perf: Add Broadcom Vulcan PMU support
arm64/perf: Filter common events based on PMCEIDn_EL0
arm64/perf: Access pmu register using <read/write>_sys_reg
arm64/perf: Define complete ARMv8 recommended implementation defined events
arm64/perf: Changed events naming as per the ARM ARM
arm64: dts: Add Broadcom Vulcan PMU in dts
Documentation: arm64: pmu: Add Broadcom Vulcan PMU binding
- virt_to_page/page_address optimisations
- Support for NUMA systems described using device-tree
- Support for hibernate/suspend-to-disk
- Proper support for maxcpus= command line parameter
- Detection and graceful handling of AArch64-only CPUs
- Miscellaneous cleanups and non-critical fixes
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABCgAGBQJXNbgkAAoJELescNyEwWM0PtcIAK11xaOMmSqXz8fcTeNLw4dS
taaPWhjCYus8EhJyvTetfwk74+qVApdvKXKNKgODJXQEjeQx2brdUfbQZb31DTGT
798UYCAyEYCWkXspqi+/dpZEgUGPYH7uGOu2eDd19+PhTeX/EQSRX3fC9k0BNhvh
PN9pOgRcKAlIExZ6QYmT0g56VLtbCfFShN41mQ8HdpShl6pPJuhQ+kDDzudmRjuD
11/oYuOaVTnwbPuXn+sjOrWvMkfINHI70BAQnnBs0v+5c45mzpqEMsy0dYo2Pl2m
ar5lUFVIZggQkiqcOzqBzEgF+4gNw4LUu1DgK6cNKNMtL6k8E9zeOZMWeSVr0lg=
=bT5E
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Will Deacon:
- virt_to_page/page_address optimisations
- support for NUMA systems described using device-tree
- support for hibernate/suspend-to-disk
- proper support for maxcpus= command line parameter
- detection and graceful handling of AArch64-only CPUs
- miscellaneous cleanups and non-critical fixes
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (92 commits)
arm64: do not enforce strict 16 byte alignment to stack pointer
arm64: kernel: Fix incorrect brk randomization
arm64: cpuinfo: Missing NULL terminator in compat_hwcap_str
arm64: secondary_start_kernel: Remove unnecessary barrier
arm64: Ensure pmd_present() returns false after pmd_mknotpresent()
arm64: Replace hard-coded values in the pmd/pud_bad() macros
arm64: Implement pmdp_set_access_flags() for hardware AF/DBM
arm64: Fix typo in the pmdp_huge_get_and_clear() definition
arm64: mm: remove unnecessary EXPORT_SYMBOL_GPL
arm64: always use STRICT_MM_TYPECHECKS
arm64: kvm: Fix kvm teardown for systems using the extended idmap
arm64: kaslr: increase randomization granularity
arm64: kconfig: drop CONFIG_RTC_LIB dependency
arm64: make ARCH_SUPPORTS_DEBUG_PAGEALLOC depend on !HIBERNATION
arm64: hibernate: Refuse to hibernate if the boot cpu is offline
arm64: kernel: Add support for hibernate/suspend-to-disk
PM / Hibernate: Call flush_icache_range() on pages restored in-place
arm64: Add new asm macro copy_page
arm64: Promote KERNEL_START/KERNEL_END definitions to a header file
arm64: kernel: Include _AC definition in page.h
...
Pull perf updates from Ingo Molnar:
"Bigger kernel side changes:
- Add backwards writing capability to the perf ring-buffer code,
which is preparation for future advanced features like robust
'overwrite support' and snapshot mode. (Wang Nan)
- Add pause and resume ioctls for the perf ringbuffer (Wang Nan)
- x86 Intel cstate code cleanups and reorgnization (Thomas Gleixner)
- x86 Intel uncore and CPU PMU driver updates (Kan Liang, Peter
Zijlstra)
- x86 AUX (Intel PT) related enhancements and updates (Alexander
Shishkin)
- x86 MSR PMU driver enhancements and updates (Huang Rui)
- ... and lots of other changes spread out over 40+ commits.
Biggest tooling side changes:
- 'perf trace' features and enhancements. (Arnaldo Carvalho de Melo)
- BPF tooling updates (Wang Nan)
- 'perf sched' updates (Jiri Olsa)
- 'perf probe' updates (Masami Hiramatsu)
- ... plus 200+ other enhancements, fixes and cleanups to tools/
The merge commits, the shortlog and the changelogs contain a lot more
details"
* 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (249 commits)
perf/core: Disable the event on a truncated AUX record
perf/x86/intel/pt: Generate PMI in the STOP region as well
perf buildid-cache: Use lsdir() for looking up buildid caches
perf symbols: Use lsdir() for the search in kcore cache directory
perf tools: Use SBUILD_ID_SIZE where applicable
perf tools: Fix lsdir to set errno correctly
perf trace: Move seccomp args beautifiers to tools/perf/trace/beauty/
perf trace: Move flock op beautifier to tools/perf/trace/beauty/
perf build: Add build-test for debug-frame on arm/arm64
perf build: Add build-test for libunwind cross-platforms support
perf script: Fix export of callchains with recursion in db-export
perf script: Fix callchain addresses in db-export
perf script: Fix symbol insertion behavior in db-export
perf symbols: Add dso__insert_symbol function
perf scripting python: Use Py_FatalError instead of die()
perf tools: Remove xrealloc and ALLOC_GROW
perf help: Do not use ALLOC_GROW in add_cmd_list
perf pmu: Make pmu_formats_string to check return value of strbuf
perf header: Make topology checkers to check return value of strbuf
perf tools: Make alias handler to check return value of strbuf
...
copy_thread should not be enforcing 16 byte aligment and returning
-EINVAL. Other architectures trap misaligned stack access with SIGBUS
so arm64 should follow this convention, so remove the strict enforcement
check.
For example, currently clone(2) fails with -EINVAL when passing
a misaligned stack and this gives little clue to what is wrong. Instead,
it is arguable that a SIGBUS on the fist access to a misaligned stack
allows one to figure out that it is a misaligned stack issue rather
than trying to figure out why an unconventional (and undocumented)
-EINVAL is being returned.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
This fixes two issues with the arm64 brk randomziation. First, the
STACK_RND_MASK was being used incorrectly. The original code was:
unsigned long range_end = base + (STACK_RND_MASK << PAGE_SHIFT) + 1;
STACK_RND_MASK is 0x7ff (32-bit) or 0x3ffff (64-bit), with 4K pages where
PAGE_SHIFT is 12:
#define STACK_RND_MASK (test_thread_flag(TIF_32BIT) ? \
0x7ff >> (PAGE_SHIFT - 12) : \
0x3ffff >> (PAGE_SHIFT - 12))
This means the resulting offset from base would be 0x7ff0001 or 0x3ffff0001,
which is wrong since it creates an unaligned end address. It was likely
intended to be:
unsigned long range_end = base + ((STACK_RND_MASK + 1) << PAGE_SHIFT)
Which would result in offsets of 0x800000 (32-bit) and 0x40000000 (64-bit).
However, even this corrected 32-bit compat offset (0x00800000) is much
smaller than native ARM's brk randomization value (0x02000000):
unsigned long arch_randomize_brk(struct mm_struct *mm)
{
unsigned long range_end = mm->brk + 0x02000000;
return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
}
So, instead of basing arm64's brk randomization on mistaken STACK_RND_MASK
calculations, just use specific corrected values for compat (0x2000000)
and native arm64 (0x40000000).
Reviewed-by: Jon Medhurst <tixy@linaro.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
[will: use is_compat_task() as suggested by tixy]
Signed-off-by: Will Deacon <will.deacon@arm.com>
The loop that browses the array compat_hwcap_str will stop when a NULL
is encountered, however NULL is missing at the end of array. This will
lead to overrun until a NULL is found somewhere in the following memory.
In reality, this works out because the compat_hwcap2_str array tends to
follow immediately in memory, and that *is* terminated correctly.
Furthermore, the unsigned int compat_elf_hwcap is checked before
printing each capability, so we end up doing the right thing because
the size of the two arrays is less than 32. Still, this is an obvious
mistake and should be fixed.
Note for backporting: commit 12d11817ea ("arm64: Move
/proc/cpuinfo handling code") moved this code in v4.4. Prior to that
commit, the same change should be made in arch/arm64/kernel/setup.c.
Fixes: 44b82b7700 "arm64: Fix up /proc/cpuinfo"
Cc: <stable@vger.kernel.org> # v3.19+ (but see note above prior to v4.4)
Signed-off-by: Julien Grall <julien.grall@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Remove the unnecessary smp_wmb(), which was added to make sure
that the update_cpu_boot_status() completes before we mark the
CPU online. But update_cpu_boot_status() already has dsb() (required
for the failing CPUs) to ensure the correct behavior.
Cc: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Reported-by: Dennis Chen <dennis.chen@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Hibernation represents a system state save/restore through
a system reboot; this implies that the logical cpus carrying
out hibernation/thawing must be the same, so that the context
saved in the snapshot image on hibernation is consistent with
the state of the system on resume. If resume from hibernation
is driven through kernel command line parameter, the cpu responsible
for thawing the system will be whatever CPU firmware boots the system
on upon cold-boot (ie logical cpu 0); this means that in order to
keep system context consistent between the hibernate snapshot image
and system state on kernel resume from hibernate, logical cpu 0 must
be online on hibernation and must be the logical cpu that creates
the snapshot image.
This patch adds a PM notifier that enforces logical cpu 0 is online
when the hibernation is started (and prevents hibernation if it is
not), which is sufficient to guarantee it will be the one creating
the snapshot image therefore providing the resume cpu a consistent
snapshot of the system to resume to.
Signed-off-by: James Morse <james.morse@arm.com>
Acked-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Add support for hibernate/suspend-to-disk.
Suspend borrows code from cpu_suspend() to write cpu state onto the stack,
before calling swsusp_save() to save the memory image.
Restore creates a set of temporary page tables, covering only the
linear map, copies the restore code to a 'safe' page, then uses the copy to
restore the memory image. The copied code executes in the lower half of the
address space, and once complete, restores the original kernel's page
tables. It then calls into cpu_resume(), and follows the normal
cpu_suspend() path back into the suspend code.
To restore a kernel using KASLR, the address of the page tables, and
cpu_resume() are stored in the hibernate arch-header and the el2
vectors are pivotted via the 'safe' page in low memory.
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Tested-by: Kevin Hilman <khilman@baylibre.com> # Tested on Juno R2
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
KERNEL_START and KERNEL_END are useful outside head.S, move them to a
header file.
Signed-off-by: James Morse <james.morse@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
By enabling the MMU early in cpu_resume(), the sleep_save_sp and stack can
be accessed by VA, which avoids the need to convert-addresses and clean to
PoC on the suspend path.
MMU setup is shared with the boot path, meaning the swapper_pg_dir is
restored directly: ttbr1_el1 is no longer saved/restored.
struct sleep_save_sp is removed, replacing it with a single array of
pointers.
cpu_do_{suspend,resume} could be further reduced to not restore: cpacr_el1,
mdscr_el1, tcr_el1, vbar_el1 and sctlr_el1, all of which are set by
__cpu_setup(). However these values all contain res0 bits that may be used
to enable future features.
Signed-off-by: James Morse <james.morse@arm.com>
Reviewed-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Hibernate could make use of the cpu_suspend() code to save/restore cpu
state, however it needs to be able to return '0' from the 'finisher'.
Rework cpu_suspend() so that the finisher is called from C code,
independently from the save/restore of cpu state. Space to save the context
in is allocated in the caller's stack frame, and passed into
__cpu_suspend_enter().
Hibernate's use of this API will look like a copy of the cpu_suspend()
function.
Signed-off-by: James Morse <james.morse@arm.com>
Acked-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
A later patch implements kvm_arch_hardware_disable(), to remove kvm
from el2, and re-instate the hyp-stub.
This can happen while guests are running, particularly when kvm_reboot()
calls kvm_arch_hardware_disable() on each cpu. This can interrupt a guest,
remove kvm, then allow the guest to be scheduled again. This causes
kvm_call_hyp() to be run against the hyp-stub.
Change the hyp-stub to return a new exception type when this happens,
and add code to kvm's handle_exit() to tell userspace we failed to
enter the guest.
Signed-off-by: James Morse <james.morse@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
The existing arm64 hcall implementations are limited in that they only
allow for two distinct hcalls; with the x0 register either zero or not
zero. Also, the API of the hyp-stub exception vector routines and the
KVM exception vector routines differ; hyp-stub uses a non-zero value in
x0 to implement __hyp_set_vectors, whereas KVM uses it to implement
kvm_call_hyp.
To allow for additional hcalls to be defined and to make the arm64 hcall
API more consistent across exception vector routines, change the hcall
implementations to reserve all x0 values below 0xfff for hcalls such
as {s,g}et_vectors().
Define two new preprocessor macros HVC_GET_VECTORS, and HVC_SET_VECTORS
to be used as hcall type specifiers and convert the existing
__hyp_get_vectors() and __hyp_set_vectors() routines to use these new
macros when executing an HVC call. Also, change the corresponding
hyp-stub and KVM el1_sync exception vector routines to use these new
macros.
Signed-off-by: Geoff Levand <geoff@infradead.org>
[Merged two hcall patches, moved immediate value from esr to x0, use lr
as a scratch register, changed limit to 0xfff]
Signed-off-by: James Morse <james.morse@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Today the 'hvc' calling KVM or the hyp-stub is expected to preserve all
registers. KVM saves/restores the registers it needs on the EL2 stack using
do_el2_call(). The hyp-stub has no stack, later patches need to be able to
be able to clobber the link register.
Move the link register save/restore to the the call sites.
Signed-off-by: James Morse <james.morse@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Unlike on 32-bit ARM, where we need to pass the stub's version of struct
screen_info to the kernel proper via a configuration table, on 64-bit ARM
it simply involves making the core kernel's copy of struct screen_info
visible to the stub by exposing an __efistub_ alias for it.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
Acked-by: Will Deacon <will.deacon@arm.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: David Herrmann <dh.herrmann@gmail.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Peter Jones <pjones@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Link: http://lkml.kernel.org/r/1461614832-17633-21-git-send-email-matt@codeblueprint.co.uk
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Recent UEFI versions expose permission attributes for runtime services
memory regions, either in the UEFI memory map or in the separate memory
attributes table. This allows the kernel to map these regions with
stricter permissions, rather than the RWX permissions that are used by
default. So wire this up in our mapping routine.
Note that in the absence of permission attributes, we still only map
regions of type EFI_RUNTIME_SERVICE_CODE with the executable bit set.
Also, we base the mapping attributes of EFI_MEMORY_MAPPED_IO on the
type directly rather than on the absence of the EFI_MEMORY_WB attribute.
This is more correct, but is also required for compatibility with the
upcoming support for the Memory Attributes Table, which only carries
permission attributes, not memory type attributes.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Leif Lindholm <leif.lindholm@linaro.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Peter Jones <pjones@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sai Praneeth Prakhya <sai.praneeth.prakhya@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Cc: linux-efi@vger.kernel.org
Link: http://lkml.kernel.org/r/1461614832-17633-12-git-send-email-matt@codeblueprint.co.uk
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The default remains 127, which is good for most cases, and not even hit
most of the time, but then for some cases, as reported by Brendan, 1024+
deep frames are appearing on the radar for things like groovy, ruby.
And in some workloads putting a _lower_ cap on this may make sense. One
that is per event still needs to be put in place tho.
The new file is:
# cat /proc/sys/kernel/perf_event_max_stack
127
Chaging it:
# echo 256 > /proc/sys/kernel/perf_event_max_stack
# cat /proc/sys/kernel/perf_event_max_stack
256
But as soon as there is some event using callchains we get:
# echo 512 > /proc/sys/kernel/perf_event_max_stack
-bash: echo: write error: Device or resource busy
#
Because we only allocate the callchain percpu data structures when there
is a user, which allows for changing the max easily, its just a matter
of having no callchain users at that point.
Reported-and-Tested-by: Brendan Gregg <brendan.d.gregg@gmail.com>
Reviewed-by: Frederic Weisbecker <fweisbec@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: David Ahern <dsahern@gmail.com>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: He Kuang <hekuang@huawei.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Milian Wolff <milian.wolff@kdab.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: Wang Nan <wangnan0@huawei.com>
Cc: Zefan Li <lizefan@huawei.com>
Link: http://lkml.kernel.org/r/20160426002928.GB16708@kernel.org
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
If both ACPI and DT platform descriptions are available, and the
kernel was configured at build time to support both flavours, the
default policy is to prefer DT over ACPI, and preferring ACPI over
DT while still allowing DT as a fallback is not possible.
Since some enterprise features (such as RAS) depend on ACPI, it may
be desirable for, e.g., distro installers to prefer ACPI boot but
fall back to DT rather than failing completely if no ACPI tables are
available.
So introduce the 'acpi=on' kernel command line parameter for arm64,
which signifies that ACPI should be used if available, and DT should
only be used as a fallback.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
When booting a relocatable kernel image, there is no practical reason
to refuse an image whose load address is not exactly TEXT_OFFSET bytes
above a 2 MB aligned base address, as long as the physical and virtual
misalignment with respect to the swapper block size are equal, and are
both aligned to THREAD_SIZE.
Since the virtual misalignment is under our control when we first enter
the kernel proper, we can simply choose its value to be equal to the
physical misalignment.
So treat the misalignment of the physical load address as the initial
KASLR offset, and fix up the remaining code to deal with that.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
For historical reasons, the kernel Image must be loaded into physical
memory at a 512 KB offset above a 2 MB aligned base address. The region
between the base address and the start of the kernel Image has no
significance to the kernel itself, but it is currently mapped explicitly
into the early kernel VMA range for all translation granules.
In some cases (i.e., 4 KB granule), this is unavoidable, due to the 2 MB
granularity of the early kernel mappings. However, in other cases, e.g.,
when running with larger page sizes, or in the future, with more granular
KASLR, there is no reason to map it explicitly like we do currently.
So update the logic so that the region is mapped only if that happens as
a side effect of rounding the start address of the kernel to swapper block
size, and leave it unmapped otherwise.
