Commit Graph

278 Commits

Author SHA1 Message Date
Paul Mackerras cf29b21595 KVM: PPC: Book3S HV: Synthesize segment fault if SLB lookup fails
When handling a hypervisor data or instruction storage interrupt (HDSI
or HISI), we look up the SLB entry for the address being accessed in
order to translate the effective address to a virtual address which can
be looked up in the guest HPT.  This lookup can occasionally fail due
to the guest replacing an SLB entry without invalidating the evicted
SLB entry.  In this situation an ERAT (effective to real address
translation cache) entry can persist and be used by the hardware even
though there is no longer a corresponding SLB entry.

Previously we would just deliver a data or instruction storage interrupt
(DSI or ISI) to the guest in this case.  However, this is not correct
and has been observed to cause guests to crash, typically with a
data storage protection interrupt on a store to the vmemmap area.

Instead, what we do now is to synthesize a data or instruction segment
interrupt.  That should cause the guest to reload an appropriate entry
into the SLB and retry the faulting instruction.  If it still faults,
we should find an appropriate SLB entry next time and be able to handle
the fault.

Tested-by: Thomas Huth <thuth@redhat.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@samba.org>
2015-11-06 15:40:42 +11:00
Gautham R. Shenoy 70aa3961a1 KVM: PPC: Book3S HV: Handle H_DOORBELL on the guest exit path
Currently a CPU running a guest can receive a H_DOORBELL in the
following two cases:
1) When the CPU is napping due to CEDE or there not being a guest
vcpu.
2) The CPU is running the guest vcpu.

Case 1), the doorbell message is not cleared since we were waking up
from nap. Hence when the EE bit gets set on transition from guest to
host, the H_DOORBELL interrupt is delivered to the host and the
corresponding handler is invoked.

However in Case 2), the message gets cleared by the action of taking
the H_DOORBELL interrupt. Since the CPU was running a guest, instead
of invoking the doorbell handler, the code invokes the second-level
interrupt handler to switch the context from the guest to the host. At
this point the setting of the EE bit doesn't result in the CPU getting
the doorbell interrupt since it has already been delivered once. So,
the handler for this doorbell is never invoked!

This causes softlockups if the missed DOORBELL was an IPI sent from a
sibling subcore on the same CPU.

This patch fixes it by explitly invoking the doorbell handler on the
exit path if the exit reason is H_DOORBELL similar to the way an
EXTERNAL interrupt is handled. Since this will also handle Case 1), we
can unconditionally clear the doorbell message in
kvmppc_check_wake_reason.

Signed-off-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
2015-10-21 16:31:52 +11:00
Mahesh Salgaonkar 966d713e86 KVM: PPC: Book3S HV: Deliver machine check with MSR(RI=0) to guest as MCE
For the machine check interrupt that happens while we are in the guest,
kvm layer attempts the recovery, and then delivers the machine check interrupt
directly to the guest if recovery fails. On successful recovery we go back to
normal functioning of the guest. But there can be cases where a machine check
interrupt can happen with MSR(RI=0) while we are in the guest. This means
MC interrupt is unrecoverable and we have to deliver a machine check to the
guest since the machine check interrupt might have trashed valid values in
SRR0/1. The current implementation do not handle this case, causing guest
to crash with Bad kernel stack pointer instead of machine check oops message.

[26281.490060] Bad kernel stack pointer 3fff9ccce5b0 at c00000000000490c
[26281.490434] Oops: Bad kernel stack pointer, sig: 6 [#1]
[26281.490472] SMP NR_CPUS=2048 NUMA pSeries

This patch fixes this issue by checking MSR(RI=0) in KVM layer and forwarding
unrecoverable interrupt to guest which then panics with proper machine check
Oops message.

Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Acked-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
2015-10-16 11:53:47 +11:00
Gautham R. Shenoy 7e022e717f KVM: PPC: Book3S HV: Pass the correct trap argument to kvmhv_commence_exit
In guest_exit_cont we call kvmhv_commence_exit which expects the trap
number as the argument. However r3 doesn't contain the trap number at
this point and as a result we would be calling the function with a
spurious trap number.

Fix this by copying r12 into r3 before calling kvmhv_commence_exit as
r12 contains the trap number.

Cc: stable@vger.kernel.org # v4.1+
Fixes: eddb60fb14
Signed-off-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
2015-09-21 09:05:12 +10:00
Gautham R. Shenoy 06554d9f6c KVM: PPC: Book3S HV: Exit on H_DOORBELL if HOST_IPI is set
The code that handles the case when we receive a H_DOORBELL interrupt
has a comment which says "Hypervisor doorbell - exit only if host IPI
flag set".  However, the current code does not actually check if the
host IPI flag is set.  This is due to a comparison instruction that
got missed.

As a result, the current code performs the exit to host only
if some sibling thread or a sibling sub-core is exiting to the
host.  This implies that, an IPI sent to a sibling core in
(subcores-per-core != 1) mode will be missed by the host unless the
sibling core is on the exit path to the host.

This patch adds the missing comparison operation which will ensure
that when HOST_IPI flag is set, we unconditionally exit to the host.

Fixes: 66feed61cd
Cc: stable@vger.kernel.org # v4.1+
Signed-off-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@samba.org>
2015-09-03 16:08:34 +10:00
Gautham R. Shenoy 7f23532866 KVM: PPC: Book3S HV: Fix race in starting secondary threads
The current dynamic micro-threading code has a race due to which a
secondary thread naps when it is supposed to be running a vcpu. As a
side effect of this, on a guest exit, the primary thread in
kvmppc_wait_for_nap() finds that this secondary thread hasn't cleared
its vcore pointer. This results in "CPU X seems to be stuck!"
warnings.

The race is possible since the primary thread on exiting the guests
only waits for all the secondaries to clear its vcore pointer. It
subsequently expects the secondary threads to enter nap while it
unsplits the core. A secondary thread which hasn't yet entered the nap
will loop in kvm_no_guest until its vcore pointer and the do_nap flag
are unset. Once the core has been unsplit, a new vcpu thread can grab
the core and set the do_nap flag *before* setting the vcore pointers
of the secondary. As a result, the secondary thread will now enter nap
via kvm_unsplit_nap instead of running the guest vcpu.

Fix this by setting the do_nap flag after setting the vcore pointer in
the PACA of the secondary in kvmppc_run_core. Also, ensure that a
secondary thread doesn't nap in kvm_unsplit_nap when the vcore pointer
in its PACA struct is set.

Fixes: b4deba5c41
Signed-off-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@samba.org>
2015-09-03 16:07:42 +10:00
Sam bobroff c63517c2e3 KVM: PPC: Book3S: correct width in XER handling
In 64 bit kernels, the Fixed Point Exception Register (XER) is a 64
bit field (e.g. in kvm_regs and kvm_vcpu_arch) and in most places it is
accessed as such.

This patch corrects places where it is accessed as a 32 bit field by a
64 bit kernel.  In some cases this is via a 32 bit load or store
instruction which, depending on endianness, will cause either the
lower or upper 32 bits to be missed.  In another case it is cast as a
u32, causing the upper 32 bits to be cleared.

This patch corrects those places by extending the access methods to
64 bits.

Signed-off-by: Sam Bobroff <sam.bobroff@au1.ibm.com>
Reviewed-by: Laurent Vivier <lvivier@redhat.com>
Reviewed-by: Thomas Huth <thuth@redhat.com>
Tested-by: Thomas Huth <thuth@redhat.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2015-08-22 11:16:19 +02:00
Paul Mackerras cdeee51842 KVM: PPC: Book3S HV: Implement H_CLEAR_REF and H_CLEAR_MOD
This adds implementations for the H_CLEAR_REF (test and clear reference
bit) and H_CLEAR_MOD (test and clear changed bit) hypercalls.

When clearing the reference or change bit in the guest view of the HPTE,
we also have to clear it in the real HPTE so that we can detect future
references or changes.  When we do so, we transfer the R or C bit value
to the rmap entry for the underlying host page so that kvm_age_hva_hv(),
kvm_test_age_hva_hv() and kvmppc_hv_get_dirty_log() know that the page
has been referenced and/or changed.

These hypercalls are not used by Linux guests.  These implementations
have been tested using a FreeBSD guest.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2015-08-22 11:16:18 +02:00
Paul Mackerras b4deba5c41 KVM: PPC: Book3S HV: Implement dynamic micro-threading on POWER8
This builds on the ability to run more than one vcore on a physical
core by using the micro-threading (split-core) modes of the POWER8
chip.  Previously, only vcores from the same VM could be run together,
and (on POWER8) only if they had just one thread per core.  With the
ability to split the core on guest entry and unsplit it on guest exit,
we can run up to 8 vcpu threads from up to 4 different VMs, and we can
run multiple vcores with 2 or 4 vcpus per vcore.

Dynamic micro-threading is only available if the static configuration
of the cores is whole-core mode (unsplit), and only on POWER8.

To manage this, we introduce a new kvm_split_mode struct which is
shared across all of the subcores in the core, with a pointer in the
paca on each thread.  In addition we extend the core_info struct to
have information on each subcore.  When deciding whether to add a
vcore to the set already on the core, we now have two possibilities:
(a) piggyback the vcore onto an existing subcore, or (b) start a new
subcore.

Currently, when any vcpu needs to exit the guest and switch to host
virtual mode, we interrupt all the threads in all subcores and switch
the core back to whole-core mode.  It may be possible in future to
allow some of the subcores to keep executing in the guest while
subcore 0 switches to the host, but that is not implemented in this
patch.

This adds a module parameter called dynamic_mt_modes which controls
which micro-threading (split-core) modes the code will consider, as a
bitmap.  In other words, if it is 0, no micro-threading mode is
considered; if it is 2, only 2-way micro-threading is considered; if
it is 4, only 4-way, and if it is 6, both 2-way and 4-way
micro-threading mode will be considered.  The default is 6.

With this, we now have secondary threads which are the primary thread
for their subcore and therefore need to do the MMU switch.  These
threads will need to be started even if they have no vcpu to run, so
we use the vcore pointer in the PACA rather than the vcpu pointer to
trigger them.

It is now possible for thread 0 to find that an exit has been
requested before it gets to switch the subcore state to the guest.  In
that case we haven't added the guest's timebase offset to the
timebase, so we need to be careful not to subtract the offset in the
guest exit path.  In fact we just skip the whole path that switches
back to host context, since we haven't switched to the guest context.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2015-08-22 11:16:17 +02:00
Paul Mackerras ec25716508 KVM: PPC: Book3S HV: Make use of unused threads when running guests
When running a virtual core of a guest that is configured with fewer
threads per core than the physical cores have, the extra physical
threads are currently unused.  This makes it possible to use them to
run one or more other virtual cores from the same guest when certain
conditions are met.  This applies on POWER7, and on POWER8 to guests
with one thread per virtual core.  (It doesn't apply to POWER8 guests
with multiple threads per vcore because they require a 1-1 virtual to
physical thread mapping in order to be able to use msgsndp and the
TIR.)

The idea is that we maintain a list of preempted vcores for each
physical cpu (i.e. each core, since the host runs single-threaded).
Then, when a vcore is about to run, it checks to see if there are
any vcores on the list for its physical cpu that could be
piggybacked onto this vcore's execution.  If so, those additional
vcores are put into state VCORE_PIGGYBACK and their runnable VCPU
threads are started as well as the original vcore, which is called
the master vcore.

After the vcores have exited the guest, the extra ones are put back
onto the preempted list if any of their VCPUs are still runnable and
not idle.

This means that vcpu->arch.ptid is no longer necessarily the same as
the physical thread that the vcpu runs on.  In order to make it easier
for code that wants to send an IPI to know which CPU to target, we
now store that in a new field in struct vcpu_arch, called thread_cpu.

Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Tested-by: Laurent Vivier <lvivier@redhat.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2015-08-22 11:16:17 +02:00
Anshuman Khandual 1db365258a powerpc/kernel: Rename PACA_DSCR to PACA_DSCR_DEFAULT
PACA_DSCR offset macro tracks dscr_default element in the paca
structure. Better change the name of this macro to match that of the
data element it tracks. Makes the code more readable.

Signed-off-by: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2015-06-07 19:29:00 +10:00
Paul Mackerras 66feed61cd KVM: PPC: Book3S HV: Use msgsnd for signalling threads on POWER8
This uses msgsnd where possible for signalling other threads within
the same core on POWER8 systems, rather than IPIs through the XICS
interrupt controller.  This includes waking secondary threads to run
the guest, the interrupts generated by the virtual XICS, and the
interrupts to bring the other threads out of the guest when exiting.

Aggregated statistics from debugfs across vcpus for a guest with 32
vcpus, 8 threads/vcore, running on a POWER8, show this before the
change:

 rm_entry:     3387.6ns (228 - 86600, 1008969 samples)
  rm_exit:     4561.5ns (12 - 3477452, 1009402 samples)
  rm_intr:     1660.0ns (12 - 553050, 3600051 samples)

and this after the change:

 rm_entry:     3060.1ns (212 - 65138, 953873 samples)
  rm_exit:     4244.1ns (12 - 9693408, 954331 samples)
  rm_intr:     1342.3ns (12 - 1104718, 3405326 samples)

for a test of booting Fedora 20 big-endian to the login prompt.

The time taken for a H_PROD hcall (which is handled in the host
kernel) went down from about 35 microseconds to about 16 microseconds
with this change.

The noinline added to kvmppc_run_core turned out to be necessary for
good performance, at least with gcc 4.9.2 as packaged with Fedora 21
and a little-endian POWER8 host.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2015-04-21 15:21:34 +02:00
Paul Mackerras eddb60fb14 KVM: PPC: Book3S HV: Translate kvmhv_commence_exit to C
This replaces the assembler code for kvmhv_commence_exit() with C code
in book3s_hv_builtin.c.  It also moves the IPI sending code that was
in book3s_hv_rm_xics.c into a new kvmhv_rm_send_ipi() function so it
can be used by kvmhv_commence_exit() as well as icp_rm_set_vcpu_irq().

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2015-04-21 15:21:34 +02:00
Paul Mackerras 6af27c847a KVM: PPC: Book3S HV: Streamline guest entry and exit
On entry to the guest, secondary threads now wait for the primary to
switch the MMU after loading up most of their state, rather than before.
This means that the secondary threads get into the guest sooner, in the
common case where the secondary threads get to kvmppc_hv_entry before
the primary thread.

On exit, the first thread out increments the exit count and interrupts
the other threads (to get them out of the guest) before saving most
of its state, rather than after.  That means that the other threads
exit sooner and means that the first thread doesn't spend so much
time waiting for the other threads at the point where the MMU gets
switched back to the host.

This pulls out the code that increments the exit count and interrupts
other threads into a separate function, kvmhv_commence_exit().
This also makes sure that r12 and vcpu->arch.trap are set correctly
in some corner cases.

Statistics from /sys/kernel/debug/kvm/vm*/vcpu*/timings show the
improvement.  Aggregating across vcpus for a guest with 32 vcpus,
8 threads/vcore, running on a POWER8, gives this before the change:

 rm_entry:     avg 4537.3ns (222 - 48444, 1068878 samples)
  rm_exit:     avg 4787.6ns (152 - 165490, 1010717 samples)
  rm_intr:     avg 1673.6ns (12 - 341304, 3818691 samples)

and this after the change:

 rm_entry:     avg 3427.7ns (232 - 68150, 1118921 samples)
  rm_exit:     avg 4716.0ns (12 - 150720, 1119477 samples)
  rm_intr:     avg 1614.8ns (12 - 522436, 3850432 samples)

showing a substantial reduction in the time spent per guest entry in
the real-mode guest entry code, and smaller reductions in the real
mode guest exit and interrupt handling times.  (The test was to start
the guest and boot Fedora 20 big-endian to the login prompt.)

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2015-04-21 15:21:33 +02:00
Paul Mackerras 7d6c40da19 KVM: PPC: Book3S HV: Use bitmap of active threads rather than count
Currently, the entry_exit_count field in the kvmppc_vcore struct
contains two 8-bit counts, one of the threads that have started entering
the guest, and one of the threads that have started exiting the guest.
This changes it to an entry_exit_map field which contains two bitmaps
of 8 bits each.  The advantage of doing this is that it gives us a
bitmap of which threads need to be signalled when exiting the guest.
That means that we no longer need to use the trick of setting the
HDEC to 0 to pull the other threads out of the guest, which led in
some cases to a spurious HDEC interrupt on the next guest entry.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2015-04-21 15:21:33 +02:00
Paul Mackerras fd6d53b124 KVM: PPC: Book3S HV: Use decrementer to wake napping threads
This arranges for threads that are napping due to their vcpu having
ceded or due to not having a vcpu to wake up at the end of the guest's
timeslice without having to be poked with an IPI.  We do that by
arranging for the decrementer to contain a value no greater than the
number of timebase ticks remaining until the end of the timeslice.
In the case of a thread with no vcpu, this number is in the hypervisor
decrementer already.  In the case of a ceded vcpu, we use the smaller
of the HDEC value and the DEC value.

