All places outside of core VFS that checked ->read and ->write for being NULL or
called the methods directly are gone now, so NULL {read,write} with non-NULL
{read,write}_iter will do the right thing in all cases.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
struct kiocb now is a generic I/O container, so move it to fs.h.
Also do a #include diet for aio.h while we're at it.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
For now, just use the same thing we pass to ->direct_IO() - it's all
iovec-based at the moment. Pass it explicitly to iov_iter_init() and
account for kvec vs. iovec in there, by the same kludge NFS ->direct_IO()
uses.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Pipe has no data associated with fs so it is not good idea to block
pipe_write() if FS is frozen, but we can not update file's time on such
filesystem. Let's use same idea as we use in touch_time().
Addresses https://bugzilla.kernel.org/show_bug.cgi?id=65701
Signed-off-by: Dmitry Monakhov <dmonakhov@openvz.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The pipe code was trying (and failing) to be very careful about freeing
the pipe info only after the last access, with a pattern like:
spin_lock(&inode->i_lock);
if (!--pipe->files) {
inode->i_pipe = NULL;
kill = 1;
}
spin_unlock(&inode->i_lock);
__pipe_unlock(pipe);
if (kill)
free_pipe_info(pipe);
where the final freeing is done last.
HOWEVER. The above is actually broken, because while the freeing is
done at the end, if we have two racing processes releasing the pipe
inode info, the one that *doesn't* free it will decrement the ->files
count, and unlock the inode i_lock, but then still use the
"pipe_inode_info" afterwards when it does the "__pipe_unlock(pipe)".
This is *very* hard to trigger in practice, since the race window is
very small, and adding debug options seems to just hide it by slowing
things down.
Simon originally reported this way back in July as an Oops in
kmem_cache_allocate due to a single bit corruption (due to the final
"spin_unlock(pipe->mutex.wait_lock)" incrementing a field in a different
allocation that had re-used the free'd pipe-info), it's taken this long
to figure out.
Since the 'pipe->files' accesses aren't even protected by the pipe lock
(we very much use the inode lock for that), the simple solution is to
just drop the pipe lock early. And since there were two users of this
pattern, create a helper function for it.
Introduced commit ba5bb14733 ("pipe: take allocation and freeing of
pipe_inode_info out of ->i_mutex").
Reported-by: Simon Kirby <sim@hostway.ca>
Reported-by: Ian Applegate <ia@cloudflare.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Cc: stable@kernel.org # v3.10+
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
it's used only as a flag to distinguish normal pipes/FIFOs from the
internal per-task one used by file-to-file splice. And pipe->files
would work just as well for that purpose...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
fs/pipe.c file_operations methods *know* that pipe is not an internal one;
no need to check pipe->inode for those callers.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
* new field - pipe->files; number of struct file over that pipe (all
sharing the same inode, of course); protected by inode->i_lock.
* pipe_release() decrements pipe->files, clears inode->i_pipe when
if the counter has reached 0 (all under ->i_lock) and, in that case,
frees pipe after having done pipe_unlock()
* fifo_open() starts with grabbing ->i_lock, and either bumps pipe->files
if ->i_pipe was non-NULL or allocates a new pipe (dropping and regaining
->i_lock) and rechecks ->i_pipe; if it's still NULL, inserts new pipe
there, otherwise bumps ->i_pipe->files and frees the one we'd allocated.
At that point we know that ->i_pipe is non-NULL and won't go away, so
we can do pipe_lock() on it and proceed as we used to. If we end up
failing, decrement pipe->files and if it reaches 0 clear ->i_pipe and
free the sucker after pipe_unlock().
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
* use the fact that file_inode(file)->i_pipe doesn't change
while the file is opened - no locks needed to access that.
* switch to pipe_lock/pipe_unlock where it's easy to do
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
If you open a pipe for neither read nor write, the pipe code will not
add any usage counters to the pipe, causing the 'struct pipe_inode_info"
to be potentially released early.
That doesn't normally matter, since you cannot actually use the pipe,
but the pipe release code - particularly fasync handling - still expects
the actual pipe infrastructure to all be there. And rather than adding
NULL pointer checks, let's just disallow this case, the same way we
already do for the named pipe ("fifo") case.
This is ancient going back to pre-2.4 days, and until trinity, nobody
naver noticed.
Reported-by: Dave Jones <davej@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Allocating a file structure in function get_empty_filp() might fail because
of several reasons:
- not enough memory for file structures
- operation is not allowed
- user is over its limit
Currently the function returns NULL in all cases and we loose the exact
reason of the error. All callers of get_empty_filp() assume that the function
can fail with ENFILE only.