Since the symbol kernel_img_size now simply resolves to the memory
footprint of the kernel Image, we can drop its definition from image.h
and opencode its calculation.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
When building a relocatable kernel, we currently rely on the fact that
early 64-bit literal loads need to be deferred to after the relocation
has been performed only if they involve symbol references, and not if
they involve assemble time constants. While this is not an unreasonable
assumption to make, it is better to switch to movk/movz sequences, since
these are guaranteed to be resolved at link time, simply because there are
no dynamic relocation types to describe them.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Refactor the relocation processing so that the code executes from the
ID map while accessing the relocation tables via the virtual mapping.
This way, we can use literals containing virtual addresses as before,
instead of having to use convoluted absolute expressions.
For symmetry with the secondary code path, the relocation code and the
subsequent jump to the virtual entry point are implemented in a function
called __primary_switch(), and __mmap_switched() is renamed to
__primary_switched(). Also, the call sequence in stext() is aligned with
the one in secondary_startup(), by replacing the awkward 'adr_l lr' and
'b cpu_setup' sequence with a simple branch and link.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
We can simply use a relocated 64-bit literal to store the address of
__secondary_switched(), and the relocation code will ensure that it
holds the correct value at secondary entry time, as long as we make sure
that the literal is not dereferenced until after we have enabled the MMU.
So jump via a small __secondary_switch() function covered by the ID map
that performs the literal load and branch-to-register.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
This unexports some symbols from head.S that are only used locally.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
maxcpu=n sets the number of CPUs activated at boot time to a max of n,
but allowing the remaining CPUs to be brought up later if the user
decides to do so. However, on arm64 due to various reasons, we disallowed
hotplugging CPUs beyond n, by marking them not present. Now that
we have checks in place to make sure the hotplugged CPUs have compatible
features with system and requires no new errata, relax the restriction.
Cc: Will Deacon <will.deacon@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: James Morse <james.morse@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
CPU Errata work arounds are detected and applied to the
kernel code at boot time and the data is then freed up.
If a new hotplugged CPU requires a work around which
was not applied at boot time, there is nothing we can
do but simply fail the booting.
Cc: Will Deacon <will.deacon@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Now that the capabilities are only available once all the CPUs
have booted, we're unable to check for a particular feature
in any subsystem that gets initialized before then.
In order to support this, introduce a local_cpu_has_cap() function
that tests for the presence of a given capability independently
of the whole framework.
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
[ Added preemptible() check ]
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
[will: remove duplicate initialisation of caps in this_cpu_has_cap]
Signed-off-by: Will Deacon <will.deacon@arm.com>
Add scope parameter to the arm64_cpu_capabilities::matches(), so that
this can be reused for checking the capability on a given CPU vs the
system wide. The system uses the default scope associated with the
capability for initialising the CPU_HWCAPs and ELF_HWCAPs.
Cc: James Morse <james.morse@arm.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Andre Przywara <andre.przywara@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
The CHAIN event allows two 32-bit counters to be treated as a single
64-bit counter, under certain allocation restrictions on the PMU.
Whilst userspace could theoretically create CHAIN events using the raw
event syntax, we don't really want to advertise this in sysfs, since
it's useless in isolation. This patch removes the event from our /sys
entries.
Reported-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Broadcom Vulcan uses ARMv8 PMUv3 and supports most of
the ARMv8 recommended implementation defined events.
Added Vulcan events mapping for perf and perf_cache map.
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Ashok Kumar <ashoks@broadcom.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
The complete common architectural and micro-architectural
event number structure is filtered based on PMCEIDn_EL0 and
exposed to /sys using is_visibile function pointer in events
attribute_group.
To filter the events in is_visible function, pmceid based bitmap
is stored in arm_pmu structure and the id field from
perf_pmu_events_attr is used to check against the bitmap.
The function which derives event bitmap from PMCEIDn_EL0 is
executed in the cpus, which has the pmu being initialized,
for heterogeneous pmu support.
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Ashok Kumar <ashoks@broadcom.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
changed pmu register access to make use of <read/write>_sys_reg
from sysreg.h instead of accessing them directly.
Signed-off-by: Ashok Kumar <ashoks@broadcom.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Defined all the ARMv8 recommended implementation defined events
from J3 - "ARM recommendations for IMPLEMENTATION DEFINED event numbers"
in ARM DDI 0487A.g.
Signed-off-by: Ashok Kumar <ashoks@broadcom.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
changed all the common events name definition as per the document
ARM DDI 0487A.g
SoC specific event names follow the general naming style in
the file and doesn't reflect any document.
changed ARMV8_A53_PERFCTR_PREFETCH_LINEFILL to
ARMV8_A53_PERFCTR_PREF_LINEFILL to match with other SoC specific
event names which use _PREF_ style.
corrected typo l21 to l2i.
Signed-off-by: Ashok Kumar <ashoks@broadcom.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Improve the readability of dt_scan_depth1_nodes by removing the nested
conditionals.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Stefano Stabellini <sstabellini@kernel.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
When it's a Xen domain0 booting with ACPI, it will supply a /chosen and
a /hypervisor node in DT. So check if it needs to enable ACPI.
Signed-off-by: Shannon Zhao <shannon.zhao@linaro.org>
Reviewed-by: Stefano Stabellini <stefano.stabellini@eu.citrix.com>
Acked-by: Hanjun Guo <hanjun.guo@linaro.org>
Tested-by: Julien Grall <julien.grall@arm.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
When using the Virtualisation Host Extensions, EL1 is not used in
the host and requires no separate configuration.
In addition, with VHE enabled, non-hyp-specific EL2 configuration
that does not need to be done early will be done anyway in
__cpu_setup via the _EL1 system register aliases. In particular,
the layout and definition of CPTR_EL2 are changed by enabling VHE
so that they resemble CPACR_EL1, so existing code to initialise
CPTR_EL2 becomes architecturally wrong in this case.
This patch simply skips the affected initialisation code in the
non-VHE case.
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Make sure we have AArch32 state available for running COMPAT
binaries and also for switching the personality to PER_LINUX32.
Signed-off-by: Yury Norov <ynorov@caviumnetworks.com>
[ Added cap bit, checks for HWCAP, personality ]
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Tested-by: Yury Norov <ynorov@caviumnetworks.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Add cpu_hwcap bit for keeping track of the support for 32bit EL0.
Tested-by: Yury Norov <ynorov@caviumnetworks.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
On ARMv8 support for AArch32 state is optional. Hence it is
not safe to check the AArch32 ID registers for sanity, which
could lead to false warnings. This patch makes sure that the
AArch32 state is implemented before we keep track of the 32bit
ID registers.
As per ARM ARM (D.1.21.2 - Support for Exception Levels and
Execution States, DDI0487A.h), checking the support for AArch32
at EL0 is good enough to check the support for AArch32 (i.e,
AArch32 at EL1 => AArch32 at EL0, but not vice versa).
Tested-by: Yury Norov <ynorov@caviumnetworks.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
In order to handle systems which do not support 32bit at EL0,
split the COMPAT HWCAP entries into a separate table which can
be processed, only if the support is available.
Tested-by: Yury Norov <ynorov@caviumnetworks.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
We use hwcaps for referring to ELF hwcaps capability information.
However this can be confusing with 'cpu_hwcaps' which stands for the
CPU capability bit field. This patch cleans up the names to make it
a bit more readable.
Tested-by: Yury Norov <ynorov@caviumnetworks.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Since of_get_cpu_node() increments refcount, the node should be put.
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
When CPUs are stopped during an abnormal operation like panic
for each CPU a line is printed and the stack trace is dumped.
This information is only interesting for the aborting CPU
and on systems with many CPUs it only makes it harder to
debug if after the aborting CPU the log is flooded with data
about all other CPUs too.
Therefore remove the stack dump and printk of other CPUs
and only print a single line that the other CPUs are going to be
stopped and, in case any CPUs remain online list them.
Signed-off-by: Jan Glauber <jglauber@cavium.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
In head.S, the str_l macro, which takes a source register, a symbol name
and a temp register, is used to store a status value to the variable
__early_cpu_boot_status. Subsequently, the value of the temp register is
reused to invalidate any cachelines covering this variable.
However, since str_l resolves to
adrp \tmp, \sym
str \src, [\tmp, :lo12:\sym]
the temp register never actually holds the address of the variable but
only of the 4 KB window that covers it, and reusing it leads to the
wrong cacheline being invalidated. So instead, take the address
explicitly before doing the store, and reuse that value to perform
the cache invalidation.
Fixes: bb9052744f ("arm64: Handle early CPU boot failures")
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Suzuki K Poulose <Suzuki.Poulose@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Attempt to get the memory and CPU NUMA node via of_numa. If that
fails, default the dummy NUMA node and map all memory and CPUs to node
0.
Tested-by: Shannon Zhao <shannon.zhao@linaro.org>
Reviewed-by: Robert Richter <rrichter@cavium.com>
Signed-off-by: Ganapatrao Kulkarni <gkulkarni@caviumnetworks.com>
Signed-off-by: David Daney <david.daney@cavium.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
In order to extract NUMA information from the device tree, we need to
have the tree in its unflattened form.
Move the call to bootmem_init() in the tail of paging_init() into
setup_arch, and adjust header files so that its declaration is
visible.
Move the unflatten_device_tree() call between the calls to
paging_init() and bootmem_init(). Follow on patches add NUMA handling
to bootmem_init().
Signed-off-by: David Daney <david.daney@cavium.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
With a VHE capable CPU, kernel can run at EL2 and is a decided at early
boot. If some of the CPUs didn't start it EL2 or doesn't have VHE, we
could have CPUs running at different exception levels, all in the same
kernel! This patch adds an early check for the secondary CPUs to detect
such situations.
For each non-boot CPU add a sanity check to make sure we don't have
different run levels w.r.t the boot CPU. We save the information on
whether the boot CPU is running in hyp mode or not and ensure the
remaining CPUs match it.
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
[will: made boot_cpu_hyp_mode static]
Signed-off-by: Will Deacon <will.deacon@arm.com>
Since commit 1cf4f629d9 ("cpu/hotplug: Move online calls to
hotplugged cpu") it is ensured that callbacks of CPU_ONLINE and
CPU_DOWN_PREPARE are processed on the hotplugged CPU. Due to this SMP
function calls are no longer required.
Replace smp_call_function_single() with a direct call of
hw_breakpoint_reset(). To keep the calling convention, interrupts are
explicitly disabled around the call.
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: linux-arm-kernel@lists.infradead.org
Signed-off-by: Anna-Maria Gleixner <anna-maria@linutronix.de>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Since commit 1cf4f629d9 ("cpu/hotplug: Move online calls to
hotplugged cpu") it is ensured that callbacks of CPU_ONLINE and
CPU_DOWN_PREPARE are processed on the hotplugged CPU. Due to this SMP
function calls are no longer required.
Replace smp_call_function_single() with a direct call to
clear_os_lock(). The function writes the OSLAR register to clear OS
locking. This does not require to be called with interrupts disabled,
therefore the smp_call_function_single() calling convention is not
preserved.
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: linux-arm-kernel@lists.infradead.org
Signed-off-by: Anna-Maria Gleixner <anna-maria@linutronix.de>
Signed-off-by: Will Deacon <will.deacon@arm.com>
The mapping of the kernel consist of four segments, each of which is mapped
with different permission attributes and/or lifetimes. To optimize the TLB
and translation table footprint, we define various opaque constants in the
linker script that resolve to different aligment values depending on the
page size and whether CONFIG_DEBUG_ALIGN_RODATA is set.
Considering that
- a 4 KB granule kernel benefits from a 64 KB segment alignment (due to
the fact that it allows the use of the contiguous bit),
- the minimum alignment of the .data segment is THREAD_SIZE already, not
PAGE_SIZE (i.e., we already have padding between _data and the start of
the .data payload in many cases),
- 2 MB is a suitable alignment value on all granule sizes, either for
mapping directly (level 2 on 4 KB), or via the contiguous bit (level 3 on
16 KB and 64 KB),
- anything beyond 2 MB exceeds the minimum alignment mandated by the boot
protocol, and can only be mapped efficiently if the physical alignment
happens to be the same,
we can simplify this by standardizing on 64 KB (or 2 MB) explicitly, i.e.,
regardless of granule size, all segments are aligned either to 64 KB, or to
2 MB if CONFIG_DEBUG_ALIGN_RODATA=y. This also means we can drop the Kconfig
dependency of CONFIG_DEBUG_ALIGN_RODATA on CONFIG_ARM64_4K_PAGES.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Keeping .head.text out of the .text mapping buys us very little: its actual
payload is only 4 KB, most of which is padding, but the page alignment may
add up to 2 MB (in case of CONFIG_DEBUG_ALIGN_RODATA=y) of additional
padding to the uncompressed kernel Image.
Also, on 4 KB granule kernels, the 4 KB misalignment of .text forces us to
map the adjacent 56 KB of code without the PTE_CONT attribute, and since
this region contains things like the vector table and the GIC interrupt
handling entry point, this region is likely to benefit from the reduced TLB
pressure that results from PTE_CONT mappings.
So remove the alignment between the .head.text and .text sections, and use
the [_text, _etext) rather than the [_stext, _etext) interval for mapping
the .text segment.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Apart from the arm64/linux and EFI header data structures, there is nothing
in the .head.text section that must reside at the beginning of the Image.
So let's move it to the .init section where it belongs.
Note that this involves some minor tweaking of the EFI header, primarily
because the address of 'stext' no longer coincides with the start of the
.text section. It also requires a couple of relocated symbol references
to be slightly rewritten or their definition moved to the linker script.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Before restricting virt_to_page() to the linear mapping, ensure that
the text patching code does not use it to resolve references into the
core kernel text, which is mapped in the vmalloc area.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
The translation performed by virt_to_page() is only valid for linear
addresses, and kernel symbols are no longer in the linear mapping.
So perform the __pa() translation explicitly, which does the right
thing in either case, and only then translate to a struct page offset.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
This removes the relocate_initrd() implementation and invocation, which are
no longer needed now that the placement of the initrd is guaranteed to be
covered by the linear mapping.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Currently, we check two pointers: cpu_ops and cpu_suspend on every idle
state entry. These pointers check can be avoided:
If cpu_ops has not been registered, arm_cpuidle_init() will return
-EOPNOTSUPP, so arm_cpuidle_suspend() will never have chance to
run. In other word, the cpu_ops check can be avoid.
Similarly, the cpu_suspend check could be avoided in this hot path by
moving it into arm_cpuidle_init().
I measured the 4096 * time from arm_cpuidle_suspend entry point to the
cpu_psci_cpu_suspend entry point. HW platform is Marvell BG4CT STB
board.
1. only one shell, no other process, hot-unplug secondary cpus, execute
the following cmd
while true
do
sleep 0.2
done
before the patch: 1581220ns
after the patch: 1579630ns
reduced by 0.1%
2. only one shell, no other process, hot-unplug secondary cpus, execute
the following cmd
while true
do
md5sum /tmp/testfile
sleep 0.2
done
NOTE: the testfile size should be larger than L1+L2 cache size
before the patch: 1961960ns
after the patch: 1912500ns
reduced by 2.5%
So the more complex the system load, the bigger the improvement.
Signed-off-by: Jisheng Zhang <jszhang@marvell.com>
Acked-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
There are some new cpu features which can be identified by id_aa64mmfr2,
this patch appends all fields of it.
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Set a default event->overflow_handler in perf_event_alloc() so don't
need to check event->overflow_handler in __perf_event_overflow().
Following commits can give a different default overflow_handler.
Initial idea comes from Peter:
http://lkml.kernel.org/r/20130708121557.GA17211@twins.programming.kicks-ass.net
Since the default value of event->overflow_handler is not NULL, existing
'if (!overflow_handler)' checks need to be changed.
is_default_overflow_handler() is introduced for this.
No extra performance overhead is introduced into the hot path because in the
original code we still need to read this handler from memory. A conditional
branch is avoided so actually we remove some instructions.
Signed-off-by: Wang Nan <wangnan0@huawei.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <pi3orama@163.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Brendan Gregg <brendan.d.gregg@gmail.com>
Cc: He Kuang <hekuang@huawei.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Cc: Zefan Li <lizefan@huawei.com>
Link: http://lkml.kernel.org/r/1459147292-239310-3-git-send-email-wangnan0@huawei.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
To use the ARMv8 PMU related register defines from the KVM code, we move
the relevant definitions to asm/perf_event.h header file and rename them
with prefix ARMV8_PMU_. This allows us to get rid of kvm_perf_event.h.
Signed-off-by: Anup Patel <anup.patel@linaro.org>
Signed-off-by: Shannon Zhao <shannon.zhao@linaro.org>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
KASAN needs to know whether the allocation happens in an IRQ handler.
This lets us strip everything below the IRQ entry point to reduce the
number of unique stack traces needed to be stored.
Move the definition of __irq_entry to <linux/interrupt.h> so that the
users don't need to pull in <linux/ftrace.h>. Also introduce the
__softirq_entry macro which is similar to __irq_entry, but puts the
corresponding functions to the .softirqentry.text section.
Signed-off-by: Alexander Potapenko <glider@google.com>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Andrey Konovalov <adech.fo@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Konstantin Serebryany <kcc@google.com>
Cc: Dmitry Chernenkov <dmitryc@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The KASLR code incorrectly expects the contents of x18 to be preserved
across a call into C code, and uses it to stash the contents of SCTLR_EL1
before enabling the MMU. If the MMU needs to be disabled again to create
the randomized kernel mapping, x18 is written back to SCTLR_EL1, which is
likely to crash the system if x18 has been clobbered by kasan_early_init()
or kaslr_early_init(). So use x22 instead, which is not in use so far in
head.S
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
- Initial support for ARMv8.1 CPU PMUs
- Support for the CPU PMU in Cavium ThunderX
- CPU PMU support for systems running 32-bit Linux in secure mode
- Support for the system PMU in ARM CCI-550 (Cache Coherent Interconnect)
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABCgAGBQJW794rAAoJELescNyEwWM0O5IH/0ejoUjip3n4dFZnSzAbQQZe
VxCy3DXW5gS8YaswwX2dFw9K772/BpHlazq8AIJIhaR+b+Zzl5t0iOc12HluDilV
pMvi0JTCxwJhsEiKZnP0cVAU9HM6MAgtMOEegkd/YNESKQey30NeDtIcz/pQfTUV
28AF71+w5VPj/1EpHEEhHQsASRIx7eDbKzThzdlb8PnDS0o23QJhL9HjVTNIAlB8
BGxrUBKtBu0eH2Hx33vNjc7UYx1WZQlCk5cAaXevA8mbFXzYaMQI2Cel2nbNMO9i
eu5zPkDUCG7dq16PxK6IgM4AsDCtmmDuckLdN6UEQWYxkLbb2qHNRKtj0bKB8Sk=
=E4PE
-----END PGP SIGNATURE-----
Merge tag 'arm64-perf' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm[64] perf updates from Will Deacon:
"I have another mixed bag of ARM-related perf patches here.