Using the DEC like this when ceded means we need to save and restore
the guest decrementer value around the nap.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2015-04-21 15:21:33 +02:00
Paul Mackerras ccc07772c9 KVM: PPC: Book3S HV: Don't wake thread with no vcpu on guest IPI
When running a multi-threaded guest and vcpu 0 in a virtual core
is not running in the guest (i.e. it is busy elsewhere in the host),
thread 0 of the physical core will switch the MMU to the guest and
then go to nap mode in the code at kvm_do_nap.  If the guest sends
an IPI to thread 0 using the msgsndp instruction, that will wake
up thread 0 and cause all the threads in the guest to exit to the
host unnecessarily.  To avoid the unnecessary exit, this arranges
for the PECEDP bit to be cleared in this situation.  When napping
due to a H_CEDE from the guest, we still set PECEDP so that the
thread will wake up on an IPI sent using msgsndp.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2015-04-21 15:21:32 +02:00
Paul Mackerras 5d5b99cd68 KVM: PPC: Book3S HV: Get rid of vcore nap_count and n_woken
We can tell when a secondary thread has finished running a guest by
the fact that it clears its kvm_hstate.kvm_vcpu pointer, so there
is no real need for the nap_count field in the kvmppc_vcore struct.
This changes kvmppc_wait_for_nap to poll the kvm_hstate.kvm_vcpu
pointers of the secondary threads rather than polling vc->nap_count.
Besides reducing the size of the kvmppc_vcore struct by 8 bytes,
this also means that we can tell which secondary threads have got
stuck and thus print a more informative error message.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2015-04-21 15:21:32 +02:00
Paul Mackerras 1f09c3ed86 KVM: PPC: Book3S HV: Minor cleanups
* Remove unused kvmppc_vcore::n_busy field.
* Remove setting of RMOR, since it was only used on PPC970 and the
  PPC970 KVM support has been removed.
* Don't use r1 or r2 in setting the runlatch since they are
  conventionally reserved for other things; use r0 instead.
* Streamline the code a little and remove the ext_interrupt_to_host
  label.
* Add some comments about register usage.
* hcall_try_real_mode doesn't need to be global, and can't be
  called from C code anyway.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2015-04-21 15:21:32 +02:00
Paul Mackerras b6c295df31 KVM: PPC: Book3S HV: Accumulate timing information for real-mode code
This reads the timebase at various points in the real-mode guest
entry/exit code and uses that to accumulate total, minimum and
maximum time spent in those parts of the code.  Currently these
times are accumulated per vcpu in 5 parts of the code:

* rm_entry - time taken from the start of kvmppc_hv_entry() until
  just before entering the guest.
* rm_intr - time from when we take a hypervisor interrupt in the
  guest until we either re-enter the guest or decide to exit to the
  host.  This includes time spent handling hcalls in real mode.
* rm_exit - time from when we decide to exit the guest until the
  return from kvmppc_hv_entry().
* guest - time spend in the guest
* cede - time spent napping in real mode due to an H_CEDE hcall
  while other threads in the same vcore are active.

These times are exposed in debugfs in a directory per vcpu that
contains a file called "timings".  This file contains one line for
each of the 5 timings above, with the name followed by a colon and
4 numbers, which are the count (number of times the code has been
executed), the total time, the minimum time, and the maximum time,
all in nanoseconds.

The overhead of the extra code amounts to about 30ns for an hcall that
is handled in real mode (e.g. H_SET_DABR), which is about 25%.  Since
production environments may not wish to incur this overhead, the new
code is conditional on a new config symbol,
CONFIG_KVM_BOOK3S_HV_EXIT_TIMING.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2015-04-21 15:21:31 +02:00
Michael Ellerman e928e9cb36 KVM: PPC: Book3S HV: Add fast real-mode H_RANDOM implementation.
Some PowerNV systems include a hardware random-number generator.
This HWRNG is present on POWER7+ and POWER8 chips and is capable of
generating one 64-bit random number every microsecond.  The random
numbers are produced by sampling a set of 64 unstable high-frequency
oscillators and are almost completely entropic.

PAPR defines an H_RANDOM hypercall which guests can use to obtain one
64-bit random sample from the HWRNG.  This adds a real-mode
implementation of the H_RANDOM hypercall.  This hypercall was
implemented in real mode because the latency of reading the HWRNG is
generally small compared to the latency of a guest exit and entry for
all the threads in the same virtual core.

Userspace can detect the presence of the HWRNG and the H_RANDOM
implementation by querying the KVM_CAP_PPC_HWRNG capability.  The
H_RANDOM hypercall implementation will only be invoked when the guest
does an H_RANDOM hypercall if userspace first enables the in-kernel
H_RANDOM implementation using the KVM_CAP_PPC_ENABLE_HCALL capability.

Signed-off-by: Michael Ellerman <michael@ellerman.id.au>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2015-04-21 15:21:29 +02:00
Paul Mackerras 2bf27601c7 KVM: PPC: Book3S HV: Fix instruction emulation
Commit 4a157d61b4 ("KVM: PPC: Book3S HV: Fix endianness of
instruction obtained from HEIR register") had the side effect that
we no longer reset vcpu->arch.last_inst to -1 on guest exit in
the cases where the instruction is not fetched from the guest.
This means that if instruction emulation turns out to be required
in those cases, the host will emulate the wrong instruction, since
vcpu->arch.last_inst will contain the last instruction that was
emulated.

This fixes it by making sure that vcpu->arch.last_inst is reset
to -1 in those cases.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2015-03-20 11:42:33 +01:00
Michael Ellerman 9a4fc4eaf1 powerpc/kvm: Create proper names for the kvm_host_state PMU fields
We have two arrays in kvm_host_state that contain register values for
the PMU. Currently we only create an asm-offsets symbol for the base of
the arrays, and do the array offset in the assembly code.

Creating an asm-offsets symbol for each field individually makes the
code much nicer to read, particularly for the MMCRx/SIxR/SDAR fields, and
might have helped us notice the recent double restore bug we had in this
code.

Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Acked-by: Alexander Graf <agraf@suse.de>
2014-12-29 15:45:55 +11:00
Linus Torvalds 66dcff86ba 3.19 changes for KVM:
- spring cleaning: removed support for IA64, and for hardware-assisted
 virtualization on the PPC970
 - ARM, PPC, s390 all had only small fixes
 
 For x86:
 - small performance improvements (though only on weird guests)
 - usual round of hardware-compliancy fixes from Nadav
 - APICv fixes
 - XSAVES support for hosts and guests.  XSAVES hosts were broken because
 the (non-KVM) XSAVES patches inadvertently changed the KVM userspace
 ABI whenever XSAVES was enabled; hence, this part is going to stable.
 Guest support is just a matter of exposing the feature and CPUID leaves
 support.
 
 Right now KVM is broken for PPC BookE in your tree (doesn't compile).
 I'll reply to the pull request with a patch, please apply it either
 before the pull request or in the merge commit, in order to preserve
 bisectability somewhat.
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2.0.22 (GNU/Linux)
 
 iQEcBAABAgAGBQJUkpg+AAoJEL/70l94x66DUmoH/jzXYkptSW9NGgm79KqxGJlD
 lzLnLBkitVvx++Mz5YBhdJEhKKLUlCtifFT1zPJQ/pthQhIRSaaAwZyNGgUs5w5x
 yMGKHiPQFyZRbmQtZhCInW0BftJoYHHciO3nUfHCZnp34My9MP2D55W7/z+fYFfQ
 DuqBSE9ThyZJtZ4zh8NRA9fCOeuqwVYRyoBs820Wbsh4cpIBoIK63Dg7k+CLE+ZV
 MZa/mRL6bAfsn9W5bnOUAgHJ3SPznnWbO3/g0aV+roL/5pffblprJx9lKNR08xUM
 6hDFLop2gDehDJesDkY/o8Ckp1hEouvfsVpSShry4vcgtn0hgh2O5/6Orbmj6vE=
 =Zwq1
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull KVM update from Paolo Bonzini:
 "3.19 changes for KVM:

   - spring cleaning: removed support for IA64, and for hardware-
     assisted virtualization on the PPC970

   - ARM, PPC, s390 all had only small fixes

  For x86:
   - small performance improvements (though only on weird guests)
   - usual round of hardware-compliancy fixes from Nadav
   - APICv fixes
   - XSAVES support for hosts and guests.  XSAVES hosts were broken
     because the (non-KVM) XSAVES patches inadvertently changed the KVM
     userspace ABI whenever XSAVES was enabled; hence, this part is
     going to stable.  Guest support is just a matter of exposing the
     feature and CPUID leaves support"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (179 commits)
  KVM: move APIC types to arch/x86/
  KVM: PPC: Book3S: Enable in-kernel XICS emulation by default
  KVM: PPC: Book3S HV: Improve H_CONFER implementation
  KVM: PPC: Book3S HV: Fix endianness of instruction obtained from HEIR register
  KVM: PPC: Book3S HV: Remove code for PPC970 processors
  KVM: PPC: Book3S HV: Tracepoints for KVM HV guest interactions
  KVM: PPC: Book3S HV: Simplify locking around stolen time calculations
  arch: powerpc: kvm: book3s_paired_singles.c: Remove unused function
  arch: powerpc: kvm: book3s_pr.c: Remove unused function
  arch: powerpc: kvm: book3s.c: Remove some unused functions
  arch: powerpc: kvm: book3s_32_mmu.c: Remove unused function
  KVM: PPC: Book3S HV: Check wait conditions before sleeping in kvmppc_vcore_blocked
  KVM: PPC: Book3S HV: ptes are big endian
  KVM: PPC: Book3S HV: Fix inaccuracies in ICP emulation for H_IPI
  KVM: PPC: Book3S HV: Fix KSM memory corruption
  KVM: PPC: Book3S HV: Fix an issue where guest is paused on receiving HMI
  KVM: PPC: Book3S HV: Fix computation of tlbie operand
  KVM: PPC: Book3S HV: Add missing HPTE unlock
  KVM: PPC: BookE: Improve irq inject tracepoint
  arm/arm64: KVM: Require in-kernel vgic for the arch timers
  ...
2014-12-18 16:05:28 -08:00
Sam Bobroff 90fd09f804 KVM: PPC: Book3S HV: Improve H_CONFER implementation
Currently the H_CONFER hcall is implemented in kernel virtual mode,
meaning that whenever a guest thread does an H_CONFER, all the threads
in that virtual core have to exit the guest.  This is bad for
performance because it interrupts the other threads even if they
are doing useful work.

The H_CONFER hcall is called by a guest VCPU when it is spinning on a
spinlock and it detects that the spinlock is held by a guest VCPU that
is currently not running on a physical CPU.  The idea is to give this
VCPU's time slice to the holder VCPU so that it can make progress
towards releasing the lock.

To avoid having the other threads exit the guest unnecessarily,
we add a real-mode implementation of H_CONFER that checks whether
the other threads are doing anything.  If all the other threads
are idle (i.e. in H_CEDE) or trying to confer (i.e. in H_CONFER),
it returns H_TOO_HARD which causes a guest exit and allows the
H_CONFER to be handled in virtual mode.

Otherwise it spins for a short time (up to 10 microseconds) to give
other threads the chance to observe that this thread is trying to
confer.  The spin loop also terminates when any thread exits the guest
or when all other threads are idle or trying to confer.  If the
timeout is reached, the H_CONFER returns H_SUCCESS.  In this case the
guest VCPU will recheck the spinlock word and most likely call
H_CONFER again.

This also improves the implementation of the H_CONFER virtual mode
handler.  If the VCPU is part of a virtual core (vcore) which is
runnable, there will be a 'runner' VCPU which has taken responsibility
for running the vcore.  In this case we yield to the runner VCPU
rather than the target VCPU.

We also introduce a check on the target VCPU's yield count: if it
differs from the yield count passed to H_CONFER, the target VCPU
has run since H_CONFER was called and may have already released
the lock.  This check is required by PAPR.

Signed-off-by: Sam Bobroff <sam.bobroff@au1.ibm.com>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-12-17 13:53:39 +01:00
Paul Mackerras 4a157d61b4 KVM: PPC: Book3S HV: Fix endianness of instruction obtained from HEIR register
There are two ways in which a guest instruction can be obtained from
the guest in the guest exit code in book3s_hv_rmhandlers.S.  If the
exit was caused by a Hypervisor Emulation interrupt (i.e. an illegal
instruction), the offending instruction is in the HEIR register
(Hypervisor Emulation Instruction Register).  If the exit was caused
by a load or store to an emulated MMIO device, we load the instruction
from the guest by turning data relocation on and loading the instruction
with an lwz instruction.

Unfortunately, in the case where the guest has opposite endianness to
the host, these two methods give results of different endianness, but
both get put into vcpu->arch.last_inst.  The HEIR value has been loaded
using guest endianness, whereas the lwz will load the instruction using
host endianness.  The rest of the code that uses vcpu->arch.last_inst
assumes it was loaded using host endianness.

To fix this, we define a new vcpu field to store the HEIR value.  Then,
in kvmppc_handle_exit_hv(), we transfer the value from this new field to
vcpu->arch.last_inst, doing a byte-swap if the guest and host endianness
differ.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-12-17 13:50:39 +01:00
Paul Mackerras c17b98cf60 KVM: PPC: Book3S HV: Remove code for PPC970 processors
This removes the code that was added to enable HV KVM to work
on PPC970 processors.  The PPC970 is an old CPU that doesn't
support virtualizing guest memory.  Removing PPC970 support also
lets us remove the code for allocating and managing contiguous
real-mode areas, the code for the !kvm->arch.using_mmu_notifiers
case, the code for pinning pages of guest memory when first
accessed and keeping track of which pages have been pinned, and
the code for handling H_ENTER hypercalls in virtual mode.

Book3S HV KVM is now supported only on POWER7 and POWER8 processors.
The KVM_CAP_PPC_RMA capability now always returns 0.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-12-17 13:44:03 +01:00
Paul Mackerras 56548fc0e8 powerpc/powernv: Return to cpu offline loop when finished in KVM guest
When a secondary hardware thread has finished running a KVM guest, we
currently put that thread into nap mode using a nap instruction in
the KVM code.  This changes the code so that instead of doing a nap
instruction directly, we instead cause the call to power7_nap() that
put the thread into nap mode to return.  The reason for doing this is
to avoid having the KVM code having to know what low-power mode to
put the thread into.

In the case of a secondary thread used to run a KVM guest, the thread
will be offline from the point of view of the host kernel, and the
relevant power7_nap() call is the one in pnv_smp_cpu_disable().
In this case we don't want to clear pending IPIs in the offline loop
in that function, since that might cause us to miss the wakeup for
the next time the thread needs to run a guest.  To tell whether or
not to clear the interrupt, we use the SRR1 value returned from
power7_nap(), and check if it indicates an external interrupt.  We
arrange that the return from power7_nap() when we have finished running
a guest returns 0, so pending interrupts don't get flushed in that
case.

Note that it is important a secondary thread that has finished
executing in the guest, or that didn't have a guest to run, should
not return to power7_nap's caller while the kvm_hstate.hwthread_req
flag in the PACA is non-zero, because the return from power7_nap
will reenable the MMU, and the MMU might still be in guest context.
In this situation we spin at low priority in real mode waiting for
hwthread_req to become zero.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2014-12-08 13:16:31 +11:00
Michael Neuling 06a29e4274 KVM: PPC: Book3S HV: Add register name when loading toc
Add 'r' to register name r2 in kvmppc_hv_enter.

Also update comment at the top of kvmppc_hv_enter to indicate that R2/TOC is
non-volatile.

Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-09-22 10:11:31 +02:00
Linus Torvalds 66bb0aa077 Here are the PPC and ARM changes for KVM, which I separated because
they had small conflicts (respectively within KVM documentation,
 and with 3.16-rc changes).  Since they were all within the subsystem,
 I took care of them.
 
 Stephen Rothwell reported some snags in PPC builds, but they are all
 fixed now; the latest linux-next report was clean.
 
 New features for ARM include:
 - KVM VGIC v2 emulation on GICv3 hardware
 - Big-Endian support for arm/arm64 (guest and host)
 - Debug Architecture support for arm64 (arm32 is on Christoffer's todo list)
 
 And for PPC:
 - Book3S: Good number of LE host fixes, enable HV on LE
 - Book3S HV: Add in-guest debug support
 
 This release drops support for KVM on the PPC440.  As a result, the
 PPC merge removes more lines than it adds. :)
 
 I also included an x86 change, since Davidlohr tied it to an independent
 bug report and the reporter quickly provided a Tested-by; there was no
 reason to wait for -rc2.
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2.0.22 (GNU/Linux)
 
 iQIcBAABAgAGBQJT4iIJAAoJEBvWZb6bTYbyZqoP/3Wxy8NWPFJ8HGt81NHlGnDS
 a9UbL7EibcOEG+aaKqmtBglTD5YDiGBDNCxxiSJaDHt+grLN4fsWIliJob1nJFoO
 90f89EWN2XjeCrJXA5nUoeg5tpc5OoYKsiP6pTgzIwkP8vvs/H1+zpcTS/UmYsr/
 qipVMMsM+zZeHWZcSbqjW88z7YqIn1sr5282wJ85cbyv4KGizb/G4dyPuDqLb6np
 hkAD8Ah6VV2suQ2FSy7G2fg20R0vglUi60hkEHLoCBPVqJCl7SmC8MvxNbjBnP8S
 J36R0R0u1wHYKzAGooLJGVOZ/o/gSiVqKX+++L2EvJBN+kuA6u/7fxLyBT+LwDAE
 IF/Aln5rpg1fe+eywvhz86WljTVEQ8bO1zVsIQUPY+/ZOPedZHMwyvXft8ogbjSp
 2m9OJ/3e8Aggh0OeHpCDoeow+QDUXvX0YdCw+2Yh0p+7VMXqkyp0QEiBu38jrusC
 rB3VNifJbDSWLKdG9LfCAPHnxZD2XYEwv2WFBo6KQOGMGHfx0GXpCOL/jQihrhA6
 HtEG5Bs3lvnHQemdpUZ58xojiABbMaUPdcnPXQQEp23WhZzrfLMLzqVG0VYnhSsC
 9pi7MJj8c31rqx5WU2oRM28i/BvNxN0NCtkDpineO5s3f89Ws1xnwxqlm38AKP0J
 irJQTYFEqec+GM9JK1rG
 =hyQP
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull second round of KVM changes from Paolo Bonzini:
 "Here are the PPC and ARM changes for KVM, which I separated because
  they had small conflicts (respectively within KVM documentation, and
  with 3.16-rc changes).  Since they were all within the subsystem, I
  took care of them.

