Commit Graph

44 Commits

Author SHA1 Message Date
Peter Zijlstra 024d232ae4 mm: Fix pmd_read_atomic()
AFAICT there's no reason to do anything different than what we do for
PTEs. Make it so (also affects SH).

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20221022114424.711181252%40infradead.org
2022-12-15 10:37:27 -08:00
Peter Zijlstra 93b3037a14 mm: Update ptep_get_lockless()'s comment
Improve the comment.

Suggested-by: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20221022114424.515572025%40infradead.org
2022-12-15 10:37:27 -08:00
Yu Zhao eed9a328aa mm: x86: add CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG
Some architectures support the accessed bit in non-leaf PMD entries, e.g.,
x86 sets the accessed bit in a non-leaf PMD entry when using it as part of
linear address translation [1].  Page table walkers that clear the
accessed bit may use this capability to reduce their search space.

Note that:
1. Although an inline function is preferable, this capability is added
   as a configuration option for consistency with the existing macros.
2. Due to the little interest in other varieties, this capability was
   only tested on Intel and AMD CPUs.

Thanks to the following developers for their efforts [2][3].
  Randy Dunlap <rdunlap@infradead.org>
  Stephen Rothwell <sfr@canb.auug.org.au>

[1]: Intel 64 and IA-32 Architectures Software Developer's Manual
     Volume 3 (June 2021), section 4.8
[2] https://lore.kernel.org/r/bfdcc7c8-922f-61a9-aa15-7e7250f04af7@infradead.org/
[3] https://lore.kernel.org/r/20220413151513.5a0d7a7e@canb.auug.org.au/

Link: https://lkml.kernel.org/r/20220918080010.2920238-3-yuzhao@google.com
Signed-off-by: Yu Zhao <yuzhao@google.com>
Reviewed-by: Barry Song <baohua@kernel.org>
Acked-by: Brian Geffon <bgeffon@google.com>
Acked-by: Jan Alexander Steffens (heftig) <heftig@archlinux.org>
Acked-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Acked-by: Steven Barrett <steven@liquorix.net>
Acked-by: Suleiman Souhlal <suleiman@google.com>
Tested-by: Daniel Byrne <djbyrne@mtu.edu>
Tested-by: Donald Carr <d@chaos-reins.com>
Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com>
Tested-by: Konstantin Kharlamov <Hi-Angel@yandex.ru>
Tested-by: Shuang Zhai <szhai2@cs.rochester.edu>
Tested-by: Sofia Trinh <sofia.trinh@edi.works>
Tested-by: Vaibhav Jain <vaibhav@linux.ibm.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Michael Larabel <Michael@MichaelLarabel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-26 19:46:08 -07:00
Yu Zhao e1fd09e3d1 mm: x86, arm64: add arch_has_hw_pte_young()
Patch series "Multi-Gen LRU Framework", v14.

What's new
==========
1. OpenWrt, in addition to Android, Arch Linux Zen, Armbian, ChromeOS,
   Liquorix, post-factum and XanMod, is now shipping MGLRU on 5.15.
2. Fixed long-tailed direct reclaim latency seen on high-memory (TBs)
   machines. The old direct reclaim backoff, which tries to enforce a
   minimum fairness among all eligible memcgs, over-swapped by about
   (total_mem>>DEF_PRIORITY)-nr_to_reclaim. The new backoff, which
   pulls the plug on swapping once the target is met, trades some
   fairness for curtailed latency:
   https://lore.kernel.org/r/20220918080010.2920238-10-yuzhao@google.com/
3. Fixed minior build warnings and conflicts. More comments and nits.

TLDR
====
The current page reclaim is too expensive in terms of CPU usage and it
often makes poor choices about what to evict. This patchset offers an
alternative solution that is performant, versatile and
straightforward.

Patchset overview
=================
The design and implementation overview is in patch 14:
https://lore.kernel.org/r/20220918080010.2920238-15-yuzhao@google.com/

01. mm: x86, arm64: add arch_has_hw_pte_young()
02. mm: x86: add CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG
Take advantage of hardware features when trying to clear the accessed
bit in many PTEs.

03. mm/vmscan.c: refactor shrink_node()
04. Revert "include/linux/mm_inline.h: fold __update_lru_size() into
    its sole caller"
Minor refactors to improve readability for the following patches.

05. mm: multi-gen LRU: groundwork
Adds the basic data structure and the functions that insert pages to
and remove pages from the multi-gen LRU (MGLRU) lists.

06. mm: multi-gen LRU: minimal implementation
A minimal implementation without optimizations.

07. mm: multi-gen LRU: exploit locality in rmap
Exploits spatial locality to improve efficiency when using the rmap.

08. mm: multi-gen LRU: support page table walks
Further exploits spatial locality by optionally scanning page tables.

09. mm: multi-gen LRU: optimize multiple memcgs
Optimizes the overall performance for multiple memcgs running mixed
types of workloads.

10. mm: multi-gen LRU: kill switch
Adds a kill switch to enable or disable MGLRU at runtime.

11. mm: multi-gen LRU: thrashing prevention
12. mm: multi-gen LRU: debugfs interface
Provide userspace with features like thrashing prevention, working set
estimation and proactive reclaim.

13. mm: multi-gen LRU: admin guide
14. mm: multi-gen LRU: design doc
Add an admin guide and a design doc.

Benchmark results
=================
Independent lab results
-----------------------
Based on the popularity of searches [01] and the memory usage in
Google's public cloud, the most popular open-source memory-hungry
applications, in alphabetical order, are:
      Apache Cassandra      Memcached
      Apache Hadoop         MongoDB
      Apache Spark          PostgreSQL
      MariaDB (MySQL)       Redis

An independent lab evaluated MGLRU with the most widely used benchmark
suites for the above applications. They posted 960 data points along
with kernel metrics and perf profiles collected over more than 500
hours of total benchmark time. Their final reports show that, with 95%
confidence intervals (CIs), the above applications all performed
significantly better for at least part of their benchmark matrices.

On 5.14:
1. Apache Spark [02] took 95% CIs [9.28, 11.19]% and [12.20, 14.93]%
   less wall time to sort three billion random integers, respectively,
   under the medium- and the high-concurrency conditions, when
   overcommitting memory. There were no statistically significant
   changes in wall time for the rest of the benchmark matrix.
2. MariaDB [03] achieved 95% CIs [5.24, 10.71]% and [20.22, 25.97]%
   more transactions per minute (TPM), respectively, under the medium-
   and the high-concurrency conditions, when overcommitting memory.
   There were no statistically significant changes in TPM for the rest
   of the benchmark matrix.
3. Memcached [04] achieved 95% CIs [23.54, 32.25]%, [20.76, 41.61]%
   and [21.59, 30.02]% more operations per second (OPS), respectively,
   for sequential access, random access and Gaussian (distribution)
   access, when THP=always; 95% CIs [13.85, 15.97]% and
   [23.94, 29.92]% more OPS, respectively, for random access and
   Gaussian access, when THP=never. There were no statistically
   significant changes in OPS for the rest of the benchmark matrix.
4. MongoDB [05] achieved 95% CIs [2.23, 3.44]%, [6.97, 9.73]% and
   [2.16, 3.55]% more operations per second (OPS), respectively, for
   exponential (distribution) access, random access and Zipfian
   (distribution) access, when underutilizing memory; 95% CIs
   [8.83, 10.03]%, [21.12, 23.14]% and [5.53, 6.46]% more OPS,
   respectively, for exponential access, random access and Zipfian
   access, when overcommitting memory.

On 5.15:
5. Apache Cassandra [06] achieved 95% CIs [1.06, 4.10]%, [1.94, 5.43]%
   and [4.11, 7.50]% more operations per second (OPS), respectively,
   for exponential (distribution) access, random access and Zipfian
   (distribution) access, when swap was off; 95% CIs [0.50, 2.60]%,
   [6.51, 8.77]% and [3.29, 6.75]% more OPS, respectively, for
   exponential access, random access and Zipfian access, when swap was
   on.
6. Apache Hadoop [07] took 95% CIs [5.31, 9.69]% and [2.02, 7.86]%
   less average wall time to finish twelve parallel TeraSort jobs,
   respectively, under the medium- and the high-concurrency
   conditions, when swap was on. There were no statistically
   significant changes in average wall time for the rest of the
   benchmark matrix.
7. PostgreSQL [08] achieved 95% CI [1.75, 6.42]% more transactions per
   minute (TPM) under the high-concurrency condition, when swap was
   off; 95% CIs [12.82, 18.69]% and [22.70, 46.86]% more TPM,
   respectively, under the medium- and the high-concurrency
   conditions, when swap was on. There were no statistically
   significant changes in TPM for the rest of the benchmark matrix.
8. Redis [09] achieved 95% CIs [0.58, 5.94]%, [6.55, 14.58]% and
   [11.47, 19.36]% more total operations per second (OPS),
   respectively, for sequential access, random access and Gaussian
   (distribution) access, when THP=always; 95% CIs [1.27, 3.54]%,
   [10.11, 14.81]% and [8.75, 13.64]% more total OPS, respectively,
   for sequential access, random access and Gaussian access, when
   THP=never.

