[ Upstream commit ca6f537e459e2da4b331fe8928d1a0b0f9301f42 ]
The SW_INCR event is somewhat unusual, and depends on the specific HW
counter that it is programmed into. When programmed into PMEVCNTR<n>,
SW_INCR will count any writes to PMSWINC_EL0 with bit n set, ignoring
writes to SW_INCR with bit n clear.
Event rotation means that there's no fixed relationship between
perf_events and HW counters, so this isn't all that useful.
Further, we program PMUSERENR.{SW,EN}=={0,0}, which causes EL0 writes to
PMSWINC_EL0 to be trapped and handled as UNDEFINED, resulting in a
SIGILL to userspace.
Given that, it's not a good idea to expose SW_INCR in sysfs. Hide it as
we did for CHAIN back in commit:
4ba2578fa7 ("arm64: perf: don't expose CHAIN event in sysfs")
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20231204115847.2993026-1-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 403edfa436286b21f5ffe6856ae5b36396e8966c ]
The driver used to truncate several 64-bit registers such as PMCEID[n]
registers used to describe whether architectural and microarchitectural
events in range 0x4000-0x401f exist. Due to discarding the bits, the
driver made the events invisible, even if they existed.
Moreover, PMCCFILTR and PMCR registers have additional bits in the upper
32 bits. This patch makes them available although they aren't currently
used. Finally, functions handling PMXEVCNTR and PMXEVTYPER registers are
removed as they not being used at all.
Fixes: df29ddf4f0 ("arm64: perf: Abstract system register accesses away")
Reported-by: Carl Worth <carl@os.amperecomputing.com>
Signed-off-by: Ilkka Koskinen <ilkka@os.amperecomputing.com>
Acked-by: Will Deacon <will@kernel.org>
Closes: https://lore.kernel.org/..
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Link: https://lore.kernel.org/r/20231102183012.1251410-1-ilkka@os.amperecomputing.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
* Clean up vCPU targets, always returning generic v8 as the preferred target
* Trap forwarding infrastructure for nested virtualization (used for traps
that are taken from an L2 guest and are needed by the L1 hypervisor)
* FEAT_TLBIRANGE support to only invalidate specific ranges of addresses
when collapsing a table PTE to a block PTE. This avoids that the guest
refills the TLBs again for addresses that aren't covered by the table PTE.
* Fix vPMU issues related to handling of PMUver.
* Don't unnecessary align non-stack allocations in the EL2 VA space
* Drop HCR_VIRT_EXCP_MASK, which was never used...
* Don't use smp_processor_id() in kvm_arch_vcpu_load(),
but the cpu parameter instead
* Drop redundant call to kvm_set_pfn_accessed() in user_mem_abort()
* Remove prototypes without implementations
RISC-V:
* Zba, Zbs, Zicntr, Zicsr, Zifencei, and Zihpm support for guest
* Added ONE_REG interface for SATP mode
* Added ONE_REG interface to enable/disable multiple ISA extensions
* Improved error codes returned by ONE_REG interfaces
* Added KVM_GET_REG_LIST ioctl() implementation for KVM RISC-V
* Added get-reg-list selftest for KVM RISC-V
s390:
* PV crypto passthrough enablement (Tony, Steffen, Viktor, Janosch)
Allows a PV guest to use crypto cards. Card access is governed by
the firmware and once a crypto queue is "bound" to a PV VM every
other entity (PV or not) looses access until it is not bound
anymore. Enablement is done via flags when creating the PV VM.