Return error through pointer. Change all callers to preserve this error code.
[AV: cleaned up a bit, carved the get_empty_filp() part out into a separate commit
(things remaining here deal with alloc_file()), removed pipe(2) behaviour change]
Signed-off-by: Anatol Pomozov <anatol.pomozov@gmail.com>
Reviewed-by: "Theodore Ts'o" <tytso@mit.edu>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
don't mess with sys_close() if copy_to_user() fails; just postpone
fd_install() until we know it hasn't.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Pull second vfs pile from Al Viro:
"The stuff in there: fsfreeze deadlock fixes by Jan (essentially, the
deadlock reproduced by xfstests 068), symlink and hardlink restriction
patches, plus assorted cleanups and fixes.
Note that another fsfreeze deadlock (emergency thaw one) is *not*
dealt with - the series by Fernando conflicts a lot with Jan's, breaks
userland ABI (FIFREEZE semantics gets changed) and trades the deadlock
for massive vfsmount leak; this is going to be handled next cycle.
There probably will be another pull request, but that stuff won't be
in it."
Fix up trivial conflicts due to unrelated changes next to each other in
drivers/{staging/gdm72xx/usb_boot.c, usb/gadget/storage_common.c}
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (54 commits)
delousing target_core_file a bit
Documentation: Correct s_umount state for freeze_fs/unfreeze_fs
fs: Remove old freezing mechanism
ext2: Implement freezing
btrfs: Convert to new freezing mechanism
nilfs2: Convert to new freezing mechanism
ntfs: Convert to new freezing mechanism
fuse: Convert to new freezing mechanism
gfs2: Convert to new freezing mechanism
ocfs2: Convert to new freezing mechanism
xfs: Convert to new freezing code
ext4: Convert to new freezing mechanism
fs: Protect write paths by sb_start_write - sb_end_write
fs: Skip atime update on frozen filesystem
fs: Add freezing handling to mnt_want_write() / mnt_drop_write()
fs: Improve filesystem freezing handling
switch the protection of percpu_counter list to spinlock
nfsd: Push mnt_want_write() outside of i_mutex
btrfs: Push mnt_want_write() outside of i_mutex
fat: Push mnt_want_write() outside of i_mutex
...
Btrfs has to make sure we have space to allocate new blocks in order to modify
the inode, so updating time can fail. We've gotten around this by having our
own file_update_time but this is kind of a pain, and Christoph has indicated he
would like to make xfs do something different with atime updates. So introduce
->update_time, where we will deal with i_version an a/m/c time updates and
indicate which changes need to be made. The normal version just does what it
has always done, updates the time and marks the inode dirty, and then
filesystems can choose to do something different.
I've gone through all of the users of file_update_time and made them check for
errors with the exception of the fault code since it's complicated and I wasn't
quite sure what to do there, also Jan is going to be pushing the file time
updates into page_mkwrite for those who have it so that should satisfy btrfs and
make it not a big deal to check the file_update_time() return code in the
generic fault path. Thanks,
Signed-off-by: Josef Bacik <josef@redhat.com>
As described in commit 07d106d0a ("vfs: fix up ENOIOCTLCMD error
handling"), drivers should return -ENOIOCTLCMD if they receive an ioctl
command which they don't understand. Doing so will result in -ENOTTY
being returned to userspace, which matches the behaviour of the compat
layer if it fails to translate an ioctl command.
This patch fixes the pipe ioctl to return -ENOIOCTLCMD instead of
-EINVAL when passed an unknown ioctl command.
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
The actual internal pipe implementation is already really about
individual packets (called "pipe buffers"), and this simply exposes that
as a special packetized mode.
When we are in the packetized mode (marked by O_DIRECT as suggested by
Alan Cox), a write() on a pipe will not merge the new data with previous
writes, so each write will get a pipe buffer of its own. The pipe
buffer is then marked with the PIPE_BUF_FLAG_PACKET flag, which in turn
will tell the reader side to break the read at that boundary (and throw
away any partial packet contents that do not fit in the read buffer).
End result: as long as you do writes less than PIPE_BUF in size (so that
the pipe doesn't have to split them up), you can now treat the pipe as a
packet interface, where each read() system call will read one packet at
a time. You can just use a sufficiently big read buffer (PIPE_BUF is
sufficient, since bigger than that doesn't guarantee atomicity anyway),
and the return value of the read() will naturally give you the size of
the packet.
NOTE! We do not support zero-sized packets, and zero-sized reads and
writes to a pipe continue to be no-ops. Also note that big packets will
currently be split at write time, but that the size at which that
happens is not really specified (except that it's bigger than PIPE_BUF).
