Remove the common 'platform' registration module, and move the crypto
compression driver registration into each of the pSeries and PowerNV
platform NX 842 drivers. Change the nx-842.c code into simple common
functions that each platform driver uses to perform constraints-based
buffer changes, i.e. realigning and/or resizing buffers to match the
driver's hardware requirements.
The common 'platform' module was my mistake to create - since each
platform driver will only load/operate when running on its own
platform (i.e. a pSeries platform or a PowerNV platform), they can
directly register with the crypto subsystem, using the same alg and
driver name. This removes unneeded complexity.
Signed-off-by: Dan Streetman <ddstreet@ieee.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The last commit merged nx-842.c's code into nx-842-crypto.c. It
did not rename nx-842-crypto.c to nx-842.c, in order to let the
patch more clearly show what was merged. This just renames
nx-842-crypto.c to nx-842.c, with no changes to its code.
Signed-off-by: Dan Streetman <ddstreet@ieee.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Merge the nx-842.c code into nx-842-crypto.c.
This allows later patches to remove the 'platform' driver, and instead
allow each platform driver to directly register with the crypto
compression api.
Signed-off-by: Dan Streetman <ddstreet@ieee.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Replace the duplicated finishing code (set destination buffer length and
set return code to 0) in the case of decompressing a buffer with no header
with a goto to the success case of decompressing a buffer with a header.
This is a trivial change that allows both success cases to use common code,
and includes the pr_debug() msg in both cases as well.
Signed-off-by: Dan Streetman <ddstreet@ieee.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Don't register the pSeries driver when parsing the device tree returns
ENODEV.
The nx842_probe() function in the pSeries driver returns error instead
of registering as a crypto compression driver, when it receives an
error return value from the nx842_OF_upd() function that probes the
device tree nodes, except when ENODEV is returned. However ENODEV
should not be a special case and the driver should not register when
there is no hw device, or the hw device is disabled.
Signed-off-by: Dan Streetman <ddstreet@ieee.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Move the kzalloc() calls in nx842_probe() and nx842_OF_upd() to the top
of the functions, before taking the devdata spinlock.
Since kzalloc() without GFP_ATOMIC can sleep, it can't be called while
holding a spinlock. Move the calls to before taking the lock.
Signed-off-by: Dan Streetman <ddstreet@ieee.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Remove the 'status' field from the pSeries NX driver data.
The 'status' field isn't used by the driver at all; it simply checks the
devicetree status node at initialization, and returns success if 'okay'
and failure otherwise.
Signed-off-by: Dan Streetman <ddstreet@ieee.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Remove the __init and __exit modifiers from the VIO driver probe and
remove functions.
The driver functions should not be marked __init/__exit because they
can/will be called during runtime, not only at module init and exit.
Signed-off-by: Dan Streetman <ddstreet@ieee.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
When multiple devices are present in the system the driver attempts
to register the same algorithm many times.
Changes in v2:
- use proper synchronization mechanizm between register and unregister
Signed-off-by: Tadeusz Struk <tadeusz.struk@intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The condition checking allowed key length was invalid.
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Tadeusz Struk <tadeusz.struk@intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The condition checking allowed key length was invalid.
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Tadeusz Struk <tadeusz.struk@intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Add support for the Security System included in Allwinner SoC A20.
The Security System is a hardware cryptographic accelerator that support:
- MD5 and SHA1 hash algorithms
- AES block cipher in CBC/ECB mode with 128/196/256bits keys.
- DES and 3DES block cipher in CBC/ECB mode
Signed-off-by: LABBE Corentin <clabbe.montjoie@gmail.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch adds documentation for Device-Tree bindings for the
Security System cryptographic accelerator driver.
Signed-off-by: LABBE Corentin <clabbe.montjoie@gmail.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The Security System is a hardware cryptographic accelerator that support
AES/MD5/SHA1/DES/3DES/PRNG algorithms.
It could be found on many Allwinner SoC.
This patch enable the Security System on the Allwinner A20 SoC Device-tree.
Signed-off-by: LABBE Corentin <clabbe.montjoie@gmail.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The Security System is a hardware cryptographic accelerator that support
AES/MD5/SHA1/DES/3DES/PRNG algorithms.
It could be found on many Allwinner SoC.
This patch enable the Security System on the Allwinner A10 SoC Device-tree.
Signed-off-by: LABBE Corentin <clabbe.montjoie@gmail.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
An implicit truncation is done when using a variable of 64 bits
in MATH command:
warning: large integer implicitly truncated to unsigned type [-Woverflow]
Silence the compiler by feeding it with an explicit truncated value.