It's about 25% CPU and 75% interconnect, but with drivers/bus/
languishing without an obvious maintainer or tree, Olof and I agreed
to keep all of these PMU patches together. I suspect a whole load of
code from drivers/bus/arm-* can be moved under drivers/perf/, so
that's on the radar for the future.
Summary:
- Initial support for ARMv8.1 CPU PMUs
- Support for the CPU PMU in Cavium ThunderX
- CPU PMU support for systems running 32-bit Linux in secure mode
- Support for the system PMU in ARM CCI-550 (Cache Coherent Interconnect)"
* tag 'arm64-perf' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (26 commits)
drivers/perf: arm_pmu: avoid NULL dereference when not using devicetree
arm64: perf: Extend ARMV8_EVTYPE_MASK to include PMCR.LC
arm-cci: remove unused variable
arm-cci: don't return value from void function
arm-cci: make private functions static
arm-cci: CoreLink CCI-550 PMU driver
arm-cci500: Rearrange PMU driver for code sharing with CCI-550 PMU
arm-cci: CCI-500: Work around PMU counter writes
arm-cci: Provide hook for writing to PMU counters
arm-cci: Add helper to enable PMU without synchornising counters
arm-cci: Add routines to save/restore all counters
arm-cci: Get the status of a counter
arm-cci: write_counter: Remove redundant check
arm-cci: Delay PMU counter writes to pmu::pmu_enable
arm-cci: Refactor CCI PMU enable/disable methods
arm-cci: Group writes to counter
arm-cci: fix handling cpumask_any_but return value
arm-cci: simplify sysfs attr handling
drivers/perf: arm_pmu: implement CPU_PM notifier
arm64: dts: Add Cavium ThunderX specific PMU
...
Commit f80fb3a3d5 ("arm64: add support for kernel ASLR") missed a
DSB necessary to complete I-cache maintenance in the primary boot path,
and hence stale instructions may still be present in the I-cache and may
be executed until the I-cache maintenance naturally completes.
Since commit 8ec4198743 ("arm64: mm: ensure patched kernel text is
fetched from PoU"), all CPUs invalidate their I-caches after their MMU
is enabled. Prior a CPU's MMU having been enabled, arbitrary lines may
have been fetched from the PoC into I-caches. We never patch text
expected to be executed with the MMU off. Thus, it is unnecessary to
perform broadcast I-cache maintenance in the primary boot path.
This patch reduces the scope of the I-cache maintenance to the local
CPU, and adds the missing DSB with similar scope, matching prior
maintenance in the primary boot path.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Ard Biesehvuel <ard.biesheuvel@linaro.org>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The implementation of macro inv_entry refers to its 'el' argument without
the required leading backslash, which results in an undefined symbol
'el' to be passed into the kernel_entry macro rather than the index of
the exception level as intended.
This undefined symbol strangely enough does not result in build failures,
although it is visible in vmlinux:
$ nm -n vmlinux |head
U el
0000000000000000 A _kernel_flags_le_hi32
0000000000000000 A _kernel_offset_le_hi32
0000000000000000 A _kernel_size_le_hi32
000000000000000a A _kernel_flags_le_lo32
.....
However, it does result in incorrect code being generated for invalid
exceptions taken from EL0, since the argument check in kernel_entry
assumes EL1 if its argument does not equal '0'.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Pull EFI updates from Ingo Molnar:
"The main changes are:
- Use separate EFI page tables when executing EFI firmware code.
This isolates the EFI context from the rest of the kernel, which
has security and general robustness advantages. (Matt Fleming)
- Run regular UEFI firmware with interrupts enabled. This is already
the status quo under other OSs. (Ard Biesheuvel)
- Various x86 EFI enhancements, such as the use of non-executable
attributes for EFI memory mappings. (Sai Praneeth Prakhya)
- Various arm64 UEFI enhancements. (Ard Biesheuvel)
- ... various fixes and cleanups.
The separate EFI page tables feature got delayed twice already,
because it's an intrusive change and we didn't feel confident about
it - third time's the charm we hope!"
* 'efi-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (37 commits)
x86/mm/pat: Fix boot crash when 1GB pages are not supported by the CPU
x86/efi: Only map kernel text for EFI mixed mode
x86/efi: Map EFI_MEMORY_{XP,RO} memory region bits to EFI page tables
x86/mm/pat: Don't implicitly allow _PAGE_RW in kernel_map_pages_in_pgd()
efi/arm*: Perform hardware compatibility check
efi/arm64: Check for h/w support before booting a >4 KB granular kernel
efi/arm: Check for LPAE support before booting a LPAE kernel
efi/arm-init: Use read-only early mappings
efi/efistub: Prevent __init annotations from being used
arm64/vmlinux.lds.S: Handle .init.rodata.xxx and .init.bss sections
efi/arm64: Drop __init annotation from handle_kernel_image()
x86/mm/pat: Use _PAGE_GLOBAL bit for EFI page table mappings
efi/runtime-wrappers: Run UEFI Runtime Services with interrupts enabled
efi: Reformat GUID tables to follow the format in UEFI spec
efi: Add Persistent Memory type name
efi: Add NV memory attribute
x86/efi: Show actual ending addresses in efi_print_memmap
x86/efi/bgrt: Don't ignore the BGRT if the 'valid' bit is 0
efivars: Use to_efivar_entry
efi: Runtime-wrapper: Get rid of the rtc_lock spinlock
...
Pull ARM updates from Russell King:
"Another mixture of changes this time around:
- Split XIP linker file from main linker file to make it more
maintainable, and various XIP fixes, and clean up a resulting
macro.
- Decompressor cleanups from Masahiro Yamada
- Avoid printing an error for a missing L2 cache
- Remove some duplicated symbols in System.map, and move
vectors/stubs back into kernel VMA
- Various low priority fixes from Arnd
- Updates to allow bus match functions to return negative errno
values, touching some drivers and the driver core. Greg has acked
these changes.
- Virtualisation platform udpates form Jean-Philippe Brucker.
- Security enhancements from Kees Cook
- Rework some Kconfig dependencies and move PSCI idle management code
out of arch/arm into drivers/firmware/psci.c
- ARM DMA mapping updates, touching media, acked by Mauro.
- Fix places in ARM code which should be using virt_to_idmap() so
that Keystone2 can work.
- Fix Marvell Tauros2 to work again with non-DT boots.
- Provide a delay timer for ARM Orion platforms"
* 'for-linus' of git://ftp.arm.linux.org.uk/~rmk/linux-arm: (45 commits)
ARM: 8546/1: dma-mapping: refactor to fix coherent+cma+gfp=0
ARM: 8547/1: dma-mapping: store buffer information
ARM: 8543/1: decompressor: rename suffix_y to compress-y
ARM: 8542/1: decompressor: merge piggy.*.S and simplify Makefile
ARM: 8541/1: decompressor: drop redundant FORCE in Makefile
ARM: 8540/1: decompressor: use clean-files instead of extra-y to clean files
ARM: 8539/1: decompressor: drop more unneeded assignments to "targets"
ARM: 8538/1: decompressor: drop unneeded assignments to "targets"
ARM: 8532/1: uncompress: mark putc as inline
ARM: 8531/1: turn init_new_context into an inline function
ARM: 8530/1: remove VIRT_TO_BUS
ARM: 8537/1: drop unused DEBUG_RODATA from XIP_KERNEL
ARM: 8536/1: mm: hide __start_rodata_section_aligned for non-debug builds
ARM: 8535/1: mm: DEBUG_RODATA makes no sense with XIP_KERNEL
ARM: 8534/1: virt: fix hyp-stub build for pre-ARMv7 CPUs
ARM: make the physical-relative calculation more obvious
ARM: 8512/1: proc-v7.S: Adjust stack address when XIP_KERNEL
ARM: 8411/1: Add default SPARSEMEM settings
ARM: 8503/1: clk_register_clkdev: remove format string interface
ARM: 8529/1: remove 'i' and 'zi' targets
...
- Initial page table creation reworked to avoid breaking large block
mappings (huge pages) into smaller ones. The ARM architecture requires
break-before-make in such cases to avoid TLB conflicts but that's not
always possible on live page tables
- Kernel virtual memory layout: the kernel image is no longer linked to
the bottom of the linear mapping (PAGE_OFFSET) but at the bottom of
the vmalloc space, allowing the kernel to be loaded (nearly) anywhere
in physical RAM
- Kernel ASLR: position independent kernel Image and modules being
randomly mapped in the vmalloc space with the randomness is provided
by UEFI (efi_get_random_bytes() patches merged via the arm64 tree,
acked by Matt Fleming)
- Implement relative exception tables for arm64, required by KASLR
(initial code for ARCH_HAS_RELATIVE_EXTABLE added to lib/extable.c but
actual x86 conversion to deferred to 4.7 because of the merge
dependencies)
- Support for the User Access Override feature of ARMv8.2: this allows
uaccess functions (get_user etc.) to be implemented using LDTR/STTR
instructions. Such instructions, when run by the kernel, perform
unprivileged accesses adding an extra level of protection. The
set_fs() macro is used to "upgrade" such instruction to privileged
accesses via the UAO bit
- Half-precision floating point support (part of ARMv8.2)
- Optimisations for CPUs with or without a hardware prefetcher (using
run-time code patching)
- copy_page performance improvement to deal with 128 bytes at a time
- Sanity checks on the CPU capabilities (via CPUID) to prevent
incompatible secondary CPUs from being brought up (e.g. weird
big.LITTLE configurations)
- valid_user_regs() reworked for better sanity check of the sigcontext
information (restored pstate information)
- ACPI parking protocol implementation
- CONFIG_DEBUG_RODATA enabled by default
- VDSO code marked as read-only
- DEBUG_PAGEALLOC support
- ARCH_HAS_UBSAN_SANITIZE_ALL enabled
- Erratum workaround Cavium ThunderX SoC
- set_pte_at() fix for PROT_NONE mappings
- Code clean-ups
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJW6u95AAoJEGvWsS0AyF7xMyoP/3x2O6bgreSQ84BdO4JChN4+
RQ9OVdX8u2ItO9sgaCY2AA6KoiBuEjGmPl/XRuK0I7DpODTtRjEXQHuNNhz8AelC
hn4AEVqamY6Z5BzHFIjs8G9ydEbq+OXcKWEdwSsBhP/cMvI7ss3dps1f5iNPT5Vv
50E/kUz+aWYy7pKlB18VDV7TUOA3SuYuGknWV8+bOY5uPb8hNT3Y3fHOg/EuNNN3
DIuYH1V7XQkXtF+oNVIGxzzJCXULBE7egMcWAm1ydSOHK0JwkZAiL7OhI7ceVD0x
YlDxBnqmi4cgzfBzTxITAhn3OParwN6udQprdF1WGtFF6fuY2eRDSH/L/iZoE4DY
OulL951OsBtF8YC3+RKLk908/0bA2Uw8ftjCOFJTYbSnZBj1gWK41VkCYMEXiHQk
EaN8+2Iw206iYIoyvdjGCLw7Y0oakDoVD9vmv12SOaHeQljTkjoN8oIlfjjKTeP7
3AXj5v9BDMDVh40nkVayysRNvqe48Kwt9Wn0rhVTLxwdJEiFG/OIU6HLuTkretdN
dcCNFSQrRieSFHpBK9G0vKIpIss1ZwLm8gjocVXH7VK4Mo/TNQe4p2/wAF29mq4r
xu1UiXmtU3uWxiqZnt72LOYFCarQ0sFA5+pMEvF5W+NrVB0wGpXhcwm+pGsIi4IM
LepccTgykiUBqW5TRzPz
=/oS+
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Catalin Marinas:
"Here are the main arm64 updates for 4.6. There are some relatively
intrusive changes to support KASLR, the reworking of the kernel
virtual memory layout and initial page table creation.
Summary:
- Initial page table creation reworked to avoid breaking large block
mappings (huge pages) into smaller ones. The ARM architecture
requires break-before-make in such cases to avoid TLB conflicts but
that's not always possible on live page tables
- Kernel virtual memory layout: the kernel image is no longer linked
to the bottom of the linear mapping (PAGE_OFFSET) but at the bottom
of the vmalloc space, allowing the kernel to be loaded (nearly)
anywhere in physical RAM
- Kernel ASLR: position independent kernel Image and modules being
randomly mapped in the vmalloc space with the randomness is
provided by UEFI (efi_get_random_bytes() patches merged via the
arm64 tree, acked by Matt Fleming)
- Implement relative exception tables for arm64, required by KASLR
(initial code for ARCH_HAS_RELATIVE_EXTABLE added to lib/extable.c
but actual x86 conversion to deferred to 4.7 because of the merge
dependencies)
- Support for the User Access Override feature of ARMv8.2: this
allows uaccess functions (get_user etc.) to be implemented using
LDTR/STTR instructions. Such instructions, when run by the kernel,
perform unprivileged accesses adding an extra level of protection.
The set_fs() macro is used to "upgrade" such instruction to
privileged accesses via the UAO bit
- Half-precision floating point support (part of ARMv8.2)
- Optimisations for CPUs with or without a hardware prefetcher (using
run-time code patching)
- copy_page performance improvement to deal with 128 bytes at a time
- Sanity checks on the CPU capabilities (via CPUID) to prevent
incompatible secondary CPUs from being brought up (e.g. weird
big.LITTLE configurations)
- valid_user_regs() reworked for better sanity check of the
sigcontext information (restored pstate information)
- ACPI parking protocol implementation
- CONFIG_DEBUG_RODATA enabled by default
- VDSO code marked as read-only
- DEBUG_PAGEALLOC support
- ARCH_HAS_UBSAN_SANITIZE_ALL enabled
- Erratum workaround Cavium ThunderX SoC
- set_pte_at() fix for PROT_NONE mappings
- Code clean-ups"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (99 commits)
arm64: kasan: Fix zero shadow mapping overriding kernel image shadow
arm64: kasan: Use actual memory node when populating the kernel image shadow
arm64: Update PTE_RDONLY in set_pte_at() for PROT_NONE permission
arm64: Fix misspellings in comments.
arm64: efi: add missing frame pointer assignment
arm64: make mrs_s prefixing implicit in read_cpuid
arm64: enable CONFIG_DEBUG_RODATA by default
arm64: Rework valid_user_regs
arm64: mm: check at build time that PAGE_OFFSET divides the VA space evenly
arm64: KVM: Move kvm_call_hyp back to its original localtion
arm64: mm: treat memstart_addr as a signed quantity
arm64: mm: list kernel sections in order
arm64: lse: deal with clobbered IP registers after branch via PLT
arm64: mm: dump: Use VA_START directly instead of private LOWEST_ADDR
arm64: kconfig: add submenu for 8.2 architectural features
arm64: kernel: acpi: fix ioremap in ACPI parking protocol cpu_postboot
arm64: Add support for Half precision floating point
arm64: Remove fixmap include fragility
arm64: Add workaround for Cavium erratum 27456
arm64: mm: Mark .rodata as RO
...
but lots of architecture-specific changes.
* ARM:
- VHE support so that we can run the kernel at EL2 on ARMv8.1 systems
- PMU support for guests
- 32bit world switch rewritten in C
- various optimizations to the vgic save/restore code.
* PPC:
- enabled KVM-VFIO integration ("VFIO device")
- optimizations to speed up IPIs between vcpus
- in-kernel handling of IOMMU hypercalls
- support for dynamic DMA windows (DDW).
* s390:
- provide the floating point registers via sync regs;
- separated instruction vs. data accesses
- dirty log improvements for huge guests
- bugfixes and documentation improvements.
* x86:
- Hyper-V VMBus hypercall userspace exit
- alternative implementation of lowest-priority interrupts using vector
hashing (for better VT-d posted interrupt support)
- fixed guest debugging with nested virtualizations
- improved interrupt tracking in the in-kernel IOAPIC
- generic infrastructure for tracking writes to guest memory---currently
its only use is to speedup the legacy shadow paging (pre-EPT) case, but
in the future it will be used for virtual GPUs as well
- much cleanup (LAPIC, kvmclock, MMU, PIT), including ubsan fixes.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJW5r3BAAoJEL/70l94x66D2pMH/jTSWWwdTUJMctrDjPVzKzG0
yOzHW5vSLFoFlwEOY2VpslnXzn5TUVmCAfrdmFNmQcSw6hGb3K/xA/ZX/KLwWhyb
oZpr123ycahga+3q/ht/dFUBCCyWeIVMdsLSFwpobEBzPL0pMgc9joLgdUC6UpWX
tmN0LoCAeS7spC4TTiTTpw3gZ/L+aB0B6CXhOMjldb9q/2CsgaGyoVvKA199nk9o
Ngu7ImDt7l/x1VJX4/6E/17VHuwqAdUrrnbqerB/2oJ5ixsZsHMGzxQ3sHCmvyJx
WG5L00ubB1oAJAs9fBg58Y/MdiWX99XqFhdEfxq4foZEiQuCyxygVvq3JwZTxII=
=OUZZ
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"One of the largest releases for KVM... Hardly any generic
changes, but lots of architecture-specific updates.
ARM:
- VHE support so that we can run the kernel at EL2 on ARMv8.1 systems
- PMU support for guests
- 32bit world switch rewritten in C
- various optimizations to the vgic save/restore code.