Currently that limit is the system page size, but we might want to
explicitly support bigger packets some day.
The main user for this is going to be the autofs packet interface,
allowing us to stop having to care so deeply about exact packet sizes
(which have had bugs with 32/64-bit compatibility modes). But user
space can create packetized pipes with "pipe2(fd, O_DIRECT)", which will
fail with an EINVAL on kernels that do not support this interface.
Tested-by: Michael Tokarev <mjt@tls.msk.ru>
Cc: Alan Cox <alan@lxorguk.ukuu.org.uk>
Cc: David Miller <davem@davemloft.net>
Cc: Ian Kent <raven@themaw.net>
Cc: Thomas Meyer <thomas@m3y3r.de>
Cc: stable@kernel.org # needed for systemd/autofs interaction fix
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
- Move open-coded filesystem magic numbers into magic.h
- Rearrange magic.h so that the filesystem-related constants are grouped
together.
Signed-off-by: Muthukumar R <muthur@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When a user with the CAP_SYS_RESOURCE cap tries to F_SETPIPE_SZ a pipe
with size bigger than kmalloc() can alloc it spits out an ugly warning:
------------[ cut here ]------------
WARNING: at mm/page_alloc.c:2095 __alloc_pages_nodemask+0x5d3/0x7a0()
Pid: 733, comm: a.out Not tainted 3.2.0-rc1+ #4
Call Trace:
warn_slowpath_common+0x75/0xb0
warn_slowpath_null+0x15/0x20
__alloc_pages_nodemask+0x5d3/0x7a0
__get_free_pages+0x12/0x50
__kmalloc+0x12b/0x150
pipe_set_size+0x75/0x120
pipe_fcntl+0xf8/0x140
do_fcntl+0x2d4/0x410
sys_fcntl+0x66/0xa0
system_call_fastpath+0x16/0x1b
---[ end trace 432f702e6db7b5ee ]---
Instead, make kcalloc() handle the overflow case and fail quietly.
[akpm@linux-foundation.org: switch to sizeof(*bufs) for 80-column niceness]
Signed-off-by: Sasha Levin <levinsasha928@gmail.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Acked-by: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently a statfs on a pipe's /proc/<pid>/fd/ link returns -ENOSYS. Wire
pipfs up so that the statfs succeeds.
This is required by checkpoint-restart in the userspace to make it
possible to distinguish pipes from fifos.
When we dump information about task's open files we use the /proc/pid/fd
directoy's symlinks and the fact that opening any of them gives us exactly
the same dentry->inode pair as the original process has. Now if a task
we're dumping has opened pipe and fifo we need to detect this and act
accordingly. Knowing that an fd with type S_ISFIFO resides on a pipefs is
the most precise way.
Signed-off-by: Pavel Emelyanov <xemul@parallels.com>
Reviewed-by: Tejun Heo <tj@kernel.org>
Acked-by: Serge Hallyn <serge.hallyn@canonical.com>
Signed-off-by: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Al Viro <viro@ZenIV.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Workloads using pipes and sockets hit inode_sb_list_lock contention.
superblock s_inodes list is needed for quota, dirty, pagecache and
fsnotify management. pipe/anon/socket fs are clearly not candidates for
these.
Signed-off-by: Eric Dumazet <eric.dumazet@gmail.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
For a number of file systems that don't have a mount point (e.g. sockfs
and pipefs), they are not marked as long term. Therefore in
mntput_no_expire, all locks in vfs_mount lock are taken instead of just
local cpu's lock to aggregate reference counts when we release
reference to file objects. In fact, only local lock need to have been
taken to update ref counts as these file systems are in no danger of
going away until we are ready to unregister them.
The attached patch marks file systems using kern_mount without
mount point as long term. The contentions of vfs_mount lock
is now eliminated. Before un-registering such file system,
kern_unmount should be called to remove the long term flag and
make the mount point ready to be freed.
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Commit e462c448fd ("pipe: use event aware wakeups") optimized the pipe
event wakeup calls to avoid wakeups if the events do not match the
requested set.
However, the optimization was buggy, in that it didn't actually use the
correct sets for the events: when we make room for more data to be
written, the pipe poll() routine will return both the POLLOUT _and_
POLLWRNORM bits. Similarly for read.
And most critically, when a pipe is released, that will potentially
result in POLLHUP|POLLERR (depending on whether it was the last reader
or writer), not just the regular POLLIN|POLLOUT.
This bug showed itself as a hung gnome-screensaver-dialog process, stuck
forever (or at least until it was poked by a signal or by being traced)
in a poll() system call.
