Now that synchronize_rcu_bh, synchronize_rcu_bh_expedited, call_rcu_bh,
rcu_barrier_bh, synchronize_sched, synchronize_sched_expedited,
call_rcu_sched, rcu_barrier_sched, get_state_synchronize_sched,
and cond_synchronize_sched are obsolete, let's remove them from the
documentation aside from a small historical section.
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
Back when there could be multiple RCU flavors running in the same kernel
at the same time, it was necessary to specify the expedited grace-period
IPI handler at runtime. Now that there is only one RCU flavor, the
IPI handler can be determined at build time. There is therefore no
longer any reason for the RCU-preempt and RCU-sched IPI handlers to
have different names, nor is there any reason to pass these handlers in
function arguments and in the data structures enclosing workqueues.
This commit therefore makes all these changes, pushing the specification
of the expedited grace-period IPI handler down to the point of use.
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
Since commit fced9c8cfe ("rcu: Avoid resched_cpu() when rescheduling
the current CPU"), resched_cpu is not directly called from
sync_sched_exp_handler. Update the documentation about the same.
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Cc: <kernel-team@android.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
The RCU-bh update API is now defined in terms of that of RCU-bh and
RCU-sched, so this commit updates the documentation accordingly.
In addition, although RCU-sched persists in !PREEMPT kernels, in
the PREEMPT case its update API is now defined in terms of that of
RCU-preempt, so this commit also updates the documentation accordingly.
While in the area, this commit removes the documentation for the
now-obsolete synchronize_rcu_mult() and clarifies the Tasks RCU
documentation.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit adds a description of how expedited grace periods operate
during the mid-boot "dead zone", which starts when the scheduler spawns
the first kthread and ends when all of RCU's kthreads have been spawned.
In short, before mid-boot, synchronous grace periods can be a no-op.
After the end of mid-boot, workqueues may be used. During mid-boot,
the requesting task drivees the expedited grace period.
For more detail, see https://lwn.net/Articles/716148/.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit adds design documentation for expedited grace periods.
This documentation is in HTML rather than the new documentation
format because (1) I have prototype documentation already in HTML,
and (2) Attempting to learn the new documentation format while
creating the design documentation seems likely to result in neither
happening in a timely fashion.
Once the design documentation is complete, we can start a conversion effort.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>