PPC:
- enabled KVM-VFIO integration ("VFIO device")
- optimizations to speed up IPIs between vcpus
- in-kernel handling of IOMMU hypercalls
- support for dynamic DMA windows (DDW).
s390:
- provide the floating point registers via sync regs;
- separated instruction vs. data accesses
- dirty log improvements for huge guests
- bugfixes and documentation improvements.
x86:
- Hyper-V VMBus hypercall userspace exit
- alternative implementation of lowest-priority interrupts using
vector hashing (for better VT-d posted interrupt support)
- fixed guest debugging with nested virtualizations
- improved interrupt tracking in the in-kernel IOAPIC
- generic infrastructure for tracking writes to guest
memory - currently its only use is to speedup the legacy shadow
paging (pre-EPT) case, but in the future it will be used for
virtual GPUs as well
- much cleanup (LAPIC, kvmclock, MMU, PIT), including ubsan fixes"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (217 commits)
KVM: x86: remove eager_fpu field of struct kvm_vcpu_arch
KVM: x86: disable MPX if host did not enable MPX XSAVE features
arm64: KVM: vgic-v3: Only wipe LRs on vcpu exit
arm64: KVM: vgic-v3: Reset LRs at boot time
arm64: KVM: vgic-v3: Do not save an LR known to be empty
arm64: KVM: vgic-v3: Save maintenance interrupt state only if required
arm64: KVM: vgic-v3: Avoid accessing ICH registers
KVM: arm/arm64: vgic-v2: Make GICD_SGIR quicker to hit
KVM: arm/arm64: vgic-v2: Only wipe LRs on vcpu exit
KVM: arm/arm64: vgic-v2: Reset LRs at boot time
KVM: arm/arm64: vgic-v2: Do not save an LR known to be empty
KVM: arm/arm64: vgic-v2: Move GICH_ELRSR saving to its own function
KVM: arm/arm64: vgic-v2: Save maintenance interrupt state only if required
KVM: arm/arm64: vgic-v2: Avoid accessing GICH registers
KVM: s390: allocate only one DMA page per VM
KVM: s390: enable STFLE interpretation only if enabled for the guest
KVM: s390: wake up when the VCPU cpu timer expires
KVM: s390: step the VCPU timer while in enabled wait
KVM: s390: protect VCPU cpu timer with a seqcount
KVM: s390: step VCPU cpu timer during kvm_run ioctl
...
Pull cpu hotplug updates from Thomas Gleixner:
"This is the first part of the ongoing cpu hotplug rework:
- Initial implementation of the state machine
- Runs all online and prepare down callbacks on the plugged cpu and
not on some random processor
- Replaces busy loop waiting with completions
- Adds tracepoints so the states can be followed"
More detailed commentary on this work from an earlier email:
"What's wrong with the current cpu hotplug infrastructure?
- Asymmetry
The hotplug notifier mechanism is asymmetric versus the bringup and
teardown. This is mostly caused by the notifier mechanism.
- Largely undocumented dependencies
While some notifiers use explicitely defined notifier priorities,
we have quite some notifiers which use numerical priorities to
express dependencies without any documentation why.
- Control processor driven
Most of the bringup/teardown of a cpu is driven by a control
processor. While it is understandable, that preperatory steps,
like idle thread creation, memory allocation for and initialization
of essential facilities needs to be done before a cpu can boot,
there is no reason why everything else must run on a control
processor. Before this patch series, bringup looks like this:
Control CPU Booting CPU
do preparatory steps
kick cpu into life
do low level init
sync with booting cpu sync with control cpu
bring the rest up
- All or nothing approach
There is no way to do partial bringups. That's something which is
really desired because we waste e.g. at boot substantial amount of
time just busy waiting that the cpu comes to life. That's stupid
as we could very well do preparatory steps and the initial IPI for
other cpus and then go back and do the necessary low level
synchronization with the freshly booted cpu.
- Minimal debuggability
Due to the notifier based design, it's impossible to switch between
two stages of the bringup/teardown back and forth in order to test
the correctness. So in many hotplug notifiers the cancel
mechanisms are either not existant or completely untested.
- Notifier [un]registering is tedious
To [un]register notifiers we need to protect against hotplug at
every callsite. There is no mechanism that bringup/teardown
callbacks are issued on the online cpus, so every caller needs to
do it itself. That also includes error rollback.
What's the new design?
The base of the new design is a symmetric state machine, where both
the control processor and the booting/dying cpu execute a well
defined set of states. Each state is symmetric in the end, except
for some well defined exceptions, and the bringup/teardown can be
stopped and reversed at almost all states.
So the bringup of a cpu will look like this in the future:
Control CPU Booting CPU
do preparatory steps
kick cpu into life
do low level init
sync with booting cpu sync with control cpu
bring itself up
The synchronization step does not require the control cpu to wait.
That mechanism can be done asynchronously via a worker or some
other mechanism.
The teardown can be made very similar, so that the dying cpu cleans
up and brings itself down. Cleanups which need to be done after
the cpu is gone, can be scheduled asynchronously as well.
There is a long way to this, as we need to refactor the notion when a
cpu is available. Today we set the cpu online right after it comes
out of the low level bringup, which is not really correct.
The proper mechanism is to set it to available, i.e. cpu local
threads, like softirqd, hotplug thread etc. can be scheduled on that
cpu, and once it finished all booting steps, it's set to online, so
general workloads can be scheduled on it. The reverse happens on
teardown. First thing to do is to forbid scheduling of general
workloads, then teardown all the per cpu resources and finally shut it
off completely.
This patch series implements the basic infrastructure for this at the
core level. This includes the following:
- Basic state machine implementation with well defined states, so
ordering and prioritization can be expressed.
- Interfaces to [un]register state callbacks
This invokes the bringup/teardown callback on all online cpus with
the proper protection in place and [un]installs the callbacks in
the state machine array.
For callbacks which have no particular ordering requirement we have
a dynamic state space, so that drivers don't have to register an
explicit hotplug state.
If a callback fails, the code automatically does a rollback to the
previous state.
- Sysfs interface to drive the state machine to a particular step.
This is only partially functional today. Full functionality and
therefor testability will be achieved once we converted all
existing hotplug notifiers over to the new scheme.
- Run all CPU_ONLINE/DOWN_PREPARE notifiers on the booting/dying
processor:
Control CPU Booting CPU
do preparatory steps
kick cpu into life
do low level init
sync with booting cpu sync with control cpu
wait for boot
bring itself up
Signal completion to control cpu
In a previous step of this work we've done a full tree mechanical
conversion of all hotplug notifiers to the new scheme. The balance
is a net removal of about 4000 lines of code.
This is not included in this series, as we decided to take a
different approach. Instead of mechanically converting everything
over, we will do a proper overhaul of the usage sites one by one so
they nicely fit into the symmetric callback scheme.
I decided to do that after I looked at the ugliness of some of the
converted sites and figured out that their hotplug mechanism is
completely buggered anyway. So there is no point to do a
mechanical conversion first as we need to go through the usage
sites one by one again in order to achieve a full symmetric and
testable behaviour"
* 'smp-hotplug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (23 commits)
cpu/hotplug: Document states better
cpu/hotplug: Fix smpboot thread ordering
cpu/hotplug: Remove redundant state check
cpu/hotplug: Plug death reporting race
rcu: Make CPU_DYING_IDLE an explicit call
cpu/hotplug: Make wait for dead cpu completion based
cpu/hotplug: Let upcoming cpu bring itself fully up
arch/hotplug: Call into idle with a proper state
cpu/hotplug: Move online calls to hotplugged cpu
cpu/hotplug: Create hotplug threads
cpu/hotplug: Split out the state walk into functions
cpu/hotplug: Unpark smpboot threads from the state machine
cpu/hotplug: Move scheduler cpu_online notifier to hotplug core
cpu/hotplug: Implement setup/removal interface
cpu/hotplug: Make target state writeable
cpu/hotplug: Add sysfs state interface
cpu/hotplug: Hand in target state to _cpu_up/down
cpu/hotplug: Convert the hotplugged cpu work to a state machine
cpu/hotplug: Convert to a state machine for the control processor
cpu/hotplug: Add tracepoints
...
Pull ram resource handling changes from Ingo Molnar:
"Core kernel resource handling changes to support NVDIMM error
injection.
This tree introduces a new I/O resource type, IORESOURCE_SYSTEM_RAM,
for System RAM while keeping the current IORESOURCE_MEM type bit set
for all memory-mapped ranges (including System RAM) for backward
compatibility.
With this resource flag it no longer takes a strcmp() loop through the
resource tree to find "System RAM" resources.
The new resource type is then used to extend ACPI/APEI error injection
facility to also support NVDIMM"
* 'core-resources-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
ACPI/EINJ: Allow memory error injection to NVDIMM
resource: Kill walk_iomem_res()
x86/kexec: Remove walk_iomem_res() call with GART type
x86, kexec, nvdimm: Use walk_iomem_res_desc() for iomem search
resource: Add walk_iomem_res_desc()
memremap: Change region_intersects() to take @flags and @desc
arm/samsung: Change s3c_pm_run_res() to use System RAM type
resource: Change walk_system_ram() to use System RAM type
drivers: Initialize resource entry to zero
xen, mm: Set IORESOURCE_SYSTEM_RAM to System RAM
kexec: Set IORESOURCE_SYSTEM_RAM for System RAM
arch: Set IORESOURCE_SYSTEM_RAM flag for System RAM
ia64: Set System RAM type and descriptor
x86/e820: Set System RAM type and descriptor
resource: Add I/O resource descriptor
resource: Handle resource flags properly
resource: Add System RAM resource type
Functions which the compiler has instrumented for KASAN place poison on
the stack shadow upon entry and remove this poison prior to returning.
In the case of cpuidle, CPUs exit the kernel a number of levels deep in
C code. Any instrumented functions on this critical path will leave
portions of the stack shadow poisoned.
If CPUs lose context and return to the kernel via a cold path, we
restore a prior context saved in __cpu_suspend_enter are forgotten, and
we never remove the poison they placed in the stack shadow area by
functions calls between this and the actual exit of the kernel.
Thus, (depending on stackframe layout) subsequent calls to instrumented
functions may hit this stale poison, resulting in (spurious) KASAN
splats to the console.
To avoid this, clear any stale poison from the idle thread for a CPU
prior to bringing a CPU online.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Reviewed-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The prologue of the EFI entry point pushes x29 and x30 onto the stack but
fails to create the stack frame correctly by omitting the assignment of x29
to the new value of the stack pointer. So fix that.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Commit 0f54b14e76 ("arm64: cpufeature: Change read_cpuid() to use
sysreg's mrs_s macro") changed read_cpuid to require a SYS_ prefix on
register names, to allow manual assembly of registers unknown by the
toolchain, using tables in sysreg.h.
This interacts poorly with commit 42b5573403 ("efi/arm64: Check
for h/w support before booting a >4 KB granular kernel"), which is
curretly queued via the tip tree, and uses read_cpuid without a SYS_
prefix. Due to this, a build of next-20160304 fails if EFI and 64K pages
are selected.
To avoid this issue when trees are merged, move the required SYS_
prefixing into read_cpuid, and revert all of the updated callsites to
pass plain register names. This effectively reverts the bulk of commit
0f54b14e76.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: James Morse <james.morse@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
We validate pstate using PSR_MODE32_BIT, which is part of the
user-provided pstate (and cannot be trusted). Also, we conflate
validation of AArch32 and AArch64 pstate values, making the code
difficult to reason about.
Instead, validate the pstate value based on the associated task. The
task may or may not be current (e.g. when using ptrace), so this must be
passed explicitly by callers. To avoid circular header dependencies via
sched.h, is_compat_task is pulled out of asm/ptrace.h.
To make the code possible to reason about, the AArch64 and AArch32
validation is split into separate functions. Software must respect the
RES0 policy for SPSR bits, and thus the kernel mirrors the hardware
policy (RAZ/WI) for bits as-yet unallocated. When these acquire an
architected meaning writes may be permitted (potentially with additional
validation).
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Cc: Dave Martin <dave.martin@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Let the non boot cpus call into idle with the corresponding hotplug state, so
the hotplug core can handle the further bringup. That's a first step to
convert the boot side of the hotplugged cpus to do all the synchronization
with the other side through the state machine. For now it'll only start the
hotplug thread and kick the full bringup of the cpu.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-arch@vger.kernel.org
Cc: Rik van Riel <riel@redhat.com>
Cc: Rafael Wysocki <rafael.j.wysocki@intel.com>
Cc: "Srivatsa S. Bhat" <srivatsa@mit.edu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Sebastian Siewior <bigeasy@linutronix.de>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Paul McKenney <paulmck@linux.vnet.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul Turner <pjt@google.com>
Link: http://lkml.kernel.org/r/20160226182341.614102639@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Commit 7175f0591e ("arm64: perf: Enable PMCR long cycle counter bit")
added initial support for a 64-bit cycle counter enabled using PMCR.LC.
Unfortunately, that patch doesn't extend ARMV8_EVTYPE_MASK, so any
attempts to set the enable bit are ignored by armv8pmu_pmcr_write.
This patch extends the mask to include the new bit.
Signed-off-by: Will Deacon <will.deacon@arm.com>
With ARMv8.1 VHE, the architecture is able to (almost) transparently
run the kernel at EL2, despite being written for EL1.
This patch takes care of the "almost" part, mostly preventing the kernel
from dropping from EL2 to EL1, and setting up the HYP configuration.
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
When the kernel is running in HYP (with VHE), it is necessary to
include EL2 events if the user requests counting kernel or
hypervisor events.
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
The fault decoding process (including computing the IPA in the case
of a permission fault) would be much better done in C code, as we
have a reasonable infrastructure to deal with the VHE/non-VHE
differences.
Let's move the whole thing to C, including the workaround for
erratum 834220, and just patch the odd ESR_EL2 access remaining
in hyp-entry.S.
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Add a new ARM64_HAS_VIRT_HOST_EXTN features to indicate that the
CPU has the ARMv8.1 VHE capability.
This will be used to trigger kernel patching in KVM.
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
When secondary cpus are booted through the ACPI parking protocol, the
booted cpu should check that FW has correctly cleared its mailbox entry
point value to make sure the boot process was correctly executed.
The entry point check is carried in the cpu_ops->cpu_postboot method, that
is executed by secondary cpus when entering the kernel with irqs disabled.
The ACPI parking protocol cpu_ops maps/unmaps the mailboxes on the
primary CPU to trigger secondary boot in the cpu_ops->cpu_boot method
and on secondary processors to carry out FW checks on the booted CPU
to verify the boot protocol was successfully executed in the
cpu_ops->cpu_postboot method.
Therefore, the cpu_ops->cpu_postboot method is forced to ioremap/unmap the
mailboxes, which is wrong in that ioremap cannot be safely be carried out
with irqs disabled.
To fix this issue, this patch reshuffles the code so that the mailboxes
are still mapped after the boot processor executes the cpu_ops->cpu_boot
method for a given cpu, and the VA at which a mailbox is mapped for a given
cpu is stashed in the per-cpu data struct so that secondary cpus can
retrieve them in the cpu_ops->cpu_postboot and complete the required
FW checks.
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Reported-by: Itaru Kitayama <itaru.kitayama@riken.jp>
Tested-by: Loc Ho <lho@apm.com>
Tested-by: Itaru Kitayama <itaru.kitayama@riken.jp>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Hanjun Guo <hanjun.guo@linaro.org>
Cc: Loc Ho <lho@apm.com>
Cc: Itaru Kitayama <itaru.kitayama@riken.jp>
Cc: Sudeep Holla <sudeep.holla@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Al Stone <ahs3@redhat.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
ARMv8.2 extensions [1] include an optional feature, which supports
half precision(16bit) floating point/asimd data processing
instructions. This patch adds support for detecting and exposing
the same to the userspace via HWCAPs
[1] https://community.arm.com/groups/processors/blog/2016/01/05/armv8-a-architecture-evolution
Signed-off-by: Suzuki K. Poulose <suzuki.poulose@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
On ThunderX T88 pass 1.x through 2.1 parts, broadcast TLBI
instructions may cause the icache to become corrupted if it contains
data for a non-current ASID.
This patch implements the workaround (which invalidates the local
icache when switching the mm) by using code patching.
Signed-off-by: Andrew Pinski <apinski@cavium.com>
Signed-off-by: David Daney <david.daney@cavium.com>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Currently the .rodata section is actually still executable when DEBUG_RODATA
is enabled. This changes that so the .rodata is actually read only, no execute.
It also adds the .rodata section to the mem_init banner.
Signed-off-by: Jeremy Linton <jeremy.linton@arm.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
[catalin.marinas@arm.com: added vm_struct vmlinux_rodata in map_kernel()]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Now that we have a clear understanding of the sign of a feature,
rename the routines to reflect the sign, so that it is not misused.
The cpuid_feature_extract_field() now accepts a 'sign' parameter.
Signed-off-by: Suzuki K. Poulose <suzuki.poulose@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Use the appropriate accessor for the feature bit by keeping
track of the sign of the feature
Signed-off-by: Suzuki K. Poulose <suzuki.poulose@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
There is a confusion on whether the values of a feature are signed
or not in ARM. This is not clearly mentioned in the ARM ARM either.
We have dealt most of the bits as signed so far, and marked the
rest as unsigned explicitly. This fixed in ARM ARM and will be rolled
out soon.
Here is the criteria in a nutshell:
1) The fields, which are either signed or unsigned, use increasing
numerical values to indicate an increase in functionality. Thus, if a value
of 0x1 indicates the presence of some instructions, then the 0x2 value will
indicate the presence of those instructions plus some additional instructions
or functionality.
2) For ID field values where the value 0x0 defines that a feature is not present,
the number is an unsigned value.
3) For some features where the feature was made optional or removed after the
start of the definition of the architecture, the value 0x0 is used to
indicate the presence of a feature, and 0xF indicates the absence of the
feature. In these cases, the fields are, in effect, holding signed values.
So with these rules applied, we have only the following fields which are signed and
the rest are unsigned.
a) ID_AA64PFR0_EL1: {FP, ASIMD}
b) ID_AA64MMFR0_EL1: {TGran4K, TGran64K}
c) ID_AA64DFR0_EL1: PMUVer (0xf - PMUv3 not implemented)
d) ID_DFR0_EL1: PerfMon
e) ID_MMFR0_EL1: {InnerShr, OuterShr}
Signed-off-by: Suzuki K. Poulose <suzuki.poulose@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Correct the feature bit entries for :
ID_DFR0
ID_MMFR0
to fix the default safe value for some of the bits.
Signed-off-by: Suzuki K. Poulose <suzuki.poulose@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Adds a hook for checking whether a secondary CPU has the
features used already by the kernel during early boot, based
on the boot CPU and plugs in the check for ASID size.