Cc: Davide Libenzi <davidel@xmailserver.org>
Cc: David S. Miller <davem@davemloft.net>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Instead of splitting refcount between (per-cpu) mnt_count
and (SMP-only) mnt_longrefs, make all references contribute
to mnt_count again and keep track of how many are longterm
ones.
Accounting rules for longterm count:
* 1 for each fs_struct.root.mnt
* 1 for each fs_struct.pwd.mnt
* 1 for having non-NULL ->mnt_ns
* decrement to 0 happens only under vfsmount lock exclusive
That allows nice common case for mntput() - since we can't drop the
final reference until after mnt_longterm has reached 0 due to the rules
above, mntput() can grab vfsmount lock shared and check mnt_longterm.
If it turns out to be non-zero (which is the common case), we know
that this is not the final mntput() and can just blindly decrement
percpu mnt_count. Otherwise we grab vfsmount lock exclusive and
do usual decrement-and-check of percpu mnt_count.
For fs_struct.c we have mnt_make_longterm() and mnt_make_shortterm();
namespace.c uses the latter in places where we don't already hold
vfsmount lock exclusive and opencodes a few remaining spots where
we need to manipulate mnt_longterm.
Note that we mostly revert the code outside of fs/namespace.c back
to what we used to have; in particular, normal code doesn't need
to care about two kinds of references, etc. And we get to keep
the optimization Nick's variant had bought us...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs-2.6: (41 commits)
fs: add documentation on fallocate hole punching
Gfs2: fail if we try to use hole punch
Btrfs: fail if we try to use hole punch
Ext4: fail if we try to use hole punch
Ocfs2: handle hole punching via fallocate properly
XFS: handle hole punching via fallocate properly
fs: add hole punching to fallocate
vfs: pass struct file to do_truncate on O_TRUNC opens (try #2)
fix signedness mess in rw_verify_area() on 64bit architectures
fs: fix kernel-doc for dcache::prepend_path
fs: fix kernel-doc for dcache::d_validate
sanitize ecryptfs ->mount()
switch afs
move internal-only parts of ncpfs headers to fs/ncpfs
switch ncpfs
switch 9p
pass default dentry_operations to mount_pseudo()
switch hostfs
switch affs
switch configfs
...
Send the events the wakeup refers to, so that epoll, and even the new poll
code in fs/select.c can avoid wakeups if the events do not match the
requested set.
Signed-off-by: Davide Libenzi <davidel@xmailserver.org>
Acked-by: David S. Miller <davem@davemloft.net>
Acked-by: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The problem that this patch aims to fix is vfsmount refcounting scalability.
We need to take a reference on the vfsmount for every successful path lookup,
which often go to the same mount point.
The fundamental difficulty is that a "simple" reference count can never be made
scalable, because any time a reference is dropped, we must check whether that
was the last reference. To do that requires communication with all other CPUs
that may have taken a reference count.
We can make refcounts more scalable in a couple of ways, involving keeping
distributed counters, and checking for the global-zero condition less
frequently.
- check the global sum once every interval (this will delay zero detection
for some interval, so it's probably a showstopper for vfsmounts).
- keep a local count and only taking the global sum when local reaches 0 (this
is difficult for vfsmounts, because we can't hold preempt off for the life of
a reference, so a counter would need to be per-thread or tied strongly to a
particular CPU which requires more locking).
- keep a local difference of increments and decrements, which allows us to sum
the total difference and hence find the refcount when summing all CPUs. Then,
keep a single integer "long" refcount for slow and long lasting references,
and only take the global sum of local counters when the long refcount is 0.
This last scheme is what I implemented here. Attached mounts and process root
and working directory references are "long" references, and everything else is
a short reference.
This allows scalable vfsmount references during path walking over mounted
subtrees and unattached (lazy umounted) mounts with processes still running
in them.
This results in one fewer atomic op in the fastpath: mntget is now just a
per-CPU inc, rather than an atomic inc; and mntput just requires a spinlock
and non-atomic decrement in the common case. However code is otherwise bigger
and heavier, so single threaded performance is basically a wash.
Signed-off-by: Nick Piggin <npiggin@kernel.dk>
Regardless of how much we possibly try to scale dcache, there is likely
always going to be some fundamental contention when adding or removing children
under the same parent. Pseudo filesystems do not seem need to have connected
dentries because by definition they are disconnected.
Signed-off-by: Nick Piggin <npiggin@kernel.dk>
Reduce some branches and memory accesses in dcache lookup by adding dentry
flags to indicate common d_ops are set, rather than having to check them.
This saves a pointer memory access (dentry->d_op) in common path lookup
situations, and saves another pointer load and branch in cases where we
have d_op but not the particular operation.