Our lab results
---------------
To supplement the above results, we ran the following benchmark suites
on 5.16-rc7 and found no regressions [10].
      fs_fio_bench_hdd_mq      pft
      fs_lmbench               pgsql-hammerdb
      fs_parallelio            redis
      fs_postmark              stream
      hackbench                sysbenchthread
      kernbench                tpcc_spark
      memcached                unixbench
      multichase               vm-scalability
      mutilate                 will-it-scale
      nginx

[01] https://trends.google.com
[02] https://lore.kernel.org/r/20211102002002.92051-1-bot@edi.works/
[03] https://lore.kernel.org/r/20211009054315.47073-1-bot@edi.works/
[04] https://lore.kernel.org/r/20211021194103.65648-1-bot@edi.works/
[05] https://lore.kernel.org/r/20211109021346.50266-1-bot@edi.works/
[06] https://lore.kernel.org/r/20211202062806.80365-1-bot@edi.works/
[07] https://lore.kernel.org/r/20211209072416.33606-1-bot@edi.works/
[08] https://lore.kernel.org/r/20211218071041.24077-1-bot@edi.works/
[09] https://lore.kernel.org/r/20211122053248.57311-1-bot@edi.works/
[10] https://lore.kernel.org/r/20220104202247.2903702-1-yuzhao@google.com/

Read-world applications
=======================
Third-party testimonials
------------------------
Konstantin reported [11]:
   I have Archlinux with 8G RAM + zswap + swap. While developing, I
   have lots of apps opened such as multiple LSP-servers for different
   langs, chats, two browsers, etc... Usually, my system gets quickly
   to a point of SWAP-storms, where I have to kill LSP-servers,
   restart browsers to free memory, etc, otherwise the system lags
   heavily and is barely usable.
   
   1.5 day ago I migrated from 5.11.15 kernel to 5.12 + the LRU
   patchset, and I started up by opening lots of apps to create memory
   pressure, and worked for a day like this. Till now I had not a
   single SWAP-storm, and mind you I got 3.4G in SWAP. I was never
   getting to the point of 3G in SWAP before without a single
   SWAP-storm.

Vaibhav from IBM reported [12]:
   In a synthetic MongoDB Benchmark, seeing an average of ~19%
   throughput improvement on POWER10(Radix MMU + 64K Page Size) with
   MGLRU patches on top of 5.16 kernel for MongoDB + YCSB across
   three different request distributions, namely, Exponential, Uniform
   and Zipfan.

Shuang from U of Rochester reported [13]:
   With the MGLRU, fio achieved 95% CIs [38.95, 40.26]%, [4.12, 6.64]%
   and [9.26, 10.36]% higher throughput, respectively, for random
   access, Zipfian (distribution) access and Gaussian (distribution)
   access, when the average number of jobs per CPU is 1; 95% CIs
   [42.32, 49.15]%, [9.44, 9.89]% and [20.99, 22.86]% higher
   throughput, respectively, for random access, Zipfian access and
   Gaussian access, when the average number of jobs per CPU is 2.

Daniel from Michigan Tech reported [14]:
   With Memcached allocating ~100GB of byte-addressable Optante,
   performance improvement in terms of throughput (measured as queries
   per second) was about 10% for a series of workloads.

Large-scale deployments
-----------------------
We've rolled out MGLRU to tens of millions of ChromeOS users and
about a million Android users. Google's fleetwide profiling [15] shows
an overall 40% decrease in kswapd CPU usage, in addition to
improvements in other UX metrics, e.g., an 85% decrease in the number
of low-memory kills at the 75th percentile and an 18% decrease in
app launch time at the 50th percentile.

The downstream kernels that have been using MGLRU include:
1. Android [16]
2. Arch Linux Zen [17]
3. Armbian [18]
4. ChromeOS [19]
5. Liquorix [20]
6. OpenWrt [21]
7. post-factum [22]
8. XanMod [23]

[11] https://lore.kernel.org/r/140226722f2032c86301fbd326d91baefe3d7d23.camel@yandex.ru/
[12] https://lore.kernel.org/r/87czj3mux0.fsf@vajain21.in.ibm.com/
[13] https://lore.kernel.org/r/20220105024423.26409-1-szhai2@cs.rochester.edu/
[14] https://lore.kernel.org/r/CA+4-3vksGvKd18FgRinxhqHetBS1hQekJE2gwco8Ja-bJWKtFw@mail.gmail.com/
[15] https://dl.acm.org/doi/10.1145/2749469.2750392
[16] https://android.com
[17] https://archlinux.org
[18] https://armbian.com
[19] https://chromium.org
[20] https://liquorix.net
[21] https://openwrt.org
[22] https://codeberg.org/pf-kernel
[23] https://xanmod.org

Summary
=======
The facts are:
1. The independent lab results and the real-world applications
   indicate substantial improvements; there are no known regressions.
2. Thrashing prevention, working set estimation and proactive reclaim
   work out of the box; there are no equivalent solutions.
3. There is a lot of new code; no smaller changes have been
   demonstrated similar effects.

Our options, accordingly, are:
1. Given the amount of evidence, the reported improvements will likely
   materialize for a wide range of workloads.
2. Gauging the interest from the past discussions, the new features
   will likely be put to use for both personal computers and data
   centers.
3. Based on Google's track record, the new code will likely be well
   maintained in the long term. It'd be more difficult if not
   impossible to achieve similar effects with other approaches.


This patch (of 14):

Some architectures automatically set the accessed bit in PTEs, e.g., x86
and arm64 v8.2.  On architectures that do not have this capability,
clearing the accessed bit in a PTE usually triggers a page fault following
the TLB miss of this PTE (to emulate the accessed bit).

Being aware of this capability can help make better decisions, e.g.,
whether to spread the work out over a period of time to reduce bursty page
faults when trying to clear the accessed bit in many PTEs.

Note that theoretically this capability can be unreliable, e.g.,
hotplugged CPUs might be different from builtin ones.  Therefore it should
not be used in architecture-independent code that involves correctness,
e.g., to determine whether TLB flushes are required (in combination with
the accessed bit).

Link: https://lkml.kernel.org/r/20220918080010.2920238-1-yuzhao@google.com
Link: https://lkml.kernel.org/r/20220918080010.2920238-2-yuzhao@google.com
Signed-off-by: Yu Zhao <yuzhao@google.com>
Reviewed-by: Barry Song <baohua@kernel.org>
Acked-by: Brian Geffon <bgeffon@google.com>
Acked-by: Jan Alexander Steffens (heftig) <heftig@archlinux.org>
Acked-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Acked-by: Steven Barrett <steven@liquorix.net>
Acked-by: Suleiman Souhlal <suleiman@google.com>
Acked-by: Will Deacon <will@kernel.org>
Tested-by: Daniel Byrne <djbyrne@mtu.edu>
Tested-by: Donald Carr <d@chaos-reins.com>
Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com>
Tested-by: Konstantin Kharlamov <Hi-Angel@yandex.ru>
Tested-by: Shuang Zhai <szhai2@cs.rochester.edu>
Tested-by: Sofia Trinh <sofia.trinh@edi.works>
Tested-by: Vaibhav Jain <vaibhav@linux.ibm.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: linux-arm-kernel@lists.infradead.org
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michael Larabel <Michael@MichaelLarabel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-26 19:46:08 -07:00
Liu Shixin bcd0dea5f4 mm/thp: remove redundant CONFIG_TRANSPARENT_HUGEPAGE
Simplify code by removing redundant CONFIG_TRANSPARENT_HUGEPAGE judgment.

No functional change.

Link: https://lkml.kernel.org/r/20220829095125.3284567-1-liushixin2@huawei.com
Signed-off-by: Liu Shixin <liushixin2@huawei.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-11 20:26:05 -07:00
Liu Shixin a38c94ed59 mm/thp: simplify has_transparent_hugepage by using IS_BUILTIN
Simplify code of has_transparent_hugepage define by using IS_BUILTIN.

No functional change.

Link: https://lkml.kernel.org/r/20220829095709.3287462-1-liushixin2@huawei.com
Signed-off-by: Liu Shixin <liushixin2@huawei.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-11 20:26:04 -07:00
Anshuman Khandual 43957b5d11 mm/mmap: define DECLARE_VM_GET_PAGE_PROT
This just converts the generic vm_get_page_prot() implementation into a
new macro i.e DECLARE_VM_GET_PAGE_PROT which later can be used across
platforms when enabling them with ARCH_HAS_VM_GET_PAGE_PROT.  This does
not create any functional change.

Link: https://lkml.kernel.org/r/20220711070600.2378316-3-anshuman.khandual@arm.com
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reviewed-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Suggested-by: Christoph Hellwig <hch@infradead.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Brian Cain <bcain@quicinc.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Chris Zankel <chris@zankel.net>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Dinh Nguyen <dinguyen@kernel.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Guo Ren <guoren@kernel.org>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Huacai Chen <chenhuacai@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "James E.J. Bottomley" <James.Bottomley@HansenPartnership.com>
Cc: Jeff Dike <jdike@addtoit.com>
Cc: Jonas Bonn <jonas@southpole.se>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Sam Ravnborg <sam@ravnborg.org>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Vineet Gupta <vgupta@kernel.org>
Cc: WANG Xuerui <kernel@xen0n.name>
Cc: Will Deacon <will@kernel.org>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-07-17 17:14:37 -07:00
Li kunyu c8db8c2628 mm: functions may simplify the use of return values
p4d_clear_huge may be optimized for void return type and function usage. 
vunmap_p4d_range function saves a few steps here.