* Guest debug fixes (Ilya)
x86:
* Clean up KVM's handling of Intel architectural events
* Intel bugfixes
* Add support for SEV-ES DebugSwap, allowing SEV-ES guests to use debug
registers and generate/handle #DBs
* Clean up LBR virtualization code
* Fix a bug where KVM fails to set the target pCPU during an IRTE update
* Fix fatal bugs in SEV-ES intrahost migration
* Fix a bug where the recent (architecturally correct) change to reinject
#BP and skip INT3 broke SEV guests (can't decode INT3 to skip it)
* Retry APIC map recalculation if a vCPU is added/enabled
* Overhaul emergency reboot code to bring SVM up to par with VMX, tie the
"emergency disabling" behavior to KVM actually being loaded, and move all of
the logic within KVM
* Fix user triggerable WARNs in SVM where KVM incorrectly assumes the TSC
ratio MSR cannot diverge from the default when TSC scaling is disabled
up related code
* Add a framework to allow "caching" feature flags so that KVM can check if
the guest can use a feature without needing to search guest CPUID
* Rip out the ancient MMU_DEBUG crud and replace the useful bits with
CONFIG_KVM_PROVE_MMU
* Fix KVM's handling of !visible guest roots to avoid premature triple fault
injection
* Overhaul KVM's page-track APIs, and KVMGT's usage, to reduce the API surface
that is needed by external users (currently only KVMGT), and fix a variety
of issues in the process
This last item had a silly one-character bug in the topic branch that
was sent to me. Because it caused pretty bad selftest failures in
some configurations, I decided to squash in the fix. So, while the
exact commit ids haven't been in linux-next, the code has (from the
kvm-x86 tree).
Generic:
* Wrap kvm_{gfn,hva}_range.pte in a union to allow mmu_notifier events to pass
action specific data without needing to constantly update the main handlers.
* Drop unused function declarations
Selftests:
* Add testcases to x86's sync_regs_test for detecting KVM TOCTOU bugs
* Add support for printf() in guest code and covert all guest asserts to use
printf-based reporting
* Clean up the PMU event filter test and add new testcases
* Include x86 selftests in the KVM x86 MAINTAINERS entry
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmT1m0kUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroMNgggAiN7nz6UC423FznuI+yO3TLm8tkx1
CpKh5onqQogVtchH+vrngi97cfOzZb1/AtifY90OWQi31KEWhehkeofcx7G6ERhj
5a9NFADY1xGBsX4exca/VHDxhnzsbDWaWYPXw5vWFWI6erft9Mvy3tp1LwTvOzqM
v8X4aWz+g5bmo/DWJf4Wu32tEU6mnxzkrjKU14JmyqQTBawVmJ3RYvHVJ/Agpw+n
hRtPAy7FU6XTdkmq/uCT+KUHuJEIK0E/l1js47HFAqSzwdW70UDg14GGo1o4ETxu
RjZQmVNvL57yVgi6QU38/A0FWIsWQm5IlaX1Ug6x8pjZPnUKNbo9BY4T1g==
=W+4p
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini:
"ARM:
- Clean up vCPU targets, always returning generic v8 as the preferred
target
- Trap forwarding infrastructure for nested virtualization (used for
traps that are taken from an L2 guest and are needed by the L1
hypervisor)
- FEAT_TLBIRANGE support to only invalidate specific ranges of
addresses when collapsing a table PTE to a block PTE. This avoids
that the guest refills the TLBs again for addresses that aren't
covered by the table PTE.
- Fix vPMU issues related to handling of PMUver.
- Don't unnecessary align non-stack allocations in the EL2 VA space
- Drop HCR_VIRT_EXCP_MASK, which was never used...
- Don't use smp_processor_id() in kvm_arch_vcpu_load(), but the cpu
parameter instead
- Drop redundant call to kvm_set_pfn_accessed() in user_mem_abort()
- Remove prototypes without implementations
RISC-V:
- Zba, Zbs, Zicntr, Zicsr, Zifencei, and Zihpm support for guest
- Added ONE_REG interface for SATP mode
- Added ONE_REG interface to enable/disable multiple ISA extensions
- Improved error codes returned by ONE_REG interfaces
- Added KVM_GET_REG_LIST ioctl() implementation for KVM RISC-V
- Added get-reg-list selftest for KVM RISC-V
s390:
- PV crypto passthrough enablement (Tony, Steffen, Viktor, Janosch)
Allows a PV guest to use crypto cards. Card access is governed by
the firmware and once a crypto queue is "bound" to a PV VM every
other entity (PV or not) looses access until it is not bound
anymore. Enablement is done via flags when creating the PV VM.