The ID_AA64MMFR0_EL1:ASIDBits determines the size of the mm context
id and is used in the early boot to make decisions. The value is
picked up from the Boot CPU and cannot be delayed until other CPUs
are up. If a secondary CPU has a smaller size than that of the Boot
CPU, things will break horribly and the usual SANITY check is not good
enough to prevent the system from crashing. So, crash the system with
enough information.
Cc: Mark Rutland <mark.rutland@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
We verify the capabilities of the secondary CPUs only when
hotplug is enabled. The boot time activated CPUs do not
go through the verification by checking whether the system
wide capabilities were initialised or not.
This patch removes the capability check dependency on CONFIG_HOTPLUG_CPU,
to make sure that all the secondary CPUs go through the check.
The boot time activated CPUs will still skip the system wide
capability check. The plan is to hook in a check for CPU features
used by the kernel at early boot up, based on the Boot CPU values.
Cc: Mark Rutland <mark.rutland@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
A secondary CPU could fail to come online due to insufficient
capabilities and could simply die or loop in the kernel.
e.g, a CPU with no support for the selected kernel PAGE_SIZE
loops in kernel with MMU turned off.
or a hotplugged CPU which doesn't have one of the advertised
system capability will die during the activation.
There is no way to synchronise the status of the failing CPU
back to the master. This patch solves the issue by adding a
field to the secondary_data which can be updated by the failing
CPU. If the secondary CPU fails even before turning the MMU on,
it updates the status in a special variable reserved in the head.txt
section to make sure that the update can be cache invalidated safely
without possible sharing of cache write back granule.
Here are the possible states :
-1. CPU_MMU_OFF - Initial value set by the master CPU, this value
indicates that the CPU could not turn the MMU on, hence the status
could not be reliably updated in the secondary_data. Instead, the
CPU has updated the status @ __early_cpu_boot_status.
0. CPU_BOOT_SUCCESS - CPU has booted successfully.
1. CPU_KILL_ME - CPU has invoked cpu_ops->die, indicating the
master CPU to synchronise by issuing a cpu_ops->cpu_kill.
2. CPU_STUCK_IN_KERNEL - CPU couldn't invoke die(), instead is
looping in the kernel. This information could be used by say,
kexec to check if it is really safe to do a kexec reboot.
3. CPU_PANIC_KERNEL - CPU detected some serious issues which
requires kernel to crash immediately. The secondary CPU cannot
call panic() until it has initialised the GIC. This flag can
be used to instruct the master to do so.
Cc: Mark Rutland <mark.rutland@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
[catalin.marinas@arm.com: conflict resolution]
[catalin.marinas@arm.com: converted "status" from int to long]
[catalin.marinas@arm.com: updated update_early_cpu_boot_status to use str_l]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This patch moves cpu_die_early to smp.c, where it fits better.
No functional changes, except for adding the necessary checks
for CONFIG_HOTPLUG_CPU.
Cc: Mark Rutland <mark.rutland@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Or in other words, make fail_incapable_cpu() reusable.
We use fail_incapable_cpu() to kill a secondary CPU early during the
bringup, which doesn't have the system advertised capabilities.
This patch makes the routine more generic, to kill a secondary
booting CPU, getting rid of the dependency on capability struct.
This can be used by checks which are not necessarily attached to
a capability struct (e.g, cpu ASIDBits).
In that process, renames the function to cpu_die_early() to better
match its functionality. This will be moved to arch/arm64/kernel/smp.c
later.
Cc: Mark Rutland <mark.rutland@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Adds a routine which can be used to park CPUs (spinning in kernel)
when they can't be killed.
Cc: Mark Rutland <mark.rutland@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
When KASLR is enabled (CONFIG_RANDOMIZE_BASE=y), and entropy has been
provided by the bootloader, randomize the placement of RAM inside the
linear region if sufficient space is available. For instance, on a 4KB
granule/3 levels kernel, the linear region is 256 GB in size, and we can
choose any 1 GB aligned offset that is far enough from the top of the
address space to fit the distance between the start of the lowest memblock
and the top of the highest memblock.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This adds support for KASLR is implemented, based on entropy provided by
the bootloader in the /chosen/kaslr-seed DT property. Depending on the size
of the address space (VA_BITS) and the page size, the entropy in the
virtual displacement is up to 13 bits (16k/2 levels) and up to 25 bits (all
4 levels), with the sidenote that displacements that result in the kernel
image straddling a 1GB/32MB/512MB alignment boundary (for 4KB/16KB/64KB
granule kernels, respectively) are not allowed, and will be rounded up to
an acceptable value.
If CONFIG_RANDOMIZE_MODULE_REGION_FULL is enabled, the module region is
randomized independently from the core kernel. This makes it less likely
that the location of core kernel data structures can be determined by an
adversary, but causes all function calls from modules into the core kernel
to be resolved via entries in the module PLTs.
If CONFIG_RANDOMIZE_MODULE_REGION_FULL is not enabled, the module region is
randomized by choosing a page aligned 128 MB region inside the interval
[_etext - 128 MB, _stext + 128 MB). This gives between 10 and 14 bits of
entropy (depending on page size), independently of the kernel randomization,
but still guarantees that modules are within the range of relative branch
and jump instructions (with the caveat that, since the module region is
shared with other uses of the vmalloc area, modules may need to be loaded
further away if the module region is exhausted)
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This implements CONFIG_RELOCATABLE, which links the final vmlinux
image with a dynamic relocation section, allowing the early boot code
to perform a relocation to a different virtual address at runtime.
This is a prerequisite for KASLR (CONFIG_RANDOMIZE_BASE).
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Instead of using absolute addresses for both the exception location
and the fixup, use offsets relative to the exception table entry values.
Not only does this cut the size of the exception table in half, it is
also a prerequisite for KASLR, since absolute exception table entries
are subject to dynamic relocation, which is incompatible with the sorting
of the exception table that occurs at build time.
This patch also introduces the _ASM_EXTABLE preprocessor macro (which
exists on x86 as well) and its _asm_extable assembly counterpart, as
shorthands to emit exception table entries.
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Before implementing KASLR for arm64 by building a self-relocating PIE
executable, we have to ensure that values we use before the relocation
routine is executed are not subject to dynamic relocation themselves.
This applies not only to virtual addresses, but also to values that are
supplied by the linker at build time and relocated using R_AARCH64_ABS64
relocations.
So instead, use assemble time constants, or force the use of static
relocations by folding the constants into the instructions.
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Unfortunately, the current way of using the linker to emit build time
constants into the Image header will no longer work once we switch to
the use of PIE executables. The reason is that such constants are emitted
into the binary using R_AARCH64_ABS64 relocations, which are resolved at
runtime, not at build time, and the places targeted by those relocations
will contain zeroes before that.
So refactor the endian swapping linker script constant generation code so
that it emits the upper and lower 32-bit words separately.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This adds support for emitting PLTs at module load time for relative
branches that are out of range. This is a prerequisite for KASLR, which
may place the kernel and the modules anywhere in the vmalloc area,
making it more likely that branch target offsets exceed the maximum
range of +/- 128 MB.
In this version, I removed the distinction between relocations against
.init executable sections and ordinary executable sections. The reason
is that it is hardly worth the trouble, given that .init.text usually
does not contain that many far branches, and this version now only
reserves PLT entry space for jump and call relocations against undefined
symbols (since symbols defined in the same module can be assumed to be
within +/- 128 MB)
For example, the mac80211.ko module (which is fairly sizable at ~400 KB)
built with -mcmodel=large gives the following relocation counts:
relocs branches unique !local
.text 3925 3347 518 219
.init.text 11 8 7 1
.exit.text 4 4 4 1
.text.unlikely 81 67 36 17
('unique' means branches to unique type/symbol/addend combos, of which
!local is the subset referring to undefined symbols)
IOW, we are only emitting a single PLT entry for the .init sections, and
we are better off just adding it to the core PLT section instead.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The EFI stub is typically built into the decompressor (x86, ARM) so none
of its symbols are annotated as __init. However, on arm64, the stub is
linked into the kernel proper, and the code is __init annotated at the
section level by prepending all names of SHF_ALLOC sections with '.init'.
This results in section names like .init.rodata.str1.8 (for string literals)
and .init.bss (which is tiny), both of which can be moved into the .init.data
output section.
Tested-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk>
Acked-by: Will Deacon <will.deacon@arm.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Link: http://lkml.kernel.org/r/1455712566-16727-6-git-send-email-matt@codeblueprint.co.uk
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This relaxes the kernel Image placement requirements, so that it
may be placed at any 2 MB aligned offset in physical memory.
This is accomplished by ignoring PHYS_OFFSET when installing
memblocks, and accounting for the apparent virtual offset of
the kernel Image. As a result, virtual address references
below PAGE_OFFSET are correctly mapped onto physical references
into the kernel Image regardless of where it sits in memory.
Special care needs to be taken for dealing with memory limits passed
via mem=, since the generic implementation clips memory top down, which
may clip the kernel image itself if it is loaded high up in memory. To
deal with this case, we simply add back the memory covering the kernel
image, which may result in more memory to be retained than was passed
as a mem= parameter.
Since mem= should not be considered a production feature, a panic notifier
handler is installed that dumps the memory limit at panic time if one was
set.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This introduces the preprocessor symbol KIMAGE_VADDR which will serve as
the symbolic virtual base of the kernel region, i.e., the kernel's virtual
offset will be KIMAGE_VADDR + TEXT_OFFSET. For now, we define it as being
equal to PAGE_OFFSET, but in the future, it will be moved below it once
we move the kernel virtual mapping out of the linear mapping.
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This function was introduced by previous commits implementing UAO.
However, it can be replaced with task_thread_info() in
uao_thread_switch() or get_fs() in do_page_fault() (the latter being
called only on the current context, so no need for using the saved
pt_regs).
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
If a CPU supports both Privileged Access Never (PAN) and User Access
Override (UAO), we don't need to disable/re-enable PAN round all
copy_to_user() like calls.
UAO alternatives cause these calls to use the 'unprivileged' load/store
instructions, which are overridden to be the privileged kind when
fs==KERNEL_DS.
This patch changes the copy_to_user() calls to have their PAN toggling
depend on a new composite 'feature' ARM64_ALT_PAN_NOT_UAO.
If both features are detected, PAN will be enabled, but the copy_to_user()
alternatives will not be applied. This means PAN will be enabled all the
time for these functions. If only PAN is detected, the toggling will be
enabled as normal.
This will save the time taken to disable/re-enable PAN, and allow us to
catch copy_to_user() accesses that occur with fs==KERNEL_DS.
Futex and swp-emulation code continue to hang their PAN toggling code on
ARM64_HAS_PAN.
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
CPU feature code uses the desc field as a test to find the end of the list,
this means every entry must have a description. This generates noise for
entries in the list that aren't really features, but combinations of them.
e.g.
> CPU features: detected feature: Privileged Access Never
> CPU features: detected feature: PAN and not UAO
These combination features are needed for corner cases with alternatives,
where cpu features interact.
Change all walkers of the arm64_features[] and arm64_hwcaps[] lists to test
'matches' not 'desc', and only print 'desc' if it is non-NULL.
Signed-off-by: James Morse <james.morse@arm.com>
Reviewed-by : Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
'User Access Override' is a new ARMv8.2 feature which allows the
unprivileged load and store instructions to be overridden to behave in
the normal way.
This patch converts {get,put}_user() and friends to use ldtr*/sttr*
instructions - so that they can only access EL0 memory, then enables
UAO when fs==KERNEL_DS so that these functions can access kernel memory.
This allows user space's read/write permissions to be checked against the
page tables, instead of testing addr<USER_DS, then using the kernel's
read/write permissions.
Signed-off-by: James Morse <james.morse@arm.com>
[catalin.marinas@arm.com: move uao_thread_switch() above dsb()]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
ARMv8.1 increases the PMU event number space to 16 bit so increase
the EVTYPE mask.
Signed-off-by: Jan Glauber <jglauber@cavium.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
With the long cycle counter bit (LC) disabled the cycle counter is not
working on ThunderX SOC (ThunderX only implements Aarch64).
Also, according to documentation LC == 0 is deprecated.
To keep the code simple the patch does not introduce 64 bit wide counter
functions. Instead writing the cycle counter always sets the upper
32 bits so overflow interrupts are generated as before.
Original patch from Andrew Pinksi <Andrew.Pinksi@caviumnetworks.com>
Signed-off-by: Jan Glauber <jglauber@cavium.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
The implemented Cortex A57 events are strictly-speaking not
A57 specific. They are ARM recommended implementation defined events
and can be found on other ARMv8 SOCs like Cavium ThunderX too.
Therefore rename these events to allow using them in other
implementations too.
Signed-off-by: Jan Glauber <jglauber@cavium.com>
[will: capitalisation and ordering]
Signed-off-by: Will Deacon <will.deacon@arm.com>
ARMv8.2 adds a new feature register id_aa64mmfr2. This patch adds the
cpu feature boiler plate used by the actual features in later patches.
Signed-off-by: James Morse <james.morse@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Older assemblers may not have support for newer feature registers. To get
round this, sysreg.h provides a 'mrs_s' macro that takes a register
encoding and generates the raw instruction.
Change read_cpuid() to use mrs_s in all cases so that new registers
don't have to be a special case. Including sysreg.h means we need to move
the include and definition of read_cpuid() after the #ifndef __ASSEMBLY__
to avoid syntax errors in vmlinux.lds.
Signed-off-by: James Morse <james.morse@arm.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Although the arm64 vDSO is cleanly separated by code/data with the
code being read-only in userspace mappings, the code page is still
writable from the kernel. There have been exploits (such as
http://itszn.com/blog/?p=21) that take advantage of this on x86 to go
from a bad kernel write to full root.
Prevent this specific exploit on arm64 by putting the vDSO code page
in read-only memory as well.
Before the change:
[ 3.138366] vdso: 2 pages (1 code @ ffffffc000a71000, 1 data @ ffffffc000a70000)
---[ Kernel Mapping ]---
0xffffffc000000000-0xffffffc000082000 520K RW NX SHD AF UXN MEM/NORMAL
0xffffffc000082000-0xffffffc000200000 1528K ro x SHD AF UXN MEM/NORMAL
0xffffffc000200000-0xffffffc000800000 6M ro x SHD AF BLK UXN MEM/NORMAL
0xffffffc000800000-0xffffffc0009b6000 1752K ro x SHD AF UXN MEM/NORMAL
0xffffffc0009b6000-0xffffffc000c00000 2344K RW NX SHD AF UXN MEM/NORMAL
0xffffffc000c00000-0xffffffc008000000 116M RW NX SHD AF BLK UXN MEM/NORMAL
0xffffffc00c000000-0xffffffc07f000000 1840M RW NX SHD AF BLK UXN MEM/NORMAL
0xffffffc800000000-0xffffffc840000000 1G RW NX SHD AF BLK UXN MEM/NORMAL
0xffffffc840000000-0xffffffc87ae00000 942M RW NX SHD AF BLK UXN MEM/NORMAL
0xffffffc87ae00000-0xffffffc87ae70000 448K RW NX SHD AF UXN MEM/NORMAL
0xffffffc87af80000-0xffffffc87af8a000 40K RW NX SHD AF UXN MEM/NORMAL
0xffffffc87af8b000-0xffffffc87b000000 468K RW NX SHD AF UXN MEM/NORMAL
0xffffffc87b000000-0xffffffc87fe00000 78M RW NX SHD AF BLK UXN MEM/NORMAL
0xffffffc87fe00000-0xffffffc87ff50000 1344K RW NX SHD AF UXN MEM/NORMAL
0xffffffc87ff90000-0xffffffc87ffa0000 64K RW NX SHD AF UXN MEM/NORMAL
0xffffffc87fff0000-0xffffffc880000000 64K RW NX SHD AF UXN MEM/NORMAL
After:
[ 3.138368] vdso: 2 pages (1 code @ ffffffc0006de000, 1 data @ ffffffc000a74000)
---[ Kernel Mapping ]---
0xffffffc000000000-0xffffffc000082000 520K RW NX SHD AF UXN MEM/NORMAL
0xffffffc000082000-0xffffffc000200000 1528K ro x SHD AF UXN MEM/NORMAL
0xffffffc000200000-0xffffffc000800000 6M ro x SHD AF BLK UXN MEM/NORMAL
0xffffffc000800000-0xffffffc0009b8000 1760K ro x SHD AF UXN MEM/NORMAL
0xffffffc0009b8000-0xffffffc000c00000 2336K RW NX SHD AF UXN MEM/NORMAL
0xffffffc000c00000-0xffffffc008000000 116M RW NX SHD AF BLK UXN MEM/NORMAL
0xffffffc00c000000-0xffffffc07f000000 1840M RW NX SHD AF BLK UXN MEM/NORMAL
0xffffffc800000000-0xffffffc840000000 1G RW NX SHD AF BLK UXN MEM/NORMAL
0xffffffc840000000-0xffffffc87ae00000 942M RW NX SHD AF BLK UXN MEM/NORMAL
0xffffffc87ae00000-0xffffffc87ae70000 448K RW NX SHD AF UXN MEM/NORMAL
0xffffffc87af80000-0xffffffc87af8a000 40K RW NX SHD AF UXN MEM/NORMAL
0xffffffc87af8b000-0xffffffc87b000000 468K RW NX SHD AF UXN MEM/NORMAL
0xffffffc87b000000-0xffffffc87fe00000 78M RW NX SHD AF BLK UXN MEM/NORMAL
0xffffffc87fe00000-0xffffffc87ff50000 1344K RW NX SHD AF UXN MEM/NORMAL
0xffffffc87ff90000-0xffffffc87ffa0000 64K RW NX SHD AF UXN MEM/NORMAL
0xffffffc87fff0000-0xffffffc880000000 64K RW NX SHD AF UXN MEM/NORMAL
Inspired by https://lkml.org/lkml/2016/1/19/494 based on work by the
PaX Team, Brad Spengler, and Kees Cook.
Signed-off-by: David Brown <david.brown@linaro.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
[catalin.marinas@arm.com: removed superfluous __PAGE_ALIGNED_DATA]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Most CPUs have a hardware prefetcher which generally performs better
without explicit prefetch instructions issued by software, however
some CPUs (e.g. Cavium ThunderX) rely solely on explicit prefetch
instructions.