Link: https://lkml.kernel.org/r/20220507150630.90399-1-kunyu@nfschina.com
Signed-off-by: Li kunyu <kunyu@nfschina.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-05-13 07:20:18 -07:00
Tong Tiangen 2e7dc2b632 mm: remove __HAVE_ARCH_PTEP_CLEAR in pgtable.h
Currently, there is no architecture definition __HAVE_ARCH_PTEP_CLEAR,
Generic ptep_clear() is the only definition for all architecture, So drop
the "#ifndef __HAVE_ARCH_PTEP_CLEAR".

Link: https://lkml.kernel.org/r/20220507110114.4128854-5-tongtiangen@huawei.com
Signed-off-by: Tong Tiangen <tongtiangen@huawei.com>
Suggested-by: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-05-13 07:20:17 -07:00
Tong Tiangen de8c8e5283 mm: page_table_check: add hooks to public helpers
Move ptep_clear() to the include/linux/pgtable.h and add page table check
relate hooks to some helpers, it's prepare for support page table check
feature on new architecture.

Optimize the implementation of ptep_clear(), page table hooks added page
table check stubs, the interface control should be at stubs, there is no
rationale for doing a IS_ENABLED() check here.

For architectures that do not enable CONFIG_PAGE_TABLE_CHECK, they will
call a fallback page table check stubs[1] when getting their page table
helpers[2] in include/linux/pgtable.h.

[1] page table check stubs defined in include/linux/page_table_check.h
[2] ptep_clear() ptep_get_and_clear()  pmdp_huge_get_and_clear()
pudp_huge_get_and_clear()

Link: https://lkml.kernel.org/r/20220507110114.4128854-4-tongtiangen@huawei.com
Signed-off-by: Tong Tiangen <tongtiangen@huawei.com>
Acked-by: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-05-13 07:20:17 -07:00
Matthew Wilcox (Oracle) da08e9b793 mm/shmem: convert shmem_swapin_page() to shmem_swapin_folio()
shmem_swapin_page() only brings in order-0 pages, which are folios
by definition.

Link: https://lkml.kernel.org/r/20220504182857.4013401-24-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-05-13 07:20:17 -07:00
Nadav Amit 4f83145721 mm: avoid unnecessary flush on change_huge_pmd()
Calls to change_protection_range() on THP can trigger, at least on x86,
two TLB flushes for one page: one immediately, when pmdp_invalidate() is
called by change_huge_pmd(), and then another one later (that can be
batched) when change_protection_range() finishes.

The first TLB flush is only necessary to prevent the dirty bit (and with a
lesser importance the access bit) from changing while the PTE is modified.
However, this is not necessary as the x86 CPUs set the dirty-bit
atomically with an additional check that the PTE is (still) present.  One
caveat is Intel's Knights Landing that has a bug and does not do so.

Leverage this behavior to eliminate the unnecessary TLB flush in
change_huge_pmd().  Introduce a new arch specific pmdp_invalidate_ad()
that only invalidates the access and dirty bit from further changes.

Link: https://lkml.kernel.org/r/20220401180821.1986781-4-namit@vmware.com
Signed-off-by: Nadav Amit <namit@vmware.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andrew Cooper <andrew.cooper3@citrix.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will@kernel.org>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Nick Piggin <npiggin@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-05-13 07:20:05 -07:00
David Hildenbrand 1493a1913e mm/swap: remember PG_anon_exclusive via a swp pte bit
Patch series "mm: COW fixes part 3: reliable GUP R/W FOLL_GET of anonymous pages", v2.

This series fixes memory corruptions when a GUP R/W reference (FOLL_WRITE
| FOLL_GET) was taken on an anonymous page and COW logic fails to detect
exclusivity of the page to then replacing the anonymous page by a copy in
the page table: The GUP reference lost synchronicity with the pages mapped
into the page tables.  This series focuses on x86, arm64, s390x and
ppc64/book3s -- other architectures are fairly easy to support by
implementing __HAVE_ARCH_PTE_SWP_EXCLUSIVE.

This primarily fixes the O_DIRECT memory corruptions that can happen on
concurrent swapout, whereby we lose DMA reads to a page (modifying the
user page by writing to it).

O_DIRECT currently uses FOLL_GET for short-term (!FOLL_LONGTERM) DMA
from/to a user page.  In the long run, we want to convert it to properly
use FOLL_PIN, and John is working on it, but that might take a while and
might not be easy to backport.  In the meantime, let's restore what used
to work before we started modifying our COW logic: make R/W FOLL_GET
references reliable as long as there is no fork() after GUP involved.

This is just the natural follow-up of part 2, that will also further
reduce "wrong COW" on the swapin path, for example, when we cannot remove
a page from the swapcache due to concurrent writeback, or if we have two
threads faulting on the same swapped-out page.  Fixing O_DIRECT is just a
nice side-product

This issue, including other related COW issues, has been summarized in [3]
under 2):
"
  2. Intra Process Memory Corruptions due to Wrong COW (FOLL_GET)

  It was discovered that we can create a memory corruption by reading a
  file via O_DIRECT to a part (e.g., first 512 bytes) of a page,
  concurrently writing to an unrelated part (e.g., last byte) of the same
  page, and concurrently write-protecting the page via clear_refs
  SOFTDIRTY tracking [6].

  For the reproducer, the issue is that O_DIRECT grabs a reference of the
  target page (via FOLL_GET) and clear_refs write-protects the relevant
  page table entry. On successive write access to the page from the
  process itself, we wrongly COW the page when resolving the write fault,
  resulting in a loss of synchronicity and consequently a memory corruption.

  While some people might think that using clear_refs in this combination
  is a corner cases, it turns out to be a more generic problem unfortunately.

  For example, it was just recently discovered that we can similarly
  create a memory corruption without clear_refs, simply by concurrently
  swapping out the buffer pages [7]. Note that we nowadays even use the
  swap infrastructure in Linux without an actual swap disk/partition: the
  prime example is zram which is enabled as default under Fedora [10].

  The root issue is that a write-fault on a page that has additional
  references results in a COW and thereby a loss of synchronicity
  and consequently a memory corruption if two parties believe they are
  referencing the same page.
"

We don't particularly care about R/O FOLL_GET references: they were never
reliable and O_DIRECT doesn't expect to observe modifications from a page
after DMA was started.

Note that:
* this only fixes the issue on x86, arm64, s390x and ppc64/book3s
  ("enterprise architectures"). Other architectures have to implement
  __HAVE_ARCH_PTE_SWP_EXCLUSIVE to achieve the same.
* this does *not * consider any kind of fork() after taking the reference:
  fork() after GUP never worked reliably with FOLL_GET.
* Not losing PG_anon_exclusive during swapout was the last remaining
  piece. KSM already makes sure that there are no other references on
  a page before considering it for sharing. Page migration maintains
  PG_anon_exclusive and simply fails when there are additional references
  (freezing the refcount fails). Only swapout code dropped the
  PG_anon_exclusive flag because it requires more work to remember +
  restore it.

With this series in place, most COW issues of [3] are fixed on said
architectures. Other architectures can implement
__HAVE_ARCH_PTE_SWP_EXCLUSIVE fairly easily.

[1] https://lkml.kernel.org/r/20220329160440.193848-1-david@redhat.com
[2] https://lkml.kernel.org/r/20211217113049.23850-1-david@redhat.com
[3] https://lore.kernel.org/r/3ae33b08-d9ef-f846-56fb-645e3b9b4c66@redhat.com


This patch (of 8):

Currently, we clear PG_anon_exclusive in try_to_unmap() and forget about
it.  We do this, to keep fork() logic on swap entries easy and efficient:
for example, if we wouldn't clear it when unmapping, we'd have to lookup
the page in the swapcache for each and every swap entry during fork() and
clear PG_anon_exclusive if set.

Instead, we want to store that information directly in the swap pte,
protected by the page table lock, similarly to how we handle
SWP_MIGRATION_READ_EXCLUSIVE for migration entries.  However, for actual
swap entries, we don't want to mess with the swap type (e.g., still one
bit) because it overcomplicates swap code.

In try_to_unmap(), we already reject to unmap in case the page might be
pinned, because we must not lose PG_anon_exclusive on pinned pages ever. 
Checking if there are other unexpected references reliably *before*
completely unmapping a page is unfortunately not really possible: THP
heavily overcomplicate the situation.  Once fully unmapped it's easier --
we, for example, make sure that there are no unexpected references *after*
unmapping a page before starting writeback on that page.

So, we currently might end up unmapping a page and clearing
PG_anon_exclusive if that page has additional references, for example, due
to a FOLL_GET.

do_swap_page() has to re-determine if a page is exclusive, which will
easily fail if there are other references on a page, most prominently GUP
references via FOLL_GET.  This can currently result in memory corruptions
when taking a FOLL_GET | FOLL_WRITE reference on a page even when fork()
is never involved: try_to_unmap() will succeed, and when refaulting the
page, it cannot be marked exclusive and will get replaced by a copy in the
page tables on the next write access, resulting in writes via the GUP
reference to the page being lost.

In an ideal world, everybody that uses GUP and wants to modify page
content, such as O_DIRECT, would properly use FOLL_PIN.  However, that
conversion will take a while.  It's easier to fix what used to work in the
past (FOLL_GET | FOLL_WRITE) remembering PG_anon_exclusive.  In addition,
by remembering PG_anon_exclusive we can further reduce unnecessary COW in
some cases, so it's the natural thing to do.

