Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net

This commit is contained in:
David S. Miller 2015-02-17 18:48:51 -08:00
commit fece13ca00
3818 changed files with 163061 additions and 87048 deletions

6
.gitignore vendored
View File

@ -43,6 +43,7 @@ Module.symvers
/TAGS
/linux
/vmlinux
/vmlinux-gdb.py
/vmlinuz
/System.map
/Module.markers
@ -52,6 +53,11 @@ Module.symvers
#
/debian/
#
# tar directory (make tar*-pkg)
#
/tar-install/
#
# git files that we don't want to ignore even it they are dot-files
#

View File

@ -1,4 +1,4 @@
What: /sys/class/misc/tpmX/device/
What: /sys/class/tpm/tpmX/device/
Date: April 2005
KernelVersion: 2.6.12
Contact: tpmdd-devel@lists.sf.net
@ -6,7 +6,7 @@ Description: The device/ directory under a specific TPM instance exposes
the properties of that TPM chip
What: /sys/class/misc/tpmX/device/active
What: /sys/class/tpm/tpmX/device/active
Date: April 2006
KernelVersion: 2.6.17
Contact: tpmdd-devel@lists.sf.net
@ -18,7 +18,7 @@ Description: The "active" property prints a '1' if the TPM chip is accepting
section 17 for more information on which commands are
available.
What: /sys/class/misc/tpmX/device/cancel
What: /sys/class/tpm/tpmX/device/cancel
Date: June 2005
KernelVersion: 2.6.13
Contact: tpmdd-devel@lists.sf.net
@ -26,7 +26,7 @@ Description: The "cancel" property allows you to cancel the currently
pending TPM command. Writing any value to cancel will call the
TPM vendor specific cancel operation.
What: /sys/class/misc/tpmX/device/caps
What: /sys/class/tpm/tpmX/device/caps
Date: April 2005
KernelVersion: 2.6.12
Contact: tpmdd-devel@lists.sf.net
@ -43,7 +43,7 @@ Description: The "caps" property contains TPM manufacturer and version info.
the chip supports. Firmware version is that of the chip and
is manufacturer specific.
What: /sys/class/misc/tpmX/device/durations
What: /sys/class/tpm/tpmX/device/durations
Date: March 2011
KernelVersion: 3.1
Contact: tpmdd-devel@lists.sf.net
@ -66,7 +66,7 @@ Description: The "durations" property shows the 3 vendor-specific values
scaled to be displayed in usecs. In this case "[adjusted]"
will be displayed in place of "[original]".
What: /sys/class/misc/tpmX/device/enabled
What: /sys/class/tpm/tpmX/device/enabled
Date: April 2006
KernelVersion: 2.6.17
Contact: tpmdd-devel@lists.sf.net
@ -75,7 +75,7 @@ Description: The "enabled" property prints a '1' if the TPM chip is enabled,
may be visible but produce a '0' after some operation that
disables the TPM.
What: /sys/class/misc/tpmX/device/owned
What: /sys/class/tpm/tpmX/device/owned
Date: April 2006
KernelVersion: 2.6.17
Contact: tpmdd-devel@lists.sf.net
@ -83,7 +83,7 @@ Description: The "owned" property produces a '1' if the TPM_TakeOwnership
ordinal has been executed successfully in the chip. A '0'
indicates that ownership hasn't been taken.
What: /sys/class/misc/tpmX/device/pcrs
What: /sys/class/tpm/tpmX/device/pcrs
Date: April 2005
KernelVersion: 2.6.12
Contact: tpmdd-devel@lists.sf.net
@ -106,7 +106,7 @@ Description: The "pcrs" property will dump the current value of all Platform
1.2 chips, PCRs represent SHA-1 hashes, which are 20 bytes
long. Use the "caps" property to determine TPM version.
What: /sys/class/misc/tpmX/device/pubek
What: /sys/class/tpm/tpmX/device/pubek
Date: April 2005
KernelVersion: 2.6.12
Contact: tpmdd-devel@lists.sf.net
@ -158,7 +158,7 @@ Description: The "pubek" property will return the TPM's public endorsement
Modulus Length: 256 (bytes)
Modulus: The 256 byte Endorsement Key modulus
What: /sys/class/misc/tpmX/device/temp_deactivated
What: /sys/class/tpm/tpmX/device/temp_deactivated
Date: April 2006
KernelVersion: 2.6.17
Contact: tpmdd-devel@lists.sf.net
@ -167,7 +167,7 @@ Description: The "temp_deactivated" property returns a '1' if the chip has
cycle. Whether a warm boot (reboot) will clear a TPM chip
from a temp_deactivated state is platform specific.
What: /sys/class/misc/tpmX/device/timeouts
What: /sys/class/tpm/tpmX/device/timeouts
Date: March 2011
KernelVersion: 3.1
Contact: tpmdd-devel@lists.sf.net

View File

@ -0,0 +1,265 @@
What: /config/usb-gadget/gadget/functions/uvc.name
Date: Dec 2014
KernelVersion: 3.20
Description: UVC function directory
streaming_maxburst - 0..15 (ss only)
streaming_maxpacket - 1..1023 (fs), 1..3072 (hs/ss)
streaming_interval - 1..16
What: /config/usb-gadget/gadget/functions/uvc.name/control
Date: Dec 2014
KernelVersion: 3.20
Description: Control descriptors
What: /config/usb-gadget/gadget/functions/uvc.name/control/class
Date: Dec 2014
KernelVersion: 3.20
Description: Class descriptors
What: /config/usb-gadget/gadget/functions/uvc.name/control/class/ss
Date: Dec 2014
KernelVersion: 3.20
Description: Super speed control class descriptors
What: /config/usb-gadget/gadget/functions/uvc.name/control/class/fs
Date: Dec 2014
KernelVersion: 3.20
Description: Full speed control class descriptors
What: /config/usb-gadget/gadget/functions/uvc.name/control/terminal
Date: Dec 2014
KernelVersion: 3.20
Description: Terminal descriptors
What: /config/usb-gadget/gadget/functions/uvc.name/control/terminal/output
Date: Dec 2014
KernelVersion: 3.20
Description: Output terminal descriptors
What: /config/usb-gadget/gadget/functions/uvc.name/control/terminal/output/default
Date: Dec 2014
KernelVersion: 3.20
Description: Default output terminal descriptors
All attributes read only:
iTerminal - index of string descriptor
bSourceID - id of the terminal to which this terminal
is connected
bAssocTerminal - id of the input terminal to which this output
terminal is associated
wTerminalType - terminal type
bTerminalID - a non-zero id of this terminal
What: /config/usb-gadget/gadget/functions/uvc.name/control/terminal/camera
Date: Dec 2014
KernelVersion: 3.20
Description: Camera terminal descriptors
What: /config/usb-gadget/gadget/functions/uvc.name/control/terminal/camera/default
Date: Dec 2014
KernelVersion: 3.20
Description: Default camera terminal descriptors
All attributes read only:
bmControls - bitmap specifying which controls are
supported for the video stream
wOcularFocalLength - the value of Locular
wObjectiveFocalLengthMax- the value of Lmin
wObjectiveFocalLengthMin- the value of Lmax
iTerminal - index of string descriptor
bAssocTerminal - id of the output terminal to which
this terminal is connected
wTerminalType - terminal type
bTerminalID - a non-zero id of this terminal
What: /config/usb-gadget/gadget/functions/uvc.name/control/processing
Date: Dec 2014
KernelVersion: 3.20
Description: Processing unit descriptors
What: /config/usb-gadget/gadget/functions/uvc.name/control/processing/default
Date: Dec 2014
KernelVersion: 3.20
Description: Default processing unit descriptors
All attributes read only:
iProcessing - index of string descriptor
bmControls - bitmap specifying which controls are
supported for the video stream
wMaxMultiplier - maximum digital magnification x100
bSourceID - id of the terminal to which this unit is
connected
bUnitID - a non-zero id of this unit
What: /config/usb-gadget/gadget/functions/uvc.name/control/header
Date: Dec 2014
KernelVersion: 3.20
Description: Control header descriptors
What: /config/usb-gadget/gadget/functions/uvc.name/control/header/name
Date: Dec 2014
KernelVersion: 3.20
Description: Specific control header descriptors
dwClockFrequency
bcdUVC
What: /config/usb-gadget/gadget/functions/uvc.name/streaming
Date: Dec 2014
KernelVersion: 3.20
Description: Streaming descriptors
What: /config/usb-gadget/gadget/functions/uvc.name/streaming/class
Date: Dec 2014
KernelVersion: 3.20
Description: Streaming class descriptors
What: /config/usb-gadget/gadget/functions/uvc.name/streaming/class/ss
Date: Dec 2014
KernelVersion: 3.20
Description: Super speed streaming class descriptors
What: /config/usb-gadget/gadget/functions/uvc.name/streaming/class/hs
Date: Dec 2014
KernelVersion: 3.20
Description: High speed streaming class descriptors
What: /config/usb-gadget/gadget/functions/uvc.name/streaming/class/fs
Date: Dec 2014
KernelVersion: 3.20
Description: Full speed streaming class descriptors
What: /config/usb-gadget/gadget/functions/uvc.name/streaming/color_matching
Date: Dec 2014
KernelVersion: 3.20
Description: Color matching descriptors
What: /config/usb-gadget/gadget/functions/uvc.name/streaming/color_matching/default
Date: Dec 2014
KernelVersion: 3.20
Description: Default color matching descriptors
All attributes read only:
bMatrixCoefficients - matrix used to compute luma and
chroma values from the color primaries
bTransferCharacteristics- optoelectronic transfer
characteristic of the source picutre,
also called the gamma function
bColorPrimaries - color primaries and the reference
white
What: /config/usb-gadget/gadget/functions/uvc.name/streaming/mjpeg
Date: Dec 2014
KernelVersion: 3.20
Description: MJPEG format descriptors
What: /config/usb-gadget/gadget/functions/uvc.name/streaming/mjpeg/name
Date: Dec 2014
KernelVersion: 3.20
Description: Specific MJPEG format descriptors
All attributes read only,
except bmaControls and bDefaultFrameIndex:
bmaControls - this format's data for bmaControls in
the streaming header
bmInterfaceFlags - specifies interlace information,
read-only
bAspectRatioY - the X dimension of the picture aspect
ratio, read-only
bAspectRatioX - the Y dimension of the picture aspect
ratio, read-only
bmFlags - characteristics of this format,
read-only
bDefaultFrameIndex - optimum frame index for this stream
What: /config/usb-gadget/gadget/functions/uvc.name/streaming/mjpeg/name/name
Date: Dec 2014
KernelVersion: 3.20
Description: Specific MJPEG frame descriptors
dwFrameInterval - indicates how frame interval can be
programmed; a number of values
separated by newline can be specified
dwDefaultFrameInterval - the frame interval the device would
like to use as default
dwMaxVideoFrameBufferSize- the maximum number of bytes the
compressor will produce for a video
frame or still image
dwMaxBitRate - the maximum bit rate at the shortest
frame interval in bps
dwMinBitRate - the minimum bit rate at the longest
frame interval in bps
wHeight - height of decoded bitmap frame in px
wWidth - width of decoded bitmam frame in px
bmCapabilities - still image support, fixed frame-rate
support
What: /config/usb-gadget/gadget/functions/uvc.name/streaming/uncompressed
Date: Dec 2014
KernelVersion: 3.20
Description: Uncompressed format descriptors
What: /config/usb-gadget/gadget/functions/uvc.name/streaming/uncompressed/name
Date: Dec 2014
KernelVersion: 3.20
Description: Specific uncompressed format descriptors
bmaControls - this format's data for bmaControls in
the streaming header
bmInterfaceFlags - specifies interlace information,
read-only
bAspectRatioY - the X dimension of the picture aspect
ratio, read-only
bAspectRatioX - the Y dimension of the picture aspect
ratio, read-only
bDefaultFrameIndex - optimum frame index for this stream
bBitsPerPixel - number of bits per pixel used to
specify color in the decoded video
frame
guidFormat - globally unique id used to identify
stream-encoding format
What: /config/usb-gadget/gadget/functions/uvc.name/streaming/uncompressed/name/name
Date: Dec 2014
KernelVersion: 3.20
Description: Specific uncompressed frame descriptors
dwFrameInterval - indicates how frame interval can be
programmed; a number of values
separated by newline can be specified
dwDefaultFrameInterval - the frame interval the device would
like to use as default
dwMaxVideoFrameBufferSize- the maximum number of bytes the
compressor will produce for a video
frame or still image
dwMaxBitRate - the maximum bit rate at the shortest
frame interval in bps
dwMinBitRate - the minimum bit rate at the longest
frame interval in bps
wHeight - height of decoded bitmap frame in px
wWidth - width of decoded bitmam frame in px
bmCapabilities - still image support, fixed frame-rate
support
What: /config/usb-gadget/gadget/functions/uvc.name/streaming/header
Date: Dec 2014
KernelVersion: 3.20
Description: Streaming header descriptors
What: /config/usb-gadget/gadget/functions/uvc.name/streaming/header/name
Date: Dec 2014
KernelVersion: 3.20
Description: Specific streaming header descriptors
All attributes read only:
bTriggerUsage - how the host software will respond to
a hardware trigger interrupt event
bTriggerSupport - flag specifying if hardware
triggering is supported
bStillCaptureMethod - method of still image caputre
supported
bTerminalLink - id of the output terminal to which
the video endpoint of this interface
is connected
bmInfo - capabilities of this video streaming
interface