This patch adds an alternative pattern (ARM64_HAS_NO_HW_PREFETCH) to
allow our library code to make use of explicit prefetch instructions
during things like copy routines only when the CPU does not have the
capability to perform the prefetching itself.
Signed-off-by: Will Deacon <will.deacon@arm.com>
Tested-by: Andrew Pinski <apinski@cavium.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The SBBR and ACPI specifications allow ACPI based systems that do not
implement PSCI (eg systems with no EL3) to boot through the ACPI parking
protocol specification[1].
This patch implements the ACPI parking protocol CPU operations, and adds
code that eases parsing the parking protocol data structures to the
ARM64 SMP initializion carried out at the same time as cpus enumeration.
To wake-up the CPUs from the parked state, this patch implements a
wakeup IPI for ARM64 (ie arch_send_wakeup_ipi_mask()) that mirrors the
ARM one, so that a specific IPI is sent for wake-up purpose in order
to distinguish it from other IPI sources.
Given the current ACPI MADT parsing API, the patch implements a glue
layer that helps passing MADT GICC data structure from SMP initialization
code to the parking protocol implementation somewhat overriding the CPU
operations interfaces. This to avoid creating a completely trasparent
DT/ACPI CPU operations layer that would require creating opaque
structure handling for CPUs data (DT represents CPU through DT nodes, ACPI
through static MADT table entries), which seems overkill given that ACPI
on ARM64 mandates only two booting protocols (PSCI and parking protocol),
so there is no need for further protocol additions.
Based on the original work by Mark Salter <msalter@redhat.com>
[1] https://acpica.org/sites/acpica/files/MP%20Startup%20for%20ARM%20platforms.docx
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Tested-by: Loc Ho <lho@apm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Hanjun Guo <hanjun.guo@linaro.org>
Cc: Sudeep Holla <sudeep.holla@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Al Stone <ahs3@redhat.com>
[catalin.marinas@arm.com: Added WARN_ONCE(!acpi_parking_protocol_valid() on the IPI]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Currently we have separate ALIGN_DEBUG_RO{,_MIN} directives to align
_etext and __init_begin. While we ensure that __init_begin is
page-aligned, we do not provide the same guarantee for _etext. This is
not problematic currently as the alignment of __init_begin is sufficient
to prevent issues when we modify permissions.
Subsequent patches will assume page alignment of segments of the kernel
we wish to map with different permissions. To ensure this, move _etext
after the ALIGN_DEBUG_RO_MIN for the init section. This renders the
prior ALIGN_DEBUG_RO irrelevant, and hence it is removed. Likewise,
upgrade to ALIGN_DEBUG_RO_MIN(PAGE_SIZE) for _stext.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Tested-by: Jeremy Linton <jeremy.linton@arm.com>
Cc: Laura Abbott <labbott@fedoraproject.org>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
During boot we leave the idmap in place until paging_init, as we
previously had to wait for the zero page to become allocated and
accessible.
Now that we have a statically-allocated zero page, we can uninstall the
idmap much earlier in the boot process, making it far easier to spot
accidental use of physical addresses. This also brings the cold boot
path in line with the secondary boot path.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Tested-by: Jeremy Linton <jeremy.linton@arm.com>
Cc: Laura Abbott <labbott@fedoraproject.org>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
We currently open-code the removal of the idmap and restoration of the
current task's MMU state in a few places.
Before introducing yet more copies of this sequence, unify these to call
a new helper, cpu_uninstall_idmap.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Tested-by: Jeremy Linton <jeremy.linton@arm.com>
Cc: Laura Abbott <labbott@fedoraproject.org>
Cc: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Currently the zero page is set up in paging_init, and thus we cannot use
the zero page earlier. We use the zero page as a reserved TTBR value
from which no TLB entries may be allocated (e.g. when uninstalling the
idmap). To enable such usage earlier (as may be required for invasive
changes to the kernel page tables), and to minimise the time that the
idmap is active, we need to be able to use the zero page before
paging_init.
This patch follows the example set by x86, by allocating the zero page
at compile time, in .bss. This means that the zero page itself is
available immediately upon entry to start_kernel (as we zero .bss before
this), and also means that the zero page takes up no space in the raw
Image binary. The associated struct page is allocated in bootmem_init,
and remains unavailable until this time.
Outside of arch code, the only users of empty_zero_page assume that the
empty_zero_page symbol refers to the zeroed memory itself, and that
ZERO_PAGE(x) must be used to acquire the associated struct page,
following the example of x86. This patch also brings arm64 inline with
these assumptions.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Tested-by: Jeremy Linton <jeremy.linton@arm.com>
Cc: Laura Abbott <labbott@fedoraproject.org>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Changes introduced in the upstream version of libfdt pulled in by commit
91feabc2e2 ("scripts/dtc: Update to upstream commit b06e55c88b9b") use
the strnlen() function, which isn't currently available to the EFI name-
space. Add it to the EFI namespace to avoid a linker error.
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Rob Herring <robh@kernel.org>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Thierry Reding <treding@nvidia.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Switching between stacks is only valid if we are tracing ourselves while on the
irq_stack, so it is only valid when in current and non-preemptible context,
otherwise is is just zeroed off.
Fixes: 132cd887b5 ("arm64: Modify stack trace and dump for use with irq_stack")
Acked-by: James Morse <james.morse@arm.com>
Tested-by: James Morse <james.morse@arm.com>
Signed-off-by: Yang Shi <yang.shi@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
ARM64 PSCI kernel interfaces that initialize idle states and implement
the suspend API to enter them are generic and can be shared with the
ARM architecture.
To achieve that goal, this patch moves ARM64 PSCI idle management
code to drivers/firmware, so that the interface to initialize and
enter idle states can actually be shared by ARM and ARM64 arches
back-ends.
The ARM generic CPUidle implementation also requires the definition of
a cpuidle_ops section entry for the kernel to initialize the CPUidle
operations at boot based on the enable-method (ie ARM64 has the
statically initialized cpu_ops counterparts for that purpose); therefore
this patch also adds the required section entry on CONFIG_ARM for PSCI so
that the kernel can initialize the PSCI CPUidle back-end when PSCI is
the probed enable-method.
On ARM64 this patch provides no functional change.
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Acked-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com> [arch/arm64]
Acked-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Jisheng Zhang <jszhang@marvell.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Sudeep Holla <sudeep.holla@arm.com>
Cc: Daniel Lezcano <daniel.lezcano@linaro.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Jisheng Zhang <jszhang@marvell.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
force_sig_info can sleep under an -rt kernel, so attempting to send a
breakpoint SIGTRAP with interrupts disabled yields the following BUG:
BUG: sleeping function called from invalid context at
/kernel-source/kernel/locking/rtmutex.c:917
in_atomic(): 0, irqs_disabled(): 128, pid: 551, name: test.sh
CPU: 5 PID: 551 Comm: test.sh Not tainted 4.1.13-rt13 #7
Hardware name: Freescale Layerscape 2085a RDB Board (DT)
Call trace:
dump_backtrace+0x0/0x128
show_stack+0x24/0x30
dump_stack+0x80/0xa0
___might_sleep+0x128/0x1a0
rt_spin_lock+0x2c/0x40
force_sig_info+0xcc/0x210
brk_handler.part.2+0x6c/0x80
brk_handler+0xd8/0xe8
do_debug_exception+0x58/0xb8
This patch fixes the problem by ensuring that interrupts are enabled
prior to sending the SIGTRAP if they were already enabled in the user
context.
Reported-by: Yang Shi <yang.shi@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
arm64 generates asm/pci-bridge.h, which merely includes the now-empty
asm-generic/pci-bridge.h. Stop generating asm/pci-bridge.h, and stop
including it.
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Set IORESOURCE_SYSTEM_RAM in flags of resource ranges with
"System RAM", "Kernel code", "Kernel data", and "Kernel bss".
Note that:
- IORESOURCE_SYSRAM (i.e. modifier bit) is set in flags when
IORESOURCE_MEM is already set. IORESOURCE_SYSTEM_RAM is defined
as (IORESOURCE_MEM|IORESOURCE_SYSRAM).
- Some archs do not set 'flags' for children nodes, such as
"Kernel code". This patch does not change 'flags' in this
case.
Signed-off-by: Toshi Kani <toshi.kani@hpe.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Luis R. Rodriguez <mcgrof@suse.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Toshi Kani <toshi.kani@hp.com>
Cc: linux-arch@vger.kernel.org
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-mips@linux-mips.org
Cc: linux-mm <linux-mm@kvack.org>
Cc: linux-parisc@vger.kernel.org
Cc: linux-s390@vger.kernel.org
Cc: linux-sh@vger.kernel.org
Cc: linuxppc-dev@lists.ozlabs.org
Cc: sparclinux@vger.kernel.org
Link: http://lkml.kernel.org/r/1453841853-11383-7-git-send-email-bp@alien8.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The Performance Monitors extension is an optional feature of the
AArch64 architecture, therefore, in order to access Performance
Monitors registers safely, the kernel should detect the architected
PMU unit presence through the ID_AA64DFR0_EL1 register PMUVer field
before accessing them.
This patch implements a guard by reading the ID_AA64DFR0_EL1 register
PMUVer field to detect the architected PMU presence and prevent accessing
PMU system registers if the Performance Monitors extension is not
implemented in the core.
Cc: Peter Maydell <peter.maydell@linaro.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: <stable@vger.kernel.org>
Fixes: 60792ad349 ("arm64: kernel: enforce pmuserenr_el0 initialization and restore")
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Reported-by: Guenter Roeck <linux@roeck-us.net>
Tested-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Commit e8f3010f73 ("arm64/efi: isolate EFI stub from the kernel
proper") isolated the EFI stub code from the kernel proper by prefixing
all of its symbols with __efistub_, and selectively allowing access to
core kernel symbols from the stub by emitting __efistub_ aliases for
functions and variables that the stub can access legally.
As an unintended side effect, these aliases are emitted into the
kallsyms symbol table, which means they may turn up in backtraces,
e.g.,
...
PC is at __efistub_memset+0x108/0x200
LR is at fixup_init+0x3c/0x48
...
[<ffffff8008328608>] __efistub_memset+0x108/0x200
[<ffffff8008094dcc>] free_initmem+0x2c/0x40
[<ffffff8008645198>] kernel_init+0x20/0xe0
[<ffffff8008085cd0>] ret_from_fork+0x10/0x40
The backtrace in question has nothing to do with the EFI stub, but
simply returns one of the several aliases of memset() that have been
recorded in the kallsyms table. This is undesirable, since it may
suggest to people who are not aware of this that the issue they are
seeing is somehow EFI related.
So hide the __efistub_ aliases from kallsyms, by emitting them as
absolute linker symbols explicitly. The distinction between those
and section relative symbols is completely irrelevant to these
definitions, and to the final link we are performing when these
definitions are being taken into account (the distinction is only
relevant to symbols defined inside a section definition when performing
a partial link), and so the resulting values are identical to the
original ones. Since absolute symbols are ignored by kallsyms, this
will result in these values to be omitted from its symbol table.
After this patch, the backtrace generated from the same address looks
like this:
...
PC is at __memset+0x108/0x200
LR is at fixup_init+0x3c/0x48
...
[<ffffff8008328608>] __memset+0x108/0x200
[<ffffff8008094dcc>] free_initmem+0x2c/0x40
[<ffffff8008645198>] kernel_init+0x20/0xe0
[<ffffff8008085cd0>] ret_from_fork+0x10/0x40
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
During code generation, we used to BUG_ON unknown/unsupported encoding
or invalid parameters.
Instead, now we report these as errors and simply return the
instruction AARCH64_BREAK_FAULT. Users of these codegen helpers should
check for and handle this failure condition as appropriate.
Otherwise, unhandled codegen failure will result in trapping at
run-time due to AARCH64_BREAK_FAULT, which is arguably better than a
BUG_ON.
Signed-off-by: Zi Shen Lim <zlim.lnx@gmail.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
support of 248 VCPUs.
* ARM: rewrite of the arm64 world switch in C, support for
16-bit VM identifiers. Performance counter virtualization
missed the boat.
* x86: Support for more Hyper-V features (synthetic interrupt
controller), MMU cleanups
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJWlSKwAAoJEL/70l94x66DY0UIAK5vp4zfQoQOJC4KP4Xgxwdu
kpnK2Boz3/74o1b0y5+eJZoUZCsXCVLtmP5uhmMxUYWDgByFG2X8ZDhPFwB5FYLT
2dN+Lr4tsolgIfRdHZtrT6Svp9SDL039bWTdscnbR6l37/j9FRWvpKdhI3orloFD
/i4CSW2dVIq1/9Xctwu/rtcOEesEx4Cad+6YV3/530eVAXFzE908nXfmqJNZTocY
YCGcmrMVCOu0ng5QM4xSzmmYjKMLUcRs+QzZWkVBzdJtTgwZUr09yj7I2dZ1yj/i
cxYrJy6shSwE74XkXsmvG+au3C5u3vX4tnXjBFErnPJ99oqzHatVnFWNRhj4dLQ=
=PIj1
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"PPC changes will come next week.
- s390: Support for runtime instrumentation within guests, support of
248 VCPUs.
- ARM: rewrite of the arm64 world switch in C, support for 16-bit VM
identifiers. Performance counter virtualization missed the boat.
- x86: Support for more Hyper-V features (synthetic interrupt
controller), MMU cleanups"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (115 commits)
kvm: x86: Fix vmwrite to SECONDARY_VM_EXEC_CONTROL
kvm/x86: Hyper-V SynIC timers tracepoints
kvm/x86: Hyper-V SynIC tracepoints
kvm/x86: Update SynIC timers on guest entry only
kvm/x86: Skip SynIC vector check for QEMU side
kvm/x86: Hyper-V fix SynIC timer disabling condition
kvm/x86: Reorg stimer_expiration() to better control timer restart
kvm/x86: Hyper-V unify stimer_start() and stimer_restart()
kvm/x86: Drop stimer_stop() function
kvm/x86: Hyper-V timers fix incorrect logical operation
KVM: move architecture-dependent requests to arch/
KVM: renumber vcpu->request bits
KVM: document which architecture uses each request bit
KVM: Remove unused KVM_REQ_KICK to save a bit in vcpu->requests
kvm: x86: Check kvm_write_guest return value in kvm_write_wall_clock
KVM: s390: implement the RI support of guest
kvm/s390: drop unpaired smp_mb
kvm: x86: fix comment about {mmu,nested_mmu}.gva_to_gpa
KVM: x86: MMU: Use clear_page() instead of init_shadow_page_table()
arm/arm64: KVM: Detect vGIC presence at runtime
...
- Stolen ticks and PV wallclock support for arm/arm64.
- Add grant copy ioctl to gntdev device.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJWk5IUAAoJEFxbo/MsZsTRLxwH/1BDcrbQDRc5hxUOG9JEYSUt
H/lMjvZRShPkzweijdNon95ywAXhcSbkS9IV2Mp0+CZV7VyeymW7QIW/g4+G6iRg
+LnoV77PAhPv/cmsr1pENXqRCclvemlxQOf7UyWLezuKhB71LC+oNaEnpk/tPIZS
et/qef+m/SgSP5R91nO0Esv2KfP7za0UrgJf3Ee4GzjSeDkya0Hko06Cy3yc1/RT
082kHpQ1/KFcHHh2qhdCQwyzhq/cwFkuDA6ksKYJoxC6YAVC2mvvkuIOZYbloHDL
c/dzuP9qjjxOZ7Gblv2cmg+RE4UqRfBhxmMycxSCcwW/Mt5LaftCpAxpBQKq2/8=
=6F/q
-----END PGP SIGNATURE-----
Merge tag 'for-linus-4.5-rc0-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip
Pull xen updates from David Vrabel:
"Xen features and fixes for 4.5-rc0:
- Stolen ticks and PV wallclock support for arm/arm64
- Add grant copy ioctl to gntdev device"
* tag 'for-linus-4.5-rc0-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip:
xen/gntdev: add ioctl for grant copy
x86/xen: don't reset vcpu_info on a cancelled suspend
xen/gntdev: constify mmu_notifier_ops structures
xen/grant-table: constify gnttab_ops structure
xen/time: use READ_ONCE
xen/x86: convert remaining timespec to timespec64 in xen_pvclock_gtod_notify
xen/x86: support XENPF_settime64
xen/arm: set the system time in Xen via the XENPF_settime64 hypercall
xen/arm: introduce xen_read_wallclock
arm: extend pvclock_wall_clock with sec_hi
xen: introduce XENPF_settime64
xen/arm: introduce HYPERVISOR_platform_op on arm and arm64
xen: rename dom0_op to platform_op
xen/arm: account for stolen ticks
arm64: introduce CONFIG_PARAVIRT, PARAVIRT_TIME_ACCOUNTING and pv_time_ops
arm: introduce CONFIG_PARAVIRT, PARAVIRT_TIME_ACCOUNTING and pv_time_ops
missing include asm/paravirt.h in cputime.c
xen: move xen_setup_runstate_info and get_runstate_snapshot to drivers/xen/time.c
Pull ARM updates from Russell King:
- UEFI boot and runtime services support for ARM from Ard Biesheuvel
and Roy Franz.
- DT compatibility with old atags booting protocol for Nokia N900
devices from Ivaylo Dimitrov.
- PSCI firmware interface using new arm-smc calling convention from
Jens Wiklander.
- Runtime patching for udiv/sdiv instructions for ARMv7 CPUs that
support these instructions from Nicolas Pitre.
- L2x0 cache updates from Dirk B and Linus Walleij.
- Randconfig fixes from Arnd Bergmann.