So let's transfer the PG_anon_exclusive information to the swap pte and
store it via an architecture-dependant pte bit; use that information when
restoring the swap pte in do_swap_page() and unuse_pte().  During fork(),
we simply have to clear the pte bit and are done.

Of course, there is one corner case to handle: swap backends that don't
support concurrent page modifications while the page is under writeback. 
Special case these, and drop the exclusive marker.  Add a comment why that
is just fine (also, reuse_swap_page() would have done the same in the
past).

In the future, we'll hopefully have all architectures support
__HAVE_ARCH_PTE_SWP_EXCLUSIVE, such that we can get rid of the empty stubs
and the define completely.  Then, we can also convert
SWP_MIGRATION_READ_EXCLUSIVE.  For architectures it's fairly easy to
support: either simply use a yet unused pte bit that can be used for swap
entries, steal one from the arch type bits if they exceed 5, or steal one
from the offset bits.

Note: R/O FOLL_GET references were never really reliable, especially when
taking one on a shared page and then writing to the page (e.g., GUP after
fork()).  FOLL_GET, including R/W references, were never really reliable
once fork was involved (e.g., GUP before fork(), GUP during fork()).  KSM
steps back in case it stumbles over unexpected references and is,
therefore, fine.

[david@redhat.com: fix SWP_STABLE_WRITES test]
  Link: https://lkml.kernel.org/r/ac725bcb-313a-4fff-250a-68ba9a8f85fb@redhat.comLink: https://lkml.kernel.org/r/20220329164329.208407-1-david@redhat.com
Link: https://lkml.kernel.org/r/20220329164329.208407-2-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Jann Horn <jannh@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Nadav Amit <namit@vmware.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Don Dutile <ddutile@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Liang Zhang <zhangliang5@huawei.com>
Cc: Pedro Demarchi Gomes <pedrodemargomes@gmail.com>
Cc: Oded Gabbay <oded.gabbay@gmail.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-05-09 18:20:45 -07:00
Mike Rapoport 314c459a6f mm/pgtable: define pte_index so that preprocessor could recognize it
Since commit 974b9b2c68 ("mm: consolidate pte_index() and
pte_offset_*() definitions") pte_index is a static inline and there is
no define for it that can be recognized by the preprocessor.  As a
result, vm_insert_pages() uses slower loop over vm_insert_page() instead
of insert_pages() that amortizes the cost of spinlock operations when
inserting multiple pages.

Link: https://lkml.kernel.org/r/20220111145457.20748-1-rppt@kernel.org
Fixes: 974b9b2c68 ("mm: consolidate pte_index() and pte_offset_*() definitions")
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Reported-by: Christian Dietrich <stettberger@dokucode.de>
Reviewed-by: Khalid Aziz <khalid.aziz@oracle.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-02-04 09:25:05 -08:00
Pasha Tatashin 08d5b29eac mm: ptep_clear() page table helper
We have ptep_get_and_clear() and ptep_get_and_clear_full() helpers to
clear PTE from user page tables, but there is no variant for simple
clear of a present PTE from user page tables without using a low level
pte_clear() which can be either native or para-virtualised.

Add a new ptep_clear() that can be used in common code to clear PTEs
from page table.  We will need this call later in order to add a hook
for page table check.

Link: https://lkml.kernel.org/r/20211221154650.1047963-3-pasha.tatashin@soleen.com
Signed-off-by: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Frederic Weisbecker <frederic@kernel.org>
Cc: Greg Thelen <gthelen@google.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jiri Slaby <jirislaby@kernel.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Kees Cook <keescook@chromium.org>
Cc: Masahiro Yamada <masahiroy@kernel.org>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Paul Turner <pjt@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sami Tolvanen <samitolvanen@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Wei Xu <weixugc@google.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-01-15 16:30:28 +02:00
Jonathan Marek d8a719059b Revert "mm/pgtable: add stubs for {pmd/pub}_{set/clear}_huge"
This reverts commit c742199a01.

c742199a01 ("mm/pgtable: add stubs for {pmd/pub}_{set/clear}_huge")
breaks arm64 in at least two ways for configurations where PUD or PMD
folding occur:

  1. We no longer install huge-vmap mappings and silently fall back to
     page-granular entries, despite being able to install block entries
     at what is effectively the PGD level.

  2. If the linear map is backed with block mappings, these will now
     silently fail to be created in alloc_init_pud(), causing a panic
     early during boot.

The pgtable selftests caught this, although a fix has not been
forthcoming and Christophe is AWOL at the moment, so just revert the
change for now to get a working -rc3 on which we can queue patches for
5.15.

A simple revert breaks the build for 32-bit PowerPC 8xx machines, which
rely on the default function definitions when the corresponding
page-table levels are folded, since commit a6a8f7c4aa ("powerpc/8xx:
add support for huge pages on VMAP and VMALLOC"), eg:

  powerpc64-linux-ld: mm/vmalloc.o: in function `vunmap_pud_range':
  linux/mm/vmalloc.c:362: undefined reference to `pud_clear_huge'

To avoid that, add stubs for pud_clear_huge() and pmd_clear_huge() in
arch/powerpc/mm/nohash/8xx.c as suggested by Christophe.

Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Fixes: c742199a01 ("mm/pgtable: add stubs for {pmd/pub}_{set/clear}_huge")
Signed-off-by: Jonathan Marek <jonathan@marek.ca>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Acked-by: Marc Zyngier <maz@kernel.org>
[mpe: Fold in 8xx.c changes from Christophe and mention in change log]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/linux-arm-kernel/CAMuHMdXShORDox-xxaeUfDW3wx2PeggFSqhVSHVZNKCGK-y_vQ@mail.gmail.com/
Link: https://lore.kernel.org/r/20210717160118.9855-1-jonathan@marek.ca
Link: https://lore.kernel.org/r/87r1fs1762.fsf@mpe.ellerman.id.au
Signed-off-by: Will Deacon <will@kernel.org>
2021-07-21 11:28:09 +01:00
Aneesh Kumar K.V dc4875f0e7 mm: rename p4d_page_vaddr to p4d_pgtable and make it return pud_t *
No functional change in this patch.

[aneesh.kumar@linux.ibm.com: m68k build error reported by kernel robot]
  Link: https://lkml.kernel.org/r/87tulxnb2v.fsf@linux.ibm.com

Link: https://lkml.kernel.org/r/20210615110859.320299-2-aneesh.kumar@linux.ibm.com
Link: https://lore.kernel.org/linuxppc-dev/CAHk-=wi+J+iodze9FtjM3Zi4j4OeS+qqbKxME9QN4roxPEXH9Q@mail.gmail.com/
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Hugh Dickins <hughd@google.com>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-08 11:48:22 -07:00
Aneesh Kumar K.V 9cf6fa2458 mm: rename pud_page_vaddr to pud_pgtable and make it return pmd_t *
No functional change in this patch.

[aneesh.kumar@linux.ibm.com: fix]
  Link: https://lkml.kernel.org/r/87wnqtnb60.fsf@linux.ibm.com
[sfr@canb.auug.org.au: another fix]
  Link: https://lkml.kernel.org/r/20210619134410.89559-1-aneesh.kumar@linux.ibm.com

Link: https://lkml.kernel.org/r/20210615110859.320299-1-aneesh.kumar@linux.ibm.com
Link: https://lore.kernel.org/linuxppc-dev/CAHk-=wi+J+iodze9FtjM3Zi4j4OeS+qqbKxME9QN4roxPEXH9Q@mail.gmail.com/
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Hugh Dickins <hughd@google.com>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-08 11:48:22 -07:00
Anshuman Khandual 1c2f7d14d8 mm/thp: define default pmd_pgtable()
Currently most platforms define pmd_pgtable() as pmd_page() duplicating
the same code all over.  Instead just define a default value i.e
pmd_page() for pmd_pgtable() and let platforms override when required via
<asm/pgtable.h>.  All the existing platform that override pmd_pgtable()
have been moved into their respective <asm/pgtable.h> header in order to
precede before the new generic definition.  This makes it much cleaner
with reduced code.

Link: https://lkml.kernel.org/r/1623646133-20306-1-git-send-email-anshuman.khandual@arm.com
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Mike Rapoport <rppt@linux.ibm.com>
Cc: Nick Hu <nickhu@andestech.com>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Guo Ren <guoren@kernel.org>
Cc: Brian Cain <bcain@codeaurora.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Ley Foon Tan <ley.foon.tan@intel.com>
Cc: Jonas Bonn <jonas@southpole.se>
Cc: Stefan Kristiansson <stefan.kristiansson@saunalahti.fi>
Cc: Stafford Horne <shorne@gmail.com>
Cc: "James E.J. Bottomley" <James.Bottomley@HansenPartnership.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Jeff Dike <jdike@addtoit.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Chris Zankel <chris@zankel.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 11:06:03 -07:00
Anshuman Khandual fac7757e1f mm: define default value for FIRST_USER_ADDRESS
Currently most platforms define FIRST_USER_ADDRESS as 0UL duplication the
same code all over.  Instead just define a generic default value (i.e 0UL)
for FIRST_USER_ADDRESS and let the platforms override when required.  This
makes it much cleaner with reduced code.

The default FIRST_USER_ADDRESS here would be skipped in <linux/pgtable.h>
when the given platform overrides its value via <asm/pgtable.h>.