View File

@ -0,0 +1,20 @@
What: /sys/bus/amba/devices/.../driver_override
Date: September 2014
Contact: Antonios Motakis <a.motakis@virtualopensystems.com>
Description:
This file allows the driver for a device to be specified which
will override standard OF, ACPI, ID table, and name matching.
When specified, only a driver with a name matching the value
written to driver_override will have an opportunity to bind to
the device. The override is specified by writing a string to the
driver_override file (echo vfio-amba > driver_override) and may
be cleared with an empty string (echo > driver_override).
This returns the device to standard matching rules binding.
Writing to driver_override does not automatically unbind the
device from its current driver or make any attempt to
automatically load the specified driver. If no driver with a
matching name is currently loaded in the kernel, the device will
not bind to any driver. This also allows devices to opt-out of
driver binding using a driver_override name such as "none".
Only a single driver may be specified in the override, there is
no support for parsing delimiters.

View File

@ -92,6 +92,18 @@ Description:
is required is a consistent labeling. Units after application
of scale and offset are millivolts.
What: /sys/bus/iio/devices/iio:deviceX/in_currentY_raw
What: /sys/bus/iio/devices/iio:deviceX/in_currentY_supply_raw
KernelVersion: 3.17
Contact: linux-iio@vger.kernel.org
Description:
Raw (unscaled no bias removal etc.) current measurement from
channel Y. In special cases where the channel does not
correspond to externally available input one of the named
versions may be used. The number must always be specified and
unique to allow association with event codes. Units after
application of scale and offset are milliamps.
What: /sys/bus/iio/devices/iio:deviceX/in_capacitanceY_raw
KernelVersion: 3.2
Contact: linux-iio@vger.kernel.org
@ -234,6 +246,8 @@ What: /sys/bus/iio/devices/iio:deviceX/in_accel_y_offset
What: /sys/bus/iio/devices/iio:deviceX/in_accel_z_offset
What: /sys/bus/iio/devices/iio:deviceX/in_voltageY_offset
What: /sys/bus/iio/devices/iio:deviceX/in_voltage_offset
What: /sys/bus/iio/devices/iio:deviceX/in_currentY_offset
What: /sys/bus/iio/devices/iio:deviceX/in_current_offset
What: /sys/bus/iio/devices/iio:deviceX/in_tempY_offset
What: /sys/bus/iio/devices/iio:deviceX/in_temp_offset
What: /sys/bus/iio/devices/iio:deviceX/in_pressureY_offset
@ -262,9 +276,14 @@ What: /sys/bus/iio/devices/iio:deviceX/in_voltage_scale
What: /sys/bus/iio/devices/iio:deviceX/in_voltage-voltage_scale
What: /sys/bus/iio/devices/iio:deviceX/out_voltageY_scale
What: /sys/bus/iio/devices/iio:deviceX/out_altvoltageY_scale
What: /sys/bus/iio/devices/iio:deviceX/in_currentY_scale
What: /sys/bus/iio/devices/iio:deviceX/in_currentY_supply_scale
What: /sys/bus/iio/devices/iio:deviceX/in_current_scale
What: /sys/bus/iio/devices/iio:deviceX/in_accel_scale
What: /sys/bus/iio/devices/iio:deviceX/in_accel_peak_scale
What: /sys/bus/iio/devices/iio:deviceX/in_anglvel_scale
What: /sys/bus/iio/devices/iio:deviceX/in_energy_scale
What: /sys/bus/iio/devices/iio:deviceX/in_distance_scale
What: /sys/bus/iio/devices/iio:deviceX/in_magn_scale
What: /sys/bus/iio/devices/iio:deviceX/in_magn_x_scale
What: /sys/bus/iio/devices/iio:deviceX/in_magn_y_scale
@ -276,6 +295,7 @@ What: /sys/bus/iio/devices/iio:deviceX/in_rot_from_north_true_tilt_comp_scale
What: /sys/bus/iio/devices/iio:deviceX/in_pressureY_scale
What: /sys/bus/iio/devices/iio:deviceX/in_pressure_scale
What: /sys/bus/iio/devices/iio:deviceX/in_humidityrelative_scale
What: /sys/bus/iio/devices/iio:deviceX/in_velocity_sqrt(x^2+y^2+z^2)_scale
KernelVersion: 2.6.35
Contact: linux-iio@vger.kernel.org
Description:
@ -323,6 +343,44 @@ Description:
production inaccuracies). If shared across all channels,
<type>_calibscale is used.
What: /sys/bus/iio/devices/iio:deviceX/in_activity_calibgender
What: /sys/bus/iio/devices/iio:deviceX/in_energy_calibgender
What: /sys/bus/iio/devices/iio:deviceX/in_distance_calibgender
What: /sys/bus/iio/devices/iio:deviceX/in_velocity_calibgender
KernelVersion: 3.20
Contact: linux-iio@vger.kernel.org
Description:
Gender of the user (e.g.: male, female) used by some pedometers
to compute the stride length, distance, speed and activity
type.
What: /sys/bus/iio/devices/iio:deviceX/in_activity_calibgender_available
What: /sys/bus/iio/devices/iio:deviceX/in_energy_calibgender_available
What: /sys/bus/iio/devices/iio:deviceX/in_distance_calibgender_available
What: /sys/bus/iio/devices/iio:deviceX/in_velocity_calibgender_available
KernelVersion: 3.20
Contact: linux-iio@vger.kernel.org
Description:
Lists all available gender values (e.g.: male, female).
What: /sys/bus/iio/devices/iio:deviceX/in_activity_calibheight
What: /sys/bus/iio/devices/iio:deviceX/in_energy_calibheight
What: /sys/bus/iio/devices/iio:deviceX/in_distance_calibheight
What: /sys/bus/iio/devices/iio:deviceX/in_velocity_calibheight
KernelVersion: 3.19
Contact: linux-iio@vger.kernel.org
Description:
Height of the user (in meters) used by some pedometers
to compute the stride length, distance, speed and activity
type.
What: /sys/bus/iio/devices/iio:deviceX/in_energy_calibweight
KernelVersion: 3.20
Contact: linux-iio@vger.kernel.org
Description:
Weight of the user (in kg). It is needed by some pedometers
to compute the calories burnt by the user.
What: /sys/bus/iio/devices/iio:deviceX/in_accel_scale_available
What: /sys/.../iio:deviceX/in_voltageX_scale_available
What: /sys/.../iio:deviceX/in_voltage-voltage_scale_available
@ -783,6 +841,14 @@ What: /sys/.../events/in_tempY_roc_falling_period
What: /sys/.../events/in_accel_x&y&z_mag_falling_period
What: /sys/.../events/in_intensity0_thresh_period
What: /sys/.../events/in_proximity0_thresh_period
What: /sys/.../events/in_activity_still_thresh_rising_period
What: /sys/.../events/in_activity_still_thresh_falling_period
What: /sys/.../events/in_activity_walking_thresh_rising_period
What: /sys/.../events/in_activity_walking_thresh_falling_period
What: /sys/.../events/in_activity_jogging_thresh_rising_period
What: /sys/.../events/in_activity_jogging_thresh_falling_period
What: /sys/.../events/in_activity_running_thresh_rising_period
What: /sys/.../events/in_activity_running_thresh_falling_period
KernelVersion: 2.6.37
Contact: linux-iio@vger.kernel.org
Description:
@ -790,6 +856,40 @@ Description:
met before an event is generated. If direction is not
specified then this period applies to both directions.
What: /sys/.../events/in_activity_still_thresh_rising_en
What: /sys/.../events/in_activity_still_thresh_falling_en
What: /sys/.../events/in_activity_walking_thresh_rising_en
What: /sys/.../events/in_activity_walking_thresh_falling_en
What: /sys/.../events/in_activity_jogging_thresh_rising_en
What: /sys/.../events/in_activity_jogging_thresh_falling_en
What: /sys/.../events/in_activity_running_thresh_rising_en
What: /sys/.../events/in_activity_running_thresh_falling_en
KernelVersion: 3.19
Contact: linux-iio@vger.kernel.org
Description:
Enables or disables activitity events. Depending on direction
an event is generated when sensor ENTERS or LEAVES a given state.
What: /sys/.../events/in_activity_still_thresh_rising_value
What: /sys/.../events/in_activity_still_thresh_falling_value
What: /sys/.../events/in_activity_walking_thresh_rising_value
What: /sys/.../events/in_activity_walking_thresh_falling_value
What: /sys/.../events/in_activity_jogging_thresh_rising_value
What: /sys/.../events/in_activity_jogging_thresh_falling_value
What: /sys/.../events/in_activity_running_thresh_rising_value
What: /sys/.../events/in_activity_running_thresh_falling_value
KernelVersion: 3.19
Contact: linux-iio@vger.kernel.org
Description:
Confidence value (in units as percentage) to be used
for deciding when an event should be generated. E.g for
running: If the confidence value reported by the sensor
is greater than in_activity_running_thresh_rising_value
then the sensor ENTERS running state. Conversely, if the
confidence value reported by the sensor is lower than
in_activity_running_thresh_falling_value then the sensor
is LEAVING running state.
What: /sys/.../iio:deviceX/events/in_accel_mag_en
What: /sys/.../iio:deviceX/events/in_accel_mag_rising_en
What: /sys/.../iio:deviceX/events/in_accel_mag_falling_en
@ -822,6 +922,25 @@ Description:
number or direction is not specified, applies to all channels of
this type.
What: /sys/.../events/in_steps_change_en
KernelVersion: 3.20
Contact: linux-iio@vger.kernel.org
Description:
Event generated when channel passes a threshold on the absolute
change in value. E.g. for steps: a step change event is
generated each time the user takes N steps, where N is set using
in_steps_change_value.
What: /sys/.../events/in_steps_change_value
KernelVersion: 3.20
Contact: linux-iio@vger.kernel.org
Description:
Specifies the value of change threshold that the
device is comparing against for the events enabled by
<type>[Y][_name]_roc[_rising|falling|]_en. E.g. for steps:
if set to 3, a step change event will be generated every 3
steps.
What: /sys/bus/iio/devices/iio:deviceX/trigger/current_trigger
KernelVersion: 2.6.35
Contact: linux-iio@vger.kernel.org
@ -956,6 +1075,16 @@ Description:
and the relevant _type attributes to establish the data storage
format.
What: /sys/.../iio:deviceX/in_activity_still_input
What: /sys/.../iio:deviceX/in_activity_walking_input
What: /sys/.../iio:deviceX/in_activity_jogging_input
What: /sys/.../iio:deviceX/in_activity_running_input
KernelVersion: 3.19
Contact: linux-iio@vger.kernel.org
Description:
This attribute is used to read the confidence for an activity
expressed in units as percentage.
What: /sys/.../iio:deviceX/in_anglvel_z_quadrature_correction_raw
KernelVersion: 2.6.38
Contact: linux-iio@vger.kernel.org
@ -973,6 +1102,24 @@ Description:
For a list of available output power modes read
in_accel_power_mode_available.
What: /sys/.../iio:deviceX/in_energy_input
What: /sys/.../iio:deviceX/in_energy_raw
KernelVersion: 3.20
Contact: linux-iio@vger.kernel.org
Description:
This attribute is used to read the energy value reported by the
device (e.g.: human activity sensors report energy burnt by the
user). Units after application of scale are Joules.
What: /sys/.../iio:deviceX/in_distance_input
What: /sys/.../iio:deviceX/in_distance_raw
KernelVersion: 3.20
Contact: linux-iio@vger.kernel.org
Description:
This attribute is used to read the distance covered by the user
since the last reboot while activated. Units after application
of scale are meters.
What: /sys/bus/iio/devices/iio:deviceX/store_eeprom
KernelVersion: 3.4.0
Contact: linux-iio@vger.kernel.org
@ -992,7 +1139,9 @@ Description:
reflectivity of infrared or ultrasound emitted.
Often these sensors are unit less and as such conversion
to SI units is not possible. Where it is, the units should
be meters.
be meters. If such a conversion is not possible, the reported
values should behave in the same way as a distance, i.e. lower
values indicate something is closer to the sensor.
What: /sys/.../iio:deviceX/in_illuminanceY_input
What: /sys/.../iio:deviceX/in_illuminanceY_raw
@ -1024,6 +1173,12 @@ Description:
This attribute is used to get/set the integration time in
seconds.
What: /sys/.../iio:deviceX/in_velocity_sqrt(x^2+y^2+z^2)_integration_time
KernelVersion: 3.20
Contact: linux-iio@vger.kernel.org
Description:
Number of seconds in which to compute speed.
What: /sys/bus/iio/devices/iio:deviceX/in_rot_quaternion_raw
KernelVersion: 3.15
Contact: linux-iio@vger.kernel.org
@ -1051,3 +1206,46 @@ Description:
after application of scale and offset. If no offset or scale is
present, output should be considered as processed with the
unit in milliamps.
What: /sys/.../iio:deviceX/in_energy_en
What: /sys/.../iio:deviceX/in_distance_en
What: /sys/.../iio:deviceX/in_velocity_sqrt(x^2+y^2+z^2)_en
What: /sys/.../iio:deviceX/in_steps_en
KernelVersion: 3.19
Contact: linux-iio@vger.kernel.org
Description:
Activates a device feature that runs in firmware/hardware.
E.g. for steps: the pedometer saves power while not used;
when activated, it will count the steps taken by the user in
firmware and export them through in_steps_input.
What: /sys/.../iio:deviceX/in_steps_input
KernelVersion: 3.19
Contact: linux-iio@vger.kernel.org
Description:
This attribute is used to read the number of steps taken by the user
since the last reboot while activated.
What: /sys/.../iio:deviceX/in_velocity_sqrt(x^2+y^2+z^2)_input
What: /sys/.../iio:deviceX/in_velocity_sqrt(x^2+y^2+z^2)_raw
KernelVersion: 3.19
Contact: linux-iio@vger.kernel.org
Description:
This attribute is used to read the current speed value of the
user (which is the norm or magnitude of the velocity vector).
Units after application of scale are m/s.
What: /sys/.../iio:deviceX/in_steps_debounce_count
KernelVersion: 3.20
Contact: linux-iio@vger.kernel.org
Description:
Specifies the number of steps that must occur within
in_steps_filter_debounce_time for the pedometer to decide the
consumer is making steps.
What: /sys/.../iio:deviceX/in_steps_debounce_time
KernelVersion: 3.20
Contact: linux-iio@vger.kernel.org
Description:
Specifies number of seconds in which we compute the steps
that occur in order to decide if the consumer is making steps.