Patched with:
git grep -E '[.>]([[:space:]])*d_op([[:space:]])*=' | xargs sed -e 's/\([^\t ]*\)->d_op = \(.*\);/d_set_d_op(\1, \2);/' -e 's/\([^\t ]*\)\.d_op = \(.*\);/d_set_d_op(\&\1, \2);/' -i
Signed-off-by: Nick Piggin <npiggin@kernel.dk>
Pseudo filesystems that don't put inode on RCU list or reachable by
rcu-walk dentries do not need to RCU free their inodes.
Signed-off-by: Nick Piggin <npiggin@kernel.dk>
This avoids some include-file hell, and the function isn't really
important enough to be inlined anyway.
Reported-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
And in particular, use it in 'pipe_fcntl()'.
The other pipe functions do not need to use the 'careful' version, since
they are only ever called for things that are already known to be pipes.
The normal read/write/ioctl functions are called through the file
operations structures, so if a file isn't a pipe, they'd never get
called. But pipe_fcntl() is special, and called directly from the
generic fcntl code, and needs to use the same careful function that the
splice code is using.
Cc: Jens Axboe <jaxboe@fusionio.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Dave Jones <davej@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Instead of always assigning an increasing inode number in new_inode
move the call to assign it into those callers that actually need it.
For now callers that need it is estimated conservatively, that is
the call is added to all filesystems that do not assign an i_ino
by themselves. For a few more filesystems we can avoid assigning
any inode number given that they aren't user visible, and for others
it could be done lazily when an inode number is actually needed,
but that's left for later patches.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
The arguments were transposed, we want to assign the error code to
'ret', which is being returned.
Signed-off-by: Nicolas Kaiser <nikai@nikai.net>
Cc: stable@kernel.org
Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
As it stands this check compares the number of pages to the page size.
This makes no sense and makes the fcntl fail in almost any sane case.
Fix it by checking if nr_pages is not zero (it can become zero only if
arg is too big and round_pipe_size() overflows).
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
pipe_set_size() needs to copy pipe bufs from the old circular buffer
to the new.
The current code gets this wrong in multiple ways, resulting in oops.
Test program is available here:
http://www.kernel.org/pub/linux/kernel/people/mszeredi/piperesize/
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
This changes the interface to be based on bytes instead. The API
matches that of F_SETPIPE_SZ in that it rounds up the passed in
size so that the resulting page array is a power-of-2 in size.
The proc file is renamed to /proc/sys/fs/pipe-max-size to
reflect this change.
Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
Change it to CAP_SYS_RESOURCE, as that more accurately models what
we want to control.
Suggested-by: Michael Kerrisk <mtk.manpages@googlemail.com>
Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
We don't need to pages to guarantee the POSIX requirement
that upto a page size write must be atomic to an empty
pipe.
Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mszeredi/fuse:
mm: export generic_pipe_buf_*() to modules
fuse: support splice() reading from fuse device
fuse: allow splice to move pages
mm: export remove_from_page_cache() to modules
mm: export lru_cache_add_*() to modules
fuse: support splice() writing to fuse device
fuse: get page reference for readpages
fuse: use get_user_pages_fast()
fuse: remove unneeded variable
Add a mutex_unlock missing on the error path. At other exists from the
function that return an error flag, the mutex is unlocked, so do the same
here.
The semantic match that finds this problem is as follows:
(http://coccinelle.lip6.fr/)
// <smpl>
@@
expression E1;
@@
* mutex_lock(E1,...);
<+... when != E1
if (...) {
... when != E1
* return ...;
}
...+>
* mutex_unlock(E1,...);
// </smpl>
Signed-off-by: Julia Lawall <julia@diku.dk>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Instead of requiring an exact number of pages as the argument and
return value, change the API to deal with number of bytes instead.
This also relaxes the requirement that the passed in size must
result in a power-of-2 page array size. Round up to the nearest
power-of-2 automatically and return the resulting size of the pipe
on success.
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
If the passed in size is larger than what has been set as the
system wide limit and the user is not root, we want to return
permission denied (not invalid value).
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
We need at least two to guarantee proper POSIX behaviour, so
never allow a smaller limit than that.
Also expose a /proc/sys/fs/pipe-max-pages sysctl file that allows
root to define a sane upper limit. Make it default to 16 times the
default size, which is 16 pages.
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
This patch adds F_GETPIPE_SZ and F_SETPIPE_SZ fcntl() actions for
growing and shrinking the size of a pipe and adjusts pipe.c and splice.c
(and relay and network splice) usage to work with these larger (or smaller)
pipes.