  Stephen Rothwell reported some snags in PPC builds, but they are all
  fixed now; the latest linux-next report was clean.

  New features for ARM include:
   - KVM VGIC v2 emulation on GICv3 hardware
   - Big-Endian support for arm/arm64 (guest and host)
   - Debug Architecture support for arm64 (arm32 is on Christoffer's todo list)

  And for PPC:
   - Book3S: Good number of LE host fixes, enable HV on LE
   - Book3S HV: Add in-guest debug support

  This release drops support for KVM on the PPC440.  As a result, the
  PPC merge removes more lines than it adds.  :)

  I also included an x86 change, since Davidlohr tied it to an
  independent bug report and the reporter quickly provided a Tested-by;
  there was no reason to wait for -rc2"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (122 commits)
  KVM: Move more code under CONFIG_HAVE_KVM_IRQFD
  KVM: nVMX: fix "acknowledge interrupt on exit" when APICv is in use
  KVM: nVMX: Fix nested vmexit ack intr before load vmcs01
  KVM: PPC: Enable IRQFD support for the XICS interrupt controller
  KVM: Give IRQFD its own separate enabling Kconfig option
  KVM: Move irq notifier implementation into eventfd.c
  KVM: Move all accesses to kvm::irq_routing into irqchip.c
  KVM: irqchip: Provide and use accessors for irq routing table
  KVM: Don't keep reference to irq routing table in irqfd struct
  KVM: PPC: drop duplicate tracepoint
  arm64: KVM: fix 64bit CP15 VM access for 32bit guests
  KVM: arm64: GICv3: mandate page-aligned GICV region
  arm64: KVM: GICv3: move system register access to msr_s/mrs_s
  KVM: PPC: PR: Handle FSCR feature deselects
  KVM: PPC: HV: Remove generic instruction emulation
  KVM: PPC: BOOKEHV: rename e500hv_spr to bookehv_spr
  KVM: PPC: Remove DCR handling
  KVM: PPC: Expose helper functions for data/inst faults
  KVM: PPC: Separate loadstore emulation from priv emulation
  KVM: PPC: Handle magic page in kvmppc_ld/st
  ...
2014-08-07 11:35:30 -07:00
Linus Torvalds f536b3cae8 Merge branch 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc
Pull powerpc updates from Ben Herrenschmidt:
 "This is the powerpc new goodies for 3.17.  The short story:

  The biggest bit is Michael removing all of pre-POWER4 processor
  support from the 64-bit kernel.  POWER3 and rs64.  This gets rid of a
  ton of old cruft that has been bitrotting in a long while.  It was
  broken for quite a few versions already and nobody noticed.  Nobody
  uses those machines anymore.  While at it, he cleaned up a bunch of
  old dusty cabinets, getting rid of a skeletton or two.

  Then, we have some base VFIO support for KVM, which allows assigning
  of PCI devices to KVM guests, support for large 64-bit BARs on
  "powernv" platforms, support for HMI (Hardware Management Interrupts)
  on those same platforms, some sparse-vmemmap improvements (for memory
  hotplug),

  There is the usual batch of Freescale embedded updates (summary in the
  merge commit) and fixes here or there, I think that's it for the
  highlights"

* 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc: (102 commits)
  powerpc/eeh: Export eeh_iommu_group_to_pe()
  powerpc/eeh: Add missing #ifdef CONFIG_IOMMU_API
  powerpc: Reduce scariness of interrupt frames in stack traces
  powerpc: start loop at section start of start in vmemmap_populated()
  powerpc: implement vmemmap_free()
  powerpc: implement vmemmap_remove_mapping() for BOOK3S
  powerpc: implement vmemmap_list_free()
  powerpc: Fail remap_4k_pfn() if PFN doesn't fit inside PTE
  powerpc/book3s: Fix endianess issue for HMI handling on napping cpus.
  powerpc/book3s: handle HMIs for cpus in nap mode.
  powerpc/powernv: Invoke opal call to handle hmi.
  powerpc/book3s: Add basic infrastructure to handle HMI in Linux.
  powerpc/iommu: Fix comments with it_page_shift
  powerpc/powernv: Handle compound PE in config accessors
  powerpc/powernv: Handle compound PE for EEH
  powerpc/powernv: Handle compound PE
  powerpc/powernv: Split ioda_eeh_get_state()
  powerpc/powernv: Allow to freeze PE
  powerpc/powernv: Enable M64 aperatus for PHB3
  powerpc/eeh: Aux PE data for error log
  ...
2014-08-07 08:50:34 -07:00
Mahesh Salgaonkar 0869b6fd20 powerpc/book3s: Add basic infrastructure to handle HMI in Linux.
Handle Hypervisor Maintenance Interrupt (HMI) in Linux. This patch implements
basic infrastructure to handle HMI in Linux host. The design is to invoke
opal handle hmi in real mode for recovery and set irq_pending when we hit HMI.
During check_irq_replay pull opal hmi event and print hmi info on console.

Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2014-08-05 16:33:48 +10:00
Alexander Graf 9bf163f86d KVM: PPC: Book3S HV: Fix ABIv2 on LE
For code that doesn't live in modules we can just branch to the real function
names, giving us compatibility with ABIv1 and ABIv2.

Do this for the compiled-in code of HV KVM.

Signed-off-by: Alexander Graf <agraf@suse.de>
2014-07-28 15:22:25 +02:00
Alexander Graf 76d072fb05 KVM: PPC: Book3S HV: Access XICS in BE
On the exit path from the guest we check what type of interrupt we received
if we received one. This means we're doing hardware access to the XICS interrupt
controller.

However, when running on a little endian system, this access is byte reversed.

So let's make sure to swizzle the bytes back again and virtually make XICS
accesses big endian.

Signed-off-by: Alexander Graf <agraf@suse.de>
2014-07-28 15:22:24 +02:00
Alexander Graf 0865a583a4 KVM: PPC: Book3S HV: Access host lppaca and shadow slb in BE
Some data structures are always stored in big endian. Among those are the LPPACA
fields as well as the shadow slb. These structures might be shared with a
hypervisor.

So whenever we access those fields, make sure we do so in big endian byte order.

Signed-off-by: Alexander Graf <agraf@suse.de>
2014-07-28 15:22:23 +02:00
Paul Mackerras ae2113a4f1 KVM: PPC: Book3S: Allow only implemented hcalls to be enabled or disabled
This adds code to check that when the KVM_CAP_PPC_ENABLE_HCALL
capability is used to enable or disable in-kernel handling of an
hcall, that the hcall is actually implemented by the kernel.
If not an EINVAL error is returned.

This also checks the default-enabled list of hcalls and prints a
warning if any hcall there is not actually implemented.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-07-28 15:22:18 +02:00
Paul Mackerras 699a0ea082 KVM: PPC: Book3S: Controls for in-kernel sPAPR hypercall handling
This provides a way for userspace controls which sPAPR hcalls get
handled in the kernel.  Each hcall can be individually enabled or
disabled for in-kernel handling, except for H_RTAS.  The exception
for H_RTAS is because userspace can already control whether
individual RTAS functions are handled in-kernel or not via the
KVM_PPC_RTAS_DEFINE_TOKEN ioctl, and because the numeric value for
H_RTAS is out of the normal sequence of hcall numbers.

Hcalls are enabled or disabled using the KVM_ENABLE_CAP ioctl for the
KVM_CAP_PPC_ENABLE_HCALL capability on the file descriptor for the VM.
The args field of the struct kvm_enable_cap specifies the hcall number
in args[0] and the enable/disable flag in args[1]; 0 means disable
in-kernel handling (so that the hcall will always cause an exit to
userspace) and 1 means enable.  Enabling or disabling in-kernel
handling of an hcall is effective across the whole VM.

The ability for KVM_ENABLE_CAP to be used on a VM file descriptor
on PowerPC is new, added by this commit.  The KVM_CAP_ENABLE_CAP_VM
capability advertises that this ability exists.

When a VM is created, an initial set of hcalls are enabled for
in-kernel handling.  The set that is enabled is the set that have
an in-kernel implementation at this point.  Any new hcall
implementations from this point onwards should not be added to the
default set without a good reason.

No distinction is made between real-mode and virtual-mode hcall
implementations; the one setting controls them both.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-07-28 15:22:17 +02:00
Anton Blanchard ad7d4584a2 KVM: PPC: Assembly functions exported to modules need _GLOBAL_TOC()
Both kvmppc_hv_entry_trampoline and kvmppc_entry_trampoline are
assembly functions that are exported to modules and also require
a valid r2.

As such we need to use _GLOBAL_TOC so we provide a global entry
point that establishes the TOC (r2).

Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-07-28 15:22:14 +02:00
Anton Blanchard 05a308c722 KVM: PPC: Book3S HV: Fix ABIv2 indirect branch issue
To establish addressability quickly, ABIv2 requires the target
address of the function being called to be in r12.

Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-07-28 15:22:13 +02:00
Paolo Bonzini bb18b526a9 Patch queue for 3.16 - 2014-07-08
A few bug fixes to make 3.16 work well with KVM on PowerPC:
 
   - Fix ppc32 module builds
   - Fix Little Endian hosts
   - Fix Book3S HV HPTE lookup with huge pages in guest
   - Fix BookE lock leak
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2.0.19 (GNU/Linux)
 
 iQIcBAABAgAGBQJTu8HqAAoJECszeR4D/txg7u0QAMk3SC2+yBVsOAusB0YvERyU
 Y9X4Lz9fALdeZf2Fd2Qk9BD5y283LDppZqyoy+dmef9DXopfCv0Kh4rl/GrlG9ny
 aHeiBfJGpIpjqZnvkZP0Ln9zpyg7gMLRVNfNJvZWji8RcHly6m9/bxEkG0HnX6Hn
 /2UkUzOdk2aymjzMqFXdHODdC0JsGtWtGBiVC+HOtIf1D3TX42R4KI+ieOSKjGDp
 OYgN2XskOMgiXvPtEx2yMyHAAw5OTCVNdFt6Co1x0qUsz560Wy3Hy6QCwiroLrPH
 rjxkHhcQN0GJJLXs/jajdDJoEp5wYLRomReZbdrKgBj+zGvQQgGRD+RO9iyfedlm
 4hTw98tgmHcPgFTIXQlG5U8Cn0/oPr/k7FWBZJDpiUCTNRI/rsL6eHX7Wu/ylUfm
 uvcwdl5tXdM2OMHE2wEB4pEwSAK4TNGjx237txNgaeLu4ZT8yk4TQnOXlxyMJQe7
 /Bfh8oUKBqRlWAymwut8y/cazZCRDFAx88ovwqAW9GXxgB+tiCeIDLNnLYEkjEmV
 8l+viAjZz3LbzLeFxCxHnNha9WhK7A7kNGhYaWn1+N2Zlz1F3u3mQm5QoZ1UJgIH
 TtbwWsfM7jYrlUsJB1xTeL5Hs8JhOTp+kgLpMbRXe1sNX1xqh+OQZHsJ16VB6zU9
 RiOjHnv2D9/icH0B2DsW
 =+sQF
 -----END PGP SIGNATURE-----

Merge tag 'signed-for-3.16' of git://github.com/agraf/linux-2.6 into kvm-master

Patch queue for 3.16 - 2014-07-08

A few bug fixes to make 3.16 work well with KVM on PowerPC:

  - Fix ppc32 module builds
  - Fix Little Endian hosts
  - Fix Book3S HV HPTE lookup with huge pages in guest
  - Fix BookE lock leak
2014-07-08 12:08:58 +02:00
Anton Blanchard 6ed179b67c KVM: PPC: Assembly functions exported to modules need _GLOBAL_TOC()
Both kvmppc_hv_entry_trampoline and kvmppc_entry_trampoline are
assembly functions that are exported to modules and also require
a valid r2.

As such we need to use _GLOBAL_TOC so we provide a global entry
point that establishes the TOC (r2).

Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-07-07 12:02:32 +02:00
Mahesh Salgaonkar 74845bc2fa powerpc/book3s: Fix guest MC delivery mechanism to avoid soft lockups in guest.
Currently we forward MCEs to guest which have been recovered by guest.
And for unhandled errors we do not deliver the MCE to guest. It looks like
with no support of FWNMI in qemu, guest just panics whenever we deliver the
recovered MCEs to guest. Also, the existig code used to return to host for
unhandled errors which was casuing guest to hang with soft lockups inside
guest and makes it difficult to recover guest instance.

This patch now forwards all fatal MCEs to guest causing guest to crash/panic.
And, for recovered errors we just go back to normal functioning of guest
instead of returning to host. This fixes soft lockup issues in guest.
This patch also fixes an issue where guest MCE events were not logged to
host console.

Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2014-06-11 19:15:15 +10:00
Linus Torvalds c5aec4c76a Merge branch 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc
Pull powerpc updates from Ben Herrenschmidt:
 "Here is the bulk of the powerpc changes for this merge window.  It got
  a bit delayed in part because I wasn't paying attention, and in part
  because I discovered I had a core PCI change without a PCI maintainer
  ack in it.  Bjorn eventually agreed it was ok to merge it though we'll
  probably improve it later and I didn't want to rebase to add his ack.

  There is going to be a bit more next week, essentially fixes that I
  still want to sort through and test.

  The biggest item this time is the support to build the ppc64 LE kernel
  with our new v2 ABI.  We previously supported v2 userspace but the
  kernel itself was a tougher nut to crack.  This is now sorted mostly
  thanks to Anton and Rusty.

  We also have a fairly big series from Cedric that add support for
  64-bit LE zImage boot wrapper.  This was made harder by the fact that
  traditionally our zImage wrapper was always 32-bit, but our new LE
  toolchains don't really support 32-bit anymore (it's somewhat there
  but not really "supported") so we didn't want to rely on it.  This
  meant more churn that just endian fixes.

  This brings some more LE bits as well, such as the ability to run in
  LE mode without a hypervisor (ie. under OPAL firmware) by doing the
  right OPAL call to reinitialize the CPU to take HV interrupts in the
  right mode and the usual pile of endian fixes.

  There's another series from Gavin adding EEH improvements (one day we
  *will* have a release with less than 20 EEH patches, I promise!).

  Another highlight is the support for the "Split core" functionality on
  P8 by Michael.  This allows a P8 core to be split into "sub cores" of
  4 threads which allows the subcores to run different guests under KVM
  (the HW still doesn't support a partition per thread).

  And then the usual misc bits and fixes ..."

[ Further delayed by gmail deciding that BenH is a dirty spammer.
  Google knows.  ]

* 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc: (155 commits)
  powerpc/powernv: Add missing include to LPC code
  selftests/powerpc: Test the THP bug we fixed in the previous commit
  powerpc/mm: Check paca psize is up to date for huge mappings
  powerpc/powernv: Pass buffer size to OPAL validate flash call
  powerpc/pseries: hcall functions are exported to modules, need _GLOBAL_TOC()
  powerpc: Exported functions __clear_user and copy_page use r2 so need _GLOBAL_TOC()
  powerpc/powernv: Set memory_block_size_bytes to 256MB
  powerpc: Allow ppc_md platform hook to override memory_block_size_bytes
  powerpc/powernv: Fix endian issues in memory error handling code
  powerpc/eeh: Skip eeh sysfs when eeh is disabled
  powerpc: 64bit sendfile is capped at 2GB
  powerpc/powernv: Provide debugfs access to the LPC bus via OPAL
  powerpc/serial: Use saner flags when creating legacy ports
  powerpc: Add cpu family documentation
  powerpc/xmon: Fix up xmon format strings
  powerpc/powernv: Add calls to support little endian host
  powerpc: Document sysfs DSCR interface
  powerpc: Fix regression of per-CPU DSCR setting
  powerpc: Split __SYSFS_SPRSETUP macro
  arch: powerpc/fadump: Cleaning up inconsistent NULL checks
  ...
2014-06-10 18:54:22 -07:00
Linus Torvalds b05d59dfce At over 200 commits, covering almost all supported architectures, this
was a pretty active cycle for KVM.  Changes include:
 
 - a lot of s390 changes: optimizations, support for migration,
   GDB support and more
 
 - ARM changes are pretty small: support for the PSCI 0.2 hypercall
   interface on both the guest and the host (the latter acked by Catalin)
 
 - initial POWER8 and little-endian host support
 
 - support for running u-boot on embedded POWER targets
 
 - pretty large changes to MIPS too, completing the userspace interface
   and improving the handling of virtualized timer hardware
 
 - for x86, a larger set of changes is scheduled for 3.17.  Still,
   we have a few emulator bugfixes and support for running nested
   fully-virtualized Xen guests (para-virtualized Xen guests have
   always worked).  And some optimizations too.
 