View File

@ -74,3 +74,9 @@ Date: March 2014
Contact: "Jaegeuk Kim" <jaegeuk.kim@samsung.com>
Description:
Controls the memory footprint used by f2fs.
What: /sys/fs/f2fs/<disk>/trim_sections
Date: February 2015
Contact: "Jaegeuk Kim" <jaegeuk@kernel.org>
Description:
Controls the trimming rate in batch mode.

View File

@ -190,23 +190,6 @@ X!Edrivers/pnp/system.c
!Idrivers/message/fusion/mptfc.c
!Idrivers/message/fusion/mptlan.c
</sect1>
<sect1><title>I2O message devices</title>
!Iinclude/linux/i2o.h
!Idrivers/message/i2o/core.h
!Edrivers/message/i2o/iop.c
!Idrivers/message/i2o/iop.c
!Idrivers/message/i2o/config-osm.c
!Edrivers/message/i2o/exec-osm.c
!Idrivers/message/i2o/exec-osm.c
!Idrivers/message/i2o/bus-osm.c
!Edrivers/message/i2o/device.c
!Idrivers/message/i2o/device.c
!Idrivers/message/i2o/driver.c
!Idrivers/message/i2o/pci.c
!Idrivers/message/i2o/i2o_block.c
!Idrivers/message/i2o/i2o_scsi.c
!Idrivers/message/i2o/i2o_proc.c
</sect1>
</chapter>
<chapter id="snddev">