Link: https://lkml.kernel.org/r/1620615725-24623-1-git-send-email-anshuman.khandual@arm.com
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>	[m68k]
Acked-by: Guo Ren <guoren@kernel.org>			[csky]
Acked-by: Stafford Horne <shorne@gmail.com>		[openrisc]
Acked-by: Catalin Marinas <catalin.marinas@arm.com>	[arm64]
Acked-by: Mike Rapoport <rppt@linux.ibm.com>
Acked-by: Palmer Dabbelt <palmerdabbelt@google.com>	[RISC-V]
Cc: Richard Henderson <rth@twiddle.net>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Guo Ren <guoren@kernel.org>
Cc: Brian Cain <bcain@codeaurora.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Ley Foon Tan <ley.foon.tan@intel.com>
Cc: Jonas Bonn <jonas@southpole.se>
Cc: Stefan Kristiansson <stefan.kristiansson@saunalahti.fi>
Cc: Stafford Horne <shorne@gmail.com>
Cc: "James E.J. Bottomley" <James.Bottomley@HansenPartnership.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Jeff Dike <jdike@addtoit.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Chris Zankel <chris@zankel.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 11:06:02 -07:00
Christophe Leroy c742199a01 mm/pgtable: add stubs for {pmd/pub}_{set/clear}_huge
For architectures with no PMD and/or no PUD, add stubs similar to what we
have for architectures without P4D.

[christophe.leroy@csgroup.eu: arm64: define only {pud/pmd}_{set/clear}_huge when useful]
  Link: https://lkml.kernel.org/r/73ec95f40cafbbb69bdfb43a7f53876fd845b0ce.1620990479.git.christophe.leroy@csgroup.eu
[christophe.leroy@csgroup.eu: x86: define only {pud/pmd}_{set/clear}_huge when useful]
  Link: https://lkml.kernel.org/r/7fbf1b6bc3e15c07c24fa45278d57064f14c896b.1620930415.git.christophe.leroy@csgroup.eu

Link: https://lkml.kernel.org/r/5ac5976419350e8e048d463a64cae449eb3ba4b0.1620795204.git.christophe.leroy@csgroup.eu
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Uladzislau Rezki <uladzislau.rezki@sony.com>
Cc: Naresh Kamboju <naresh.kamboju@linaro.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-30 20:47:26 -07:00
Daniel Axtens c0f8aa4fa8 mm: define default MAX_PTRS_PER_* in include/pgtable.h
Commit c65e774fb3 ("x86/mm: Make PGDIR_SHIFT and PTRS_PER_P4D variable")
made PTRS_PER_P4D variable on x86 and introduced MAX_PTRS_PER_P4D as a
constant for cases which need a compile-time constant (e.g.  fixed-size
arrays).

powerpc likewise has boot-time selectable MMU features which can cause
other mm "constants" to vary.  For KASAN, we have some static
PTE/PMD/PUD/P4D arrays so we need compile-time maximums for all these
constants.  Extend the MAX_PTRS_PER_ idiom, and place default definitions
in include/pgtable.h.  These define MAX_PTRS_PER_x to be PTRS_PER_x unless
an architecture has defined MAX_PTRS_PER_x in its arch headers.

Clean up pgtable-nop4d.h and s390's MAX_PTRS_PER_P4D definitions while
we're at it: both can just pick up the default now.

Link: https://lkml.kernel.org/r/20210624034050.511391-4-dja@axtens.net
Signed-off-by: Daniel Axtens <dja@axtens.net>
Acked-by: Andrey Konovalov <andreyknvl@gmail.com>
Reviewed-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Reviewed-by: Marco Elver <elver@google.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-29 10:53:53 -07:00
Thomas Bogendoerfer 50c25ee97c Revert "MIPS: make userspace mapping young by default"
This reverts commit f685a533a7.

The MIPS cache flush logic needs to know whether the mapping was already
established to decide how to flush caches.  This is done by checking the
valid bit in the PTE.  The commit above breaks this logic by setting the
valid in the PTE in new mappings, which causes kernel crashes.

Link: https://lkml.kernel.org/r/20210526094335.92948-1-tsbogend@alpha.franken.de
Fixes: f685a533a7 ("MIPS: make userspace mapping young by default")
Reported-by: Zhou Yanjie <zhouyanjie@wanyeetech.com>
Signed-off-by: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Huang Pei <huangpei@loongson.cn>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-05 08:58:11 -07:00
Bhaskar Chowdhury 2eb70aab25 include/linux/pgtable.h: few spelling fixes
Few spelling fixes throughout the file.

Link: https://lkml.kernel.org/r/20210318201404.6380-1-unixbhaskar@gmail.com
Signed-off-by: Bhaskar Chowdhury <unixbhaskar@gmail.com>
Acked-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-05-07 00:26:34 -07:00
Pavel Tatashin 9afaf30f7a mm/gup: do not migrate zero page
On some platforms ZERO_PAGE(0) might end-up in a movable zone.  Do not
migrate zero page in gup during longterm pinning as migration of zero page
is not allowed.

For example, in x86 QEMU with 16G of memory and kernelcore=5G parameter, I
see the following:

Boot#1: zero_pfn  0x48a8d zero_pfn zone: ZONE_DMA32
Boot#2: zero_pfn 0x20168d zero_pfn zone: ZONE_MOVABLE

On x86, empty_zero_page is declared in .bss and depending on the loader
may end up in different physical locations during boots.

Also, move is_zero_pfn() my_zero_pfn() functions under CONFIG_MMU, because
zero_pfn that they are using is declared in memory.c which is compiled
with CONFIG_MMU.

Link: https://lkml.kernel.org/r/20210215161349.246722-9-pasha.tatashin@soleen.com
Signed-off-by: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: James Morris <jmorris@namei.org>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Sasha Levin <sashal@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Tyler Hicks <tyhicks@linux.microsoft.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-05-05 11:27:26 -07:00
Catalin Marinas d15dfd3138 arm64: mte: Map hotplugged memory as Normal Tagged
In a system supporting MTE, the linear map must allow reading/writing
allocation tags by setting the memory type as Normal Tagged. Currently,
this is only handled for memory present at boot. Hotplugged memory uses
Normal non-Tagged memory.

Introduce pgprot_mhp() for hotplugged memory and use it in
add_memory_resource(). The arm64 code maps pgprot_mhp() to
pgprot_tagged().

Note that ZONE_DEVICE memory should not be mapped as Tagged and
therefore setting the memory type in arch_add_memory() is not feasible.

Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Fixes: 0178dc7613 ("arm64: mte: Use Normal Tagged attributes for the linear map")
Reported-by: Patrick Daly <pdaly@codeaurora.org>
Tested-by: Patrick Daly <pdaly@codeaurora.org>
Link: https://lore.kernel.org/r/1614745263-27827-1-git-send-email-pdaly@codeaurora.org
Cc: <stable@vger.kernel.org> # 5.10.x
Cc: Will Deacon <will@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: David Hildenbrand <david@redhat.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Link: https://lore.kernel.org/r/20210309122601.5543-1-catalin.marinas@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
2021-03-10 10:56:46 +00:00
Huang Pei f685a533a7 MIPS: make userspace mapping young by default
MIPS page fault path(except huge page) takes 3 exceptions (1 TLB Miss + 2
TLB Invalid), butthe second TLB Invalid exception is just triggered by
__update_tlb from do_page_fault writing tlb without _PAGE_VALID set.  With
this patch, user space mapping prot is made young by default (with both
_PAGE_VALID and _PAGE_YOUNG set), and it only take 1 TLB Miss + 1 TLB
Invalid exception

Remove pte_sw_mkyoung without polluting MM code and make page fault delay
of MIPS on par with other architecture

Link: https://lkml.kernel.org/r/20210204013942.8398-1-huangpei@loongson.cn
Signed-off-by: Huang Pei <huangpei@loongson.cn>
Reviewed-by: Nicholas Piggin <npiggin@gmail.com>
Acked-by: <huangpei@loongson.cn>
Acked-by: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: <ambrosehua@gmail.com>
Cc: Bibo Mao <maobibo@loongson.cn>
Cc: Jiaxun Yang <jiaxun.yang@flygoat.com>
Cc: Paul Burton <paulburton@kernel.org>
Cc: Li Xuefeng <lixuefeng@loongson.cn>
Cc: Yang Tiezhu <yangtiezhu@loongson.cn>
Cc: Gao Juxin <gaojuxin@loongson.cn>
Cc: Fuxin Zhang <zhangfx@lemote.com>
Cc: Huacai Chen <chenhc@lemote.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-26 09:41:05 -08:00
Kirill A. Shutemov f9ce0be71d mm: Cleanup faultaround and finish_fault() codepaths
alloc_set_pte() has two users with different requirements: in the
faultaround code, it called from an atomic context and PTE page table
has to be preallocated. finish_fault() can sleep and allocate page table
as needed.

PTL locking rules are also strange, hard to follow and overkill for
finish_fault().

Let's untangle the mess. alloc_set_pte() has gone now. All locking is
explicit.

The price is some code duplication to handle huge pages in faultaround
path, but it should be fine, having overall improvement in readability.

Link: https://lore.kernel.org/r/20201229132819.najtavneutnf7ajp@box
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
[will: s/from from/from/ in comment; spotted by willy]
Signed-off-by: Will Deacon <will@kernel.org>
2021-01-20 14:46:04 +00:00
Linus Torvalds 8a8ca83ec3 Perf updates:
Core:
 
    - Better handling of page table leaves on archictectures which have
      architectures have non-pagetable aligned huge/large pages.  For such
      architectures a leaf can actually be part of a larger entry.
 