- Guest debug fixes (Ilya)
x86:
- Clean up KVM's handling of Intel architectural events
- Intel bugfixes
- Add support for SEV-ES DebugSwap, allowing SEV-ES guests to use
debug registers and generate/handle #DBs
- Clean up LBR virtualization code
- Fix a bug where KVM fails to set the target pCPU during an IRTE
update
- Fix fatal bugs in SEV-ES intrahost migration
- Fix a bug where the recent (architecturally correct) change to
reinject #BP and skip INT3 broke SEV guests (can't decode INT3 to
skip it)
- Retry APIC map recalculation if a vCPU is added/enabled
- Overhaul emergency reboot code to bring SVM up to par with VMX, tie
the "emergency disabling" behavior to KVM actually being loaded,
and move all of the logic within KVM
- Fix user triggerable WARNs in SVM where KVM incorrectly assumes the
TSC ratio MSR cannot diverge from the default when TSC scaling is
disabled up related code
- Add a framework to allow "caching" feature flags so that KVM can
check if the guest can use a feature without needing to search
guest CPUID
- Rip out the ancient MMU_DEBUG crud and replace the useful bits with
CONFIG_KVM_PROVE_MMU
- Fix KVM's handling of !visible guest roots to avoid premature
triple fault injection
- Overhaul KVM's page-track APIs, and KVMGT's usage, to reduce the
API surface that is needed by external users (currently only
KVMGT), and fix a variety of issues in the process
Generic:
- Wrap kvm_{gfn,hva}_range.pte in a union to allow mmu_notifier
events to pass action specific data without needing to constantly
update the main handlers.
- Drop unused function declarations
Selftests:
- Add testcases to x86's sync_regs_test for detecting KVM TOCTOU bugs
- Add support for printf() in guest code and covert all guest asserts
to use printf-based reporting
- Clean up the PMU event filter test and add new testcases
- Include x86 selftests in the KVM x86 MAINTAINERS entry"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (279 commits)
KVM: x86/mmu: Include mmu.h in spte.h
KVM: x86/mmu: Use dummy root, backed by zero page, for !visible guest roots
KVM: x86/mmu: Disallow guest from using !visible slots for page tables
KVM: x86/mmu: Harden TDP MMU iteration against root w/o shadow page
KVM: x86/mmu: Harden new PGD against roots without shadow pages
KVM: x86/mmu: Add helper to convert root hpa to shadow page
drm/i915/gvt: Drop final dependencies on KVM internal details
KVM: x86/mmu: Handle KVM bookkeeping in page-track APIs, not callers
KVM: x86/mmu: Drop @slot param from exported/external page-track APIs
KVM: x86/mmu: Bug the VM if write-tracking is used but not enabled
KVM: x86/mmu: Assert that correct locks are held for page write-tracking
KVM: x86/mmu: Rename page-track APIs to reflect the new reality
KVM: x86/mmu: Drop infrastructure for multiple page-track modes
KVM: x86/mmu: Use page-track notifiers iff there are external users
KVM: x86/mmu: Move KVM-only page-track declarations to internal header
KVM: x86: Remove the unused page-track hook track_flush_slot()
drm/i915/gvt: switch from ->track_flush_slot() to ->track_remove_region()
KVM: x86: Add a new page-track hook to handle memslot deletion
drm/i915/gvt: Don't bother removing write-protection on to-be-deleted slot
KVM: x86: Reject memslot MOVE operations if KVMGT is attached
...
Huang Shijie reports that, when profiling a guest from the host
with a number of events that exceeds the number of available
counters, the reported counts are wildly inaccurate. Without
the counter oversubscription, the reported counts are correct.
Their investigation indicates that upon counter rotation (which
takes place on the back of a timer interrupt), we fail to
re-apply the guest EL0 enabling, leading to the counting of host
events instead of guest events.
In order to solve this, add yet another hook between the host PMU
driver and KVM, re-applying the guest EL0 configuration if the
right conditions apply (the host is VHE, we are in interrupt
context, and we interrupted a running vcpu). This triggers a new
vcpu request which will apply the correct configuration on guest
reentry.
With this, we have the correct counts, even when the counters are
oversubscribed.