Signed-off-by: Tudor Ambarus <tudor.ambarus@freescale.com>
Signed-off-by: Horia Geant? <horia.geanta@freescale.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
When successful, the descriptor that performs RNG initialization
is allowed to return a status code of 7000_0000h, since last command
in the descriptor is a JUMP HALT.
Signed-off-by: Horia Geant? <horia.geanta@freescale.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
HW coherency won't work properly for CAAM write transactions
if AWCACHE is left to default (POR) value - 4'b0001.
It has to be programmed to 4'b0010, i.e. AXI3 Cacheable bit set.
For platforms that have HW coherency support:
-PPC-based: the update has no effect; CAAM coherency already works
due to the IOMMU (PAMU) driver setting the correct memory coherency
attributes
-ARM-based: the update fixes cache coherency issues,
since IOMMU (SMMU) driver is not programmed to behave similar to PAMU
Signed-off-by: Horia Geant? <horia.geanta@freescale.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
In order to ensure that the ERA property is properly read from DT
on all platforms, of_property_read* function needs to be used.
Signed-off-by: Alex Porosanu <alexandru.porosanu@freescale.com>
Signed-off-by: Horia Geant? <horia.geanta@freescale.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
As architecture specific drivers need a software fallback, export Poly1305
init/update/final functions together with some helpers in a header file.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The AVX2 variant of ChaCha20 is used only for messages with >= 512 bytes
length. With the existing test vectors, the implementation could not be
tested. Due that lack of such a long official test vector, this one is
self-generated using chacha20-generic.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Extends the x86_64 ChaCha20 implementation by a function processing eight
ChaCha20 blocks in parallel using AVX2.
For large messages, throughput increases by ~55-70% compared to four block
SSSE3:
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 42249230 operations in 10 seconds (675987680 bytes)
test 1 (256 bit key, 64 byte blocks): 46441641 operations in 10 seconds (2972265024 bytes)
test 2 (256 bit key, 256 byte blocks): 33028112 operations in 10 seconds (8455196672 bytes)
test 3 (256 bit key, 1024 byte blocks): 11568759 operations in 10 seconds (11846409216 bytes)
test 4 (256 bit key, 8192 byte blocks): 1448761 operations in 10 seconds (11868250112 bytes)
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 41999675 operations in 10 seconds (671994800 bytes)
test 1 (256 bit key, 64 byte blocks): 45805908 operations in 10 seconds (2931578112 bytes)
test 2 (256 bit key, 256 byte blocks): 32814947 operations in 10 seconds (8400626432 bytes)
test 3 (256 bit key, 1024 byte blocks): 19777167 operations in 10 seconds (20251819008 bytes)
test 4 (256 bit key, 8192 byte blocks): 2279321 operations in 10 seconds (18672197632 bytes)
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Extends the x86_64 SSSE3 ChaCha20 implementation by a function processing
four ChaCha20 blocks in parallel. This avoids the word shuffling needed
in the single block variant, further increasing throughput.
For large messages, throughput increases by ~110% compared to single block
SSSE3:
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 43141886 operations in 10 seconds (690270176 bytes)
test 1 (256 bit key, 64 byte blocks): 46845874 operations in 10 seconds (2998135936 bytes)
test 2 (256 bit key, 256 byte blocks): 18458512 operations in 10 seconds (4725379072 bytes)
test 3 (256 bit key, 1024 byte blocks): 5360533 operations in 10 seconds (5489185792 bytes)
test 4 (256 bit key, 8192 byte blocks): 692846 operations in 10 seconds (5675794432 bytes)
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 42249230 operations in 10 seconds (675987680 bytes)
test 1 (256 bit key, 64 byte blocks): 46441641 operations in 10 seconds (2972265024 bytes)
test 2 (256 bit key, 256 byte blocks): 33028112 operations in 10 seconds (8455196672 bytes)
test 3 (256 bit key, 1024 byte blocks): 11568759 operations in 10 seconds (11846409216 bytes)
test 4 (256 bit key, 8192 byte blocks): 1448761 operations in 10 seconds (11868250112 bytes)
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Implements an x86_64 assembler driver for the ChaCha20 stream cipher. This
single block variant works on a single state matrix using SSE instructions.
It requires SSSE3 due the use of pshufb for efficient 8/16-bit rotate
operations.