    - Prevent a deadlock vs. exec_update_mutex
 
  Architectures:
 
    - The related updates for page size calculation of leaf entries
 
    - The usual churn to support new CPUs
 
    - Small fixes and improvements all over the place
 -----BEGIN PGP SIGNATURE-----
 
 iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl/XvgATHHRnbHhAbGlu
 dXRyb25peC5kZQAKCRCmGPVMDXSYoUrdEACatdr93wv75vnm5tCZM4EsFvB2PzVJ
 ck4K4+hHiMVV4802qf+kW5plF+rckAU4TAai/L7wkTntKHvjD/0/o1epoIStb+dS
 SCpVkQMCLT/8xT242iHPOfgsQpVpJnIiBwVRjn8HXu82nXdgMJhKnBjTe634UfxW
 o2OCFiyJzpRi5l86gVp67ueqgvl34NPI2JaSLc0g80QfZ8akzdePPpED35CzYjZh
 41k+7ssvt6qch3vMUySHAhkX4gQl0nc80YAaF/XZbCfvdyY7D03PtfBjfvphTSK0
 l54z9aWh0ciK9P1aPfvkHDXBJUR2VtUAx2GiURK+XU3jNk3KMrz9CcBl1D/exIAg
 07IsiYVoB38YAUOZoR9K8p+p+5EuwYRRUMAgfQfBALCuaLQV477Cne82b2KmNCus
 1izUQvcDDf0s74OyYTHWFXRGla95COJvNLzkrZ1oU3mX4HgdKdOAUbf/2XTLWeKO
 3HOIS+jsg5cp82tRe4X5r51h73pONYlo9lLo/CjQXz25vMcXKtE/MZGq2gkRff4p
 N4k88eQ5LOsRqUaU46GcHozXRCfcpW7SPI9AaN5I/fKGIZvHP7uMdMb+g5DV8yHI
 dNZ8u5uLPHwdg80C3fJ3Pnp7VsVNHliPXMwv0vib7BCp7aUVZWeFnOntw3PdYFRk
 XKEbfl36IuAadg==
 =rZ99
 -----END PGP SIGNATURE-----

Merge tag 'perf-core-2020-12-14' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull perf updates from Thomas Gleixner:
 "Core:

   - Better handling of page table leaves on archictectures which have
     architectures have non-pagetable aligned huge/large pages. For such
     architectures a leaf can actually be part of a larger entry.

   - Prevent a deadlock vs exec_update_mutex

  Architectures:

   - The related updates for page size calculation of leaf entries

   - The usual churn to support new CPUs

   - Small fixes and improvements all over the place"

* tag 'perf-core-2020-12-14' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (24 commits)
  perf/x86/intel: Add Tremont Topdown support
  uprobes/x86: Fix fall-through warnings for Clang
  perf/x86: Fix fall-through warnings for Clang
  kprobes/x86: Fix fall-through warnings for Clang
  perf/x86/intel/lbr: Fix the return type of get_lbr_cycles()
  perf/x86/intel: Fix rtm_abort_event encoding on Ice Lake
  x86/kprobes: Restore BTF if the single-stepping is cancelled
  perf: Break deadlock involving exec_update_mutex
  sparc64/mm: Implement pXX_leaf_size() support
  powerpc/8xx: Implement pXX_leaf_size() support
  arm64/mm: Implement pXX_leaf_size() support
  perf/core: Fix arch_perf_get_page_size()
  mm: Introduce pXX_leaf_size()
  mm/gup: Provide gup_get_pte() more generic
  perf/x86/intel: Add event constraint for CYCLE_ACTIVITY.STALLS_MEM_ANY
  perf/x86/intel/uncore: Add Rocket Lake support
  perf/x86/msr: Add Rocket Lake CPU support
  perf/x86/cstate: Add Rocket Lake CPU support
  perf/x86/intel: Add Rocket Lake CPU support
  perf,mm: Handle non-page-table-aligned hugetlbfs
  ...
2020-12-14 17:34:12 -08:00
Peter Zijlstra 560dabbdf6 mm: Introduce pXX_leaf_size()
A number of architectures have non-pagetable aligned huge/large pages.
For such architectures a leaf can actually be part of a larger entry.

Provide generic helpers to determine the size of a page-table leaf.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Link: https://lkml.kernel.org/r/20201126121121.102580109@infradead.org
2020-12-03 10:14:50 +01:00
Peter Zijlstra 2a4a06da8a mm/gup: Provide gup_get_pte() more generic
In order to write another lockless page-table walker, we need
gup_get_pte() exposed. While doing that, rename it to
ptep_get_lockless() to match the existing ptep_get() naming.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20201126121121.036370527@infradead.org
2020-12-03 10:14:50 +01:00
Arnd Bergmann cef3970381 arch: pgtable: define MAX_POSSIBLE_PHYSMEM_BITS where needed
Stefan Agner reported a bug when using zsram on 32-bit Arm machines
with RAM above the 4GB address boundary:

  Unable to handle kernel NULL pointer dereference at virtual address 00000000
  pgd = a27bd01c
  [00000000] *pgd=236a0003, *pmd=1ffa64003
  Internal error: Oops: 207 [#1] SMP ARM
  Modules linked in: mdio_bcm_unimac(+) brcmfmac cfg80211 brcmutil raspberrypi_hwmon hci_uart crc32_arm_ce bcm2711_thermal phy_generic genet
  CPU: 0 PID: 123 Comm: mkfs.ext4 Not tainted 5.9.6 #1
  Hardware name: BCM2711
  PC is at zs_map_object+0x94/0x338
  LR is at zram_bvec_rw.constprop.0+0x330/0xa64
  pc : [<c0602b38>]    lr : [<c0bda6a0>]    psr: 60000013
  sp : e376bbe0  ip : 00000000  fp : c1e2921c
  r10: 00000002  r9 : c1dda730  r8 : 00000000
  r7 : e8ff7a00  r6 : 00000000  r5 : 02f9ffa0  r4 : e3710000
  r3 : 000fdffe  r2 : c1e0ce80  r1 : ebf979a0  r0 : 00000000
  Flags: nZCv  IRQs on  FIQs on  Mode SVC_32  ISA ARM  Segment user
  Control: 30c5383d  Table: 235c2a80  DAC: fffffffd
  Process mkfs.ext4 (pid: 123, stack limit = 0x495a22e6)
  Stack: (0xe376bbe0 to 0xe376c000)

As it turns out, zsram needs to know the maximum memory size, which
is defined in MAX_PHYSMEM_BITS when CONFIG_SPARSEMEM is set, or in
MAX_POSSIBLE_PHYSMEM_BITS on the x86 architecture.

The same problem will be hit on all 32-bit architectures that have a
physical address space larger than 4GB and happen to not enable sparsemem
and include asm/sparsemem.h from asm/pgtable.h.

After the initial discussion, I suggested just always defining
MAX_POSSIBLE_PHYSMEM_BITS whenever CONFIG_PHYS_ADDR_T_64BIT is
set, or provoking a build error otherwise. This addresses all
configurations that can currently have this runtime bug, but
leaves all other configurations unchanged.

I looked up the possible number of bits in source code and
datasheets, here is what I found:

 - on ARC, CONFIG_ARC_HAS_PAE40 controls whether 32 or 40 bits are used
 - on ARM, CONFIG_LPAE enables 40 bit addressing, without it we never
   support more than 32 bits, even though supersections in theory allow
   up to 40 bits as well.
 - on MIPS, some MIPS32r1 or later chips support 36 bits, and MIPS32r5
   XPA supports up to 60 bits in theory, but 40 bits are more than
   anyone will ever ship
 - On PowerPC, there are three different implementations of 36 bit
   addressing, but 32-bit is used without CONFIG_PTE_64BIT
 - On RISC-V, the normal page table format can support 34 bit
   addressing. There is no highmem support on RISC-V, so anything
   above 2GB is unused, but it might be useful to eventually support
   CONFIG_ZRAM for high pages.

Fixes: 61989a80fb ("staging: zsmalloc: zsmalloc memory allocation library")
Fixes: 02390b87a9 ("mm/zsmalloc: Prepare to variable MAX_PHYSMEM_BITS")
Acked-by: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Reviewed-by: Stefan Agner <stefan@agner.ch>
Tested-by: Stefan Agner <stefan@agner.ch>
Acked-by: Mike Rapoport <rppt@linux.ibm.com>
Link: https://lore.kernel.org/linux-mm/bdfa44bf1c570b05d6c70898e2bbb0acf234ecdf.1604762181.git.stefan@agner.ch/
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2020-11-16 16:57:18 +01:00
Jason Gunthorpe f8f6ae5d07 mm: always have io_remap_pfn_range() set pgprot_decrypted()
The purpose of io_remap_pfn_range() is to map IO memory, such as a
memory mapped IO exposed through a PCI BAR.  IO devices do not
understand encryption, so this memory must always be decrypted.
Automatically call pgprot_decrypted() as part of the generic
implementation.

This fixes a bug where enabling AMD SME causes subsystems, such as RDMA,
using io_remap_pfn_range() to expose BAR pages to user space to fail.
The CPU will encrypt access to those BAR pages instead of passing
unencrypted IO directly to the device.