View File

@ -239,6 +239,14 @@
Driver supports dedicated render nodes.
</para></listitem>
</varlistentry>
<varlistentry>
<term>DRIVER_ATOMIC</term>
<listitem><para>
Driver supports atomic properties. In this case the driver
must implement appropriate obj->atomic_get_property() vfuncs
for any modeset objects with driver specific properties.
</para></listitem>
</varlistentry>
</variablelist>
</sect3>
<sect3>
@ -1377,7 +1385,7 @@ int max_width, max_height;</synopsis>
<itemizedlist>
<listitem>
DRM_PLANE_TYPE_PRIMARY represents a "main" plane for a CRTC. Primary
planes are the planes operated upon by by CRTC modesetting and flipping
planes are the planes operated upon by CRTC modesetting and flipping
operations described in <xref linkend="drm-kms-crtcops"/>.
</listitem>
<listitem>
@ -2362,6 +2370,7 @@ void intel_crt_init(struct drm_device *dev)
</sect2>
<sect2>
<title>Modeset Helper Functions Reference</title>
!Iinclude/drm/drm_crtc_helper.h
!Edrivers/gpu/drm/drm_crtc_helper.c
!Pdrivers/gpu/drm/drm_crtc_helper.c overview
</sect2>
@ -2564,8 +2573,8 @@ void intel_crt_init(struct drm_device *dev)
<td valign="top" >Description/Restrictions</td>
</tr>
<tr>
<td rowspan="25" valign="top" >DRM</td>
<td rowspan="4" valign="top" >Generic</td>
<td rowspan="36" valign="top" >DRM</td>
<td rowspan="5" valign="top" >Connector</td>
<td valign="top" >“EDID”</td>
<td valign="top" >BLOB | IMMUTABLE</td>
<td valign="top" >0</td>
@ -2594,7 +2603,14 @@ void intel_crt_init(struct drm_device *dev)
<td valign="top" >Contains tiling information for a connector.</td>
</tr>
<tr>
<td rowspan="1" valign="top" >Plane</td>
<td valign="top" >“CRTC_ID”</td>
<td valign="top" >OBJECT</td>
<td valign="top" >DRM_MODE_OBJECT_CRTC</td>
<td valign="top" >Connector</td>
<td valign="top" >CRTC that connector is attached to (atomic)</td>
</tr>
<tr>
<td rowspan="11" valign="top" >Plane</td>
<td valign="top" >“type”</td>
<td valign="top" >ENUM | IMMUTABLE</td>
<td valign="top" >{ "Overlay", "Primary", "Cursor" }</td>
@ -2602,6 +2618,76 @@ void intel_crt_init(struct drm_device *dev)
<td valign="top" >Plane type</td>
</tr>
<tr>
<td valign="top" >“SRC_X”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=UINT_MAX</td>
<td valign="top" >Plane</td>
<td valign="top" >Scanout source x coordinate in 16.16 fixed point (atomic)</td>
</tr>
<tr>
<td valign="top" >“SRC_Y”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=UINT_MAX</td>
<td valign="top" >Plane</td>
<td valign="top" >Scanout source y coordinate in 16.16 fixed point (atomic)</td>
</tr>
<tr>
<td valign="top" >“SRC_W”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=UINT_MAX</td>
<td valign="top" >Plane</td>
<td valign="top" >Scanout source width in 16.16 fixed point (atomic)</td>
</tr>
<tr>
<td valign="top" >“SRC_H”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=UINT_MAX</td>
<td valign="top" >Plane</td>
<td valign="top" >Scanout source height in 16.16 fixed point (atomic)</td>
</tr>
<tr>
<td valign="top" >“CRTC_X”</td>
<td valign="top" >SIGNED_RANGE</td>
<td valign="top" >Min=INT_MIN, Max=INT_MAX</td>
<td valign="top" >Plane</td>
<td valign="top" >Scanout CRTC (destination) x coordinate (atomic)</td>
</tr>
<tr>
<td valign="top" >“CRTC_Y”</td>
<td valign="top" >SIGNED_RANGE</td>
<td valign="top" >Min=INT_MIN, Max=INT_MAX</td>
<td valign="top" >Plane</td>
<td valign="top" >Scanout CRTC (destination) y coordinate (atomic)</td>
</tr>
<tr>
<td valign="top" >“CRTC_W”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=UINT_MAX</td>
<td valign="top" >Plane</td>
<td valign="top" >Scanout CRTC (destination) width (atomic)</td>
</tr>
<tr>
<td valign="top" >“CRTC_H”</td>
<td valign="top" >RANGE</td>
<td valign="top" >Min=0, Max=UINT_MAX</td>
<td valign="top" >Plane</td>
<td valign="top" >Scanout CRTC (destination) height (atomic)</td>
</tr>
<tr>
<td valign="top" >“FB_ID”</td>
<td valign="top" >OBJECT</td>
<td valign="top" >DRM_MODE_OBJECT_FB</td>
<td valign="top" >Plane</td>
<td valign="top" >Scanout framebuffer (atomic)</td>
</tr>
<tr>
<td valign="top" >“CRTC_ID”</td>
<td valign="top" >OBJECT</td>
<td valign="top" >DRM_MODE_OBJECT_CRTC</td>
<td valign="top" >Plane</td>
<td valign="top" >CRTC that plane is attached to (atomic)</td>
</tr>
<tr>
<td rowspan="2" valign="top" >DVI-I</td>
<td valign="top" >“subconnector”</td>
<td valign="top" >ENUM</td>
@ -3883,6 +3969,7 @@ int num_ioctls;</synopsis>
<title>Runtime Power Management</title>
!Pdrivers/gpu/drm/i915/intel_runtime_pm.c runtime pm
!Idrivers/gpu/drm/i915/intel_runtime_pm.c
!Idrivers/gpu/drm/i915/intel_uncore.c
</sect2>
<sect2>
<title>Interrupt Handling</title>
@ -3931,6 +4018,11 @@ int num_ioctls;</synopsis>
framebuffer compression and panel self refresh.
</para>
</sect2>
<sect2>
<title>Atomic Plane Helpers</title>
!Pdrivers/gpu/drm/i915/intel_atomic_plane.c atomic plane helpers
!Idrivers/gpu/drm/i915/intel_atomic_plane.c
</sect2>
<sect2>
<title>Output Probing</title>
<para>
@ -3949,6 +4041,11 @@ int num_ioctls;</synopsis>
<title>Panel Self Refresh PSR (PSR/SRD)</title>
!Pdrivers/gpu/drm/i915/intel_psr.c Panel Self Refresh (PSR/SRD)
!Idrivers/gpu/drm/i915/intel_psr.c
</sect2>
<sect2>
<title>Frame Buffer Compression (FBC)</title>
!Pdrivers/gpu/drm/i915/intel_fbc.c Frame Buffer Compression (FBC)
!Idrivers/gpu/drm/i915/intel_fbc.c
</sect2>
<sect2>
<title>DPIO</title>
@ -4052,12 +4149,33 @@ int num_ioctls;</synopsis>
<title>Batchbuffer Parsing</title>
!Pdrivers/gpu/drm/i915/i915_cmd_parser.c batch buffer command parser
!Idrivers/gpu/drm/i915/i915_cmd_parser.c
</sect2>
<sect2>
<title>Batchbuffer Pools</title>
!Pdrivers/gpu/drm/i915/i915_gem_batch_pool.c batch pool
!Idrivers/gpu/drm/i915/i915_gem_batch_pool.c
</sect2>
<sect2>
<title>Logical Rings, Logical Ring Contexts and Execlists</title>
!Pdrivers/gpu/drm/i915/intel_lrc.c Logical Rings, Logical Ring Contexts and Execlists
!Idrivers/gpu/drm/i915/intel_lrc.c
</sect2>
<sect2>
<title>Global GTT views</title>
!Pdrivers/gpu/drm/i915/i915_gem_gtt.c Global GTT views
!Idrivers/gpu/drm/i915/i915_gem_gtt.c
</sect2>
<sect2>
<title>Buffer Object Eviction</title>
<para>
This section documents the interface function for evicting buffer
objects to make space available in the virtual gpu address spaces.
Note that this is mostly orthogonal to shrinking buffer objects
caches, which has the goal to make main memory (shared with the gpu
through the unified memory architecture) available.
</para>
!Idrivers/gpu/drm/i915/i915_gem_evict.c
</sect2>
</sect1>
<sect1>

View File

@ -719,7 +719,7 @@ framework to set up sysfs files for this region. Simply leave it alone.
</para>
</sect1>
<sect1 id="using uio_dmem_genirq">
<sect1 id="using-uio_dmem_genirq">
<title>Using uio_dmem_genirq for platform devices</title>
<para>
In addition to statically allocated memory ranges, they may also be
@ -746,16 +746,16 @@ framework to set up sysfs files for this region. Simply leave it alone.
following elements:
</para>
<itemizedlist>
<listitem><varname>struct uio_info uioinfo</varname>: The same
<listitem><para><varname>struct uio_info uioinfo</varname>: The same
structure used as the <varname>uio_pdrv_genirq</varname> platform
data</listitem>
<listitem><varname>unsigned int *dynamic_region_sizes</varname>:
data</para></listitem>
<listitem><para><varname>unsigned int *dynamic_region_sizes</varname>:
Pointer to list of sizes of dynamic memory regions to be mapped into
user space.
</listitem>
<listitem><varname>unsigned int num_dynamic_regions</varname>:
</para></listitem>
<listitem><para><varname>unsigned int num_dynamic_regions</varname>:
Number of elements in <varname>dynamic_region_sizes</varname> array.
</listitem>
</para></listitem>
</itemizedlist>
<para>
The dynamic regions defined in the platform data will be appended to

View File

@ -0,0 +1,124 @@
ARM Atmel SoCs (aka AT91)
=========================
Introduction
------------
This document gives useful information about the ARM Atmel SoCs that are
currently supported in Linux Mainline (you know, the one on kernel.org).
It is important to note that the Atmel | SMART ARM-based MPU product line is
historically named "AT91" or "at91" throughout the Linux kernel development
process even if this product prefix has completely disappeared from the
official Atmel product name. Anyway, files, directories, git trees,
git branches/tags and email subject always contain this "at91" sub-string.
AT91 SoCs
---------
Documentation and detailled datasheet for each product are available on
the Atmel website: http://www.atmel.com.
Flavors:
* ARM 920 based SoC
- at91rm9200
+ Datasheet
http://www.atmel.com/Images/doc1768.pdf
* ARM 926 based SoCs
- at91sam9260
+ Datasheet
http://www.atmel.com/Images/doc6221.pdf
- at91sam9xe
+ Datasheet
http://www.atmel.com/Images/Atmel-6254-32-bit-ARM926EJ-S-Embedded-Microprocessor-SAM9XE_Datasheet.pdf
- at91sam9261
+ Datasheet
http://www.atmel.com/Images/doc6062.pdf
- at91sam9263
+ Datasheet
http://www.atmel.com/Images/Atmel_6249_32-bit-ARM926EJ-S-Microcontroller_SAM9263_Datasheet.pdf
- at91sam9rl
+ Datasheet
http://www.atmel.com/Images/doc6289.pdf
- at91sam9g20
+ Datasheet
http://www.atmel.com/Images/doc6384.pdf
- at91sam9g45 family
- at91sam9g45
- at91sam9g46
- at91sam9m10
- at91sam9m11 (device superset)
+ Datasheet
http://www.atmel.com/Images/Atmel-6437-32-bit-ARM926-Embedded-Microprocessor-SAM9M11_Datasheet.pdf
- at91sam9x5 family (aka "The 5 series")
- at91sam9g15
- at91sam9g25
- at91sam9g35
- at91sam9x25
- at91sam9x35
+ Datasheet (can be considered as covering the whole family)
http://www.atmel.com/Images/Atmel_11055_32-bit-ARM926EJ-S-Microcontroller_SAM9X35_Datasheet.pdf
- at91sam9n12
+ Datasheet
http://www.atmel.com/Images/Atmel_11063_32-bit-ARM926EJ-S-Microcontroller_SAM9N12CN11CN12_Datasheet.pdf
* ARM Cortex-A5 based SoCs
- sama5d3 family
- sama5d31
- sama5d33
- sama5d34
- sama5d35
- sama5d36 (device superset)
+ Datasheet
http://www.atmel.com/Images/Atmel-11121-32-bit-Cortex-A5-Microcontroller-SAMA5D3_Datasheet.pdf
* ARM Cortex-A5 + NEON based SoCs
- sama5d4 family
- sama5d41
- sama5d42
- sama5d43
- sama5d44 (device superset)
+ Datasheet
http://www.atmel.com/Images/Atmel-11238-32-bit-Cortex-A5-Microcontroller-SAMA5D4_Datasheet.pdf
Linux kernel information
------------------------
Linux kernel mach directory: arch/arm/mach-at91
MAINTAINERS entry is: "ARM/ATMEL AT91RM9200 AND AT91SAM ARM ARCHITECTURES"
Device Tree for AT91 SoCs and boards
------------------------------------
All AT91 SoCs are converted to Device Tree. Since Linux 3.19, these products
must use this method to boot the Linux kernel.
Work In Progress statement:
Device Tree files and Device Tree bindings that apply to AT91 SoCs and boards are
considered as "Unstable". To be completely clear, any at91 binding can change at
any time. So, be sure to use a Device Tree Binary and a Kernel Image generated from
the same source tree.
Please refer to the Documentation/devicetree/bindings/ABI.txt file for a
definition of a "Stable" binding/ABI.
This statement will be removed by AT91 MAINTAINERS when appropriate.
Naming conventions and best practice:
- SoCs Device Tree Source Include files are named after the official name of
the product (at91sam9g20.dtsi or sama5d33.dtsi for instance).
- Device Tree Source Include files (.dtsi) are used to collect common nodes that can be
shared across SoCs or boards (sama5d3.dtsi or at91sam9x5cm.dtsi for instance).
When collecting nodes for a particular peripheral or topic, the identifier have to
be placed at the end of the file name, separated with a "_" (at91sam9x5_can.dtsi
or sama5d3_gmac.dtsi for example).
- board Device Tree Source files (.dts) are prefixed by the string "at91-" so
that they can be identified easily. Note that some files are historical exceptions
to this rule (sama5d3[13456]ek.dts, usb_a9g20.dts or animeo_ip.dts for example).