Reported-by: Huang Shijie <shijie@os.amperecomputing.com>
Suggested-by: Oliver Upton <oliver.upton@linux.dev>
Tested_by: Huang Shijie <shijie@os.amperecomputing.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Cc: Leo Yan <leo.yan@linaro.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20230809013953.7692-1-shijie@os.amperecomputing.com
Acked-by: Mark Rutland <mark.rutland@arm.com>
Link: https://lore.kernel.org/r/20230820090108.177817-1-maz@kernel.org
The comments in armv8pmu_[enable|disable]_event() are blindingly obvious,
and does not contribute in making things any better. Let's drop them off.
Functional change is not intended.
Cc: Will Deacon <will@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-kernel@vger.kernel.org
Suggested-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Link: https://lore.kernel.org/r/20230802090853.1190391-1-anshuman.khandual@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
Add support for the Arm Cortex-A520, Cortex-A715, Cortex-A720,
Cortex-X3, and Cortex-X4 CPU PMUs. They are straight-forward additions
with just new compatible strings.
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Rob Herring <robh@kernel.org>
Link: https://lore.kernel.org/r/20230706205505.308523-2-robh@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
top-level directories.
- Douglas Anderson has added a new "buddy" mode to the hardlockup
detector. It permits the detector to work on architectures which
cannot provide the required interrupts, by having CPUs periodically
perform checks on other CPUs.
- Zhen Lei has enhanced kexec's ability to support two crash regions.
- Petr Mladek has done a lot of cleanup on the hard lockup detector's
Kconfig entries.
- And the usual bunch of singleton patches in various places.
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZJelTAAKCRDdBJ7gKXxA
juDkAP0VXWynzkXoojdS/8e/hhi+htedmQ3v2dLZD+vBrctLhAEA7rcH58zAVoWa
2ejqO6wDrRGUC7JQcO9VEjT0nv73UwU=
=F293
-----END PGP SIGNATURE-----
Merge tag 'mm-nonmm-stable-2023-06-24-19-23' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull non-mm updates from Andrew Morton:
- Arnd Bergmann has fixed a bunch of -Wmissing-prototypes in top-level
directories
- Douglas Anderson has added a new "buddy" mode to the hardlockup
detector. It permits the detector to work on architectures which
cannot provide the required interrupts, by having CPUs periodically
perform checks on other CPUs
- Zhen Lei has enhanced kexec's ability to support two crash regions
- Petr Mladek has done a lot of cleanup on the hard lockup detector's
Kconfig entries
- And the usual bunch of singleton patches in various places
* tag 'mm-nonmm-stable-2023-06-24-19-23' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (72 commits)
kernel/time/posix-stubs.c: remove duplicated include
ocfs2: remove redundant assignment to variable bit_off
watchdog/hardlockup: fix typo in config HARDLOCKUP_DETECTOR_PREFER_BUDDY
powerpc: move arch_trigger_cpumask_backtrace from nmi.h to irq.h
devres: show which resource was invalid in __devm_ioremap_resource()
watchdog/hardlockup: define HARDLOCKUP_DETECTOR_ARCH
watchdog/sparc64: define HARDLOCKUP_DETECTOR_SPARC64
watchdog/hardlockup: make HAVE_NMI_WATCHDOG sparc64-specific
watchdog/hardlockup: declare arch_touch_nmi_watchdog() only in linux/nmi.h
watchdog/hardlockup: make the config checks more straightforward
watchdog/hardlockup: sort hardlockup detector related config values a logical way
watchdog/hardlockup: move SMP barriers from common code to buddy code
watchdog/buddy: simplify the dependency for HARDLOCKUP_DETECTOR_PREFER_BUDDY
watchdog/buddy: don't copy the cpumask in watchdog_next_cpu()
watchdog/buddy: cleanup how watchdog_buddy_check_hardlockup() is called
watchdog/hardlockup: remove softlockup comment in touch_nmi_watchdog()
watchdog/hardlockup: in watchdog_hardlockup_check() use cpumask_copy()
watchdog/hardlockup: don't use raw_cpu_ptr() in watchdog_hardlockup_kick()
watchdog/hardlockup: HAVE_NMI_WATCHDOG must implement watchdog_hardlockup_probe()
watchdog/hardlockup: keep kernel.nmi_watchdog sysctl as 0444 if probe fails
...