Places not mapping IO should use remap_pfn_range().

Fixes: aca20d5462 ("x86/mm: Add support to make use of Secure Memory Encryption")
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: "Dave Young" <dyoung@redhat.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Larry Woodman <lwoodman@redhat.com>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Toshimitsu Kani <toshi.kani@hpe.com>
Cc: <stable@vger.kernel.org>
Link: https://lkml.kernel.org/r/0-v1-025d64bdf6c4+e-amd_sme_fix_jgg@nvidia.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-11-02 12:14:19 -08:00
Linus Torvalds 6734e20e39 arm64 updates for 5.10
- Userspace support for the Memory Tagging Extension introduced by Armv8.5.
   Kernel support (via KASAN) is likely to follow in 5.11.
 
 - Selftests for MTE, Pointer Authentication and FPSIMD/SVE context
   switching.
 
 - Fix and subsequent rewrite of our Spectre mitigations, including the
   addition of support for PR_SPEC_DISABLE_NOEXEC.
 
 - Support for the Armv8.3 Pointer Authentication enhancements.
 
 - Support for ASID pinning, which is required when sharing page-tables with
   the SMMU.
 
 - MM updates, including treating flush_tlb_fix_spurious_fault() as a no-op.
 
 - Perf/PMU driver updates, including addition of the ARM CMN PMU driver and
   also support to handle CPU PMU IRQs as NMIs.
 
 - Allow prefetchable PCI BARs to be exposed to userspace using normal
   non-cacheable mappings.
 
 - Implementation of ARCH_STACKWALK for unwinding.
 
 - Improve reporting of unexpected kernel traps due to BPF JIT failure.
 
 - Improve robustness of user-visible HWCAP strings and their corresponding
   numerical constants.
 
 - Removal of TEXT_OFFSET.
 
 - Removal of some unused functions, parameters and prototypes.
 
 - Removal of MPIDR-based topology detection in favour of firmware
   description.
 
 - Cleanups to handling of SVE and FPSIMD register state in preparation
   for potential future optimisation of handling across syscalls.
 
 - Cleanups to the SDEI driver in preparation for support in KVM.
 
 - Miscellaneous cleanups and refactoring work.
 -----BEGIN PGP SIGNATURE-----
 
 iQFEBAABCgAuFiEEPxTL6PPUbjXGY88ct6xw3ITBYzQFAl+AUXMQHHdpbGxAa2Vy
 bmVsLm9yZwAKCRC3rHDchMFjNFc1B/4q2Kabe+pPu7s1f58Q+OTaEfqcr3F1qh27
 F1YpFZUYxg0GPfPsFrnbJpo5WKo7wdR9ceI9yF/GHjs7A/MSoQJis3pG6SlAd9c0
 nMU5tCwhg9wfq6asJtl0/IPWem6cqqhdzC6m808DjeHuyi2CCJTt0vFWH3OeHEhG
 cfmLfaSNXOXa/MjEkT8y1AXJ/8IpIpzkJeCRA1G5s18PXV9Kl5bafIo9iqyfKPLP
 0rJljBmoWbzuCSMc81HmGUQI4+8KRp6HHhyZC/k0WEVgj3LiumT7am02bdjZlTnK
 BeNDKQsv2Jk8pXP2SlrI3hIUTz0bM6I567FzJEokepvTUzZ+CVBi
 =9J8H
 -----END PGP SIGNATURE-----

Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux

Pull arm64 updates from Will Deacon:
 "There's quite a lot of code here, but much of it is due to the
  addition of a new PMU driver as well as some arm64-specific selftests
  which is an area where we've traditionally been lagging a bit.

  In terms of exciting features, this includes support for the Memory
  Tagging Extension which narrowly missed 5.9, hopefully allowing
  userspace to run with use-after-free detection in production on CPUs
  that support it. Work is ongoing to integrate the feature with KASAN
  for 5.11.

  Another change that I'm excited about (assuming they get the hardware
  right) is preparing the ASID allocator for sharing the CPU page-table
  with the SMMU. Those changes will also come in via Joerg with the
  IOMMU pull.

  We do stray outside of our usual directories in a few places, mostly
  due to core changes required by MTE. Although much of this has been
  Acked, there were a couple of places where we unfortunately didn't get
  any review feedback.

  Other than that, we ran into a handful of minor conflicts in -next,
  but nothing that should post any issues.

  Summary:

   - Userspace support for the Memory Tagging Extension introduced by
     Armv8.5. Kernel support (via KASAN) is likely to follow in 5.11.

   - Selftests for MTE, Pointer Authentication and FPSIMD/SVE context
     switching.

   - Fix and subsequent rewrite of our Spectre mitigations, including
     the addition of support for PR_SPEC_DISABLE_NOEXEC.

   - Support for the Armv8.3 Pointer Authentication enhancements.

   - Support for ASID pinning, which is required when sharing
     page-tables with the SMMU.

   - MM updates, including treating flush_tlb_fix_spurious_fault() as a
     no-op.

   - Perf/PMU driver updates, including addition of the ARM CMN PMU
     driver and also support to handle CPU PMU IRQs as NMIs.

   - Allow prefetchable PCI BARs to be exposed to userspace using normal
     non-cacheable mappings.

   - Implementation of ARCH_STACKWALK for unwinding.

   - Improve reporting of unexpected kernel traps due to BPF JIT
     failure.

   - Improve robustness of user-visible HWCAP strings and their
     corresponding numerical constants.

   - Removal of TEXT_OFFSET.

   - Removal of some unused functions, parameters and prototypes.

   - Removal of MPIDR-based topology detection in favour of firmware
     description.

   - Cleanups to handling of SVE and FPSIMD register state in
     preparation for potential future optimisation of handling across
     syscalls.

   - Cleanups to the SDEI driver in preparation for support in KVM.

   - Miscellaneous cleanups and refactoring work"

* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (148 commits)
  Revert "arm64: initialize per-cpu offsets earlier"
  arm64: random: Remove no longer needed prototypes
  arm64: initialize per-cpu offsets earlier
  kselftest/arm64: Check mte tagged user address in kernel
  kselftest/arm64: Verify KSM page merge for MTE pages
  kselftest/arm64: Verify all different mmap MTE options
  kselftest/arm64: Check forked child mte memory accessibility
  kselftest/arm64: Verify mte tag inclusion via prctl
  kselftest/arm64: Add utilities and a test to validate mte memory
  perf: arm-cmn: Fix conversion specifiers for node type
  perf: arm-cmn: Fix unsigned comparison to less than zero
  arm64: dbm: Invalidate local TLB when setting TCR_EL1.HD
  arm64: mm: Make flush_tlb_fix_spurious_fault() a no-op
  arm64: Add support for PR_SPEC_DISABLE_NOEXEC prctl() option
  arm64: Pull in task_stack_page() to Spectre-v4 mitigation code
  KVM: arm64: Allow patching EL2 vectors even with KASLR is not enabled
  arm64: Get rid of arm64_ssbd_state
  KVM: arm64: Convert ARCH_WORKAROUND_2 to arm64_get_spectre_v4_state()
  KVM: arm64: Get rid of kvm_arm_have_ssbd()
  KVM: arm64: Simplify handling of ARCH_WORKAROUND_2
  ...
2020-10-12 10:00:51 -07:00
Vasily Gorbik d3f7b1bb20 mm/gup: fix gup_fast with dynamic page table folding
Currently to make sure that every page table entry is read just once
gup_fast walks perform READ_ONCE and pass pXd value down to the next
gup_pXd_range function by value e.g.:

  static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end,
                           unsigned int flags, struct page **pages, int *nr)
  ...
          pudp = pud_offset(&p4d, addr);

This function passes a reference on that local value copy to pXd_offset,
and might get the very same pointer in return.  This happens when the
level is folded (on most arches), and that pointer should not be
iterated.

On s390 due to the fact that each task might have different 5,4 or
3-level address translation and hence different levels folded the logic
is more complex and non-iteratable pointer to a local copy leads to
severe problems.

Here is an example of what happens with gup_fast on s390, for a task
with 3-level paging, crossing a 2 GB pud boundary:

  // addr = 0x1007ffff000, end = 0x10080001000
  static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end,
                           unsigned int flags, struct page **pages, int *nr)
  {
        unsigned long next;
        pud_t *pudp;

        // pud_offset returns &p4d itself (a pointer to a value on stack)
        pudp = pud_offset(&p4d, addr);
        do {
                // on second iteratation reading "random" stack value
                pud_t pud = READ_ONCE(*pudp);

                // next = 0x10080000000, due to PUD_SIZE/MASK != PGDIR_SIZE/MASK on s390
                next = pud_addr_end(addr, end);
                ...
        } while (pudp++, addr = next, addr != end); // pudp++ iterating over stack

        return 1;
  }

This happens since s390 moved to common gup code with commit
d1874a0c28 ("s390/mm: make the pxd_offset functions more robust") and
commit 1a42010cdc ("s390/mm: convert to the generic
get_user_pages_fast code").

s390 tried to mimic static level folding by changing pXd_offset
primitives to always calculate top level page table offset in pgd_offset
and just return the value passed when pXd_offset has to act as folded.

What is crucial for gup_fast and what has been overlooked is that
PxD_SIZE/MASK and thus pXd_addr_end should also change correspondingly.
And the latter is not possible with dynamic folding.