 The only missing architecture here is ia64.  It's not a coincidence
 that support for KVM on ia64 is scheduled for removal in 3.17.
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2.0.22 (GNU/Linux)
 
 iQIcBAABAgAGBQJTjtlBAAoJEBvWZb6bTYbyMOUP/2NAePghE3IjG99ikHFdn+BX
 BfrURsuR6GD0AhYQnBidBmpFbAmN/LwSJxv/M7sV7OBRWLu3qbt69DrPTU2e/FK1
 j9q25peu8jRyHzJ1q9rBroo74nD9lQYuVr3uXNxxcg0DRnw14JHGlM3y8LDEknO8
 W+gpWTeAQ+2AuOX98MpRbCRMuzziCSv5bP5FhBVnsWHiZfvMbcUrbeJt+zYSiDAZ
 0tHm/5dFKzfj/vVrrnjD4EZcRr688Bs5rztG96hY6aoVJryjZGLtLp92wCWkRRmH
 CCvZwd245NmNthuKHzcs27/duSWfU0uOlu7AMrD44QYhzeDGyB/2nbCxbGqLLoBA
 nnOviXH4cC65/CnisZ79zfo979HbZcX+Lzg747EjBgCSxJmLlwgiG8yXtDvk5otB
 TH6GUeGDiEEPj//JD3XtgSz0sF2NvjREWRyemjDMvhz6JC/bLytXKb3sn+NXSj8m
 ujzF9eQoa4qKDcBL4IQYGTJ4z5nY3Pd68dHFIPHB7n82OxFLSQUBKxXw8/1fb5og
 VVb8PL4GOcmakQlAKtTMlFPmuy4bbL2r/2iV5xJiOZKmXIu8Hs1JezBE3SFAltbl
 3cAGwSM9/dDkKxUbTFblyOE9bkKbg4WYmq0LkdzsPEomb3IZWntOT25rYnX+LrBz
 bAknaZpPiOrW11Et1htY
 =j5Od
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm into next

Pull KVM updates from Paolo Bonzini:
 "At over 200 commits, covering almost all supported architectures, this
  was a pretty active cycle for KVM.  Changes include:

   - a lot of s390 changes: optimizations, support for migration, GDB
     support and more

   - ARM changes are pretty small: support for the PSCI 0.2 hypercall
     interface on both the guest and the host (the latter acked by
     Catalin)

   - initial POWER8 and little-endian host support

   - support for running u-boot on embedded POWER targets

   - pretty large changes to MIPS too, completing the userspace
     interface and improving the handling of virtualized timer hardware

   - for x86, a larger set of changes is scheduled for 3.17.  Still, we
     have a few emulator bugfixes and support for running nested
     fully-virtualized Xen guests (para-virtualized Xen guests have
     always worked).  And some optimizations too.

  The only missing architecture here is ia64.  It's not a coincidence
  that support for KVM on ia64 is scheduled for removal in 3.17"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (203 commits)
  KVM: add missing cleanup_srcu_struct
  KVM: PPC: Book3S PR: Rework SLB switching code
  KVM: PPC: Book3S PR: Use SLB entry 0
  KVM: PPC: Book3S HV: Fix machine check delivery to guest
  KVM: PPC: Book3S HV: Work around POWER8 performance monitor bugs
  KVM: PPC: Book3S HV: Make sure we don't miss dirty pages
  KVM: PPC: Book3S HV: Fix dirty map for hugepages
  KVM: PPC: Book3S HV: Put huge-page HPTEs in rmap chain for base address
  KVM: PPC: Book3S HV: Fix check for running inside guest in global_invalidates()
  KVM: PPC: Book3S: Move KVM_REG_PPC_WORT to an unused register number
  KVM: PPC: Book3S: Add ONE_REG register names that were missed
  KVM: PPC: Add CAP to indicate hcall fixes
  KVM: PPC: MPIC: Reset IRQ source private members
  KVM: PPC: Graciously fail broken LE hypercalls
  PPC: ePAPR: Fix hypercall on LE guest
  KVM: PPC: BOOK3S: Remove open coded make_dsisr in alignment handler
  KVM: PPC: BOOK3S: Always use the saved DAR value
  PPC: KVM: Make NX bit available with magic page
  KVM: PPC: Disable NX for old magic page using guests
  KVM: PPC: BOOK3S: HV: Add mixed page-size support for guest
  ...
2014-06-04 08:47:12 -07:00
Paul Mackerras 000a25ddb7 KVM: PPC: Book3S HV: Fix machine check delivery to guest
The code that delivered a machine check to the guest after handling
it in real mode failed to load up r11 before calling kvmppc_msr_interrupt,
which needs the old MSR value in r11 so it can see the transactional
state there.  This adds the missing load.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-05-30 14:26:29 +02:00
Paul Mackerras 9bc01a9bc7 KVM: PPC: Book3S HV: Work around POWER8 performance monitor bugs
This adds workarounds for two hardware bugs in the POWER8 performance
monitor unit (PMU), both related to interrupt generation.  The effect
of these bugs is that PMU interrupts can get lost, leading to tools
such as perf reporting fewer counts and samples than they should.

The first bug relates to the PMAO (perf. mon. alert occurred) bit in
MMCR0; setting it should cause an interrupt, but doesn't.  The other
bug relates to the PMAE (perf. mon. alert enable) bit in MMCR0.
Setting PMAE when a counter is negative and counter negative
conditions are enabled to cause alerts should cause an alert, but
doesn't.

The workaround for the first bug is to create conditions where a
counter will overflow, whenever we are about to restore a MMCR0
value that has PMAO set (and PMAO_SYNC clear).  The workaround for
the second bug is to freeze all counters using MMCR2 before reading
MMCR0.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-05-30 14:26:29 +02:00
Sam bobroff 1739ea9e13 powerpc: Fix regression of per-CPU DSCR setting
Since commit "efcac65 powerpc: Per process DSCR + some fixes (try#4)"
it is no longer possible to set the DSCR on a per-CPU basis.

The old behaviour was to minipulate the DSCR SPR directly but this is no
longer sufficient: the value is quickly overwritten by context switching.

This patch stores the per-CPU DSCR value in a kernel variable rather than
directly in the SPR and it is used whenever a process has not set the DSCR
itself. The sysfs interface (/sys/devices/system/cpu/cpuN/dscr) is unchanged.

Writes to the old global default (/sys/devices/system/cpu/dscr_default)
now set all of the per-CPU values and reads return the last written value.

The new per-CPU default is added to the paca_struct and is used everywhere
outside of sysfs.c instead of the old global default.

Signed-off-by: Sam Bobroff <sam.bobroff@au1.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2014-05-28 13:35:40 +10:00
Paolo Bonzini 5367742ad5 Patch queue for 3.15 - 2014-05-12
This request includes a few bug fixes that really shouldn't wait for the next
 release.
 
 It fixes KVM on 32bit PowerPC when built as module. It also fixes the PV KVM
 acceleration when NX gets honored by the host. Furthermore we fix transactional
 memory support and numa support on HV KVM.
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2.0.19 (GNU/Linux)
 
 iQIcBAABAgAGBQJTcKFaAAoJECszeR4D/txg7qYP/RX3V32i2zQYH2NpjQrDCwtY
 Wur+CQrn/VA6xhtTK1rT2zH5rNFLt6ClhtxCMkZFfBdUE4sHi3OTlEdcvXBZjbls
 JqQ/7lBkUPN8pTpz2NHP9gvH7g6v07EruysRQNa/JZMzlwhpzWk8D7yXakaCPNY/
 JZRgVTrfKnhQ8OtXt48Bp4EmEKllbNqi9kNN7dewD2dEb3fAco3Jpk6WoeG+1f0o
 jv3NmeTsp87KaRpjvDzPb7iCe6PA7GVqvJIQpir3Rpk2Kpx0yj58AfacF+f72GOf
 CPlJGepiumJCaANhV6dbvtS49vaiiAnSvbqCil2USNl0LIGWQXdSjs5lztEuiMyr
 tAav0YSVpnIcw0HJxXug/M31VwfRjYCX3hnCCIOd3Xj2jgAqwD+Lo95uUrRGJ9TP
 75zKh8E093tOXIC9CyMaiYajpFMUrCSMgnpJ+7fpeHiyigB6yc8juFxahIHsw8q1
 NgHggroJm6QNIm8JSY/tG/YET4AT7H4ZetGP8MeeRUg0TpqQXvYpkMGB8YDouaBA
 XzxjwyTq57BOYgLGExnwW3Jj0kbqVY+ts0aDGQVGrl5YFzooGqrQ61CRmwG5BvI8
 sou3l6TJ2ng8qrc7Maw9MHca1QB3mtXD7I26T/QEfQm9NLRTTqJyaxH5J1q9siRI
 PpHVE5FKnmWPNr8JlxtC
 =t2S+
 -----END PGP SIGNATURE-----

Merge tag 'signed-for-3.15' of git://github.com/agraf/linux-2.6 into kvm-master

Patch queue for 3.15 - 2014-05-12

This request includes a few bug fixes that really shouldn't wait for the next
release.

It fixes KVM on 32bit PowerPC when built as module. It also fixes the PV KVM
acceleration when NX gets honored by the host. Furthermore we fix transactional
memory support and numa support on HV KVM.
2014-05-13 18:15:16 +02:00
Benjamin Herrenschmidt f6869e7fe6 Merge remote-tracking branch 'anton/abiv2' into next
This series adds support for building the powerpc 64-bit
LE kernel using the new ABI v2. We already supported
running ABI v2 userspace programs but this adds support
for building the kernel itself using the new ABI.
2014-05-05 20:57:12 +10:00
Paul Mackerras 0a8eccefcb KVM: PPC: Book3S HV: Add missing code for transaction reclaim on guest exit
Testing by Michael Neuling revealed that commit e4e3812150 ("KVM:
PPC: Book3S HV: Add transactional memory support") is missing the code
that saves away the checkpointed state of the guest when switching to
the host.  This adds that code, which was in earlier versions of the
patch but went missing somehow.

Reported-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-04-28 12:35:41 +02:00
Preeti U Murthy 582b910eda ppc/kvm: Clear the runlatch bit of a vcpu before napping
When the guest cedes the vcpu or the vcpu has no guest to
run it naps. Clear the runlatch bit of the vcpu before
napping to indicate an idle cpu.

Signed-off-by: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Acked-by: Paul Mackerras <paulus@samba.org>
Reviewed-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2014-04-28 16:32:49 +10:00
Preeti U Murthy fd17dc7b9a ppc/kvm: Set the runlatch bit of a CPU just before starting guest
The secondary threads in the core are kept offline before launching guests
in kvm on powerpc: "371fefd6f2dc4666:KVM: PPC: Allow book3s_hv guests to use
SMT processor modes."

Hence their runlatch bits are cleared. When the secondary threads are called
in to start a guest, their runlatch bits need to be set to indicate that they
are busy. The primary thread has its runlatch bit set though, but there is no
harm in setting this bit once again. Hence set the runlatch bit for all
threads before they start guest.

Signed-off-by: Preeti U Murthy <preeti@linux.vnet.ibm.com>
Acked-by: Paul Mackerras <paulus@samba.org>
Reviewed-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2014-04-28 16:32:45 +10:00
Anton Blanchard c1fb019477 powerpc: Create DOTSYM to wrap dot symbol usage
There are a few places we have to use dot symbols with the
current ABI - the syscall table and the kvm hcall table.

Wrap both of these with a new macro called DOTSYM so it will
be easy to transition away from dot symbols in a future ABI.

Signed-off-by: Anton Blanchard <anton@samba.org>
2014-04-23 10:05:19 +10:00
Anton Blanchard b1576fec7f powerpc: No need to use dot symbols when branching to a function
binutils is smart enough to know that a branch to a function
descriptor is actually a branch to the functions text address.

Alan tells me that binutils has been doing this for 9 years.

Signed-off-by: Anton Blanchard <anton@samba.org>
2014-04-23 10:05:16 +10:00
Linus Torvalds 7cbb39d4d4 Merge tag 'kvm-3.15-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini:
 "PPC and ARM do not have much going on this time.  Most of the cool
  stuff, instead, is in s390 and (after a few releases) x86.

  ARM has some caching fixes and PPC has transactional memory support in
  guests.  MIPS has some fixes, with more probably coming in 3.16 as
  QEMU will soon get support for MIPS KVM.

  For x86 there are optimizations for debug registers, which trigger on
  some Windows games, and other important fixes for Windows guests.  We
  now expose to the guest Broadwell instruction set extensions and also
  Intel MPX.  There's also a fix/workaround for OS X guests, nested
  virtualization features (preemption timer), and a couple kvmclock
  refinements.

  For s390, the main news is asynchronous page faults, together with
  improvements to IRQs (floating irqs and adapter irqs) that speed up
  virtio devices"

* tag 'kvm-3.15-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (96 commits)
  KVM: PPC: Book3S HV: Save/restore host PMU registers that are new in POWER8
  KVM: PPC: Book3S HV: Fix decrementer timeouts with non-zero TB offset
  KVM: PPC: Book3S HV: Don't use kvm_memslots() in real mode
  KVM: PPC: Book3S HV: Return ENODEV error rather than EIO
  KVM: PPC: Book3S: Trim top 4 bits of physical address in RTAS code
  KVM: PPC: Book3S HV: Add get/set_one_reg for new TM state
  KVM: PPC: Book3S HV: Add transactional memory support
  KVM: Specify byte order for KVM_EXIT_MMIO
  KVM: vmx: fix MPX detection
  KVM: PPC: Book3S HV: Fix KVM hang with CONFIG_KVM_XICS=n
  KVM: PPC: Book3S: Introduce hypervisor call H_GET_TCE
  KVM: PPC: Book3S HV: Fix incorrect userspace exit on ioeventfd write
  KVM: s390: clear local interrupts at cpu initial reset
  KVM: s390: Fix possible memory leak in SIGP functions
  KVM: s390: fix calculation of idle_mask array size
  KVM: s390: randomize sca address
  KVM: ioapic: reinject pending interrupts on KVM_SET_IRQCHIP
  KVM: Bump KVM_MAX_IRQ_ROUTES for s390
  KVM: s390: irq routing for adapter interrupts.
  KVM: s390: adapter interrupt sources
  ...
2014-04-02 14:50:10 -07:00
Linus Torvalds 235c7b9feb Merge branch 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc
Pull main powerpc updates from Ben Herrenschmidt:
 "This time around, the powerpc merges are going to be a little bit more
  complicated than usual.

  This is the main pull request with most of the work for this merge
  window.  I will describe it a bit more further down.

  There is some additional cpuidle driver work, however I haven't
  included it in this tree as it depends on some work in tip/timer-core
  which Thomas accidentally forgot to put in a topic branch.  Since I
  didn't want to carry all of that tip timer stuff in powerpc -next, I
  setup a separate branch on top of Thomas tree with just that cpuidle
  driver in it, and Stephen has been carrying that in next separately
  for a while now.  I'll send a separate pull request for it.

  Additionally, two new pieces in this tree add users for a sysfs API
  that Tejun and Greg have been deprecating in drivers-core-next.
  Thankfully Greg reverted the patch that removes the old API so this
  merge can happen cleanly, but once merged, I will send a patch
  adjusting our new code to the new API so that Greg can send you the
  removal patch.

  Now as for the content of this branch, we have a lot of perf work for
  power8 new counters including support for our new "nest" counters
  (also called 24x7) under pHyp (not natively yet).

  We have new functionality when running under the OPAL firmware
  (non-virtualized or KVM host), such as access to the firmware error
  logs and service processor dumps, system parameters and sensors, along
  with a hwmon driver for the latter.

  There's also a bunch of bug fixes accross the board, some LE fixes,
  and a nice set of selftests for validating our various types of copy
  loops.

  On the Freescale side, we see mostly new chip/board revisions, some
  clock updates, better support for machine checks and debug exceptions,
  etc..."

* 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc: (70 commits)
  powerpc/book3s: Fix CFAR clobbering issue in machine check handler.
  powerpc/compat: 32-bit little endian machine name is ppcle, not ppc
  powerpc/le: Big endian arguments for ppc_rtas()
  powerpc: Use default set of netfilter modules (CONFIG_NETFILTER_ADVANCED=n)
  powerpc/defconfigs: Enable THP in pseries defconfig
  powerpc/mm: Make sure a local_irq_disable prevent a parallel THP split
  powerpc: Rate-limit users spamming kernel log buffer
  powerpc/perf: Fix handling of L3 events with bank == 1
  powerpc/perf/hv_{gpci, 24x7}: Add documentation of device attributes
  powerpc/perf: Add kconfig option for hypervisor provided counters
  powerpc/perf: Add support for the hv 24x7 interface
  powerpc/perf: Add support for the hv gpci (get performance counter info) interface
  powerpc/perf: Add macros for defining event fields & formats
  powerpc/perf: Add a shared interface to get gpci version and capabilities
  powerpc/perf: Add 24x7 interface headers
  powerpc/perf: Add hv_gpci interface header
  powerpc: Add hvcalls for 24x7 and gpci (Get Performance Counter Info)
  sysfs: create bin_attributes under the requested group
  powerpc/perf: Enable BHRB access for EBB events
  powerpc/perf: Add BHRB constraint and IFM MMCRA handling for EBB
  ...
2014-04-02 13:42:59 -07:00
Paul Mackerras 72cde5a88d KVM: PPC: Book3S HV: Save/restore host PMU registers that are new in POWER8
Currently we save the host PMU configuration, counter values, etc.,
when entering a guest, and restore it on return from the guest.
(We have to do this because the guest has control of the PMU while
it is executing.)  However, we missed saving/restoring the SIAR and
SDAR registers, as well as the registers which are new on POWER8,
namely SIER and MMCR2.