View File

@ -1,46 +0,0 @@
S3C2410 DMA
===========
Introduction
------------
The kernel provides an interface to manage DMA transfers
using the DMA channels in the CPU, so that the central
duty of managing channel mappings, and programming the
channel generators is in one place.
DMA Channel Ordering
--------------------
Many of the range do not have connections for the DMA
channels to all sources, which means that some devices
have a restricted number of channels that can be used.
To allow flexibility for each CPU type and board, the
DMA code can be given a DMA ordering structure which
allows the order of channel search to be specified, as
well as allowing the prohibition of certain claims.
struct s3c24xx_dma_order has a list of channels, and
each channel within has a slot for a list of DMA
channel numbers. The slots are searched in order for
the presence of a DMA channel number with DMA_CH_VALID
or-ed in.
If the order has the flag DMA_CH_NEVER set, then after
checking the channel list, the system will return no
found channel, thus denying the request.
A board support file can call s3c24xx_dma_order_set()
to register a complete ordering set. The routine will
copy the data, so the original can be discarded with
__initdata.
Authour
-------
Ben Dooks,
Copyright (c) 2007 Ben Dooks, Simtec Electronics
Licensed under the GPL v2

View File

@ -0,0 +1,20 @@
STiH418 Overview
================
Introduction
------------
The STiH418 is the new generation of SoC for UHDp60 set-top boxes
and server/connected client application for satellite, cable, terrestrial
and IP-STB markets.
Features
- ARM Cortex-A9 1.5 GHz quad core CPU (28nm)
- SATA2, USB 3.0, PCIe, Gbit Ethernet
- HEVC L5.1 Main 10
- VP9
Document Author
---------------
Maxime Coquelin <maxime.coquelin@st.com>, (c) 2015 ST Microelectronics

View File

@ -50,7 +50,6 @@ SunXi family
http://dl.linux-sunxi.org/A31/A3x_release_document/A31/IC/A31%20user%20manual%20V1.1%2020130630.pdf
- Allwinner A31s (sun6i)
+ Not Supported
+ Datasheet
http://dl.linux-sunxi.org/A31/A3x_release_document/A31s/IC/A31s%20datasheet%20V1.3%2020131106.pdf
+ User Manual

View File

@ -15,6 +15,13 @@ Required root node property:
compatible: must contain "marvell,armada385"
In addition, boards using the Marvell Armada 388 SoC shall have the
following property before the previous one:
Required root node property:
compatible: must contain "marvell,armada388"
Example:
compatible = "marvell,a385-rd", "marvell,armada385", "marvell,armada380";

View File

@ -24,6 +24,7 @@ compatible: must be one of:
o "atmel,at91sam9g45"
o "atmel,at91sam9n12"
o "atmel,at91sam9rl"
o "atmel,at91sam9xe"
* "atmel,sama5" for SoCs using a Cortex-A5, shall be extended with the specific
SoC family:
o "atmel,sama5d3" shall be extended with the specific SoC compatible:
@ -136,3 +137,19 @@ Example:
compatible = "atmel,at91sam9260-rstc";
reg = <0xfffffd00 0x10>;
};
Special Function Registers (SFR)
Special Function Registers (SFR) manage specific aspects of the integrated
memory, bridge implementations, processor and other functionality not controlled
elsewhere.
required properties:
- compatible: Should be "atmel,<chip>-sfr", "syscon".
<chip> can be "sama5d3" or "sama5d4".
- reg: Should contain registers location and length
sfr@f0038000 {
compatible = "atmel,sama5d3-sfr", "syscon";
reg = <0xf0038000 0x60>;
};

View File

@ -38,8 +38,6 @@ its hardware characteristcs.
AMBA markee):
- "arm,coresight-replicator"
* id: a unique number that will identify this replicator.
* port or ports: same as above.
* Optional properties for ETM/PTMs:
@ -94,8 +92,6 @@ Example:
* AMBA bus. As such no need to add "arm,primecell".
*/
compatible = "arm,coresight-replicator";
/* this will show up in debugfs as "0.replicator" */
id = <0>;
ports {
#address-cells = <1>;

View File

@ -175,6 +175,7 @@ nodes to be present and contain the properties described below.
"marvell,pj4a"
"marvell,pj4b"
"marvell,sheeva-v5"
"nvidia,tegra132-denver"
"qcom,krait"
"qcom,scorpion"
- enable-method

View File

@ -0,0 +1,6 @@
Conexant Digicolor Platforms Device Tree Bindings
Each device tree must specify which Conexant Digicolor SoC it uses.
Must be the following compatible string:
cnxt,cx92755

View File

@ -23,7 +23,7 @@ Optional Properties:
devices in this power domain. Maximum of 4 pairs (N = 0 to 3)
are supported currently.
Node of a device using power domains must have a samsung,power-domain property
Node of a device using power domains must have a power-domains property
defined with a phandle to respective power domain.
Example:

View File

@ -75,6 +75,18 @@ i.MX6q generic board
Required root node properties:
- compatible = "fsl,imx6q";
Freescale Vybrid Platform Device Tree Bindings
----------------------------------------------
For the Vybrid SoC familiy all variants with DDR controller are supported,
which is the VF5xx and VF6xx series. Out of historical reasons, in most
places the kernel uses vf610 to refer to the whole familiy.
Required root node compatible property (one of them):
- compatible = "fsl,vf500";
- compatible = "fsl,vf510";
- compatible = "fsl,vf600";
- compatible = "fsl,vf610";
Freescale LS1021A Platform Device Tree Bindings
------------------------------------------------
@ -112,3 +124,11 @@ Example:
compatible = "fsl,ls1021a-dcfg";
reg = <0x0 0x1ee0000 0x0 0x10000>;
};
Freescale LS2085A SoC Device Tree Bindings
------------------------------------------
LS2085A ARMv8 based Simulator model
Required root node properties:
- compatible = "fsl,ls2085a-simu", "fsl,ls2085a";

View File

@ -32,12 +32,16 @@ Main node required properties:
The 3rd cell is the flags, encoded as follows:
bits[3:0] trigger type and level flags.
1 = low-to-high edge triggered
2 = high-to-low edge triggered
2 = high-to-low edge triggered (invalid for SPIs)
4 = active high level-sensitive
8 = active low level-sensitive
8 = active low level-sensitive (invalid for SPIs).
bits[15:8] PPI interrupt cpu mask. Each bit corresponds to each of
the 8 possible cpus attached to the GIC. A bit set to '1' indicated
the interrupt is wired to that CPU. Only valid for PPI interrupts.
Also note that the configurability of PPI interrupts is IMPLEMENTATION
DEFINED and as such not guaranteed to be present (most SoC available
in 2014 seem to ignore the setting of this flag and use the hardware
default value).
- reg : Specifies base physical address(s) and size of the GIC registers. The
first region is the GIC distributor register base and size. The 2nd region is

View File

@ -9,6 +9,10 @@ HiP04 D01 Board
Required root node properties:
- compatible = "hisilicon,hip04-d01";
HiP01 ca9x2 Board
Required root node properties:
- compatible = "hisilicon,hip01-ca9x2";
Hisilicon system controller
@ -36,6 +40,27 @@ Example:
reboot-offset = <0x4>;
};
-----------------------------------------------------------------------
Hisilicon HiP01 system controller
Required properties:
- compatible : "hisilicon,hip01-sysctrl"
- reg : Register address and size
The HiP01 system controller is mostly compatible with hisilicon
system controller,but it has some specific control registers for
HIP01 SoC family, such as slave core boot, and also some same
registers located at different offset.
Example:
/* for hip01-ca9x2 */
sysctrl: system-controller@10000000 {
compatible = "hisilicon,hip01-sysctrl", "hisilicon,sysctrl";
reg = <0x10000000 0x1000>;
reboot-offset = <0x4>;
};
-----------------------------------------------------------------------
Hisilicon CPU controller

View File

@ -57,6 +57,16 @@ Optional properties:
- cache-id-part: cache id part number to be used if it is not present
on hardware
- wt-override: If present then L2 is forced to Write through mode
- arm,double-linefill : Override double linefill enable setting. Enable if
non-zero, disable if zero.
- arm,double-linefill-incr : Override double linefill on INCR read. Enable
if non-zero, disable if zero.
- arm,double-linefill-wrap : Override double linefill on WRAP read. Enable
if non-zero, disable if zero.
- arm,prefetch-drop : Override prefetch drop enable setting. Enable if non-zero,
disable if zero.
- arm,prefetch-offset : Override prefetch offset value. Valid values are
0-7, 15, 23, and 31.
Example:

View File

@ -9,6 +9,7 @@ compatible: Must contain one of
"mediatek,mt6592"
"mediatek,mt8127"
"mediatek,mt8135"
"mediatek,mt8173"
Supported boards:
@ -25,3 +26,6 @@ Supported boards:
- MTK mt8135 tablet EVB:
Required root node properties:
- compatible = "mediatek,mt8135-evbp1", "mediatek,mt8135";
- MTK mt8173 tablet EVB:
Required root node properties:
- compatible = "mediatek,mt8173-evb", "mediatek,mt8173";

View File

@ -5,8 +5,10 @@ interrupt.
Required properties:
- compatible: should be one of:
"mediatek,mt8173-sysirq"
"mediatek,mt8135-sysirq"
"mediatek,mt8127-sysirq"
"mediatek,mt6592-sysirq"
"mediatek,mt6589-sysirq"
"mediatek,mt6582-sysirq"
"mediatek,mt6577-sysirq"

View File

@ -9,6 +9,16 @@ Rockchip platforms device tree bindings
Required root node properties:
- compatible = "mundoreader,bq-curie2", "rockchip,rk3066a";
- ChipSPARK Rayeager PX2 board:
Required root node properties:
- compatible = "chipspark,rayeager-px2", "rockchip,rk3066a";
- Radxa Rock board:
Required root node properties:
- compatible = "radxa,rock", "rockchip,rk3188";
- Firefly Firefly-RK3288 board:
Required root node properties:
- compatible = "firefly,firefly-rk3288", "rockchip,rk3288";
or
- compatible = "firefly,firefly-rk3288-beta", "rockchip,rk3288";

View File

@ -0,0 +1,16 @@
Rockchip SRAM for pmu:
------------------------------
The sram of pmu is used to store the function of resume from maskrom(the 1st
level loader). This is a common use of the "pmu-sram" because it keeps power
even in low power states in the system.
Required node properties:
- compatible : should be "rockchip,rk3288-pmu-sram"
- reg : physical base address and the size of the registers window
Example:
sram@ff720000 {
compatible = "rockchip,rk3288-pmu-sram", "mmio-sram";
reg = <0xff720000 0x1000>;
};

View File

@ -0,0 +1,12 @@
SAMSUNG Exynos SoCs Chipid driver.
Required properties:
- compatible : Should at least contain "samsung,exynos4210-chipid".
- reg: offset and length of the register set
Example:
chipid@10000000 {
compatible = "samsung,exynos4210-chipid";
reg = <0x10000000 0x100>;
};

View File

@ -10,6 +10,7 @@ Properties:
- "samsung,exynos5260-pmu" - for Exynos5260 SoC.
- "samsung,exynos5410-pmu" - for Exynos5410 SoC,
- "samsung,exynos5420-pmu" - for Exynos5420 SoC.
- "samsung,exynos7-pmu" - for Exynos7 SoC.
second value must be always "syscon".
- reg : offset and length of the register set.