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
Filesystems outside the regular namespace do not have to clear DCACHE_UNHASHED
in order to have a working /proc/$pid/fd/XXX. Nothing in proc prevents the
fd link from being used if its dentry is not in the hash.
Also, it does not get put into the dcache hash if DCACHE_UNHASHED is clear;
that depends on the filesystem calling d_add or d_rehash.
So delete the misleading comments and needless code.
Acked-by: Miklos Szeredi <mszeredi@suse.cz>
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
This patch fixes a null pointer exception in pipe_rdwr_open() which
generates the stack trace:
> Unable to handle kernel NULL pointer dereference at 0000000000000028 RIP:
> [<ffffffff802899a5>] pipe_rdwr_open+0x35/0x70
> [<ffffffff8028125c>] __dentry_open+0x13c/0x230
> [<ffffffff8028143d>] do_filp_open+0x2d/0x40
> [<ffffffff802814aa>] do_sys_open+0x5a/0x100
> [<ffffffff8021faf3>] sysenter_do_call+0x1b/0x67
The failure mode is triggered by an attempt to open an anonymous
pipe via /proc/pid/fd/* as exemplified by this script:
=============================================================
while : ; do
{ echo y ; sleep 1 ; } | { while read ; do echo z$REPLY; done ; } &
PID=$!
OUT=$(ps -efl | grep 'sleep 1' | grep -v grep |
{ read PID REST ; echo $PID; } )
OUT="${OUT%% *}"
DELAY=$((RANDOM * 1000 / 32768))
usleep $((DELAY * 1000 + RANDOM % 1000 ))
echo n > /proc/$OUT/fd/1 # Trigger defect
done
=============================================================
Note that the failure window is quite small and I could only
reliably reproduce the defect by inserting a small delay
in pipe_rdwr_open(). For example:
static int
pipe_rdwr_open(struct inode *inode, struct file *filp)
{
msleep(100);
mutex_lock(&inode->i_mutex);
Although the defect was observed in pipe_rdwr_open(), I think it
makes sense to replicate the change through all the pipe_*_open()
functions.
The core of the change is to verify that inode->i_pipe has not
been released before attempting to manipulate it. If inode->i_pipe
is no longer present, return ENOENT to indicate so.
The comment about potentially using atomic_t for i_pipe->readers
and i_pipe->writers has also been removed because it is no longer
relevant in this context. The inode->i_mutex lock must be used so
that inode->i_pipe can be dealt with correctly.
Signed-off-by: Earl Chew <earl_chew@agilent.com>
Cc: stable@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The presumed use of the pipe_double_lock() routine is to lock 2 locks in
a deadlock free way by ordering the locks by their address. However it
fails to keep the specified lock classes in order and explicitly
annotates a deadlock.
Rectify this.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Miklos Szeredi <mszeredi@suse.cz>
LKML-Reference: <1248163763.15751.11098.camel@twins>
If f_op->splice_read() is not implemented, fall back to a plain read.
Use vfs_readv() to read into previously allocated pages.
This will allow splice and functions using splice, such as the loop
device, to work on all filesystems. This includes "direct_io" files
in fuse which bypass the page cache.
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
There are lots of sequences like this, especially in splice code:
if (pipe->inode)
mutex_lock(&pipe->inode->i_mutex);
/* do something */
if (pipe->inode)
mutex_unlock(&pipe->inode->i_mutex);
so introduce helpers which do the conditional locking and unlocking.
Also replace the inode_double_lock() call with a pipe_double_lock()
helper to avoid spreading the use of this functionality beyond the
pipe code.
This patch is just a cleanup, and should cause no behavioral changes.
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
The last user of do_pipe is in arch/alpha/, after replacing it with
do_pipe_flags, the do_pipe can be totally dropped.
Signed-off-by: Cheng Renquan <crquan@gmail.com>
Acked-by: Richard Henderson <rth@twiddle.net>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Most fasync implementations do something like:
return fasync_helper(...);
But fasync_helper() will return a positive value at times - a feature used
in at least one place. Thus, a number of other drivers do:
err = fasync_helper(...);
if (err < 0)
return err;
return 0;
In the interests of consistency and more concise code, it makes sense to
map positive return values onto zero where ->fasync() is called.
Cc: Al Viro <viro@ZenIV.linux.org.uk>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
If the second fasync_helper() fails, pipe_rdwr_fasync() returns the error
but leaves the file on ->fasync_readers.