For large messages, throughput increases by ~65% compared to
chacha20-generic:
testing speed of chacha20 (chacha20-generic) encryption
test 0 (256 bit key, 16 byte blocks): 45089207 operations in 10 seconds (721427312 bytes)
test 1 (256 bit key, 64 byte blocks): 43839521 operations in 10 seconds (2805729344 bytes)
test 2 (256 bit key, 256 byte blocks): 12702056 operations in 10 seconds (3251726336 bytes)
test 3 (256 bit key, 1024 byte blocks): 3371173 operations in 10 seconds (3452081152 bytes)
test 4 (256 bit key, 8192 byte blocks): 422468 operations in 10 seconds (3460857856 bytes)
testing speed of chacha20 (chacha20-simd) encryption
test 0 (256 bit key, 16 byte blocks): 43141886 operations in 10 seconds (690270176 bytes)
test 1 (256 bit key, 64 byte blocks): 46845874 operations in 10 seconds (2998135936 bytes)
test 2 (256 bit key, 256 byte blocks): 18458512 operations in 10 seconds (4725379072 bytes)
test 3 (256 bit key, 1024 byte blocks): 5360533 operations in 10 seconds (5489185792 bytes)
test 4 (256 bit key, 8192 byte blocks): 692846 operations in 10 seconds (5675794432 bytes)
Benchmark results from a Core i5-4670T.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
As architecture specific drivers need a software fallback, export a
ChaCha20 en-/decryption function together with some helpers in a header
file.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Adds individual ChaCha20 and Poly1305 and a combined rfc7539esp AEAD speed
test using mode numbers 214, 321 and 213. For Poly1305 we add a specific
speed template, as it expects the key prepended to the input data.
Signed-off-by: Martin Willi <martin@strongswan.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch converts rfc7539 and rfc7539esp to the new AEAD interface.
The test vectors for rfc7539esp have also been updated to include
the IV.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Tested-by: Martin Willi <martin@strongswan.org>
Introduce constrains for RSA keys lengths.
Only key lengths of 512, 1024, 1536, 2048, 3072, and 4096 bits
will be supported.
Signed-off-by: Tadeusz Struk <tadeusz.struk@intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Add RSA support to QAT driver.
Removed unused RNG rings.
Signed-off-by: Tadeusz Struk <tadeusz.struk@intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Load Modular Math Processor(MMP) firmware into QAT devices to support
public key algorithm acceleration.
Signed-off-by: Pingchao Yang <pingchao.yang@intel.com>
Signed-off-by: Tadeusz Struk <tadeusz.struk@intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch converts the ARM64 aes-ce-ccm implementation to the
new AEAD interface.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
This patch disables the rfc4309 test while the conversion to the
new seqiv calling convention takes place. It also replaces the
rfc4309 test vectors with ones that will work with the new IV
convention.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
vmx-crypto driver make use of some VSX instructions which are
only available if VSX is enabled. Running in cases where VSX
are not enabled vmx-crypto fails in a VSX exception.
In order to fix this enable_kernel_vsx() was added to turn on
VSX instructions for vmx-crypto.
Signed-off-by: Leonidas S. Barbosa <leosilva@linux.vnet.ibm.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
enable_kernel_vsx() function was commented since anything was using
it. However, vmx-crypto driver uses VSX instructions which are
only available if VSX is enable. Otherwise it rises an exception oops.
This patch uncomment enable_kernel_vsx() routine and makes it available.
Signed-off-by: Leonidas S. Barbosa <leosilva@linux.vnet.ibm.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
platform_driver does not need to set an owner because
platform_driver_register() will set it.
Signed-off-by: Krzysztof Kozlowski <k.kozlowski@samsung.com>
Acked-by: Boris Brezillon <boris.brezillon@free-electrons.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch converts rfc4106 to the new calling convention where
the IV is now part of the AD and needs to be skipped.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch converts rfc4106 to the new calling convention where
the IV is now part of the AD and needs to be skipped. This patch
also makes use of type-safe AEAD functions where possible.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch converts rfc4106 to the new calling convention where
the IV is now part of the AD and needs to be skipped. This patch
also makes use of the new type-safe way of freeing instances.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch converts rfc4106 to the new calling convention where
the IV is now in the AD and needs to be skipped.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch allows the AEAD speed tests to cope with the new seqiv
calling convention as well as the old one.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch disables the rfc4106 test while the conversion to the
new seqiv calling convention takes place. It also converts the
rfc4106 test vectors to the new format.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>