View File

@ -3,7 +3,9 @@ CSR SiRFprimaII and SiRFmarco device tree bindings.
Required root node properties:
- compatible:
- "sirf,atlas6-cb" : atlas6 "cb" evaluation board
- "sirf,atlas6" : atlas6 device based board
- "sirf,atlas7-cb" : atlas7 "cb" evaluation board
- "sirf,atlas7" : atlas7 device based board
- "sirf,prima2-cb" : prima2 "cb" evaluation board
- "sirf,marco-cb" : marco "cb" evaluation board
- "sirf,prima2" : prima2 device based board
- "sirf,marco" : marco device based board

View File

@ -0,0 +1,11 @@
Spreadtrum SoC Platforms Device Tree Bindings
----------------------------------------------------
Sharkl64 is a Spreadtrum's SoC Platform which is based
on ARM 64-bit processor.
SC9836 openphone board with SC9836 SoC based on the
Sharkl64 Platform shall have the following properties.
Required root node properties:
- compatible = "sprd,sc9836-openphone", "sprd,sc9836";

View File

@ -13,3 +13,7 @@ Boards with the ST STiH407 SoC shall have the following properties:
Required root node property:
compatible = "st,stih407";
Boards with the ST STiH418 SoC shall have the following properties:
Required root node property:
compatible = "st,stih418";

View File

@ -1,7 +1,10 @@
NVIDIA Tegra AHB
Required properties:
- compatible : "nvidia,tegra20-ahb" or "nvidia,tegra30-ahb"
- compatible : For Tegra20, must contain "nvidia,tegra20-ahb". For
Tegra30, must contain "nvidia,tegra30-ahb". Otherwise, must contain
'"nvidia,<chip>-ahb", "nvidia,tegra30-ahb"' where <chip> is tegra124,
tegra132, or tegra210.
- reg : Should contain 1 register ranges(address and length)
Example:

View File

@ -6,7 +6,11 @@ modes. It provides power-gating controllers for SoC and CPU power-islands.
Required properties:
- name : Should be pmc
- compatible : Should contain "nvidia,tegra<chip>-pmc".
- compatible : For Tegra20, must contain "nvidia,tegra20-pmc". For Tegra30,
must contain "nvidia,tegra30-pmc". For Tegra114, must contain
"nvidia,tegra114-pmc". For Tegra124, must contain "nvidia,tegra124-pmc".
Otherwise, must contain "nvidia,<chip>-pmc", plus at least one of the
above, where <chip> is tegra132.
- reg : Offset and length of the register set for the device
- clocks : Must contain an entry for each entry in clock-names.
See ../clocks/clock-bindings.txt for details.
@ -47,6 +51,23 @@ Required properties when nvidia,suspend-mode=<0>:
sleep mode, the warm boot code will restore some PLLs, clocks and then
bring up CPU0 for resuming the system.
Hardware-triggered thermal reset:
On Tegra30, Tegra114 and Tegra124, if the 'i2c-thermtrip' subnode exists,
hardware-triggered thermal reset will be enabled.
Required properties for hardware-triggered thermal reset (inside 'i2c-thermtrip'):
- nvidia,i2c-controller-id : ID of I2C controller to send poweroff command to. Valid values are
described in section 9.2.148 "APBDEV_PMC_SCRATCH53_0" of the
Tegra K1 Technical Reference Manual.
- nvidia,bus-addr : Bus address of the PMU on the I2C bus
- nvidia,reg-addr : I2C register address to write poweroff command to
- nvidia,reg-data : Poweroff command to write to PMU
Optional properties for hardware-triggered thermal reset (inside 'i2c-thermtrip'):
- nvidia,pinmux-id : Pinmux used by the hardware when issuing poweroff command.
Defaults to 0. Valid values are described in section 12.5.2
"Pinmux Support" of the Tegra4 Technical Reference Manual.
Example:
/ SoC dts including file
@ -68,6 +89,15 @@ pmc@7000f400 {
/ Tegra board dts file
{
...
pmc@7000f400 {
i2c-thermtrip {
nvidia,i2c-controller-id = <4>;
nvidia,bus-addr = <0x40>;
nvidia,reg-addr = <0x36>;
nvidia,reg-data = <0x2>;
};
};
...
clocks {
compatible = "simple-bus";

View File

@ -0,0 +1,10 @@
ARM Versatile system registers
--------------------------------------
This is a system control registers block, providing multiple low level
platform functions like board detection and identification, software
interrupt generation, MMC and NOR Flash control etc.
Required node properties:
- compatible value : = "arm,versatile-sysreg", "syscon"
- reg : physical base address and the size of the registers window

View File

@ -1,7 +1,9 @@
Tegra124 SoC SATA AHCI controller
Required properties :
- compatible : "nvidia,tegra124-ahci".
- compatible : For Tegra124, must contain "nvidia,tegra124-ahci". Otherwise,
must contain '"nvidia,<chip>-ahci", "nvidia,tegra124-ahci"', where <chip>
is tegra132.
- reg : Should contain 2 entries:
- AHCI register set (SATA BAR5)
- SATA register set

View File

@ -6,8 +6,8 @@ Required properties:
- compatible: Should be set to one of the following:
marvell,armada370-mbus
marvell,armadaxp-mbus
marvell,armada370-mbus
marvell,armadaxp-mbus
marvell,armada375-mbus
marvell,armada380-mbus
marvell,kirkwood-mbus
marvell,dove-mbus
marvell,orion5x-88f5281-mbus

View File

@ -0,0 +1,115 @@
Alphascale Clock Controller
The ACC (Alphascale Clock Controller) is responsible of choising proper
clock source, setting deviders and clock gates.
Required properties for the ACC node:
- compatible: must be "alphascale,asm9260-clock-controller"
- reg: must contain the ACC register base and size
- #clock-cells : shall be set to 1.
Simple one-cell clock specifier format is used, where the only cell is used
as an index of the clock inside the provider.
It is encouraged to use dt-binding for clock index definitions. SoC specific
dt-binding should be included to the device tree descriptor. For example
Alphascale ASM9260:
#include <dt-bindings/clock/alphascale,asm9260.h>
This binding contains two types of clock providers:
_AHB_ - AHB gate;
_SYS_ - adjustable clock source. Not all peripheral have _SYS_ clock provider.
All clock specific details can be found in the SoC documentation.
CLKID_AHB_ROM 0
CLKID_AHB_RAM 1
CLKID_AHB_GPIO 2
CLKID_AHB_MAC 3
CLKID_AHB_EMI 4
CLKID_AHB_USB0 5
CLKID_AHB_USB1 6
CLKID_AHB_DMA0 7
CLKID_AHB_DMA1 8
CLKID_AHB_UART0 9
CLKID_AHB_UART1 10
CLKID_AHB_UART2 11
CLKID_AHB_UART3 12
CLKID_AHB_UART4 13
CLKID_AHB_UART5 14
CLKID_AHB_UART6 15
CLKID_AHB_UART7 16
CLKID_AHB_UART8 17
CLKID_AHB_UART9 18
CLKID_AHB_I2S0 19
CLKID_AHB_I2C0 20
CLKID_AHB_I2C1 21
CLKID_AHB_SSP0 22
CLKID_AHB_IOCONFIG 23
CLKID_AHB_WDT 24
CLKID_AHB_CAN0 25
CLKID_AHB_CAN1 26
CLKID_AHB_MPWM 27
CLKID_AHB_SPI0 28
CLKID_AHB_SPI1 29
CLKID_AHB_QEI 30
CLKID_AHB_QUADSPI0 31
CLKID_AHB_CAMIF 32
CLKID_AHB_LCDIF 33
CLKID_AHB_TIMER0 34
CLKID_AHB_TIMER1 35
CLKID_AHB_TIMER2 36
CLKID_AHB_TIMER3 37
CLKID_AHB_IRQ 38
CLKID_AHB_RTC 39
CLKID_AHB_NAND 40
CLKID_AHB_ADC0 41
CLKID_AHB_LED 42
CLKID_AHB_DAC0 43
CLKID_AHB_LCD 44
CLKID_AHB_I2S1 45
CLKID_AHB_MAC1 46
CLKID_SYS_CPU 47
CLKID_SYS_AHB 48
CLKID_SYS_I2S0M 49
CLKID_SYS_I2S0S 50
CLKID_SYS_I2S1M 51
CLKID_SYS_I2S1S 52
CLKID_SYS_UART0 53
CLKID_SYS_UART1 54
CLKID_SYS_UART2 55
CLKID_SYS_UART3 56
CLKID_SYS_UART4 56
CLKID_SYS_UART5 57
CLKID_SYS_UART6 58
CLKID_SYS_UART7 59
CLKID_SYS_UART8 60
CLKID_SYS_UART9 61
CLKID_SYS_SPI0 62
CLKID_SYS_SPI1 63
CLKID_SYS_QUADSPI 64
CLKID_SYS_SSP0 65
CLKID_SYS_NAND 66
CLKID_SYS_TRACE 67
CLKID_SYS_CAMM 68
CLKID_SYS_WDT 69
CLKID_SYS_CLKOUT 70
CLKID_SYS_MAC 71
CLKID_SYS_LCD 72
CLKID_SYS_ADCANA 73
Example of clock consumer with _SYS_ and _AHB_ sinks.
uart4: serial@80010000 {
compatible = "alphascale,asm9260-uart";
reg = <0x80010000 0x4000>;
clocks = <&acc CLKID_SYS_UART4>, <&acc CLKID_AHB_UART4>;
interrupts = <19>;
status = "disabled";
};
Clock consumer with only one, _AHB_ sink.
timer0: timer@80088000 {
compatible = "alphascale,asm9260-timer";
reg = <0x80088000 0x4000>;
clocks = <&acc CLKID_AHB_TIMER0>;
interrupts = <29>;
};