With the recent feature added to enable perf events to use pseudo NMIs as
interrupts on platforms which support GICv3 or later, its now been
possible to enable hard lockup detector (or NMI watchdog) on arm64
platforms. So enable corresponding support.
One thing to note here is that normally lockup detector is initialized
just after the early initcalls but PMU on arm64 comes up much later as
device_initcall(). To cope with that, override
arch_perf_nmi_is_available() to let the watchdog framework know PMU not
ready, and inform the framework to re-initialize lockup detection once PMU
has been initialized.
[dianders@chromium.org: only HAVE_HARDLOCKUP_DETECTOR_PERF if the PMU config is enabled]
Link: https://lkml.kernel.org/r/20230523073952.1.I60217a63acc35621e13f10be16c0cd7c363caf8c@changeid
Link: https://lkml.kernel.org/r/20230519101840.v5.18.Ia44852044cdcb074f387e80df6b45e892965d4a1@changeid
Co-developed-by: Sumit Garg <sumit.garg@linaro.org>
Signed-off-by: Sumit Garg <sumit.garg@linaro.org>
Co-developed-by: Pingfan Liu <kernelfans@gmail.com>
Signed-off-by: Pingfan Liu <kernelfans@gmail.com>
Signed-off-by: Lecopzer Chen <lecopzer.chen@mediatek.com>
Signed-off-by: Douglas Anderson <dianders@chromium.org>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chen-Yu Tsai <wens@csie.org>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Colin Cross <ccross@android.com>
Cc: Daniel Thompson <daniel.thompson@linaro.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Guenter Roeck <groeck@chromium.org>
Cc: Ian Rogers <irogers@google.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Masayoshi Mizuma <msys.mizuma@gmail.com>
Cc: Matthias Kaehlcke <mka@chromium.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: "Ravi V. Shankar" <ravi.v.shankar@intel.com>
Cc: Ricardo Neri <ricardo.neri@intel.com>
Cc: Stephane Eranian <eranian@google.com>
Cc: Stephen Boyd <swboyd@chromium.org>
Cc: Tzung-Bi Shih <tzungbi@chromium.org>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Currently, with VHE, KVM sets ER, CR, SW and EN bits of
PMUSERENR_EL0 to 1 on vcpu_load(), and saves and restores
the register value for the host on vcpu_load() and vcpu_put().
If the value of those bits are cleared on a pCPU with a vCPU
loaded (armv8pmu_start() would do that when PMU counters are
programmed for the guest), PMU access from the guest EL0 might
be trapped to the guest EL1 directly regardless of the current
PMUSERENR_EL0 value of the vCPU.
Fix this by not letting armv8pmu_start() overwrite PMUSERENR_EL0
on the pCPU where PMUSERENR_EL0 for the guest is loaded, and
instead updating the saved shadow register value for the host
so that the value can be restored on vcpu_put() later.
While vcpu_{put,load}() are manipulating PMUSERENR_EL0, disable
IRQs to prevent a race condition between these processes and IPIs
that attempt to update PMUSERENR_EL0 for the host EL0.
Suggested-by: Mark Rutland <mark.rutland@arm.com>
Suggested-by: Marc Zyngier <maz@kernel.org>
Fixes: 83a7a4d643 ("arm64: perf: Enable PMU counter userspace access for perf event")
Signed-off-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20230603025035.3781797-3-reijiw@google.com
The mapping of perf_events generic hardware events to actual PMU events on
ARM PMUv3 may not always be correct. This is in particular true for the
PERF_COUNT_HW_BRANCH_INSTRUCTIONS event. Although the mapping points to an
architected event, it may not always be available. This can be seen with a
simple:
$ perf stat -e branches sleep 0
Performance counter stats for 'sleep 0':
<not supported> branches
0.001401081 seconds time elapsed
Yet the hardware does have an event that could be used for branches.
Dynamically check for a supported hardware event which can be used for
PERF_COUNT_HW_BRANCH_INSTRUCTIONS at mapping time.