This adds code to save the values of these registers when entering
the guest and restore them on exit.  This also works around the bug
in POWER8 where setting PMAE with a counter already negative doesn't
generate an interrupt.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Acked-by: Scott Wood <scottwood@freescale.com>
2014-03-29 19:58:52 +11:00
Paul Mackerras c5fb80d3b2 KVM: PPC: Book3S HV: Fix decrementer timeouts with non-zero TB offset
Commit c7699822bc21 ("KVM: PPC: Book3S HV: Make physical thread 0 do
the MMU switching") reordered the guest entry/exit code so that most
of the guest register save/restore code happened in guest MMU context.
A side effect of that is that the timebase still contains the guest
timebase value at the point where we compute and use vcpu->arch.dec_expires,
and therefore that is now a guest timebase value rather than a host
timebase value.  That in turn means that the timeouts computed in
kvmppc_set_timer() are wrong if the timebase offset for the guest is
non-zero.  The consequence of that is things such as "sleep 1" in a
guest after migration may sleep for much longer than they should.

This fixes the problem by converting between guest and host timebase
values as necessary, by adding or subtracting the timebase offset.
This also fixes an incorrect comment.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Acked-by: Scott Wood <scottwood@freescale.com>
2014-03-29 19:58:39 +11:00
Michael Neuling e4e3812150 KVM: PPC: Book3S HV: Add transactional memory support
This adds saving of the transactional memory (TM) checkpointed state
on guest entry and exit.  We only do this if we see that the guest has
an active transaction.

It also adds emulation of the TM state changes when delivering IRQs
into the guest.  According to the architecture, if we are
transactional when an IRQ occurs, the TM state is changed to
suspended, otherwise it's left unchanged.

Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Acked-by: Scott Wood <scottwood@freescale.com>
2014-03-29 19:58:02 +11:00
Laurent Dufour 69e9fbb278 KVM: PPC: Book3S: Introduce hypervisor call H_GET_TCE
This introduces the H_GET_TCE hypervisor call, which is basically the
reverse of H_PUT_TCE, as defined in the Power Architecture Platform
Requirements (PAPR).

The hcall H_GET_TCE is required by the kdump kernel, which uses it to
retrieve TCEs set up by the previous (panicked) kernel.

Signed-off-by: Laurent Dufour <ldufour@linux.vnet.ibm.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Paul Mackerras <paulus@samba.org>
2014-03-26 23:34:27 +11:00
Scott Wood 9d378dfac8 powerpc/booke64: Use SPRG7 for VDSO
Previously SPRG3 was marked for use by both VDSO and critical
interrupts (though critical interrupts were not fully implemented).

In commit 8b64a9dfb0 ("powerpc/booke64:
Use SPRG0/3 scratch for bolted TLB miss & crit int"), Mihai Caraman
made an attempt to resolve this conflict by restoring the VDSO value
early in the critical interrupt, but this has some issues:

 - It's incompatible with EXCEPTION_COMMON which restores r13 from the
   by-then-overwritten scratch (this cost me some debugging time).
 - It forces critical exceptions to be a special case handled
   differently from even machine check and debug level exceptions.
 - It didn't occur to me that it was possible to make this work at all
   (by doing a final "ld r13, PACA_EXCRIT+EX_R13(r13)") until after
   I made (most of) this patch. :-)

It might be worth investigating using a load rather than SPRG on return
from all exceptions (except TLB misses where the scratch never leaves
the SPRG) -- it could save a few cycles.  Until then, let's stick with
SPRG for all exceptions.

Since we cannot use SPRG4-7 for scratch without corrupting the state of
a KVM guest, move VDSO to SPRG7 on book3e.  Since neither SPRG4-7 nor
critical interrupts exist on book3s, SPRG3 is still used for VDSO
there.

Signed-off-by: Scott Wood <scottwood@freescale.com>
Cc: Mihai Caraman <mihai.caraman@freescale.com>
Cc: Anton Blanchard <anton@samba.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: kvm-ppc@vger.kernel.org
2014-03-19 19:57:14 -05:00
Paul Mackerras e724f080f5 KVM: PPC: Book3S HV: Fix register usage when loading/saving VRSAVE
Commit 595e4f7e69 ("KVM: PPC: Book3S HV: Use load/store_fp_state
functions in HV guest entry/exit") changed the register usage in
kvmppc_save_fp() and kvmppc_load_fp() but omitted changing the
instructions that load and save VRSAVE.  The result is that the
VRSAVE value was loaded from a constant address, and saved to a
location past the end of the vcpu struct, causing host kernel
memory corruption and various kinds of host kernel crashes.

This fixes the problem by using register r31, which contains the
vcpu pointer, instead of r3 and r4.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2014-03-13 10:47:01 +01:00
Paul Mackerras a5b0ccb0b5 KVM: PPC: Book3S HV: Remove bogus duplicate code
Commit 7b490411c3 ("KVM: PPC: Book3S HV: Add new state for
transactional memory") incorrectly added some duplicate code to the
guest exit path because I didn't manage to clean up after a rebase
correctly.  This removes the extraneous material.  The presence of
this extraneous code causes host crashes whenever a guest is run.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2014-03-13 10:46:52 +01:00
Paolo Bonzini b73117c493 Merge branch 'kvm-ppc-next' of git://github.com/agraf/linux-2.6 into kvm-queue
Conflicts:
	arch/powerpc/kvm/book3s_hv_rmhandlers.S
	arch/powerpc/kvm/booke.c
2014-01-29 18:29:01 +01:00
Michael Neuling 7b490411c3 KVM: PPC: Book3S HV: Add new state for transactional memory
Add new state for transactional memory (TM) to kvm_vcpu_arch.  Also add
asm-offset bits that are going to be required.

This also moves the existing TFHAR, TFIAR and TEXASR SPRs into a
CONFIG_PPC_TRANSACTIONAL_MEM section.  This requires some code changes to
ensure we still compile with CONFIG_PPC_TRANSACTIONAL_MEM=N.  Much of the added
the added #ifdefs are removed in a later patch when the bulk of the TM code is
added.

Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
[agraf: fix merge conflict]
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-01-27 16:01:20 +01:00
Anton Blanchard d682916a38 KVM: PPC: Book3S HV: Basic little-endian guest support
We create a guest MSR from scratch when delivering exceptions in
a few places.  Instead of extracting LPCR[ILE] and inserting it
into MSR_LE each time, we simply create a new variable intr_msr which
contains the entire MSR to use.  For a little-endian guest, userspace
needs to set the ILE (interrupt little-endian) bit in the LPCR for
each vcpu (or at least one vcpu in each virtual core).

[paulus@samba.org - removed H_SET_MODE implementation from original
version of the patch, and made kvmppc_set_lpcr update vcpu->arch.intr_msr.]

Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-01-27 16:01:16 +01:00
Paul Mackerras 8563bf52d5 KVM: PPC: Book3S HV: Add support for DABRX register on POWER7
The DABRX (DABR extension) register on POWER7 processors provides finer
control over which accesses cause a data breakpoint interrupt.  It
contains 3 bits which indicate whether to enable accesses in user,
kernel and hypervisor modes respectively to cause data breakpoint
interrupts, plus one bit that enables both real mode and virtual mode
accesses to cause interrupts.  Currently, KVM sets DABRX to allow
both kernel and user accesses to cause interrupts while in the guest.

This adds support for the guest to specify other values for DABRX.
PAPR defines a H_SET_XDABR hcall to allow the guest to set both DABR
and DABRX with one call.  This adds a real-mode implementation of
H_SET_XDABR, which shares most of its code with the existing H_SET_DABR
implementation.  To support this, we add a per-vcpu field to store the
DABRX value plus code to get and set it via the ONE_REG interface.

For Linux guests to use this new hcall, userspace needs to add
"hcall-xdabr" to the set of strings in the /chosen/hypertas-functions
property in the device tree.  If userspace does this and then migrates
the guest to a host where the kernel doesn't include this patch, then
userspace will need to implement H_SET_XDABR by writing the specified
DABR value to the DABR using the ONE_REG interface.  In that case, the
old kernel will set DABRX to DABRX_USER | DABRX_KERNEL.  That should
still work correctly, at least for Linux guests, since Linux guests
cope with getting data breakpoint interrupts in modes that weren't
requested by just ignoring the interrupt, and Linux guests never set
DABRX_BTI.

The other thing this does is to make H_SET_DABR and H_SET_XDABR work
on POWER8, which has the DAWR and DAWRX instead of DABR/X.  Guests that
know about POWER8 should use H_SET_MODE rather than H_SET_[X]DABR, but
guests running in POWER7 compatibility mode will still use H_SET_[X]DABR.
For them, this adds the logic to convert DABR/X values into DAWR/X values
on POWER8.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-01-27 16:01:15 +01:00
Paul Mackerras 5d00f66b86 KVM: PPC: Book3S HV: Prepare for host using hypervisor doorbells
POWER8 has support for hypervisor doorbell interrupts.  Though the
kernel doesn't use them for IPIs on the powernv platform yet, it
probably will in future, so this makes KVM cope gracefully if a
hypervisor doorbell interrupt arrives while in a guest.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-01-27 16:01:13 +01:00
Paul Mackerras aa31e84322 KVM: PPC: Book3S HV: Handle guest using doorbells for IPIs
* SRR1 wake reason field for system reset interrupt on wakeup from nap
  is now a 4-bit field on P8, compared to 3 bits on P7.

* Set PECEDP in LPCR when napping because of H_CEDE so guest doorbells
  will wake us up.

* Waking up from nap because of a guest doorbell interrupt is not a
  reason to exit the guest.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-01-27 16:01:10 +01:00
Paul Mackerras e3bbbbfa13 KVM: PPC: Book3S HV: Consolidate code that checks reason for wake from nap
Currently in book3s_hv_rmhandlers.S we have three places where we
have woken up from nap mode and we check the reason field in SRR1
to see what event woke us up.  This consolidates them into a new
function, kvmppc_check_wake_reason.  It looks at the wake reason
field in SRR1, and if it indicates that an external interrupt caused
the wakeup, calls kvmppc_read_intr to check what sort of interrupt
it was.

This also consolidates the two places where we synthesize an external
interrupt (0x500 vector) for the guest.  Now, if the guest exit code
finds that there was an external interrupt which has been handled
(i.e. it was an IPI indicating that there is now an interrupt pending
for the guest), it jumps to deliver_guest_interrupt, which is in the
last part of the guest entry code, where we synthesize guest external
and decrementer interrupts.  That code has been streamlined a little
and now clears LPCR[MER] when appropriate as well as setting it.

The extra clearing of any pending IPI on a secondary, offline CPU
thread before going back to nap mode has been removed.  It is no longer
necessary now that we have code to read and acknowledge IPIs in the
guest exit path.

This fixes a minor bug in the H_CEDE real-mode handling - previously,
if we found that other threads were already exiting the guest when we
were about to go to nap mode, we would branch to the cede wakeup path
and end up looking in SRR1 for a wakeup reason.  Now we branch to a
point after we have checked the wakeup reason.

This also fixes a minor bug in kvmppc_read_intr - previously it could
return 0xff rather than 1, in the case where we find that a host IPI
is pending after we have cleared the IPI.  Now it returns 1.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-01-27 16:01:08 +01:00
Paul Mackerras ca25205513 KVM: PPC: Book3S HV: Flush the correct number of TLB sets on POWER8
POWER8 has 512 sets in the TLB, compared to 128 for POWER7, so we need
to do more tlbiel instructions when flushing the TLB on POWER8.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-01-27 16:01:02 +01:00
Michael Neuling b005255e12 KVM: PPC: Book3S HV: Context-switch new POWER8 SPRs
This adds fields to the struct kvm_vcpu_arch to store the new
guest-accessible SPRs on POWER8, adds code to the get/set_one_reg
functions to allow userspace to access this state, and adds code to
the guest entry and exit to context-switch these SPRs between host
and guest.

Note that DPDES (Directed Privileged Doorbell Exception State) is
shared between threads on a core; hence we store it in struct
kvmppc_vcore and have the master thread save and restore it.

Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-01-27 16:01:00 +01:00
Paul Mackerras e0b7ec058c KVM: PPC: Book3S HV: Align physical and virtual CPU thread numbers
On a threaded processor such as POWER7, we group VCPUs into virtual
cores and arrange that the VCPUs in a virtual core run on the same
physical core.  Currently we don't enforce any correspondence between
virtual thread numbers within a virtual core and physical thread
numbers.  Physical threads are allocated starting at 0 on a first-come
first-served basis to runnable virtual threads (VCPUs).

POWER8 implements a new "msgsndp" instruction which guest kernels can
use to interrupt other threads in the same core or sub-core.  Since
the instruction takes the destination physical thread ID as a parameter,
it becomes necessary to align the physical thread IDs with the virtual
thread IDs, that is, to make sure virtual thread N within a virtual
core always runs on physical thread N.

This means that it's possible that thread 0, which is where we call
__kvmppc_vcore_entry, may end up running some other vcpu than the
one whose task called kvmppc_run_core(), or it may end up running
no vcpu at all, if for example thread 0 of the virtual core is
currently executing in userspace.  However, we do need thread 0
to be responsible for switching the MMU -- a previous version of
this patch that had other threads switching the MMU was found to
be responsible for occasional memory corruption and machine check
interrupts in the guest on POWER7 machines.

To accommodate this, we no longer pass the vcpu pointer to
__kvmppc_vcore_entry, but instead let the assembly code load it from
the PACA.  Since the assembly code will need to know the kvm pointer
and the thread ID for threads which don't have a vcpu, we move the
thread ID into the PACA and we add a kvm pointer to the virtual core
structure.

In the case where thread 0 has no vcpu to run, it still calls into
kvmppc_hv_entry in order to do the MMU switch, and then naps until
either its vcpu is ready to run in the guest, or some other thread
needs to exit the guest.  In the latter case, thread 0 jumps to the
code that switches the MMU back to the host.  This control flow means
that now we switch the MMU before loading any guest vcpu state.
Similarly, on guest exit we now save all the guest vcpu state before
switching the MMU back to the host.  This has required substantial
code movement, making the diff rather large.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-01-27 16:00:59 +01:00
Michael Neuling eee7ff9d2c KVM: PPC: Book3S HV: Don't set DABR on POWER8
POWER8 doesn't have the DABR and DABRX registers; instead it has
new DAWR/DAWRX registers, which will be handled in a later patch.

Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-01-27 16:00:57 +01:00
Paul Mackerras 595e4f7e69 KVM: PPC: Book3S HV: Use load/store_fp_state functions in HV guest entry/exit
This modifies kvmppc_load_fp and kvmppc_save_fp to use the generic
FP/VSX and VMX load/store functions instead of open-coding the
FP/VSX/VMX load/store instructions.  Since kvmppc_load/save_fp don't
follow C calling conventions, we make them private symbols within
book3s_hv_rmhandlers.S.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-01-09 10:15:03 +01:00
Paul Mackerras efff191223 KVM: PPC: Store FP/VSX/VMX state in thread_fp/vr_state structures
This uses struct thread_fp_state and struct thread_vr_state to store
the floating-point, VMX/Altivec and VSX state, rather than flat arrays.
This makes transferring the state to/from the thread_struct simpler
and allows us to unify the get/set_one_reg implementations for the
VSX registers.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2014-01-09 10:15:00 +01:00
Aneesh Kumar K.V 36e7bb3802 powerpc: book3s: kvm: Don't abuse host r2 in exit path
We don't use PACATOC for PR. Avoid updating HOST_R2 with PR
KVM mode when both HV and PR are enabled in the kernel. Without this we
get the below crash

(qemu)
Unable to handle kernel paging request for data at address 0xffffffffffff8310
Faulting instruction address: 0xc00000000001d5a4
cpu 0x2: Vector: 300 (Data Access) at [c0000001dc53aef0]
    pc: c00000000001d5a4: .vtime_delta.isra.1+0x34/0x1d0
    lr: c00000000001d760: .vtime_account_system+0x20/0x60
    sp: c0000001dc53b170
   msr: 8000000000009032
   dar: ffffffffffff8310
 dsisr: 40000000
  current = 0xc0000001d76c62d0
  paca    = 0xc00000000fef1100   softe: 0        irq_happened: 0x01
    pid   = 4472, comm = qemu-system-ppc
enter ? for help
[c0000001dc53b200] c00000000001d760 .vtime_account_system+0x20/0x60
[c0000001dc53b290] c00000000008d050 .kvmppc_handle_exit_pr+0x60/0xa50
[c0000001dc53b340] c00000000008f51c kvm_start_lightweight+0xb4/0xc4
[c0000001dc53b510] c00000000008cdf0 .kvmppc_vcpu_run_pr+0x150/0x2e0
[c0000001dc53b9e0] c00000000008341c .kvmppc_vcpu_run+0x2c/0x40
[c0000001dc53ba50] c000000000080af4 .kvm_arch_vcpu_ioctl_run+0x54/0x1b0
[c0000001dc53bae0] c00000000007b4c8 .kvm_vcpu_ioctl+0x478/0x730
[c0000001dc53bca0] c0000000002140cc .do_vfs_ioctl+0x4ac/0x770
[c0000001dc53bd80] c0000000002143e8 .SyS_ioctl+0x58/0xb0
[c0000001dc53be30] c000000000009e58 syscall_exit+0x0/0x98

Signed-off-by: Alexander Graf <agraf@suse.de>
2013-12-18 11:29:31 +01:00
Liu Ping Fan 27025a602c powerpc: kvm: optimize "sc 1" as fast return
In some scene, e.g openstack CI, PR guest can trigger "sc 1" frequently,
this patch optimizes the path by directly delivering BOOK3S_INTERRUPT_SYSCALL
to HV guest, so powernv can return to HV guest without heavy exit, i.e,
no need to swap TLB, HTAB,.. etc

Signed-off-by: Liu Ping Fan <pingfank@linux.vnet.ibm.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-11-21 14:56:45 +01:00
Paul Mackerras f019b7ad76 KVM: PPC: Book3S HV: Refine barriers in guest entry/exit
Some users have reported instances of the host hanging with secondary
threads of a core waiting for the primary thread to exit the guest,
and the primary thread stuck in nap mode.  This prompted a review of
the memory barriers in the guest entry/exit code, and this is the
result.  Most of these changes are the suggestions of Dean Burdick
<deanburdick@us.ibm.com>.