View File

@ -0,0 +1,35 @@
These bindings should be considered EXPERIMENTAL for now.
* Renesas SH73A0 Clock Pulse Generator (CPG)
The CPG generates core clocks for the SH73A0 SoC. It includes four PLLs
and several fixed ratio dividers.
Required Properties:
- compatible: Must be "renesas,sh73a0-cpg-clocks"
- reg: Base address and length of the memory resource used by the CPG
- clocks: Reference to the parent clocks ("extal1" and "extal2")
- #clock-cells: Must be 1
- clock-output-names: The names of the clocks. Supported clocks are "main",
"pll0", "pll1", "pll2", "pll3", "dsi0phy", "dsi1phy", "zg", "m3", "b",
"m1", "m2", "z", "zx", and "hp".
Example
-------
cpg_clocks: cpg_clocks@e6150000 {
compatible = "renesas,sh73a0-cpg-clocks";
reg = <0 0xe6150000 0 0x10000>;
clocks = <&extal1_clk>, <&extal2_clk>;
#clock-cells = <1>;
clock-output-names = "main", "pll0", "pll1", "pll2",
"pll3", "dsi0phy", "dsi1phy",
"zg", "m3", "b", "m1", "m2",
"z", "zx", "hp";
};

View File

@ -0,0 +1,53 @@
Device-Tree bindings for Atmel's HLCDC (High LCD Controller) DRM driver
The Atmel HLCDC Display Controller is subdevice of the HLCDC MFD device.
See ../mfd/atmel-hlcdc.txt for more details.
Required properties:
- compatible: value should be "atmel,hlcdc-display-controller"
- pinctrl-names: the pin control state names. Should contain "default".
- pinctrl-0: should contain the default pinctrl states.
- #address-cells: should be set to 1.
- #size-cells: should be set to 0.
Required children nodes:
Children nodes are encoding available output ports and their connections
to external devices using the OF graph reprensentation (see ../graph.txt).
At least one port node is required.
Example:
hlcdc: hlcdc@f0030000 {
compatible = "atmel,sama5d3-hlcdc";
reg = <0xf0030000 0x2000>;
interrupts = <36 IRQ_TYPE_LEVEL_HIGH 0>;
clocks = <&lcdc_clk>, <&lcdck>, <&clk32k>;
clock-names = "periph_clk","sys_clk", "slow_clk";
status = "disabled";
hlcdc-display-controller {
compatible = "atmel,hlcdc-display-controller";
pinctrl-names = "default";
pinctrl-0 = <&pinctrl_lcd_base &pinctrl_lcd_rgb888>;
#address-cells = <1>;
#size-cells = <0>;
port@0 {
#address-cells = <1>;
#size-cells = <0>;
reg = <0>;
hlcdc_panel_output: endpoint@0 {
reg = <0>;
remote-endpoint = <&panel_input>;
};
};
};
hlcdc_pwm: hlcdc-pwm {
compatible = "atmel,hlcdc-pwm";
pinctrl-names = "default";
pinctrl-0 = <&pinctrl_lcd_pwm>;
#pwm-cells = <3>;
};
};

View File

@ -0,0 +1,50 @@
DesignWare HDMI bridge bindings
Required properties:
- compatible: platform specific such as:
* "snps,dw-hdmi-tx"
* "fsl,imx6q-hdmi"
* "fsl,imx6dl-hdmi"
* "rockchip,rk3288-dw-hdmi"
- reg: Physical base address and length of the controller's registers.
- interrupts: The HDMI interrupt number
- clocks, clock-names : must have the phandles to the HDMI iahb and isfr clocks,
as described in Documentation/devicetree/bindings/clock/clock-bindings.txt,
the clocks are soc specific, the clock-names should be "iahb", "isfr"
-port@[X]: SoC specific port nodes with endpoint definitions as defined
in Documentation/devicetree/bindings/media/video-interfaces.txt,
please refer to the SoC specific binding document:
* Documentation/devicetree/bindings/drm/imx/hdmi.txt
* Documentation/devicetree/bindings/video/dw_hdmi-rockchip.txt
Optional properties
- reg-io-width: the width of the reg:1,4, default set to 1 if not present
- ddc-i2c-bus: phandle of an I2C controller used for DDC EDID probing
- clocks, clock-names: phandle to the HDMI CEC clock, name should be "cec"
Example:
hdmi: hdmi@0120000 {
compatible = "fsl,imx6q-hdmi";
reg = <0x00120000 0x9000>;
interrupts = <0 115 0x04>;
gpr = <&gpr>;
clocks = <&clks 123>, <&clks 124>;
clock-names = "iahb", "isfr";
ddc-i2c-bus = <&i2c2>;
port@0 {
reg = <0>;
hdmi_mux_0: endpoint {
remote-endpoint = <&ipu1_di0_hdmi>;
};
};
port@1 {
reg = <1>;
hdmi_mux_1: endpoint {
remote-endpoint = <&ipu1_di1_hdmi>;
};
};
};

View File

@ -2,6 +2,8 @@ Qualcomm adreno/snapdragon hdmi output
Required properties:
- compatible: one of the following
* "qcom,hdmi-tx-8084"
* "qcom,hdmi-tx-8074"
* "qcom,hdmi-tx-8660"
* "qcom,hdmi-tx-8960"
- reg: Physical base address and length of the controller's registers

View File

@ -0,0 +1,17 @@
Altera SOCFPGA FPGA Manager
Required properties:
- compatible : should contain "altr,socfpga-fpga-mgr"
- reg : base address and size for memory mapped io.
- The first index is for FPGA manager register access.
- The second index is for writing FPGA configuration data.
- interrupts : interrupt for the FPGA Manager device.
Example:
hps_0_fpgamgr: fpgamgr@0xff706000 {
compatible = "altr,socfpga-fpga-mgr";
reg = <0xFF706000 0x1000
0xFFB90000 0x1000>;
interrupts = <0 175 4>;
};

View File

@ -1,11 +1,11 @@
NVIDIA Tegra20/Tegra30/Tegr114/Tegra124 fuse block.
Required properties:
- compatible : should be:
"nvidia,tegra20-efuse"
"nvidia,tegra30-efuse"
"nvidia,tegra114-efuse"
"nvidia,tegra124-efuse"
- compatible : For Tegra20, must contain "nvidia,tegra20-efuse". For Tegra30,
must contain "nvidia,tegra30-efuse". For Tegra114, must contain
"nvidia,tegra114-efuse". For Tegra124, must contain "nvidia,tegra124-efuse".
Otherwise, must contain "nvidia,<chip>-efuse", plus one of the above, where
<chip> is tegra132.
Details:
nvidia,tegra20-efuse: Tegra20 requires using APB DMA to read the fuse data
due to a hardware bug. Tegra20 also lacks certain information which is

View File

@ -197,7 +197,9 @@ of the following host1x client modules:
- sor: serial output resource
Required properties:
- compatible: "nvidia,tegra124-sor"
- compatible: For Tegra124, must contain "nvidia,tegra124-sor". Otherwise,
must contain '"nvidia,<chip>-sor", "nvidia,tegra124-sor"', where <chip>
is tegra132.
- reg: Physical base address and length of the controller's registers.
- interrupts: The interrupt outputs from the controller.
- clocks: Must contain an entry for each entry in clock-names.
@ -222,7 +224,9 @@ of the following host1x client modules:
- nvidia,dpaux: phandle to a DispayPort AUX interface
- dpaux: DisplayPort AUX interface
- compatible: "nvidia,tegra124-dpaux"
- compatible: For Tegra124, must contain "nvidia,tegra124-dpaux". Otherwise,
must contain '"nvidia,<chip>-dpaux", "nvidia,tegra124-dpaux"', where
<chip> is tegra132.
- reg: Physical base address and length of the controller's registers.
- interrupts: The interrupt outputs from the controller.
- clocks: Must contain an entry for each entry in clock-names.

View File

@ -83,6 +83,22 @@ sti-hda:
- clock-names: names of the clocks listed in clocks property in the same
order.
sti-dvo:
Required properties:
must be a child of sti-tvout
- compatible: "st,stih<chip>-dvo"
- reg: Physical base address of the IP registers and length of memory mapped region.
- reg-names: names of the mapped memory regions listed in regs property in
the same order.
- clocks: from common clock binding: handle hardware IP needed clocks, the
number of clocks may depend of the SoC type.
See ../clocks/clock-bindings.txt for details.
- clock-names: names of the clocks listed in clocks property in the same
order.
- pinctrl-0: pin control handle
- pinctrl-name: names of the pin control to use
- sti,panel: phandle of the panel connected to the DVO output
sti-hqvdp:
must be a child of sti-display-subsystem
Required properties:
@ -198,6 +214,19 @@ Example:
clock-names = "pix", "hddac";
clocks = <&clockgen_c_vcc CLK_S_PIX_HD>, <&clockgen_c_vcc CLK_S_HDDAC>;
};
sti-dvo@8d00400 {
compatible = "st,stih407-dvo";
reg = <0x8d00400 0x200>;
reg-names = "dvo-reg";
clock-names = "dvo_pix", "dvo",
"main_parent", "aux_parent";
clocks = <&clk_s_d2_flexgen CLK_PIX_DVO>, <&clk_s_d2_flexgen CLK_DVO>,
<&clk_s_d2_quadfs 0>, <&clk_s_d2_quadfs 1>;
pinctrl-names = "default";
pinctrl-0 = <&pinctrl_dvo>;
sti,panel = <&panel_dvo>;
};
};
sti-hqvdp@9c000000 {

View File

@ -1,11 +1,11 @@
NVIDIA Tegra20/Tegra30/Tegra114 I2C controller driver.
Required properties:
- compatible : should be:
"nvidia,tegra114-i2c"
"nvidia,tegra30-i2c"
"nvidia,tegra20-i2c"
"nvidia,tegra20-i2c-dvc"
- compatible : For Tegra20, must be one of "nvidia,tegra20-i2c-dvc" or
"nvidia,tegra20-i2c". For Tegra30, must be "nvidia,tegra30-i2c".
For Tegra114, must be "nvidia,tegra114-i2c". Otherwise, must be
"nvidia,<chip>-i2c", plus at least one of the above, where <chip> is
tegra124, tegra132, or tegra210.
Details of compatible are as follows:
nvidia,tegra20-i2c-dvc: Tegra20 has specific I2C controller called as DVC I2C
controller. This only support master mode of I2C communication. Register

View File

@ -9,6 +9,7 @@ document for it just like any other devices.
Compatible Vendor / Chip
========== =============
abracon,abb5zes3 AB-RTCMC-32.768kHz-B5ZE-S3: Real Time Clock/Calendar Module with I2C Interface
ad,ad7414 SMBus/I2C Digital Temperature Sensor in 6-Pin SOT with SMBus Alert and Over Temperature Pin
ad,adm9240 ADM9240: Complete System Hardware Monitor for uProcessor-Based Systems
adi,adt7461 +/-1C TDM Extended Temp Range I.C
@ -34,6 +35,7 @@ atmel,24c512 i2c serial eeprom (24cxx)
atmel,24c1024 i2c serial eeprom (24cxx)
atmel,at97sc3204t i2c trusted platform module (TPM)
capella,cm32181 CM32181: Ambient Light Sensor
capella,cm3232 CM3232: Ambient Light Sensor
catalyst,24c32 i2c serial eeprom
cirrus,cs42l51 Cirrus Logic CS42L51 audio codec
dallas,ds1307 64 x 8, Serial, I2C Real-Time Clock