- ARMv7M (nommu) updates from Ezequiel Garcia
* 'for-linus' of git://ftp.arm.linux.org.uk/~rmk/linux-arm: (34 commits)
ARM: 8481/2: drivers: psci: replace psci firmware calls
ARM: 8480/2: arm64: add implementation for arm-smccc
ARM: 8479/2: add implementation for arm-smccc
ARM: 8478/2: arm/arm64: add arm-smccc
ARM: 8494/1: mm: Enable PXN when running non-LPAE kernel on LPAE processor
ARM: 8496/1: OMAP: RX51: save ATAGS data in the early boot stage
ARM: 8495/1: ATAGS: move save_atags() to arch/arm/include/asm/setup.h
ARM: 8452/3: PJ4: make coprocessor access sequences buildable in Thumb2 mode
ARM: 8482/1: l2x0: make it possible to disable outer sync from DT
ARM: 8488/1: Make IPI_CPU_BACKTRACE a "non-secure" SGI
ARM: 8487/1: Remove IPI_CALL_FUNC_SINGLE
ARM: 8485/1: cpuidle: remove cpu parameter from the cpuidle_ops suspend hook
ARM: 8484/1: Documentation: l2c2x0: Mention separate controllers explicitly
ARM: 8483/1: Documentation: l2c: Rename l2cc to l2c2x0
ARM: 8477/1: runtime patch udiv/sdiv instructions into __aeabi_{u}idiv()
ARM: 8476/1: VDSO: use PTR_ERR_OR_ZERO for vma check
ARM: 8453/2: proc-v7.S: don't locate temporary stack space in .text section
ARM: add UEFI stub support
ARM: wire up UEFI init and runtime support
ARM: only consider memblocks with NOMAP cleared for linear mapping
...
- Support for the CPU PMU in Cortex-A72
- Add sysfs entries to describe the architected events and their
mappings for PMUv{1-3}
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABCgAGBQJWj+uEAAoJELescNyEwWM0PzgIALXISGukbDOLBXFYRc+6g3BT
zb9W2rFtN0j7+WmspGbdocDqnS1gPrqXftAHyk2XPRmfh5rr9aP5qWefJ9fDptTB
GCTpW4iG5chHi+er13ovz20Cphz55k3VRA4suBlHHyNLjAwLvnpW28SSAssPJDbB
8UHOqHhNRmnI3D4amJhEfldvk+0h54I5W6odXthxOQZREwA87jQlbRr3PFlBUbIX
NN+X6/j1N5Jja6DtaCzfDpybeLR3XQM+Fj+xokyUw5duwfrXgwoMO6N8lDTH3zwe
MoWViwCVBMPA0RzJdAD1sbpdIR/e6xT3/VHfkRyR/zS9UalSTv+VAlAanGb6KzY=
=1wJ0
-----END PGP SIGNATURE-----
Merge tag 'arm64-perf' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm[64] perf updates from Will Deacon:
"In the past, I have funnelled perf updates through the respective
architecture trees, but now that the arm/arm64 perf driver has been
largely consolidated under drivers/perf/, it makes more sense to send
a separate pull, particularly as I'm listed as maintainer for all the
files involved. I offered the branch to arm-soc, but Arnd suggested
that I just send it to you directly.
So, here is the arm/arm64 perf queue for 4.5. The main features are
described below, but the most useful change is from Drew, which
advertises our architected event mapping in sysfs so that the perf
tool is a lot more user friendly and no longer requires the use of
magic hex constants for profiling common events.
- Support for the CPU PMU in Cortex-A72
- Add sysfs entries to describe the architected events and their
mappings for PMUv{1-3}"
* tag 'arm64-perf' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux:
arm64: perf: add support for Cortex-A72
arm64: perf: add format entry to describe event -> config mapping
ARM: perf: add format entry to describe event -> config mapping
arm64: kernel: enforce pmuserenr_el0 initialization and restore
arm64: perf: Correct Cortex-A53/A57 compatible values
arm64: perf: Add event descriptions
arm64: perf: Convert event enums to #defines
arm: perf: Add event descriptions
arm: perf: Convert event enums to #defines
drivers/perf: kill armpmu_register
- Support for a separate IRQ stack, although we haven't reduced the size
of our thread stack just yet since we don't have enough data to
determine a safe value
- Refactoring of our EFI initialisation and runtime code into
drivers/firmware/efi/ so that it can be reused by arch/arm/.
- Ftrace improvements when unwinding in the function graph tracer
- Document our silicon errata handling process
- Cache flushing optimisation when mapping executable pages
- Support for hugetlb mappings using the contiguous hint in the pte
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABCgAGBQJWj+pFAAoJELescNyEwWM0/V8IALu8i2d6LijVICyZ/MH6pK+F
krbkIjdKFmIoFqo8HolCDMDqWfdzCLW671iYmks1DYVqM0Q5SXRa1rIzMw1Nbd3s
PzHS8qvnJFGtjXgwX5yxcyA5nU5hG5/mHJ8tbEg4zlQXvGONU6rZOlt4xY3ocZR7
iWmqoNX8LbPv5UgpifQ06QXEiC+4pm/BgADl2995oZfOaZ37L6c0oh6VcxQWyEf8
7OFRYtwruNyX2S5zJkL41Rh8gFAL9/j7lrHt2D+cxHR58X+qiRYKTjxkwJUt6i3E
ROZROsdQpyHojIIIYZEfNCZWjV0NwSghQfCnbsDwxVkkVeY414UXIno8JV4MyCk=
=JHvb
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Will Deacon:
"Here is the core arm64 queue for 4.5. As you might expect, the
Christmas break resulted in a number of patches not making the final
cut, so 4.6 is likely to be larger than usual. There's still some
useful stuff here, however, and it's detailed below.
The EFI changes have been Reviewed-by Matt and the memblock change got
an "OK" from akpm.
Summary:
- Support for a separate IRQ stack, although we haven't reduced the
size of our thread stack just yet since we don't have enough data
to determine a safe value
- Refactoring of our EFI initialisation and runtime code into
drivers/firmware/efi/ so that it can be reused by arch/arm/.
- Ftrace improvements when unwinding in the function graph tracer
- Document our silicon errata handling process
- Cache flushing optimisation when mapping executable pages
- Support for hugetlb mappings using the contiguous hint in the pte"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (45 commits)
arm64: head.S: use memset to clear BSS
efi: stub: define DISABLE_BRANCH_PROFILING for all architectures
arm64: entry: remove pointless SPSR mode check
arm64: mm: move pgd_cache initialisation to pgtable_cache_init
arm64: module: avoid undefined shift behavior in reloc_data()
arm64: module: fix relocation of movz instruction with negative immediate
arm64: traps: address fallout from printk -> pr_* conversion
arm64: ftrace: fix a stack tracer's output under function graph tracer
arm64: pass a task parameter to unwind_frame()
arm64: ftrace: modify a stack frame in a safe way
arm64: remove irq_count and do_softirq_own_stack()
arm64: hugetlb: add support for PTE contiguous bit
arm64: Use PoU cache instr for I/D coherency
arm64: Defer dcache flush in __cpu_copy_user_page
arm64: reduce stack use in irq_handler
arm64: mm: ensure that the zero page is visible to the page table walker
arm64: Documentation: add list of software workarounds for errata
arm64: mm: place __cpu_setup in .text
arm64: cmpxchg: Don't incldue linux/mmdebug.h
arm64: mm: fold alternatives into .init
...
Currently we use an open-coded memzero to clear the BSS. As it is a
trivial implementation, it is sub-optimal.
Our optimised memset doesn't use the stack, is position-independent, and
for the memzero case can use of DC ZVA to clear large blocks
efficiently. In __mmap_switched the MMU is on and there are no live
caller-saved registers, so we can safely call an uninstrumented memset.
This patch changes __mmap_switched to use memset when clearing the BSS.
We use the __pi_memset alias so as to avoid any instrumentation in all
kernel configurations.
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
In work_pending, we may skip work if the stacked SPSR value represents
anything other than an EL0 context. We then immediately invoke the
kernel_exit 0 macro as part of ret_to_user, assuming a return to EL0.
This is somewhat confusing.
We use work_pending as part of the ret_to_user/ret_fast_syscall state
machine. We only use ret_fast_syscall in the return from an SVC issued
from EL0. We use ret_to_user for return from EL0 exception handlers and
also for return from ret_from_fork in the case the task was not a kernel
thread (i.e. it is a user task).
Thus in all cases the stacked SPSR value must represent an EL0 context,
and the check is redundant. This patch removes it, along with the now
unused no_work_pending label.
Cc: Chris Metcalf <cmetcalf@ezchip.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Compilers may engage the improbability drive when encountering shifts
by a distance that is a multiple of the size of the operand type. Since
the required bounds check is very simple here, we can get rid of all the
fuzzy masking, shifting and comparing, and use the documented bounds
directly.
Reported-by: David Binderman <dcb314@hotmail.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
The test whether a movz instruction with a signed immediate should be
turned into a movn instruction (i.e., when the immediate is negative)
is flawed, since the value of imm is always positive. Also, the
subsequent bounds check is incorrect since the limit update never
executes, due to the fact that the imm_type comparison will always be
false for negative signed immediates.
Let's fix this by performing the sign test on sval directly, and
replacing the bounds check with a simple comparison against U16_MAX.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
[will: tidied up use of sval, renamed MOVK enum value to MOVKZ]
Signed-off-by: Will Deacon <will.deacon@arm.com>
Switch to use a generic interface for issuing SMC/HVC based on ARM SMC
Calling Convention. Removes now the now unused psci-call.S.
Acked-by: Will Deacon <will.deacon@arm.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Tested-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Signed-off-by: Jens Wiklander <jens.wiklander@linaro.org>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Adds implementation for arm-smccc and enables CONFIG_HAVE_SMCCC.
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Jens Wiklander <jens.wiklander@linaro.org>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Cortex-A72 has a PMUv3 implementation that is compatible with the PMU
implemented by Cortex-A57.
This patch hooks up the new compatible string so that the Cortex-A57
event mappings are used.
Signed-off-by: Will Deacon <will.deacon@arm.com>
It's all very well providing an events directory to userspace that
details our events in terms of "event=0xNN", but if we don't define how
to encode the "event" field in the perf attr.config, then it's a waste
of time.
This patch adds a single format entry to describe that the event field
occupies the bottom 10 bits of our config field on ARMv8 (PMUv3).
Signed-off-by: Will Deacon <will.deacon@arm.com>
Commit ac7b406c1a ("arm64: Use pr_* instead of printk") was a fairly
mindless s/printk/pr_*/ change driven by a complaint from checkpatch.
As is usual with such changes, this has led to some odd behaviour on
arm64:
* syslog now picks up the "pr_emerg" line from dump_backtrace, but not
the actual trace, which leads to a bunch of "kernel:Call trace:"
lines in the log
* __{pte,pmd,pgd}_error print at KERN_CRIT, as opposed to KERN_ERR
which is used by other architectures.
This patch restores the original printk behaviour for dump_backtrace
and downgrade the pgtable error macros to KERN_ERR.
Signed-off-by: Will Deacon <will.deacon@arm.com>
Function graph tracer modifies a return address (LR) in a stack frame
to hook a function return. This will result in many useless entries
(return_to_handler) showing up in
a) a stack tracer's output
b) perf call graph (with perf record -g)
c) dump_backtrace (at panic et al.)
For example, in case of a),
$ echo function_graph > /sys/kernel/debug/tracing/current_tracer
$ echo 1 > /proc/sys/kernel/stack_trace_enabled
$ cat /sys/kernel/debug/tracing/stack_trace
Depth Size Location (54 entries)
----- ---- --------
0) 4504 16 gic_raise_softirq+0x28/0x150
1) 4488 80 smp_cross_call+0x38/0xb8
2) 4408 48 return_to_handler+0x0/0x40
3) 4360 32 return_to_handler+0x0/0x40
...
In case of b),
$ echo function_graph > /sys/kernel/debug/tracing/current_tracer
$ perf record -e mem:XXX:x -ag -- sleep 10
$ perf report
...
| | |--0.22%-- 0x550f8
| | | 0x10888
| | | el0_svc_naked
| | | sys_openat
| | | return_to_handler
| | | return_to_handler
...
In case of c),
$ echo function_graph > /sys/kernel/debug/tracing/current_tracer
$ echo c > /proc/sysrq-trigger
...
Call trace:
[<ffffffc00044d3ac>] sysrq_handle_crash+0x24/0x30
[<ffffffc000092250>] return_to_handler+0x0/0x40
[<ffffffc000092250>] return_to_handler+0x0/0x40
...
This patch replaces such entries with real addresses preserved in
current->ret_stack[] at unwind_frame(). This way, we can cover all
the cases.
Reviewed-by: Jungseok Lee <jungseoklee85@gmail.com>
Signed-off-by: AKASHI Takahiro <takahiro.akashi@linaro.org>
[will: fixed minor context changes conflicting with irq stack bits]
Signed-off-by: Will Deacon <will.deacon@arm.com>
Function graph tracer modifies a return address (LR) in a stack frame
to hook a function's return. This will result in many useless entries
(return_to_handler) showing up in a call stack list.
We will fix this problem in a later patch ("arm64: ftrace: fix a stack
tracer's output under function graph tracer"). But since real return
addresses are saved in ret_stack[] array in struct task_struct,
unwind functions need to be notified of, in addition to a stack pointer
address, which task is being traced in order to find out real return
addresses.
This patch extends unwind functions' interfaces by adding an extra
argument of a pointer to task_struct.
Signed-off-by: AKASHI Takahiro <takahiro.akashi@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Function graph tracer modifies a return address (LR) in a stack frame by
calling ftrace_prepare_return() in a traced function's function prologue.
The current code does this modification before preserving an original
address at ftrace_push_return_trace() and there is always a small window
of inconsistency when an interrupt occurs.
This doesn't matter, as far as an interrupt stack is introduced, because
stack tracer won't be invoked in an interrupt context. But it would be
better to proactively minimize such a window by moving the LR modification
after ftrace_push_return_trace().
Signed-off-by: AKASHI Takahiro <takahiro.akashi@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
sysrq_handle_reboot() re-enables interrupts while on the irq stack. The
irq_stack implementation wrongly assumed this would only ever happen
via the softirq path, allowing it to update irq_count late, in
do_softirq_own_stack().
This means if an irq occurs in sysrq_handle_reboot(), during
emergency_restart() the stack will be corrupted, as irq_count wasn't
updated.
Lose the optimisation, and instead of moving the adding/subtracting of
irq_count into irq_stack_entry/irq_stack_exit, remove it, and compare
sp_el0 (struct thread_info) with sp & ~(THREAD_SIZE - 1). This tells us
if we are on a task stack, if so, we can safely switch to the irq stack.
Finally, remove do_softirq_own_stack(), we don't need it anymore.
Reported-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
[will: use get_thread_info macro]
Signed-off-by: Will Deacon <will.deacon@arm.com>
The pmuserenr_el0 register value is architecturally UNKNOWN on reset.
Current kernel code resets that register value iff the core pmu device is
correctly probed in the kernel. On platforms with missing DT pmu nodes (or
disabled perf events in the kernel), the pmu is not probed, therefore the
pmuserenr_el0 register is not reset in the kernel, which means that its
value retains the reset value that is architecturally UNKNOWN (system
may run with eg pmuserenr_el0 == 0x1, which means that PMU counters access
is available at EL0, which must be disallowed).
This patch adds code that resets pmuserenr_el0 on cold boot and restores
it on core resume from shutdown, so that the pmuserenr_el0 setup is
always enforced in the kernel.
Cc: <stable@vger.kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Introduce CONFIG_PARAVIRT and PARAVIRT_TIME_ACCOUNTING on ARM64.
Necessary duplication of paravirt.h and paravirt.c with ARM.
The only paravirt interface supported is pv_time_ops.steal_clock, so no
runtime pvops patching needed.
This allows us to make use of steal_account_process_tick for stolen
ticks accounting.
Signed-off-by: Stefano Stabellini <stefano.stabellini@eu.citrix.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
The code for switching to irq_stack stores three pieces of information on
the stack, fp+lr, as a fake stack frame (that lets us walk back onto the
interrupted tasks stack frame), and the address of the struct pt_regs that
contains the register values from kernel entry. (which dump_backtrace()
will print in any stack trace).
To reduce this, we store fp, and the pointer to the struct pt_regs.
unwind_frame() can recognise this as the irq_stack dummy frame, (as it only
appears at the top of the irq_stack), and use the struct pt_regs values
to find the missing interrupted link-register.
Suggested-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
As we've now rewritten most of our code-base in C, most of the
KVM-specific code in asm-offset.c is useless. Delete-time again!
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Having the system register numbers as #defines has been a pain
since day one, as the ordering is pretty fragile, and moving
things around leads to renumbering and epic conflict resolutions.
Now that we're mostly acessing the sysreg file in C, an enum is
a much better type to use, and we can clean things up a bit.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Currently we treat the alternatives separately from other data that's
only used during initialisation, using separate .altinstructions and
.altinstr_replacement linker sections. These are freed for general
allocation separately from .init*. This is problematic as:
* We do not remove execute permissions, as we do for .init, leaving the
memory executable.
* We pad between them, making the kernel Image bianry up to PAGE_SIZE
bytes larger than necessary.
This patch moves the two sections into the contiguous region used for
.init*. This saves some memory, ensures that we remove execute
permissions, and allows us to remove some code made redundant by this
reorganisation.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Andre Przywara <andre.przywara@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Jeremy Linton <jeremy.linton@arm.com>
Cc: Laura Abbott <labbott@fedoraproject.org>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Currently we place an ALIGN_DEBUG_RO between text and data for the .text
and .init sections, and depending on configuration each of these may
result in up to SECTION_SIZE bytes worth of padding (for
DEBUG_RODATA_ALIGN).
We make no distinction between the text and data in each of these
sections at any point when creating the initial page tables in head.S.
We also make no distinction when modifying the tables; __map_memblock,
fixup_executable, mark_rodata_ro, and fixup_init only work at section
granularity. Thus this padding is unnecessary.
For the spit between init text and data we impose a minimum alignment of
16 bytes, but this is also unnecessary. The init data is output
immediately after the padding before any symbols are defined, so this is
not required to keep a symbol for linker a section array correctly
associated with the data. Any objects within the section will be given
at least their usual alignment regardless.
This patch removes the redundant padding.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Jeremy Linton <jeremy.linton@arm.com>
Cc: Laura Abbott <labbott@fedoraproject.org>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
On entry from el0, we save all the registers on the kernel stack, and
restore them before returning. x29 remains unchanged when we call out
to C code, which will store x29 as the frame-pointer on the stack.
Instead, write 0 into x29 after entry from el0, to avoid any risk of
tracing into user space.