And with that:
$ perf stat -e branches sleep 0
Performance counter stats for 'sleep 0':
166,739 branches
0.000832163 seconds time elapsed
Co-developed-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Stephane Eranian <eranian@google.com>
Co-developed-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Co-developed-by: Peter Newman <peternewman@google.com>
Signed-off-by: Peter Newman <peternewman@google.com>
Link: https://lore.kernel.org/all/YvunKCJHSXKz%2FkZB@FVFF77S0Q05N
Link: https://lore.kernel.org/r/20230411093809.657501-1-peternewman@google.com
Signed-off-by: Will Deacon <will@kernel.org>
The only thing stopping the PMUv3 driver from compiling on 32bit
is the lack of defined system registers names and the handful of
required helpers.
This is easily solved by providing the sysreg accessors and updating
the Kconfig entry.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Co-developed-by: Zaid Al-Bassam <zalbassam@google.com>
Signed-off-by: Zaid Al-Bassam <zalbassam@google.com>
Tested-by: Florian Fainelli <f.fainelli@gmail.com>
Link: https://lore.kernel.org/r/20230317195027.3746949-8-zalbassam@google.com
Signed-off-by: Will Deacon <will@kernel.org>
GENMASK macro uses "unsigned long" (32-bit wide on arm and 64-bit
on arm64), This causes build issues when enabling PMUv3 on arm as
it tries to access bits > 31. This patch switches the GENMASK to
GENMASK_ULL, which uses "unsigned long long" (64-bit on both arm
and arm64).
Signed-off-by: Zaid Al-Bassam <zalbassam@google.com>
Acked-by: Marc Zyngier <maz@kernel.org>
Tested-by: Florian Fainelli <f.fainelli@gmail.com>
Link: https://lore.kernel.org/r/20230317195027.3746949-6-zalbassam@google.com
Signed-off-by: Will Deacon <will@kernel.org>
KVM host support is available only on arm64.
By moving the inclusion of kvm_host.h to an arm64-specific file,
the 32bit architecture will be able to implement dummy helpers.
Signed-off-by: Zaid Al-Bassam <zalbassam@google.com>
Tested-by: Florian Fainelli <f.fainelli@gmail.com>
Link: https://lore.kernel.org/r/20230317195027.3746949-5-zalbassam@google.com
Signed-off-by: Will Deacon <will@kernel.org>
The current PMU version definitions are available for arm64 only,
As we want to add PMUv3 support to arm (32-bit), abstracts
these definitions by using arch-specific helpers.
Signed-off-by: Zaid Al-Bassam <zalbassam@google.com>
Tested-by: Florian Fainelli <f.fainelli@gmail.com>
Link: https://lore.kernel.org/r/20230317195027.3746949-4-zalbassam@google.com
Signed-off-by: Will Deacon <will@kernel.org>
As we want to enable 32bit support, we need to distanciate the
PMUv3 driver from the AArch64 system register names.
This patch moves all system register accesses to an architecture
specific include file, allowing the 32bit counterpart to be
slotted in at a later time.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Co-developed-by: Zaid Al-Bassam <zalbassam@google.com>
Signed-off-by: Zaid Al-Bassam <zalbassam@google.com>
Tested-by: Florian Fainelli <f.fainelli@gmail.com>
Link: https://lore.kernel.org/r/20230317195027.3746949-3-zalbassam@google.com
Signed-off-by: Will Deacon <will@kernel.org>
Having the ARM PMUv3 driver sitting in arch/arm64/kernel is getting
in the way of being able to use perf on ARMv8 cores running a 32bit
kernel, such as 32bit KVM guests.
This patch moves it into drivers/perf/arm_pmuv3.c, with an include
file in include/linux/perf/arm_pmuv3.h. The only thing left in
arch/arm64 is some mundane perf stuff.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Zaid Al-Bassam <zalbassam@google.com>
Tested-by: Florian Fainelli <f.fainelli@gmail.com>
Link: https://lore.kernel.org/r/20230317195027.3746949-2-zalbassam@google.com
Signed-off-by: Will Deacon <will@kernel.org>