This was always wrong, but since 233e70f422
"saner FASYNC handling on file close" we have the new problem. Because in
this case setfl() doesn't set FASYNC bit, __fput() will not do
->fasync(0), and we leak fasync_struct with ->fa_file pointing to the
freed file.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Cc: Al Viro <viro@ZenIV.linux.org.uk>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Remove __attribute__((weak)) from common code sys_pipe implemantation.
IA64, ALPHA, SUPERH (32bit) and SPARC (32bit) have own implemantations
with the same name. Just rename them.
For sys_pipe2 there is no architecture specific implementation.
Cc: Richard Henderson <rth@twiddle.net>
Cc: David S. Miller <davem@davemloft.net>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Tony Luck <tony.luck@intel.com>
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Wrap access to task credentials so that they can be separated more easily from
the task_struct during the introduction of COW creds.
Change most current->(|e|s|fs)[ug]id to current_(|e|s|fs)[ug]id().
Change some task->e?[ug]id to task_e?[ug]id(). In some places it makes more
sense to use RCU directly rather than a convenient wrapper; these will be
addressed by later patches.
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: James Morris <jmorris@namei.org>
Acked-by: Serge Hallyn <serue@us.ibm.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: James Morris <jmorris@namei.org>
As it is, all instances of ->release() for files that have ->fasync()
need to remember to evict file from fasync lists; forgetting that
creates a hole and we actually have a bunch that *does* forget.
So let's keep our lives simple - let __fput() check FASYNC in
file->f_flags and call ->fasync() there if it's been set. And lose that
crap in ->release() instances - leaving it there is still valid, but we
don't have to bother anymore.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch adds O_NONBLOCK support to pipe2. It is minimally more involved
than the patches for eventfd et.al but still trivial. The interfaces of the
create_write_pipe and create_read_pipe helper functions were changed and the
one other caller as well.
The following test must be adjusted for architectures other than x86 and
x86-64 and in case the syscall numbers changed.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#include <fcntl.h>
#include <stdio.h>
#include <unistd.h>
#include <sys/syscall.h>
#ifndef __NR_pipe2
# ifdef __x86_64__
# define __NR_pipe2 293
# elif defined __i386__
# define __NR_pipe2 331
# else
# error "need __NR_pipe2"
# endif
#endif
int
main (void)
{
int fds[2];
if (syscall (__NR_pipe2, fds, 0) == -1)
{
puts ("pipe2(0) failed");
return 1;
}
for (int i = 0; i < 2; ++i)
{
int fl = fcntl (fds[i], F_GETFL);
if (fl == -1)
{
puts ("fcntl failed");
return 1;
}
if (fl & O_NONBLOCK)
{
printf ("pipe2(0) set non-blocking mode for fds[%d]\n", i);
return 1;
}
close (fds[i]);
}
if (syscall (__NR_pipe2, fds, O_NONBLOCK) == -1)
{
puts ("pipe2(O_NONBLOCK) failed");
return 1;
}
for (int i = 0; i < 2; ++i)
{
int fl = fcntl (fds[i], F_GETFL);
if (fl == -1)
{
puts ("fcntl failed");
return 1;
}
if ((fl & O_NONBLOCK) == 0)
{
printf ("pipe2(O_NONBLOCK) does not set non-blocking mode for fds[%d]\n", i);
return 1;
}
close (fds[i]);
}
puts ("OK");
return 0;
}
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Signed-off-by: Ulrich Drepper <drepper@redhat.com>
Acked-by: Davide Libenzi <davidel@xmailserver.org>
Cc: Michael Kerrisk <mtk.manpages@googlemail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch introduces the new syscall pipe2 which is like pipe but it also
takes an additional parameter which takes a flag value. This patch implements
the handling of O_CLOEXEC for the flag. I did not add support for the new
syscall for the architectures which have a special sys_pipe implementation. I
think the maintainers of those archs have the chance to go with the unified
implementation but that's up to them.
The implementation introduces do_pipe_flags. I did that instead of changing
all callers of do_pipe because some of the callers are written in assembler.
I would probably screw up changing the assembly code. To avoid breaking code
do_pipe is now a small wrapper around do_pipe_flags. Once all callers are
changed over to do_pipe_flags the old do_pipe function can be removed.