The barriers between updating napping_threads and reading the
entry_exit_count on the one hand, and updating entry_exit_count and
reading napping_threads on the other, need to be isync not lwsync,
since we need to ensure that either the napping_threads update or the
entry_exit_count update get seen.  It is not sufficient to order the
load vs. lwarx, as lwsync does; we need to order the load vs. the
stwcx., so we need isync.

In addition, we need a full sync before sending IPIs to wake other
threads from nap, to ensure that the write to the entry_exit_count is
visible before the IPI occurs.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-11-18 22:38:30 +01:00
Gleb Natapov 95f328d3ad Merge branch 'kvm-ppc-queue' of git://github.com/agraf/linux-2.6 into queue
Conflicts:
	arch/powerpc/include/asm/processor.h
2013-11-04 10:20:57 +02:00
Aneesh Kumar K.V dd96b2c2dc kvm: powerpc: book3s: Cleanup interrupt handling code
With this patch if HV is included, interrupts come in to the HV version
of the kvmppc_interrupt code, which then jumps to the PR handler,
renamed to kvmppc_interrupt_pr, if the guest is a PR guest. This helps
in enabling both HV and PR, which we do in later patch

Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-10-17 15:26:31 +02:00
Paul Mackerras 44a3add863 KVM: PPC: Book3S HV: Better handling of exceptions that happen in real mode
When an interrupt or exception happens in the guest that comes to the
host, the CPU goes to hypervisor real mode (MMU off) to handle the
exception but doesn't change the MMU context.  After saving a few
registers, we then clear the "in guest" flag.  If, for any reason,
we get an exception in the real-mode code, that then gets handled
by the normal kernel exception handlers, which turn the MMU on.  This
is disastrous if the MMU is still set to the guest context, since we
end up executing instructions from random places in the guest kernel
with hypervisor privilege.

In order to catch this situation, we define a new value for the "in guest"
flag, KVM_GUEST_MODE_HOST_HV, to indicate that we are in hypervisor real
mode with guest MMU context.  If the "in guest" flag is set to this value,
we branch off to an emergency handler.  For the moment, this just does
a branch to self to stop the CPU from doing anything further.

While we're here, we define another new flag value to indicate that we
are in a HV guest, as distinct from a PR guest.  This will be useful
when we have a kernel that can support both PR and HV guests concurrently.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-10-17 14:49:37 +02:00
Paul Mackerras 4f6c11db10 KVM: PPC: Book3S: Move skip-interrupt handlers to common code
Both PR and HV KVM have separate, identical copies of the
kvmppc_skip_interrupt and kvmppc_skip_Hinterrupt handlers that are
used for the situation where an interrupt happens when loading the
instruction that caused an exit from the guest.  To eliminate this
duplication and make it easier to compile in both PR and HV KVM,
this moves this code to arch/powerpc/kernel/exceptions-64s.S along
with other kernel interrupt handler code.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-10-17 14:49:35 +02:00
Paul Mackerras 388cc6e133 KVM: PPC: Book3S HV: Support POWER6 compatibility mode on POWER7
This enables us to use the Processor Compatibility Register (PCR) on
POWER7 to put the processor into architecture 2.05 compatibility mode
when running a guest.  In this mode the new instructions and registers
that were introduced on POWER7 are disabled in user mode.  This
includes all the VSX facilities plus several other instructions such
as ldbrx, stdbrx, popcntw, popcntd, etc.

To select this mode, we have a new register accessible through the
set/get_one_reg interface, called KVM_REG_PPC_ARCH_COMPAT.  Setting
this to zero gives the full set of capabilities of the processor.
Setting it to one of the "logical" PVR values defined in PAPR puts
the vcpu into the compatibility mode for the corresponding
architecture level.  The supported values are:

0x0f000002	Architecture 2.05 (POWER6)
0x0f000003	Architecture 2.06 (POWER7)
0x0f100003	Architecture 2.06+ (POWER7+)

Since the PCR is per-core, the architecture compatibility level and
the corresponding PCR value are stored in the struct kvmppc_vcore, and
are therefore shared between all vcpus in a virtual core.

Signed-off-by: Paul Mackerras <paulus@samba.org>
[agraf: squash in fix to add missing break statements and documentation]
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-10-17 14:45:02 +02:00
Paul Mackerras 4b8473c9c1 KVM: PPC: Book3S HV: Add support for guest Program Priority Register
POWER7 and later IBM server processors have a register called the
Program Priority Register (PPR), which controls the priority of
each hardware CPU SMT thread, and affects how fast it runs compared
to other SMT threads.  This priority can be controlled by writing to
the PPR or by use of a set of instructions of the form or rN,rN,rN
which are otherwise no-ops but have been defined to set the priority
to particular levels.

This adds code to context switch the PPR when entering and exiting
guests and to make the PPR value accessible through the SET/GET_ONE_REG
interface.  When entering the guest, we set the PPR as late as
possible, because if we are setting a low thread priority it will
make the code run slowly from that point on.  Similarly, the
first-level interrupt handlers save the PPR value in the PACA very
early on, and set the thread priority to the medium level, so that
the interrupt handling code runs at a reasonable speed.

Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-10-17 14:45:02 +02:00
Paul Mackerras a0144e2a6b KVM: PPC: Book3S HV: Store LPCR value for each virtual core
This adds the ability to have a separate LPCR (Logical Partitioning
Control Register) value relating to a guest for each virtual core,
rather than only having a single value for the whole VM.  This
corresponds to what real POWER hardware does, where there is a LPCR
per CPU thread but most of the fields are required to have the same
value on all active threads in a core.

The per-virtual-core LPCR can be read and written using the
GET/SET_ONE_REG interface.  Userspace can can only modify the
following fields of the LPCR value:

DPFD	Default prefetch depth
ILE	Interrupt little-endian
TC	Translation control (secondary HPT hash group search disable)

We still maintain a per-VM default LPCR value in kvm->arch.lpcr, which
contains bits relating to memory management, i.e. the Virtualized
Partition Memory (VPM) bits and the bits relating to guest real mode.
When this default value is updated, the update needs to be propagated
to the per-vcore values, so we add a kvmppc_update_lpcr() helper to do
that.

Signed-off-by: Paul Mackerras <paulus@samba.org>
[agraf: fix whitespace]
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-10-17 14:45:01 +02:00
Paul Mackerras 8c2dbb79c6 KVM: PPC: Book3S HV: Avoid unbalanced increments of VPA yield count
The yield count in the VPA is supposed to be incremented every time
we enter the guest, and every time we exit the guest, so that its
value is even when the vcpu is running in the guest and odd when it
isn't.  However, it's currently possible that we increment the yield
count on the way into the guest but then find that other CPU threads
are already exiting the guest, so we go back to nap mode via the
secondary_too_late label.  In this situation we don't increment the
yield count again, breaking the relationship between the LSB of the
count and whether the vcpu is in the guest.

To fix this, we move the increment of the yield count to a point
after we have checked whether other CPU threads are exiting.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-10-17 14:45:01 +02:00
Paul Mackerras c934243ca0 KVM: PPC: Book3S HV: Pull out interrupt-reading code into a subroutine
This moves the code in book3s_hv_rmhandlers.S that reads any pending
interrupt from the XICS interrupt controller, and works out whether
it is an IPI for the guest, an IPI for the host, or a device interrupt,
into a new function called kvmppc_read_intr.  Later patches will
need this.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-10-17 14:45:00 +02:00
Paul Mackerras 218309b75b KVM: PPC: Book3S HV: Restructure kvmppc_hv_entry to be a subroutine
We have two paths into and out of the low-level guest entry and exit
code: from a vcpu task via kvmppc_hv_entry_trampoline, and from the
system reset vector for an offline secondary thread on POWER7 via
kvm_start_guest.  Currently both just branch to kvmppc_hv_entry to
enter the guest, and on guest exit, we test the vcpu physical thread
ID to detect which way we came in and thus whether we should return
to the vcpu task or go back to nap mode.

In order to make the code flow clearer, and to keep the code relating
to each flow together, this turns kvmppc_hv_entry into a subroutine
that follows the normal conventions for call and return.  This means
that kvmppc_hv_entry_trampoline() and kvmppc_hv_entry() now establish
normal stack frames, and we use the normal stack slots for saving
return addresses rather than local_paca->kvm_hstate.vmhandler.  Apart
from that this is mostly moving code around unchanged.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-10-17 14:45:00 +02:00
Paul Mackerras 93b0f4dc29 KVM: PPC: Book3S HV: Implement timebase offset for guests
This allows guests to have a different timebase origin from the host.
This is needed for migration, where a guest can migrate from one host
to another and the two hosts might have a different timebase origin.
However, the timebase seen by the guest must not go backwards, and
should go forwards only by a small amount corresponding to the time
taken for the migration.

Therefore this provides a new per-vcpu value accessed via the one_reg
interface using the new KVM_REG_PPC_TB_OFFSET identifier.  This value
defaults to 0 and is not modified by KVM.  On entering the guest, this
value is added onto the timebase, and on exiting the guest, it is
subtracted from the timebase.

This is only supported for recent POWER hardware which has the TBU40
(timebase upper 40 bits) register.  Writing to the TBU40 register only
alters the upper 40 bits of the timebase, leaving the lower 24 bits
unchanged.  This provides a way to modify the timebase for guest
migration without disturbing the synchronization of the timebase
registers across CPU cores.  The kernel rounds up the value given
to a multiple of 2^24.

Timebase values stored in KVM structures (struct kvm_vcpu, struct
kvmppc_vcore, etc.) are stored as host timebase values.  The timebase
values in the dispatch trace log need to be guest timebase values,
however, since that is read directly by the guest.  This moves the
setting of vcpu->arch.dec_expires on guest exit to a point after we
have restored the host timebase so that vcpu->arch.dec_expires is a
host timebase value.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-10-17 14:44:59 +02:00
Paul Mackerras 14941789f2 KVM: PPC: Book3S HV: Save/restore SIAR and SDAR along with other PMU registers
Currently we are not saving and restoring the SIAR and SDAR registers in
the PMU (performance monitor unit) on guest entry and exit.  The result
is that performance monitoring tools in the guest could get false
information about where a program was executing and what data it was
accessing at the time of a performance monitor interrupt.  This fixes
it by saving and restoring these registers along with the other PMU
registers on guest entry/exit.

This also provides a way for userspace to access these values for a
vcpu via the one_reg interface.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-10-17 14:44:59 +02:00
Paul Mackerras cfc860253a KVM: PPC: Book3S HV: Fix typo in saving DSCR
This fixes a typo in the code that saves the guest DSCR (Data Stream
Control Register) into the kvm_vcpu_arch struct on guest exit.  The
effect of the typo was that the DSCR value was saved in the wrong place,
so changes to the DSCR by the guest didn't persist across guest exit
and entry, and some host kernel memory got corrupted.

Cc: stable@vger.kernel.org [v3.1+]
Signed-off-by: Paul Mackerras <paulus@samba.org>
Acked-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2013-10-10 11:40:07 +02:00
Linus Torvalds 39eda2aba6 Merge branch 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc
Pull powerpc updates from Ben Herrenschmidt:
 "Here's the powerpc batch for this merge window.  Some of the
  highlights are:

   - A bunch of endian fixes ! We don't have full LE support yet in that
     release but this contains a lot of fixes all over arch/powerpc to
     use the proper accessors, call the firmware with the right endian
     mode, etc...

   - A few updates to our "powernv" platform (non-virtualized, the one
     to run KVM on), among other, support for bridging the P8 LPC bus
     for UARTs, support and some EEH fixes.

   - Some mpc51xx clock API cleanups in preparation for a clock API
     overhaul

   - A pile of cleanups of our old math emulation code, including better
     support for using it to emulate optional FP instructions on
     embedded chips that otherwise have a HW FPU.

   - Some infrastructure in selftest, for powerpc now, but could be
     generalized, initially used by some tests for our perf instruction
     counting code.

   - A pile of fixes for hotplug on pseries (that was seriously
     bitrotting)

   - The usual slew of freescale embedded updates, new boards, 64-bit
     hiberation support, e6500 core PMU support, etc..."

* 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/benh/powerpc: (146 commits)
  powerpc: Correct FSCR bit definitions
  powerpc/xmon: Fix printing of set of CPUs in xmon
  powerpc/pseries: Move lparcfg.c to platforms/pseries
  powerpc/powernv: Return secondary CPUs to firmware on kexec
  powerpc/btext: Fix CONFIG_PPC_EARLY_DEBUG_BOOTX on ppc32
  powerpc: Cleanup handling of the DSCR bit in the FSCR register
  powerpc/pseries: Child nodes are not detached by dlpar_detach_node
  powerpc/pseries: Add mising of_node_put in delete_dt_node
  powerpc/pseries: Make dlpar_configure_connector parent node aware
  powerpc/pseries: Do all node initialization in dlpar_parse_cc_node
  powerpc/pseries: Fix parsing of initial node path in update_dt_node
  powerpc/pseries: Pack update_props_workarea to map correctly to rtas buffer header
  powerpc/pseries: Fix over writing of rtas return code in update_dt_node
  powerpc/pseries: Fix creation of loop in device node property list
  powerpc: Skip emulating & leave interrupts off for kernel program checks
  powerpc: Add more exception trampolines for hypervisor exceptions
  powerpc: Fix location and rename exception trampolines
  powerpc: Add more trap names to xmon
  powerpc/pseries: Add a warning in the case of cross-cpu VPA registration
  powerpc: Update the 00-Index in Documentation/powerpc
  ...
2013-09-06 10:49:42 -07:00
Anton Blanchard 54bb7f4bda powerpc: Make rwlocks endian safe
Our ppc64 spinlocks and rwlocks use a trick where a lock token and
the paca index are placed in the lock with a single store. Since we
are using two u16s they need adjusting for little endian.

Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2013-08-14 15:33:40 +10:00
Anton Blanchard 7ffcf8ec26 powerpc: Fix little endian lppaca, slb_shadow and dtl_entry
The lppaca, slb_shadow and dtl_entry hypervisor structures are
big endian, so we have to byte swap them in little endian builds.

LE KVM hosts will also need to be fixed but for now add an #error
to remind us.

Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2013-08-14 15:33:35 +10:00
Paul Mackerras 4baa1d871c KVM: PPC: Book3S HV: Allow negative offsets to real-mode hcall handlers
The table of offsets to real-mode hcall handlers in book3s_hv_rmhandlers.S
can contain negative values, if some of the handlers end up before the
table in the vmlinux binary.  Thus we need to use a sign-extending load
to read the values in the table rather than a zero-extending load.
Without this, the host crashes when the guest does one of the hcalls
with negative offsets, due to jumping to a bogus address.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-07-10 13:14:16 +02:00
Paul Mackerras 4619ac88b7 KVM: PPC: Book3S HV: Improve real-mode handling of external interrupts
This streamlines our handling of external interrupts that come in
while we're in the guest.  First, when waking up a hardware thread
that was napping, we split off the "napping due to H_CEDE" case
earlier, and use the code that handles an external interrupt (0x500)
in the guest to handle that too.  Secondly, the code that handles
those external interrupts now checks if any other thread is exiting
to the host before bouncing an external interrupt to the guest, and
also checks that there is actually an external interrupt pending for
the guest before setting the LPCR MER bit (mediated external request).

This also makes sure that we clear the "ceded" flag when we handle a
wakeup from cede in real mode, and fixes a potential infinite loop
in kvmppc_run_vcpu() which can occur if we ever end up with the ceded
flag set but MSR[EE] off.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-04-26 20:27:32 +02:00
Benjamin Herrenschmidt e7d26f285b KVM: PPC: Book3S HV: Add support for real mode ICP in XICS emulation
This adds an implementation of the XICS hypercalls in real mode for HV
KVM, which allows us to avoid exiting the guest MMU context on all
threads for a variety of operations such as fetching a pending
interrupt, EOI of messages, IPIs, etc.

Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-04-26 20:27:32 +02:00
Benjamin Herrenschmidt 54695c3088 KVM: PPC: Book3S HV: Speed up wakeups of CPUs on HV KVM
Currently, we wake up a CPU by sending a host IPI with
smp_send_reschedule() to thread 0 of that core, which will take all
threads out of the guest, and cause them to re-evaluate their
interrupt status on the way back in.

This adds a mechanism to differentiate real host IPIs from IPIs sent
by KVM for guest threads to poke each other, in order to target the
guest threads precisely when possible and avoid that global switch of
the core to host state.

We then use this new facility in the in-kernel XICS code.

Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-04-26 20:27:31 +02:00
Paul Mackerras c35635efdc KVM: PPC: Book3S HV: Report VPA and DTL modifications in dirty map
At present, the KVM_GET_DIRTY_LOG ioctl doesn't report modifications
done by the host to the virtual processor areas (VPAs) and dispatch
trace logs (DTLs) registered by the guest.  This is because those
modifications are done either in real mode or in the host kernel
context, and in neither case does the access go through the guest's
HPT, and thus no change (C) bit gets set in the guest's HPT.

However, the changes done by the host do need to be tracked so that
the modified pages get transferred when doing live migration.  In
order to track these modifications, this adds a dirty flag to the
struct representing the VPA/DTL areas, and arranges to set the flag
when the VPA/DTL gets modified by the host.  Then, when we are
collecting the dirty log, we also check the dirty flags for the
VPA and DTL for each vcpu and set the relevant bit in the dirty log
if necessary.  Doing this also means we now need to keep track of
the guest physical address of the VPA/DTL areas.

So as not to lose track of modifications to a VPA/DTL area when it gets
unregistered, or when a new area gets registered in its place, we need
to transfer the dirty state to the rmap chain.  This adds code to
kvmppc_unpin_guest_page() to do that if the area was dirty.  To simplify
that code, we now require that all VPA, DTL and SLB shadow buffer areas
fit within a single host page.  Guests already comply with this
requirement because pHyp requires that these areas not cross a 4k
boundary.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2013-04-26 20:27:13 +02:00
Paul Mackerras 0acb91112a powerpc/kvm/book3s_hv: Preserve guest CFAR register value
The CFAR (Come-From Address Register) is a useful debugging aid that
exists on POWER7 processors.  Currently HV KVM doesn't save or restore
the CFAR register for guest vcpus, making the CFAR of limited use in
guests.

This adds the necessary code to capture the CFAR value saved in the
early exception entry code (it has to be saved before any branch is
executed), save it in the vcpu.arch struct, and restore it on entry
to the guest.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2013-02-15 16:54:33 +11:00
Paul Mackerras b4072df407 KVM: PPC: Book3S HV: Handle guest-caused machine checks on POWER7 without panicking
Currently, if a machine check interrupt happens while we are in the
guest, we exit the guest and call the host's machine check handler,
which tends to cause the host to panic.  Some machine checks can be
triggered by the guest; for example, if the guest creates two entries
in the SLB that map the same effective address, and then accesses that
effective address, the CPU will take a machine check interrupt.

To handle this better, when a machine check happens inside the guest,
we call a new function, kvmppc_realmode_machine_check(), while still in
real mode before exiting the guest.  On POWER7, it handles the cases
that the guest can trigger, either by flushing and reloading the SLB,
or by flushing the TLB, and then it delivers the machine check interrupt
directly to the guest without going back to the host.  On POWER7, the
OPAL firmware patches the machine check interrupt vector so that it
gets control first, and it leaves behind its analysis of the situation
in a structure pointed to by the opal_mc_evt field of the paca.  The
kvmppc_realmode_machine_check() function looks at this, and if OPAL
reports that there was no error, or that it has handled the error, we
also go straight back to the guest with a machine check.  We have to
deliver a machine check to the guest since the machine check interrupt
might have trashed valid values in SRR0/1.

If the machine check is one we can't handle in real mode, and one that
OPAL hasn't already handled, or on PPC970, we exit the guest and call
the host's machine check handler.  We do this by jumping to the
machine_check_fwnmi label, rather than absolute address 0x200, because
we don't want to re-execute OPAL's handler on POWER7.  On PPC970, the
two are equivalent because address 0x200 just contains a branch.

Then, if the host machine check handler decides that the system can
continue executing, kvmppc_handle_exit() delivers a machine check
interrupt to the guest -- once again to let the guest know that SRR0/1
have been modified.

Signed-off-by: Paul Mackerras <paulus@samba.org>
[agraf: fix checkpatch warnings]
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-12-06 01:34:07 +01:00
Paul Mackerras 1b400ba0cd KVM: PPC: Book3S HV: Improve handling of local vs. global TLB invalidations
When we change or remove a HPT (hashed page table) entry, we can do
either a global TLB invalidation (tlbie) that works across the whole
machine, or a local invalidation (tlbiel) that only affects this core.
Currently we do local invalidations if the VM has only one vcpu or if
the guest requests it with the H_LOCAL flag, though the guest Linux
kernel currently doesn't ever use H_LOCAL.  Then, to cope with the
possibility that vcpus moving around to different physical cores might
expose stale TLB entries, there is some code in kvmppc_hv_entry to
flush the whole TLB of entries for this VM if either this vcpu is now
running on a different physical core from where it last ran, or if this
physical core last ran a different vcpu.

There are a number of problems on POWER7 with this as it stands:

- The TLB invalidation is done per thread, whereas it only needs to be
  done per core, since the TLB is shared between the threads.
- With the possibility of the host paging out guest pages, the use of
  H_LOCAL by an SMP guest is dangerous since the guest could possibly
  retain and use a stale TLB entry pointing to a page that had been
  removed from the guest.
- The TLB invalidations that we do when a vcpu moves from one physical
  core to another are unnecessary in the case of an SMP guest that isn't
  using H_LOCAL.
- The optimization of using local invalidations rather than global should
  apply to guests with one virtual core, not just one vcpu.

(None of this applies on PPC970, since there we always have to
invalidate the whole TLB when entering and leaving the guest, and we
can't support paging out guest memory.)

To fix these problems and simplify the code, we now maintain a simple
cpumask of which cpus need to flush the TLB on entry to the guest.
(This is indexed by cpu, though we only ever use the bits for thread
0 of each core.)  Whenever we do a local TLB invalidation, we set the
bits for every cpu except the bit for thread 0 of the core that we're
currently running on.  Whenever we enter a guest, we test and clear the
bit for our core, and flush the TLB if it was set.

On initial startup of the VM, and when resetting the HPT, we set all the
bits in the need_tlb_flush cpumask, since any core could potentially have
stale TLB entries from the previous VM to use the same LPID, or the
previous contents of the HPT.

Then, we maintain a count of the number of online virtual cores, and use
that when deciding whether to use a local invalidation rather than the
number of online vcpus.  The code to make that decision is extracted out
into a new function, global_invalidates().  For multi-core guests on
POWER7 (i.e. when we are using mmu notifiers), we now never do local
invalidations regardless of the H_LOCAL flag.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-12-06 01:34:05 +01:00
Alexander Graf 0588000eac Merge commit 'origin/queue' into for-queue
Conflicts:
	arch/powerpc/include/asm/Kbuild
	arch/powerpc/include/uapi/asm/Kbuild
2012-10-31 13:36:18 +01:00
Paul Mackerras 7b444c6710 KVM: PPC: Book3S HV: Fix some races in starting secondary threads
Subsequent patches implementing in-kernel XICS emulation will make it
possible for IPIs to arrive at secondary threads at arbitrary times.
This fixes some races in how we start the secondary threads, which
if not fixed could lead to occasional crashes of the host kernel.

This makes sure that (a) we have grabbed all the secondary threads,
and verified that they are no longer in the kernel, before we start
any thread, (b) that the secondary thread loads its vcpu pointer
after clearing the IPI that woke it up (so we don't miss a wakeup),
and (c) that the secondary thread clears its vcpu pointer before
incrementing the nap count.  It also removes unnecessary setting
of the vcpu and vcore pointers in the paca in kvmppc_core_vcpu_load.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-10-30 10:54:54 +01:00
Benjamin Herrenschmidt fff34b3412 Merge branch 'merge' into next
Brings in various bug fixes from 3.6-rcX
2012-09-07 09:48:59 +10:00
Mihai Caraman 0127262c01 powerpc: Restore VDSO information on critical exception om BookE
Critical exception on 64-bit booke uses user-visible SPRG3 as scratch.
Restore VDSO information in SPRG3 on exception prolog.

Use a common sprg3 field in PACA for all powerpc64 architectures.

Signed-off-by: Mihai Caraman <mihai.caraman@freescale.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2012-09-07 09:48:49 +10:00
Paul Mackerras 04f995a544 KVM: PPC: Book3S HV: Fix incorrect branch in H_CEDE code
In handling the H_CEDE hypercall, if this vcpu has already been
prodded (with the H_PROD hypercall, which Linux guests don't in fact
use), we branch to a numeric label '1f'.  Unfortunately there is
another '1:' label before the one that we want to jump to.  This fixes
the problem by using a textual label, 'kvm_cede_prodded'.  It also
changes the label for another longish branch from '2:' to
'kvm_cede_exit' to avoid a possible future problem if code modifications
add another numeric '2:' label in between.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2012-08-16 14:14:52 +02:00
Anton Blanchard 18ad51dd34 powerpc: Add VDSO version of getcpu
We have a request for a fast method of getting CPU and NUMA node IDs
from userspace. This patch implements a getcpu VDSO function,
similar to x86.

Ben suggested we use SPRG3 which is userspace readable. SPRG3 can be
modified by a KVM guest, so we save the SPRG3 value in the paca and
restore it when transitioning from the guest to the host.

I have a glibc patch that implements sched_getcpu on top of this.
Testing on a POWER7:

baseline: 538 cycles
vdso:      30 cycles

Signed-off-by: Anton Blanchard <anton@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2012-07-11 14:18:40 +10:00
Michael Neuling d72be892c8 powerpc: Merge VCPU_GPR
Merge the defines of VCPU_GPR from different places.

Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2012-07-10 19:18:06 +10:00
Michael Neuling c75df6f96c powerpc: Fix usage of register macros getting ready for %r0 change
Anything that uses a constructed instruction (ie. from ppc-opcode.h),
need to use the new R0 macro, as %r0 is not going to work.

Also convert usages of macros where we are just determining an offset
(usually for a load/store), like:
	std	r14,STK_REG(r14)(r1)
Can't use STK_REG(r14) as %r14 doesn't work in the STK_REG macro since
it's just calculating an offset.

Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2012-07-10 19:17:55 +10:00
Michael Neuling 2f584a146a powerpc/kvm: sldi should be sld
Since we are taking a registers, this should never have been an sldi.
Talking to paulus offline, this is the correct fix.

Was introduced by:
 commit 19ccb76a19
 Author: Paul Mackerras <paulus@samba.org>
 Date:   Sat Jul 23 17:42:46 2011 +1000

Talking to paulus, this shouldn't be a literal.

Signed-off-by: Michael Neuling <mikey@neuling.org>
CC: <stable@kernel.org> [v3.2+]
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2012-07-02 14:30:12 +10:00
Paul Mackerras 8943633cf9 KVM: PPC: Work around POWER7 DABR corruption problem
It turns out that on POWER7, writing to the DABR can cause a corrupted
value to be written if the PMU is active and updating SDAR in continuous
sampling mode.  To work around this, we make sure that the PMU is inactive
and SDAR updates are disabled (via MMCRA) when we are context-switching
DABR.

When the guest sets DABR via the H_SET_DABR hypercall, we use a slightly
different workaround, which is to read back the DABR and write it again
if it got corrupted.

While we are at it, make it consistent that the saving and restoring
of the guest's non-volatile GPRs and the FPRs are done with the guest
setup of the PMU active.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2012-04-08 14:01:36 +03:00
Paul Mackerras f0888f7015 KVM: PPC: Book3S HV: Make secondary threads more robust against stray IPIs
Currently on POWER7, if we are running the guest on a core and we don't
need all the hardware threads, we do nothing to ensure that the unused
threads aren't executing in the kernel (other than checking that they
are offline).  We just assume they're napping and we don't do anything
to stop them trying to enter the kernel while the guest is running.
This means that a stray IPI can wake up the hardware thread and it will
then try to enter the kernel, but since the core is in guest context,
it will execute code from the guest in hypervisor mode once it turns the
MMU on, which tends to lead to crashes or hangs in the host.

This fixes the problem by adding two new one-byte flags in the
kvmppc_host_state structure in the PACA which are used to interlock
between the primary thread and the unused secondary threads when entering
the guest.  With these flags, the primary thread can ensure that the
unused secondaries are not already in kernel mode (i.e. handling a stray
IPI) and then indicate that they should not try to enter the kernel
if they do get woken for any reason.  Instead they will go into KVM code,
find that there is no vcpu to run, acknowledge and clear the IPI and go
back to nap mode.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2012-04-08 14:01:20 +03:00
Paul Mackerras 4cf302bc10 KVM: PPC: Allow for read-only pages backing a Book3S HV guest
With this, if a guest does an H_ENTER with a read/write HPTE on a page
which is currently read-only, we make the actual HPTE inserted be a
read-only version of the HPTE.  We now intercept protection faults as
well as HPTE not found faults, and for a protection fault we work out
whether it should be reflected to the guest (e.g. because the guest HPTE
didn't allow write access to usermode) or handled by switching to
kernel context and calling kvmppc_book3s_hv_page_fault, which will then
request write access to the page and update the actual HPTE.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2012-03-05 14:52:38 +02:00
Paul Mackerras 342d3db763 KVM: PPC: Implement MMU notifiers for Book3S HV guests
This adds the infrastructure to enable us to page out pages underneath
a Book3S HV guest, on processors that support virtualized partition
memory, that is, POWER7.  Instead of pinning all the guest's pages,
we now look in the host userspace Linux page tables to find the
mapping for a given guest page.  Then, if the userspace Linux PTE
gets invalidated, kvm_unmap_hva() gets called for that address, and
we replace all the guest HPTEs that refer to that page with absent
HPTEs, i.e. ones with the valid bit clear and the HPTE_V_ABSENT bit
set, which will cause an HDSI when the guest tries to access them.
Finally, the page fault handler is extended to reinstantiate the
guest HPTE when the guest tries to access a page which has been paged
out.

Since we can't intercept the guest DSI and ISI interrupts on PPC970,
we still have to pin all the guest pages on PPC970.  We have a new flag,
kvm->arch.using_mmu_notifiers, that indicates whether we can page
guest pages out.  If it is not set, the MMU notifier callbacks do
nothing and everything operates as before.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2012-03-05 14:52:38 +02:00
Paul Mackerras 697d3899dc KVM: PPC: Implement MMIO emulation support for Book3S HV guests
This provides the low-level support for MMIO emulation in Book3S HV
guests.  When the guest tries to map a page which is not covered by
any memslot, that page is taken to be an MMIO emulation page.  Instead
of inserting a valid HPTE, we insert an HPTE that has the valid bit
clear but another hypervisor software-use bit set, which we call
HPTE_V_ABSENT, to indicate that this is an absent page.  An
absent page is treated much like a valid page as far as guest hcalls
(H_ENTER, H_REMOVE, H_READ etc.) are concerned, except of course that
an absent HPTE doesn't need to be invalidated with tlbie since it
was never valid as far as the hardware is concerned.

When the guest accesses a page for which there is an absent HPTE, it
will take a hypervisor data storage interrupt (HDSI) since we now set
the VPM1 bit in the LPCR.  Our HDSI handler for HPTE-not-present faults
looks up the hash table and if it finds an absent HPTE mapping the
requested virtual address, will switch to kernel mode and handle the
fault in kvmppc_book3s_hv_page_fault(), which at present just calls
kvmppc_hv_emulate_mmio() to set up the MMIO emulation.

This is based on an earlier patch by Benjamin Herrenschmidt, but since
heavily reworked.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2012-03-05 14:52:37 +02:00
Paul Mackerras 2fde6d20bb powerpc: Provide a way for KVM to indicate that NV GPR values are lost
This fixes a problem where a CPU thread coming out of nap mode can
think it has valid values in the nonvolatile GPRs (r14 - r31) as saved
away in power7_idle, but in fact the values have been trashed because
the thread was used for KVM in the mean time.  The result is that the
thread crashes because code that called power7_idle (e.g.,
pnv_smp_cpu_kill_self()) goes to use values in registers that have
been trashed.