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
When unwind_frame() reaches the bottom of the irq_stack, the last fp
points to the original task stack. unwind_frame() uses
IRQ_STACK_TO_TASK_STACK() to find the sp value. If either values is
wrong, we may end up walking a corrupt stack.
Check these values are sane by testing if they are both on the stack
pointed to by current->stack.
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
irq_stack is a per_cpu variable, that needs to be access from entry.S.
Use an assembler macro instead of the unreadable details.
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
This refactors the EFI init and runtime code that will be shared
between arm64 and ARM so that it can be built for both archs.
Reviewed-by: Matt Fleming <matt@codeblueprint.co.uk>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
This splits off the early EFI init and runtime code that
- discovers the EFI params and the memory map from the FDT, and installs
the memblocks and config tables.
- prepares and installs the EFI page tables so that UEFI Runtime Services
can be invoked at the virtual address installed by the stub.
This will allow it to be reused for 32-bit ARM.
Reviewed-by: Matt Fleming <matt@codeblueprint.co.uk>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Change the EFI memory reservation logic to use memblock_mark_nomap()
rather than memblock_reserve() to mark UEFI reserved regions as
occupied. In addition to reserving them against allocations done by
memblock, this will also prevent them from being covered by the linear
mapping.
Reviewed-by: Matt Fleming <matt@codeblueprint.co.uk>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Running with CONFIG_DEBUG_SPINLOCK=y can trigger a BUG with the new IRQ
stack code:
BUG: spinlock lockup suspected on CPU#1
This is due to the IRQ_STACK_TO_TASK_STACK macro incorrectly retrieving
the task stack pointer stashed at the top of the IRQ stack.
Sayeth James:
| Yup, this is what is happening. Its an off-by-one due to broken
| thinking about how the stack works. My broken thinking was:
|
| > top ------------
| > | dummy_lr | <- irq_stack_ptr
| > ------------
| > | x29 |
| > ------------
| > | x19 | <- irq_stack_ptr - 0x10
| > ------------
| > | xzr |
| > ------------
|
| But the stack-pointer is decreased before use. So it actually looks
| like this:
|
| > ------------
| > | | <- irq_stack_ptr
| > top ------------
| > | dummy_lr |
| > ------------
| > | x29 | <- irq_stack_ptr - 0x10
| > ------------
| > | x19 |
| > ------------
| > | xzr | <- irq_stack_ptr - 0x20
| > ------------
|
| The value being used as the original stack is x29, which in all the
| tests is sp but without the current frames data, hence there are no
| missing frames in the output.
|
| Jungseok Lee picked it up with a 32bit user space because aarch32
| can't use x29, so it remains 0 forever. The fix he posted is correct.
This patch fixes the macro and adds some of this wisdom to a comment,
so that the layout of the IRQ stack is well understood.
Cc: James Morse <james.morse@arm.com>
Reported-by: Jungseok Lee <jungseoklee85@gmail.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
entry.S is modified to switch to the per_cpu irq_stack during el{0,1}_irq.
irq_count is used to detect recursive interrupts on the irq_stack, it is
updated late by do_softirq_own_stack(), when called on the irq_stack, before
__do_softirq() re-enables interrupts to process softirqs.
do_softirq_own_stack() is added by this patch, but does not yet switch
stack.
This patch adds the dummy stack frame and data needed by the previous
stack tracing patches.
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
This patch allows unwind_frame() to traverse from interrupt stack to task
stack correctly. It requires data from a dummy stack frame, created
during irq_stack_entry(), added by a later patch.
A similar approach is taken to modify dump_backtrace(), which expects to
find struct pt_regs underneath any call to functions marked __exception.
When on an irq_stack, the struct pt_regs is stored on the old task stack,
the location of which is stored in the dummy stack frame.
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: AKASHI Takahiro <takahiro.akashi@linaro.org>
[james.morse: merged two patches, reworked for per_cpu irq_stacks, and
no alignment guarantees, added irq_stack definitions]
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
There is need for figuring out how to manage struct thread_info data when
IRQ stack is introduced. struct thread_info information should be copied
to IRQ stack under the current thread_info calculation logic whenever
context switching is invoked. This is too expensive to keep supporting
the approach.
Instead, this patch pays attention to sp_el0 which is an unused scratch
register in EL1 context. sp_el0 utilization not only simplifies the
management, but also prevents text section size from being increased
largely due to static allocated IRQ stack as removing masking operation
using THREAD_SIZE in many places.
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Jungseok Lee <jungseoklee85@gmail.com>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Make sure to clear out any ptrace singlestep state when a ptrace(2)
PTRACE_DETACH call is made on arm64 systems.
Otherwise, the previously ptraced task will die off with a SIGTRAP
signal if the debugger just previously singlestepped the ptraced task.
Cc: <stable@vger.kernel.org>
Signed-off-by: John Blackwood <john.blackwood@ccur.com>
[will: added comment to justify why this is in the arch code]
Signed-off-by: Will Deacon <will.deacon@arm.com>
Bring the linker script in line with the recent increase of
L1_CACHE_BYTES to 128. Replace the hardcoded value of 64 with the
symbolic constant.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
[catalin.marinas@arm.com: fix up RW_DATA_SECTION as well]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
There is no need to worry about module and __init text disappearing
case, because that ftrace has a module notifier that is called when
a module is being unloaded and before the text goes away and this
code grabs the ftrace_lock mutex and removes the module functions
from the ftrace list, such that it will no longer do any
modifications to that module's text, the update to make functions
be traced or not is done under the ftrace_lock mutex as well.
And by now, __init section codes should not been modified
by ftrace, because it is black listed in recordmcount.c and
ignored by ftrace.
Suggested-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Li Bin <huawei.libin@huawei.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
For ftrace on arm64, kstop_machine which is hugely disruptive
to a running system is not needed to convert nops to ftrace calls
or back, because that to be modified instrucions, that NOP, B or BL,
are all safe instructions which called "concurrent modification
and execution of instructions", that can be executed by one
thread of execution as they are being modified by another thread
of execution without requiring explicit synchronization.
Signed-off-by: Li Bin <huawei.libin@huawei.com>
Reviewed-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
These functions/variables are not needed after booting, so mark them
as __init or __initdata.
Signed-off-by: Jisheng Zhang <jszhang@marvell.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
- Build fix when !CONFIG_UID16 (the patch is touching generic files but
it only affects arm64 builds; submitted by Arnd Bergmann)
- EFI fixes to deal with early_memremap() returning NULL and correctly
mapping run-time regions
- Fix CPUID register extraction of unsigned fields (not to be
sign-extended)
- ASID allocator fix to deal with long-running tasks over multiple
generation roll-overs
- Revert support for marking page ranges as contiguous PTEs (it leads to
TLB conflicts and requires additional non-trivial kernel changes)
- Proper early_alloc() failure check
- Disable KASan for 48-bit VA and 16KB page configuration (the pgd is
larger than the KASan shadow memory)
- Update the fault_info table (original descriptions based on early
engineering spec)
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJWWJiuAAoJEGvWsS0AyF7xlWIP/3ma+ZSyitIS0FWOld/uo3c1
KbH9i7DrEL9tOzz4AhkKHBA7LOs0NvNkjz2sPLbnVg57H6r2y6Bi1ls5ODUWFy6y
CKI0aaCYhWPyYWDq6H9NfD5Xh6jx0+45dMqKiCy1mvpChEwPfW4aZGceKptNbBrG
v0VG1H5s0U+SjNqKqZ3W/hbwyQ1ZvAXJ022q7/ihPt6s2U0ebjXqc+6S2TcJyWNn
C0bDn40+MK7p8jqRrq80bAjAvC5yDQ7/o7fBsNzsVYhuNTA3HR5CG1jGMJwGcVvA
NJt71vfBq8L4PT2ndt8BxC5G500GdkQk2Nb2i1G9EgakH8Yv5Y2deFTUFDYPTHBg
EfUgORet2iBiCcLY+lLTonjKICsHi4Bn//DsyyEZ7HXAovS0DIH3rQfKubYNlT3p
FR2eskr3cDoQei3L9u0YU1zn+OuWRS7yJdjisjcTAEFaRBKqRXYMoczhVvJPb5xQ
RPtHZNAS0JXH+0Cmdo+nHjSfpEo20nefBvd3Xvs0jvwWKxS6rwexxQWYTKNTbycq
5iTYOGXlequnyTztK5M0AcfAajE+EVT2mAXkD/C727tUdO7yiCh86CNLIREHK8sH
cLnc2iJ12IsJmqV7uRPI5YjNmYau7ZQpfcRfflt1LlL7mx1VmSiyb4JeomGEE/gu
IdJ1iBl2JGguat1DHIXU
=YgtU
-----END PGP SIGNATURE-----
Merge tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 fixes from Catalin Marinas:
- Build fix when !CONFIG_UID16 (the patch is touching generic files but
it only affects arm64 builds; submitted by Arnd Bergmann)
- EFI fixes to deal with early_memremap() returning NULL and correctly
mapping run-time regions
- Fix CPUID register extraction of unsigned fields (not to be
sign-extended)
- ASID allocator fix to deal with long-running tasks over multiple
generation roll-overs
- Revert support for marking page ranges as contiguous PTEs (it leads
to TLB conflicts and requires additional non-trivial kernel changes)
- Proper early_alloc() failure check
- Disable KASan for 48-bit VA and 16KB page configuration (the pgd is
larger than the KASan shadow memory)
- Update the fault_info table (original descriptions based on early
engineering spec)
* tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux:
arm64: efi: fix initcall return values
arm64: efi: deal with NULL return value of early_memremap()
arm64: debug: Treat the BRPs/WRPs as unsigned
arm64: cpufeature: Track unsigned fields
arm64: cpufeature: Add helpers for extracting unsigned values
Revert "arm64: Mark kernel page ranges contiguous"
arm64: mm: keep reserved ASIDs in sync with mm after multiple rollovers
arm64: KASAN depends on !(ARM64_16K_PAGES && ARM64_VA_BITS_48)
arm64: efi: correctly map runtime regions
arm64: mm: fix fault_info table xFSC decoding
arm64: fix building without CONFIG_UID16
arm64: early_alloc: Fix check for allocation failure
Even though initcall return values are typically ignored, the
prototype is to return 0 on success or a negative errno value on
error. So fix the arm_enable_runtime_services() implementation to
return 0 on conditions that are not in fact errors, and return a
meaningful error code otherwise.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Matt Fleming <matt@codeblueprint.co.uk>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Add NULL return value checks to two invocations of early_memremap()
in the UEFI init code. For the UEFI configuration tables, we just
warn since we have a better chance of being able to report the issue
in a way that can actually be noticed by a human operator if we don't
abort right away. For the UEFI memory map, however, all we can do is
panic() since we cannot proceed without a description of memory.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Matt Fleming <matt@codeblueprint.co.uk>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Some of the feature bits have unsigned values and need
to be treated accordingly to avoid errors. Adds the property
to the feature bits and use the appropriate field extract helpers.
Reported-by: AKASHI Takahiro <takahiro.akashi@linaro.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Suzuki K. Poulose <suzuki.poulose@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The kernel may use a page granularity of 4K, 16K, or 64K depending on
configuration.
When mapping EFI runtime regions, we use memrange_efi_to_native to round
the physical base address of a region down to a kernel page boundary,
and round the size up to a kernel page boundary, adding the residue left
over from rounding down the physical base address. We do not round down
the virtual base address.
In __create_mapping we account for the offset of the virtual base from a
granule boundary, adding the residue to the size before rounding the
base down to said granule boundary.
Thus we account for the residue twice, and when the residue is non-zero
will cause __create_mapping to map an additional page at the end of the
region. Depending on the memory map, this page may be in a region we are
not intended/permitted to map, or may clash with a different region that
we wish to map. In typical cases, mapping the next item in the memory
map will overwrite the erroneously created entry, as we sort the memory
map in the stub.
As __create_mapping can cope with base addresses which are not page
aligned, we can instead rely on it to map the region appropriately, and
simplify efi_virtmap_init by removing the unnecessary code.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Leif Lindholm <leif.lindholm@linaro.org>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Cortex-A57 parts up to r1p2 can misreport Stage 2 translation faults
when a Stage 1 permission fault or device alignment fault should
have been reported.
This patch implements the workaround (which is to validate that the
Stage-1 translation actually succeeds) by using code patching.
Cc: stable@vger.kernel.org
Reviewed-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
As previously reported, some userspace applications depend on bogomips
showed by /proc/cpuinfo. Although there is much less legacy impact on
aarch64 than arm, it does break libvirt.
This patch reverts commit 326b16db9f ("arm64: delay: don't bother
reporting bogomips in /proc/cpuinfo"), but with some tweak due to
context change and without the pr_info().
Fixes: 326b16db9f ("arm64: delay: don't bother reporting bogomips in /proc/cpuinfo")
Signed-off-by: Yang Shi <yang.shi@linaro.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Cc: <stable@vger.kernel.org> # 3.12+
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
As pointed out by Russell King in response to the proposed ARM version
of this code, the sequence to switch between the UEFI runtime mapping
and current's actual userland mapping (and vice versa) is potentially
unsafe, since it leaves a time window between the switch to the new
page tables and the TLB flush where speculative accesses may hit on
stale global TLB entries.
So instead, use non-global mappings, and perform the switch via the
ordinary ASID-aware context switch routines.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The function graph tracer adds instrumentation that is required to trace
both entry and exit of a function. In particular the function graph
tracer updates the "return address" of a function in order to insert
a trace callback on function exit.
Kernel power management functions like cpu_suspend() are called
upon power down entry with functions called "finishers" that are in turn
called to trigger the power down sequence but they may not return to the
kernel through the normal return path.
When the core resumes from low-power it returns to the cpu_suspend()
function through the cpu_resume path, which leaves the trace stack frame
set-up by the function tracer in an incosistent state upon return to the
kernel when tracing is enabled.
This patch fixes the issue by pausing/resuming the function graph
tracer on the thread executing cpu_suspend() (ie the function call that
subsequently triggers the "suspend finishers"), so that the function graph
tracer state is kept consistent across functions that enter power down
states and never return by effectively disabling graph tracer while they
are executing.
Fixes: 819e50e25d ("arm64: Add ftrace support")
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Reported-by: Catalin Marinas <catalin.marinas@arm.com>
Reported-by: AKASHI Takahiro <takahiro.akashi@linaro.org>
Suggested-by: Steven Rostedt <rostedt@goodmis.org>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: <stable@vger.kernel.org> # 3.16+
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Add additional information about the ARM architected hardware events
to make counters self describing. This makes the hardware PMUs easier
to use as perf list contains possible events instead of users having
to refer to documentation like the ARM TRMs.
Signed-off-by: Drew Richardson <drew.richardson@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
The enums are not necessary and this allows the event values to be
used to construct static strings at compile time.
Signed-off-by: Drew Richardson <drew.richardson@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
- __cmpxchg_double*() return type fix to avoid truncation of a long to
int and subsequent logical "not" in cmpxchg_double() misinterpreting
the operation success/failure
- BPF fixes for mod and div by zero
- Fix compilation with STRICT_MM_TYPECHECKS enabled
- VDSO build fix without libgcov
- Some static and __maybe_unused annotations
- Kconfig clean-up (FRAME_POINTER)
- defconfig update for CRYPTO_CRC32_ARM64
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJWRNNbAAoJEGvWsS0AyF7xp+wQAIc0A+uSReEJ0Be3kSWZIy0O
9wGCtfp2e3X78ibgVoP/+KvA1JUrMJNwNH54CgGgG6H4rwjRthCvIV/HbKfYufM8
vfuTL2MV1ywkNO0uTzspsICqgKPcpG27SwAlgOcxNXpO0Kui2OlKSxS4kTA8+6Z5
Lm64qDmFG7Z6wcBHhr8JSngC+xvXOvlcUW8odnjXjyCimwnpCFXXnRWDU3RnXJZa
3Khgp8OiRtnCSLfj7YBQA9wfNNgPgKdJ5wevz2g7hiIbYx0IOHmDpzbb3sUNMMKV
XLKeeJgqZL4EXZBCzapHRHCE/q0kiiBhzYSHw6aOBwjD9v683aytT/ax2/AgjzvW
nB3ZPdrbRMjcmNRBT2bheoU8diilhtfxSxf+4T+pVUnVMXDNl/xY9hekGA0hFO1z
nH5P5vkFKsX3U02Ox/G50Od2rM6p7uGRGFYuomSIoJYBItuxGOAuYWlY2+ujcxY5
YvAQ+3FYCkjLipVutlqLxKoZSY8Ex+0LOjPYYsI/+rsE70IVjGuLj0bTm8B/aTcy
dOctNqvOGwo8O5n2jsKM3XkjfUCPRdzu1C7rQz2BqfE9cPAZxg2fQpPv4SGtPuFe
lEvokuYRJ3qYnMt5MG/9Mkqmczfbch88A41wgS9/ySQ57eo3wISLkOiKqzKdJjOa
0qldWaEvST2iVUQmiMl7
=ApkD
-----END PGP SIGNATURE-----
Merge tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 fixes and clean-ups from Catalin Marinas:
"Here's a second pull request for this merging window with some
fixes/clean-ups:
- __cmpxchg_double*() return type fix to avoid truncation of a long
to int and subsequent logical "not" in cmpxchg_double()
misinterpreting the operation success/failure
- BPF fixes for mod and div by zero
- Fix compilation with STRICT_MM_TYPECHECKS enabled
- VDSO build fix without libgcov
- Some static and __maybe_unused annotations
- Kconfig clean-up (FRAME_POINTER)
- defconfig update for CRYPTO_CRC32_ARM64"
* tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux:
arm64: suspend: make hw_breakpoint_restore static
arm64: mmu: make split_pud and fixup_executable static
arm64: smp: make of_parse_and_init_cpus static
arm64: use linux/types.h in kvm.h
arm64: build vdso without libgcov
arm64: mark cpus_have_hwcap as __maybe_unused
arm64: remove redundant FRAME_POINTER kconfig option and force to select it
arm64: fix R/O permissions of FDT mapping
arm64: fix STRICT_MM_TYPECHECKS issue in PTE_CONT manipulation
arm64: bpf: fix mod-by-zero case
arm64: bpf: fix div-by-zero case
arm64: Enable CRYPTO_CRC32_ARM64 in defconfig
arm64: cmpxchg_dbl: fix return value type