The following test must be adjusted for architectures other than x86 and
x86-64 and in case the syscall numbers changed.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#include <fcntl.h>
#include <stdio.h>
#include <unistd.h>
#include <sys/syscall.h>
#ifndef __NR_pipe2
# ifdef __x86_64__
# define __NR_pipe2 293
# elif defined __i386__
# define __NR_pipe2 331
# else
# error "need __NR_pipe2"
# endif
#endif
int
main (void)
{
int fd[2];
if (syscall (__NR_pipe2, fd, 0) != 0)
{
puts ("pipe2(0) failed");
return 1;
}
for (int i = 0; i < 2; ++i)
{
int coe = fcntl (fd[i], F_GETFD);
if (coe == -1)
{
puts ("fcntl failed");
return 1;
}
if (coe & FD_CLOEXEC)
{
printf ("pipe2(0) set close-on-exit for fd[%d]\n", i);
return 1;
}
}
close (fd[0]);
close (fd[1]);
if (syscall (__NR_pipe2, fd, O_CLOEXEC) != 0)
{
puts ("pipe2(O_CLOEXEC) failed");
return 1;
}
for (int i = 0; i < 2; ++i)
{
int coe = fcntl (fd[i], F_GETFD);
if (coe == -1)
{
puts ("fcntl failed");
return 1;
}
if ((coe & FD_CLOEXEC) == 0)
{
printf ("pipe2(O_CLOEXEC) does not set close-on-exit for fd[%d]\n", i);
return 1;
}
}
close (fd[0]);
close (fd[1]);
puts ("OK");
return 0;
}
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Signed-off-by: Ulrich Drepper <drepper@redhat.com>
Acked-by: Davide Libenzi <davidel@xmailserver.org>
Cc: Michael Kerrisk <mtk.manpages@googlemail.com>
Cc: <linux-arch@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Here are some more places where path_{get,put}() can be used instead of
dput()/mntput() pair.
Signed-off-by: Jan Blunck <jblunck@suse.de>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Jens Axboe <jens.axboe@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Remember to close the files if copy_to_user() failed.
Spotted by dm.n9107@gmail.com.
Signed-off-by: Ulrich Drepper <drepper@redhat.com>
Cc: DM <dm.n9107@gmail.com>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This replaces the duplicated arch-specific versions of "sys_pipe()" with
one unified implementation. This removes almost 250 lines of duplicated
code.
It's marked __weak, so that *if* an architecture wants to override the
default implementation it can do so by simply having its own replacement
version, since many architectures use alternate calling conventions for
the 'pipe()' system call for legacy reasons (ie traditional UNIX
implementations often return the two file descriptors in registers)
I still haven't changed the cris version even though Linus says the BKL
isn't needed. The arch maintainer can easily do it if there are really
no obstacles.
Signed-off-by: Ulrich Drepper <drepper@redhat.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Some new uses of get_empty_filp() have crept in; switched
to alloc_file() to make sure that pieces of initialization
won't be missing.
We really need to kill get_empty_filp().
[AV] fixed dentry leak on failure exit in anon_inode_getfd()
Cc: Erez Zadok <ezk@cs.sunysb.edu>
Cc: Trond Myklebust <trond.myklebust@fys.uio.no>
Cc: "J Bruce Fields" <bfields@fieldses.org>
Acked-by: Al Viro <viro@ZenIV.linux.org.uk>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Dave Hansen <haveblue@us.ibm.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
make sync wakeups affine for cache-cold tasks: if a cache-cold task
is woken up by a sync wakeup then use the opportunity to migrate it
straight away. (the two tasks are 'related' because they communicate)
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Fix some typos in pipe.c and splice.c.
Add pipes API to kernel-api.tmpl.
Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
As per Andrew Mortons request, here's a set of documentation for
the generic pipe_buf_operations hooks, the pipe, and pipe_buffer
structures.
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
The name 'pin' was badly chosen, it doesn't pin a pipe buffer
in the most commonly used sense in the kernel. So change the
name to 'confirm', after debating this issue with Hugh
Dickins a bit.
A good return from ->confirm() means that the buffer is really
there, and that the contents are good.
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
1) Introduces a new method in 'struct dentry_operations'. This method
called d_dname() might be called from d_path() to build a pathname for
special filesystems. It is called without locks.
Future patches (if we succeed in having one common dentry for all
pipes/sockets) may need to change prototype of this method, but we now
use : char *d_dname(struct dentry *dentry, char *buffer, int buflen);
2) Adds a dynamic_dname() helper function that eases d_dname() implementations
3) Defines d_dname method for sockets : No more sprintf() at socket
creation. This is delayed up to the moment someone does an access to
/proc/pid/fd/...
4) Defines d_dname method for pipes : No more sprintf() at pipe
creation. This is delayed up to the moment someone does an access to
/proc/pid/fd/...
A benchmark consisting of 1.000.000 calls to pipe()/close()/close() gives a
*nice* speedup on my Pentium(M) 1.6 Ghz :
3.090 s instead of 3.450 s
Signed-off-by: Eric Dumazet <dada1@cosmosbay.com>
Acked-by: Christoph Hellwig <hch@infradead.org>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>