The bit field in SRR1 that tells whether state was lost only reflects
the most recent nap, which may not have been the nap instruction in
power7_idle.  So we need an extra PACA field to indicate that state
has been lost even if SRR1 indicates that the most recent nap didn't
lose state.  We clear this field when saving the state in power7_idle,
we set it to a non-zero value when we use the thread for KVM, and we
test it in power7_wakeup_noloss.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2011-12-08 14:22:53 +11:00
Nishanth Aravamudan ad61d64e26 powerpc/kvm: Fix build with older toolchains
Fix KVM build for older toolchains (found with .powerpc64-unknown-linux-gnu-gcc
(crosstool-NG-1.8.1) 4.3.2):

  AS      arch/powerpc/kvm/book3s_hv_rmhandlers.o
arch/powerpc/kvm/book3s_hv_rmhandlers.S: Assembler messages:
arch/powerpc/kvm/book3s_hv_rmhandlers.S:1388: Error: Unrecognized opcode: `popcntw'
make[1]: *** [arch/powerpc/kvm/book3s_hv_rmhandlers.o] Error 1
make: *** [_module_arch/powerpc/kvm] Error 2

Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2011-11-08 14:51:03 +11:00
Paul Mackerras 19ccb76a19 KVM: PPC: Implement H_CEDE hcall for book3s_hv in real-mode code
With a KVM guest operating in SMT4 mode (i.e. 4 hardware threads per
core), whenever a CPU goes idle, we have to pull all the other
hardware threads in the core out of the guest, because the H_CEDE
hcall is handled in the kernel.  This is inefficient.

This adds code to book3s_hv_rmhandlers.S to handle the H_CEDE hcall
in real mode.  When a guest vcpu does an H_CEDE hcall, we now only
exit to the kernel if all the other vcpus in the same core are also
idle.  Otherwise we mark this vcpu as napping, save state that could
be lost in nap mode (mainly GPRs and FPRs), and execute the nap
instruction.  When the thread wakes up, because of a decrementer or
external interrupt, we come back in at kvm_start_guest (from the
system reset interrupt vector), find the `napping' flag set in the
paca, and go to the resume path.

This has some other ramifications.  First, when starting a core, we
now start all the threads, both those that are immediately runnable and
those that are idle.  This is so that we don't have to pull all the
threads out of the guest when an idle thread gets a decrementer interrupt
and wants to start running.  In fact the idle threads will all start
with the H_CEDE hcall returning; being idle they will just do another
H_CEDE immediately and go to nap mode.

This required some changes to kvmppc_run_core() and kvmppc_run_vcpu().
These functions have been restructured to make them simpler and clearer.
We introduce a level of indirection in the wait queue that gets woken
when external and decrementer interrupts get generated for a vcpu, so
that we can have the 4 vcpus in a vcore using the same wait queue.
We need this because the 4 vcpus are being handled by one thread.

Secondly, when we need to exit from the guest to the kernel, we now
have to generate an IPI for any napping threads, because an HDEC
interrupt doesn't wake up a napping thread.

Thirdly, we now need to be able to handle virtual external interrupts
and decrementer interrupts becoming pending while a thread is napping,
and deliver those interrupts to the guest when the thread wakes.
This is done in kvmppc_cede_reentry, just before fast_guest_return.

Finally, since we are not using the generic kvm_vcpu_block for book3s_hv,
and hence not calling kvm_arch_vcpu_runnable, we can remove the #ifdef
from kvm_arch_vcpu_runnable.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-09-25 19:52:30 +03:00
Paul Mackerras 177339d7f7 KVM: PPC: Assemble book3s{,_hv}_rmhandlers.S separately
This makes arch/powerpc/kvm/book3s_rmhandlers.S and
arch/powerpc/kvm/book3s_hv_rmhandlers.S be assembled as
separate compilation units rather than having them #included in
arch/powerpc/kernel/exceptions-64s.S.  We no longer have any
conditional branches between the exception prologs in
exceptions-64s.S and the KVM handlers, so there is no need to
keep their contents close together in the vmlinux image.

In their current location, they are using up part of the limited
space between the first-level interrupt handlers and the firmware
NMI data area at offset 0x7000, and with some kernel configurations
this area will overflow (e.g. allyesconfig), leading to an
"attempt to .org backwards" error when compiling exceptions-64s.S.

Moving them out requires that we add some #includes that the
book3s_{,hv_}rmhandlers.S code was previously getting implicitly
via exceptions-64s.S.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-09-25 19:52:28 +03:00
Nishanth Aravamudan 2c740c5841 powerpc/kvm: Fix build errors with older toolchains
On a box with gcc 4.3.2, I see errors like:

arch/powerpc/kvm/book3s_hv_rmhandlers.S:1254: Error: Unrecognized opcode: stxvd2x
arch/powerpc/kvm/book3s_hv_rmhandlers.S:1316: Error: Unrecognized opcode: lxvd2x

Signed-off-by: Nishanth Aravamudan <nacc@us.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2011-08-05 14:47:56 +10:00
Paul Mackerras 9e368f2915 KVM: PPC: book3s_hv: Add support for PPC970-family processors
This adds support for running KVM guests in supervisor mode on those
PPC970 processors that have a usable hypervisor mode.  Unfortunately,
Apple G5 machines have supervisor mode disabled (MSR[HV] is forced to
1), but the YDL PowerStation does have a usable hypervisor mode.

There are several differences between the PPC970 and POWER7 in how
guests are managed.  These differences are accommodated using the
CPU_FTR_ARCH_201 (PPC970) and CPU_FTR_ARCH_206 (POWER7) CPU feature
bits.  Notably, on PPC970:

* The LPCR, LPID or RMOR registers don't exist, and the functions of
  those registers are provided by bits in HID4 and one bit in HID0.

* External interrupts can be directed to the hypervisor, but unlike
  POWER7 they are masked by MSR[EE] in non-hypervisor modes and use
  SRR0/1 not HSRR0/1.

* There is no virtual RMA (VRMA) mode; the guest must use an RMO
  (real mode offset) area.

* The TLB entries are not tagged with the LPID, so it is necessary to
  flush the whole TLB on partition switch.  Furthermore, when switching
  partitions we have to ensure that no other CPU is executing the tlbie
  or tlbsync instructions in either the old or the new partition,
  otherwise undefined behaviour can occur.

* The PMU has 8 counters (PMC registers) rather than 6.

* The DSCR, PURR, SPURR, AMR, AMOR, UAMOR registers don't exist.

* The SLB has 64 entries rather than 32.

* There is no mediated external interrupt facility, so if we switch to
  a guest that has a virtual external interrupt pending but the guest
  has MSR[EE] = 0, we have to arrange to have an interrupt pending for
  it so that we can get control back once it re-enables interrupts.  We
  do that by sending ourselves an IPI with smp_send_reschedule after
  hard-disabling interrupts.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-07-12 13:16:59 +03:00
Paul Mackerras aa04b4cc5b KVM: PPC: Allocate RMAs (Real Mode Areas) at boot for use by guests
This adds infrastructure which will be needed to allow book3s_hv KVM to
run on older POWER processors, including PPC970, which don't support
the Virtual Real Mode Area (VRMA) facility, but only the Real Mode
Offset (RMO) facility.  These processors require a physically
contiguous, aligned area of memory for each guest.  When the guest does
an access in real mode (MMU off), the address is compared against a
limit value, and if it is lower, the address is ORed with an offset
value (from the Real Mode Offset Register (RMOR)) and the result becomes
the real address for the access.  The size of the RMA has to be one of
a set of supported values, which usually includes 64MB, 128MB, 256MB
and some larger powers of 2.

Since we are unlikely to be able to allocate 64MB or more of physically
contiguous memory after the kernel has been running for a while, we
allocate a pool of RMAs at boot time using the bootmem allocator.  The
size and number of the RMAs can be set using the kvm_rma_size=xx and
kvm_rma_count=xx kernel command line options.

KVM exports a new capability, KVM_CAP_PPC_RMA, to signal the availability
of the pool of preallocated RMAs.  The capability value is 1 if the
processor can use an RMA but doesn't require one (because it supports
the VRMA facility), or 2 if the processor requires an RMA for each guest.

This adds a new ioctl, KVM_ALLOCATE_RMA, which allocates an RMA from the
pool and returns a file descriptor which can be used to map the RMA.  It
also returns the size of the RMA in the argument structure.

Having an RMA means we will get multiple KMV_SET_USER_MEMORY_REGION
ioctl calls from userspace.  To cope with this, we now preallocate the
kvm->arch.ram_pginfo array when the VM is created with a size sufficient
for up to 64GB of guest memory.  Subsequently we will get rid of this
array and use memory associated with each memslot instead.

This moves most of the code that translates the user addresses into
host pfns (page frame numbers) out of kvmppc_prepare_vrma up one level
to kvmppc_core_prepare_memory_region.  Also, instead of having to look
up the VMA for each page in order to check the page size, we now check
that the pages we get are compound pages of 16MB.  However, if we are
adding memory that is mapped to an RMA, we don't bother with calling
get_user_pages_fast and instead just offset from the base pfn for the
RMA.

Typically the RMA gets added after vcpus are created, which makes it
inconvenient to have the LPCR (logical partition control register) value
in the vcpu->arch struct, since the LPCR controls whether the processor
uses RMA or VRMA for the guest.  This moves the LPCR value into the
kvm->arch struct and arranges for the MER (mediated external request)
bit, which is the only bit that varies between vcpus, to be set in
assembly code when going into the guest if there is a pending external
interrupt request.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-07-12 13:16:57 +03:00
Paul Mackerras 371fefd6f2 KVM: PPC: Allow book3s_hv guests to use SMT processor modes
This lifts the restriction that book3s_hv guests can only run one
hardware thread per core, and allows them to use up to 4 threads
per core on POWER7.  The host still has to run single-threaded.

This capability is advertised to qemu through a new KVM_CAP_PPC_SMT
capability.  The return value of the ioctl querying this capability
is the number of vcpus per virtual CPU core (vcore), currently 4.

To use this, the host kernel should be booted with all threads
active, and then all the secondary threads should be offlined.
This will put the secondary threads into nap mode.  KVM will then
wake them from nap mode and use them for running guest code (while
they are still offline).  To wake the secondary threads, we send
them an IPI using a new xics_wake_cpu() function, implemented in
arch/powerpc/sysdev/xics/icp-native.c.  In other words, at this stage
we assume that the platform has a XICS interrupt controller and
we are using icp-native.c to drive it.  Since the woken thread will
need to acknowledge and clear the IPI, we also export the base
physical address of the XICS registers using kvmppc_set_xics_phys()
for use in the low-level KVM book3s code.

When a vcpu is created, it is assigned to a virtual CPU core.
The vcore number is obtained by dividing the vcpu number by the
number of threads per core in the host.  This number is exported
to userspace via the KVM_CAP_PPC_SMT capability.  If qemu wishes
to run the guest in single-threaded mode, it should make all vcpu
numbers be multiples of the number of threads per core.

We distinguish three states of a vcpu: runnable (i.e., ready to execute
the guest), blocked (that is, idle), and busy in host.  We currently
implement a policy that the vcore can run only when all its threads
are runnable or blocked.  This way, if a vcpu needs to execute elsewhere
in the kernel or in qemu, it can do so without being starved of CPU
by the other vcpus.

When a vcore starts to run, it executes in the context of one of the
vcpu threads.  The other vcpu threads all go to sleep and stay asleep
until something happens requiring the vcpu thread to return to qemu,
or to wake up to run the vcore (this can happen when another vcpu
thread goes from busy in host state to blocked).

It can happen that a vcpu goes from blocked to runnable state (e.g.
because of an interrupt), and the vcore it belongs to is already
running.  In that case it can start to run immediately as long as
the none of the vcpus in the vcore have started to exit the guest.
We send the next free thread in the vcore an IPI to get it to start
to execute the guest.  It synchronizes with the other threads via
the vcore->entry_exit_count field to make sure that it doesn't go
into the guest if the other vcpus are exiting by the time that it
is ready to actually enter the guest.

Note that there is no fixed relationship between the hardware thread
number and the vcpu number.  Hardware threads are assigned to vcpus
as they become runnable, so we will always use the lower-numbered
hardware threads in preference to higher-numbered threads if not all
the vcpus in the vcore are runnable, regardless of which vcpus are
runnable.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-07-12 13:16:57 +03:00
David Gibson 54738c0971 KVM: PPC: Accelerate H_PUT_TCE by implementing it in real mode
This improves I/O performance for guests using the PAPR
paravirtualization interface by making the H_PUT_TCE hcall faster, by
implementing it in real mode.  H_PUT_TCE is used for updating virtual
IOMMU tables, and is used both for virtual I/O and for real I/O in the
PAPR interface.

Since this moves the IOMMU tables into the kernel, we define a new
KVM_CREATE_SPAPR_TCE ioctl to allow qemu to create the tables.  The
ioctl returns a file descriptor which can be used to mmap the newly
created table.  The qemu driver models use them in the same way as
userspace managed tables, but they can be updated directly by the
guest with a real-mode H_PUT_TCE implementation, reducing the number
of host/guest context switches during guest IO.

There are certain circumstances where it is useful for userland qemu
to write to the TCE table even if the kernel H_PUT_TCE path is used
most of the time.  Specifically, allowing this will avoid awkwardness
when we need to reset the table.  More importantly, we will in the
future need to write the table in order to restore its state after a
checkpoint resume or migration.

Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-07-12 13:16:56 +03:00
Paul Mackerras a8606e20e4 KVM: PPC: Handle some PAPR hcalls in the kernel
This adds the infrastructure for handling PAPR hcalls in the kernel,
either early in the guest exit path while we are still in real mode,
or later once the MMU has been turned back on and we are in the full
kernel context.  The advantage of handling hcalls in real mode if
possible is that we avoid two partition switches -- and this will
become more important when we support SMT4 guests, since a partition
switch means we have to pull all of the threads in the core out of
the guest.  The disadvantage is that we can only access the kernel
linear mapping, not anything vmalloced or ioremapped, since the MMU
is off.

This also adds code to handle the following hcalls in real mode:

H_ENTER       Add an HPTE to the hashed page table
H_REMOVE      Remove an HPTE from the hashed page table
H_READ        Read HPTEs from the hashed page table
H_PROTECT     Change the protection bits in an HPTE
H_BULK_REMOVE Remove up to 4 HPTEs from the hashed page table
H_SET_DABR    Set the data address breakpoint register

Plus code to handle the following hcalls in the kernel:

H_CEDE        Idle the vcpu until an interrupt or H_PROD hcall arrives
H_PROD        Wake up a ceded vcpu
H_REGISTER_VPA Register a virtual processor area (VPA)

The code that runs in real mode has to be in the base kernel, not in
the module, if KVM is compiled as a module.  The real-mode code can
only access the kernel linear mapping, not vmalloc or ioremap space.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-07-12 13:16:55 +03:00
Paul Mackerras de56a948b9 KVM: PPC: Add support for Book3S processors in hypervisor mode
This adds support for KVM running on 64-bit Book 3S processors,
specifically POWER7, in hypervisor mode.  Using hypervisor mode means
that the guest can use the processor's supervisor mode.  That means
that the guest can execute privileged instructions and access privileged
registers itself without trapping to the host.  This gives excellent
performance, but does mean that KVM cannot emulate a processor
architecture other than the one that the hardware implements.

This code assumes that the guest is running paravirtualized using the
PAPR (Power Architecture Platform Requirements) interface, which is the
interface that IBM's PowerVM hypervisor uses.  That means that existing
Linux distributions that run on IBM pSeries machines will also run
under KVM without modification.  In order to communicate the PAPR
hypercalls to qemu, this adds a new KVM_EXIT_PAPR_HCALL exit code
to include/linux/kvm.h.

Currently the choice between book3s_hv support and book3s_pr support
(i.e. the existing code, which runs the guest in user mode) has to be
made at kernel configuration time, so a given kernel binary can only
do one or the other.

This new book3s_hv code doesn't support MMIO emulation at present.
Since we are running paravirtualized guests, this isn't a serious
restriction.

With the guest running in supervisor mode, most exceptions go straight
to the guest.  We will never get data or instruction storage or segment
interrupts, alignment interrupts, decrementer interrupts, program
interrupts, single-step interrupts, etc., coming to the hypervisor from
the guest.  Therefore this introduces a new KVMTEST_NONHV macro for the
exception entry path so that we don't have to do the KVM test on entry
to those exception handlers.

We do however get hypervisor decrementer, hypervisor data storage,
hypervisor instruction storage, and hypervisor emulation assist
interrupts, so we have to handle those.

In hypervisor mode, real-mode accesses can access all of RAM, not just
a limited amount.  Therefore we put all the guest state in the vcpu.arch
and use the shadow_vcpu in the PACA only for temporary scratch space.
We allocate the vcpu with kzalloc rather than vzalloc, and we don't use
anything in the kvmppc_vcpu_book3s struct, so we don't allocate it.
We don't have a shared page with the guest, but we still need a
kvm_vcpu_arch_shared struct to store the values of various registers,
so we include one in the vcpu_arch struct.

The POWER7 processor has a restriction that all threads in a core have
to be in the same partition.  MMU-on kernel code counts as a partition
(partition 0), so we have to do a partition switch on every entry to and
exit from the guest.  At present we require the host and guest to run
in single-thread mode because of this hardware restriction.

This code allocates a hashed page table for the guest and initializes
it with HPTEs for the guest's Virtual Real Memory Area (VRMA).  We
require that the guest memory is allocated using 16MB huge pages, in
order to simplify the low-level memory management.  This also means that
we can get away without tracking paging activity in the host for now,
since huge pages can't be paged or swapped.

This also adds a few new exports needed by the book3s_hv code.

Signed-off-by: Paul Mackerras <paulus@samba.org>
Signed-off-by: Alexander Graf <agraf@suse.de>
2011-07-12 13:16:54 +03:00