To fix the issue in addition to pXd values pass original pXdp pointers
down to gup_pXd_range functions.  And introduce pXd_offset_lockless
helpers, which take an additional pXd entry value parameter.  This has
already been discussed in

  https://lkml.kernel.org/r/20190418100218.0a4afd51@mschwideX1

Fixes: 1a42010cdc ("s390/mm: convert to the generic get_user_pages_fast code")
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Reviewed-by: Alexander Gordeev <agordeev@linux.ibm.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Reviewed-by: Mike Rapoport <rppt@linux.ibm.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Jeff Dike <jdike@addtoit.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Claudio Imbrenda <imbrenda@linux.ibm.com>
Cc: <stable@vger.kernel.org>	[5.2+]
Link: https://lkml.kernel.org/r/patch.git-943f1e5dcff2.your-ad-here.call-01599856292-ext-8676@work.hours
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-09-26 10:33:57 -07:00
Steven Price 8a84802e2a mm: Add arch hooks for saving/restoring tags
Arm's Memory Tagging Extension (MTE) adds some metadata (tags) to
every physical page, when swapping pages out to disk it is necessary to
save these tags, and later restore them when reading the pages back.

Add some hooks along with dummy implementations to enable the
arch code to handle this.

Three new hooks are added to the swap code:
 * arch_prepare_to_swap() and
 * arch_swap_invalidate_page() / arch_swap_invalidate_area().
One new hook is added to shmem:
 * arch_swap_restore()

Signed-off-by: Steven Price <steven.price@arm.com>
[catalin.marinas@arm.com: add unlock_page() on the error path]
[catalin.marinas@arm.com: dropped the _tags suffix]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Andrew Morton <akpm@linux-foundation.org>
2020-09-04 12:46:07 +01:00
Jessica Clarke bd05220c7b arch/ia64: Restore arch-specific pgd_offset_k implementation
IA-64 is special and treats pgd_offset_k() differently to pgd_offset(),
using different formulae to calculate the indices into the kernel and user
PGDs.  The index into the user PGDs takes into account the region number,
but the index into the kernel (init_mm) PGD always assumes a predefined
kernel region number. Commit 974b9b2c68 ("mm: consolidate pte_index() and
pte_offset_*() definitions") made IA-64 use a generic pgd_offset_k() which
incorrectly used pgd_index() for kernel page tables.  As a result, the
index into the kernel PGD was going out of bounds and the kernel hung
during early boot.

Allow overrides of pgd_offset_k() and override it on IA-64 with the old
implementation that will correctly index the kernel PGD.

Fixes: 974b9b2c68 ("mm: consolidate pte_index() and pte_offset_*() definitions")
Reported-by: John Paul Adrian Glaubitz <glaubitz@physik.fu-berlin.de>
Signed-off-by: Jessica Clarke <jrtc27@jrtc27.com>
Tested-by: John Paul Adrian Glaubitz <glaubitz@physik.fu-berlin.de>
Acked-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
2020-08-17 21:50:54 +03:00
Randy Dunlap 1067b261cc mm: drop duplicated words in <linux/pgtable.h>
Drop the doubled words "used" and "by".

Drop the repeated acronym "TLB" and make several other fixes around it.
(capital letters, spellos)

Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: SeongJae Park <sjpark@amazon.de>
Link: http://lkml.kernel.org/r/2bb6e13e-44df-4920-52d9-4d3539945f73@infradead.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-12 10:57:57 -07:00
Pekka Enberg 63bb76de4a
mm: pgtable: Make generic pgprot_* macros available for no-MMU
The <linux/pgtable.h> header defines some generic pgprot_*
implementations, but they are only available when CONFIG_MMU is enabled.
The RISC-V architecture, for example, therefore defines some of these
pgprot_* macros for !NOMMU.

Let's make the pgprot_* generic available even for !NOMMU so we can
remove the RISC-V specific definitions.

Compile-tested with x86 defconfig, and riscv defconfig and !MMU defconfig.

Suggested-by: Palmer Dabbelt <palmerdabbelt@google.com>
Reviewed-by: Mike Rapoport <rppt@linux.ibm.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Palmer Dabbelt <palmerdabbelt@google.com>
2020-07-30 11:37:45 -07:00
Christophe Leroy 481e980a7c mm: Allow arches to provide ptep_get()
Since commit 9e343b467c ("READ_ONCE: Enforce atomicity for
{READ,WRITE}_ONCE() memory accesses") it is not possible anymore to
use READ_ONCE() to access complex page table entries like the one
defined for powerpc 8xx with 16k size pages.

Define a ptep_get() helper that architectures can override instead
of performing a READ_ONCE() on the page table entry pointer.

Fixes: 9e343b467c ("READ_ONCE: Enforce atomicity for {READ,WRITE}_ONCE() memory accesses")
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Acked-by: Will Deacon <will@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/087fa12b6e920e32315136b998aa834f99242695.1592225558.git.christophe.leroy@csgroup.eu
2020-06-20 22:14:53 +10:00
Michel Lespinasse c1e8d7c6a7 mmap locking API: convert mmap_sem comments
Convert comments that reference mmap_sem to reference mmap_lock instead.

[akpm@linux-foundation.org: fix up linux-next leftovers]
[akpm@linux-foundation.org: s/lockaphore/lock/, per Vlastimil]
[akpm@linux-foundation.org: more linux-next fixups, per Michel]

Signed-off-by: Michel Lespinasse <walken@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Davidlohr Bueso <dbueso@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Laurent Dufour <ldufour@linux.ibm.com>
Cc: Liam Howlett <Liam.Howlett@oracle.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ying Han <yinghan@google.com>
Link: http://lkml.kernel.org/r/20200520052908.204642-13-walken@google.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-09 09:39:14 -07:00
Mike Rapoport 974b9b2c68 mm: consolidate pte_index() and pte_offset_*() definitions
All architectures define pte_index() as

	(address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)

and all architectures define pte_offset_kernel() as an entry in the array
of PTEs indexed by the pte_index().

For the most architectures the pte_offset_kernel() implementation relies
on the availability of pmd_page_vaddr() that converts a PMD entry value to
the virtual address of the page containing PTEs array.

Let's move x86 definitions of the PTE accessors to the generic place in
<linux/pgtable.h> and then simply drop the respective definitions from the
other architectures.

The architectures that didn't provide pmd_page_vaddr() are updated to have
that defined.

The generic implementation of pte_offset_kernel() can be overridden by an
architecture and alpha makes use of this because it has special ordering
requirements for its version of pte_offset_kernel().

[rppt@linux.ibm.com: v2]
  Link: http://lkml.kernel.org/r/20200514170327.31389-11-rppt@kernel.org
[rppt@linux.ibm.com: update]
  Link: http://lkml.kernel.org/r/20200514170327.31389-12-rppt@kernel.org
[rppt@linux.ibm.com: update]
  Link: http://lkml.kernel.org/r/20200514170327.31389-13-rppt@kernel.org
[akpm@linux-foundation.org: fix x86 warning]
[sfr@canb.auug.org.au: fix powerpc build]
  Link: http://lkml.kernel.org/r/20200607153443.GB738695@linux.ibm.com

Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Cain <bcain@codeaurora.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Ungerer <gerg@linux-m68k.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Guo Ren <guoren@kernel.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Helge Deller <deller@gmx.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Ley Foon Tan <ley.foon.tan@intel.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Nick Hu <nickhu@andestech.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vincent Chen <deanbo422@gmail.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Will Deacon <will@kernel.org>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Link: http://lkml.kernel.org/r/20200514170327.31389-10-rppt@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-09 09:39:14 -07:00
Mike Rapoport e05c7b1f2b mm: pgtable: add shortcuts for accessing kernel PMD and PTE
The powerpc 32-bit implementation of pgtable has nice shortcuts for
accessing kernel PMD and PTE for a given virtual address.  Make these
helpers available for all architectures.

[rppt@linux.ibm.com: microblaze: fix page table traversal in setup_rt_frame()]
  Link: http://lkml.kernel.org/r/20200518191511.GD1118872@kernel.org
[akpm@linux-foundation.org: s/pmd_ptr_k/pmd_off_k/ in various powerpc places]

Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Cain <bcain@codeaurora.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Ungerer <gerg@linux-m68k.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Guo Ren <guoren@kernel.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Helge Deller <deller@gmx.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Ley Foon Tan <ley.foon.tan@intel.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Nick Hu <nickhu@andestech.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vincent Chen <deanbo422@gmail.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Will Deacon <will@kernel.org>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Link: http://lkml.kernel.org/r/20200514170327.31389-9-rppt@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-09 09:39:13 -07:00
Mike Rapoport ca5999fde0 mm: introduce include/linux/pgtable.h
The include/linux/pgtable.h is going to be the home of generic page table
manipulation functions.

Start with moving asm-generic/pgtable.h to include/linux/pgtable.h and
make the latter include asm/pgtable.h.

Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Cain <bcain@codeaurora.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Ungerer <gerg@linux-m68k.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Guo Ren <guoren@kernel.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Helge Deller <deller@gmx.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Ley Foon Tan <ley.foon.tan@intel.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Nick Hu <nickhu@andestech.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vincent Chen <deanbo422@gmail.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Will Deacon <will@kernel.org>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Link: http://lkml.kernel.org/r/20200514170327.31389-3-rppt@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-09 09:39:13 -07:00