View File

@ -0,0 +1,22 @@
* Cosmic Circuits - Analog to Digital Converter (CC-10001-ADC)
Required properties:
- compatible: Should be "cosmic,10001-adc"
- reg: Should contain adc registers location and length.
- clock-names: Should contain "adc".
- clocks: Should contain a clock specifier for each entry in clock-names
- vref-supply: The regulator supply ADC reference voltage.
Optional properties:
- adc-reserved-channels: Bitmask of reserved channels,
i.e. channels that cannot be used by the OS.
Example:
adc: adc@18101600 {
compatible = "cosmic,10001-adc";
reg = <0x18101600 0x24>;
adc-reserved-channels = <0x2>;
clocks = <&adc_clk>;
clock-names = "adc";
vref-supply = <&reg_1v8>;
};

View File

@ -0,0 +1,129 @@
Qualcomm's SPMI PMIC voltage ADC
SPMI PMIC voltage ADC (VADC) provides interface to clients to read
voltage. The VADC is a 15-bit sigma-delta ADC.
VADC node:
- compatible:
Usage: required
Value type: <string>
Definition: Should contain "qcom,spmi-vadc".
- reg:
Usage: required
Value type: <prop-encoded-array>
Definition: VADC base address and length in the SPMI PMIC register map.
- #address-cells:
Usage: required
Value type: <u32>
Definition: Must be one. Child node 'reg' property should define ADC
channel number.
- #size-cells:
Usage: required
Value type: <u32>
Definition: Must be zero.
- #io-channel-cells:
Usage: required
Value type: <u32>
Definition: Must be one. For details about IIO bindings see:
Documentation/devicetree/bindings/iio/iio-bindings.txt
- interrupts:
Usage: optional
Value type: <prop-encoded-array>
Definition: End of conversion interrupt.
Channel node properties:
- reg:
Usage: required
Value type: <u32>
Definition: ADC channel number.
See include/dt-bindings/iio/qcom,spmi-vadc.h
- qcom,decimation:
Usage: optional
Value type: <u32>
Definition: This parameter is used to decrease ADC sampling rate.
Quicker measurements can be made by reducing decimation ratio.
Valid values are 512, 1024, 2048, 4096.
If property is not found, default value of 512 will be used.
- qcom,pre-scaling:
Usage: optional
Value type: <u32 array>
Definition: Used for scaling the channel input signal before the signal is
fed to VADC. The configuration for this node is to know the
pre-determined ratio and use it for post scaling. Select one from
the following options.
<1 1>, <1 3>, <1 4>, <1 6>, <1 20>, <1 8>, <10 81>, <1 10>
If property is not found default value depending on chip will be used.
- qcom,ratiometric:
Usage: optional
Value type: <empty>
Definition: Channel calibration type. If this property is specified
VADC will use the VDD reference (1.8V) and GND for channel
calibration. If property is not found, channel will be
calibrated with 0.625V and 1.25V reference channels, also
known as absolute calibration.
- qcom,hw-settle-time:
Usage: optional
Value type: <u32>
Definition: Time between AMUX getting configured and the ADC starting
conversion. Delay = 100us * (value) for value < 11, and
2ms * (value - 10) otherwise.
Valid values are: 0, 100, 200, 300, 400, 500, 600, 700, 800,
900 us and 1, 2, 4, 6, 8, 10 ms
If property is not found, channel will use 0us.
- qcom,avg-samples:
Usage: optional
Value type: <u32>
Definition: Number of samples to be used for measurement.
Averaging provides the option to obtain a single measurement
from the ADC that is an average of multiple samples. The value
selected is 2^(value).
Valid values are: 1, 2, 4, 8, 16, 32, 64, 128, 256, 512
If property is not found, 1 sample will be used.
NOTE:
Following channels, also known as reference point channels, are used for
result calibration and their channel configuration nodes should be defined:
VADC_REF_625MV and/or VADC_SPARE1(based on PMIC version) VADC_REF_1250MV,
VADC_GND_REF and VADC_VDD_VADC.
Example:
/* VADC node */
pmic_vadc: vadc@3100 {
compatible = "qcom,spmi-vadc";
reg = <0x3100 0x100>;
interrupts = <0x0 0x31 0x0 IRQ_TYPE_EDGE_RISING>;
#address-cells = <1>;
#size-cells = <0>;
#io-channel-cells = <1>;
io-channel-ranges;
/* Channel node */
usb_id_nopull {
reg = <VADC_LR_MUX10_USB_ID>;
qcom,decimation = <512>;
qcom,ratiometric;
qcom,hw-settle-time = <200>;
qcom,avg-samples = <1>;
qcom,pre-scaling = <1 3>;
};
};
/* IIO client node */
usb {
io-channels = <&pmic_vadc VADC_LR_MUX10_USB_ID>;
io-channel-names = "vadc";
};

View File

@ -0,0 +1,25 @@
Samsung Sensorhub driver
Sensorhub is a MCU which manages several sensors and also plays the role
of a virtual sensor device.
Required properties:
- compatible: "samsung,sensorhub-rinato" or "samsung,sensorhub-thermostat"
- spi-max-frequency: max SPI clock frequency
- interrupt-parent: interrupt parent
- interrupts: communication interrupt
- ap-mcu-gpios: [out] ap to sensorhub line - used during communication
- mcu-ap-gpios: [in] sensorhub to ap - used during communication
- mcu-reset-gpios: [out] sensorhub reset
Example:
shub_spi: shub {
compatible = "samsung,sensorhub-rinato";
spi-max-frequency = <5000000>;
interrupt-parent = <&gpx0>;
interrupts = <2 0>;
ap-mcu-gpios = <&gpx0 0 0>;
mcu-ap-gpios = <&gpx0 4 0>;
mcu-reset-gpios = <&gpx0 5 0>;
};

View File

@ -0,0 +1,21 @@
Conexant Digicolor Interrupt Controller
Required properties:
- compatible : should be "cnxt,cx92755-ic"
- reg : Specifies base physical address and size of the interrupt controller
registers (IC) area
- interrupt-controller : Identifies the node as an interrupt controller
- #interrupt-cells : Specifies the number of cells needed to encode an
interrupt source. The value shall be 1.
- syscon: A phandle to the syscon node describing UC registers
Example:
intc: interrupt-controller@f0000040 {
compatible = "cnxt,cx92755-ic";
interrupt-controller;
#interrupt-cells = <1>;
reg = <0xf0000040 0x40>;
syscon = <&uc_regs>;
};

View File

@ -9,6 +9,11 @@ Required properties:
- "renesas,intc-irqpin-r8a7778" (R-Car M1A)
- "renesas,intc-irqpin-r8a7779" (R-Car H1)
- "renesas,intc-irqpin-sh73a0" (SH-Mobile AG5)
- reg: Base address and length of each register bank used by the external
IRQ pins driven by the interrupt controller hardware module. The base
addresses, length and number of required register banks varies with soctype.
- #interrupt-cells: has to be <2>: an interrupt index and flags, as defined in
interrupts.txt in this directory

View File

@ -0,0 +1,28 @@
Omap2/3 intc controller
On TI omap2 and 3 the intc interrupt controller can provide
96 or 128 IRQ signals to the ARM host depending on the SoC.
Required Properties:
- compatible: should be one of
"ti,omap2-intc"
"ti,omap3-intc"
"ti,dm814-intc"
"ti,dm816-intc"
"ti,am33xx-intc"
- interrupt-controller : Identifies the node as an interrupt controller
- #interrupt-cells : Specifies the number of cells needed to encode interrupt
source, should be 1 for intc
- interrupts: interrupt reference to primary interrupt controller
Please refer to interrupts.txt in this directory for details of the common
Interrupt Controllers bindings used by client devices.
Example:
intc: interrupt-controller@48200000 {
compatible = "ti,omap3-intc";
interrupt-controller;
#interrupt-cells = <1>;
reg = <0x48200000 0x1000>;
};

View File

@ -0,0 +1,41 @@
* Renesas VMSA-Compatible IOMMU
The IPMMU is an IOMMU implementation compatible with the ARM VMSA page tables.
It provides address translation for bus masters outside of the CPU, each
connected to the IPMMU through a port called micro-TLB.
Required Properties:
- compatible: Must contain "renesas,ipmmu-vmsa".
- reg: Base address and size of the IPMMU registers.
- interrupts: Specifiers for the MMU fault interrupts. For instances that
support secure mode two interrupts must be specified, for non-secure and
secure mode, in that order. For instances that don't support secure mode a
single interrupt must be specified.
- #iommu-cells: Must be 1.
Each bus master connected to an IPMMU must reference the IPMMU in its device
node with the following property:
- iommus: A reference to the IPMMU in two cells. The first cell is a phandle
to the IPMMU and the second cell the number of the micro-TLB that the
device is connected to.
Example: R8A7791 IPMMU-MX and VSP1-D0 bus master
ipmmu_mx: mmu@fe951000 {
compatible = "renasas,ipmmu-vmsa";
reg = <0 0xfe951000 0 0x1000>;
interrupts = <0 222 IRQ_TYPE_LEVEL_HIGH>,
<0 221 IRQ_TYPE_LEVEL_HIGH>;
#iommu-cells = <1>;
};
vsp1@fe928000 {
...
iommus = <&ipmmu_mx 13>;
...
};

View File

@ -45,7 +45,7 @@ Required properties:
Exynos4 SoCs, there needs no "master" clock.
Exynos5 SoCs, some System MMUs must have "master" clocks.
- clocks: Required if the System MMU is needed to gate its clock.
- samsung,power-domain: Required if the System MMU is needed to gate its power.
- power-domains: Required if the System MMU is needed to gate its power.
Please refer to the following document:
Documentation/devicetree/bindings/arm/exynos/power_domain.txt
@ -54,7 +54,7 @@ Examples:
compatible = "samsung,exynos5-gsc";
reg = <0x13e00000 0x1000>;
interrupts = <0 85 0>;
samsung,power-domain = <&pd_gsc>;
power-domains = <&pd_gsc>;
clocks = <&clock CLK_GSCL0>;
clock-names = "gscl";
};
@ -66,5 +66,5 @@ Examples:
interrupts = <2 0>;
clock-names = "sysmmu", "master";
clocks = <&clock CLK_SMMU_GSCL0>, <&clock CLK_GSCL0>;
samsung,power-domain = <&pd_gsc>;
power-domains = <&pd_gsc>;
};

View File

@ -1,6 +1,19 @@
Common leds properties.
LED and flash LED devices provide the same basic functionality as current
regulators, but extended with LED and flash LED specific features like
blinking patterns, flash timeout, flash faults and external flash strobe mode.
Many LED devices expose more than one current output that can be connected
to one or more discrete LED component. Since the arrangement of connections
can influence the way of the LED device initialization, the LED components
have to be tightly coupled with the LED device binding. They are represented
by child nodes of the parent LED device binding.
Optional properties for child nodes:
- led-sources : List of device current outputs the LED is connected to. The
outputs are identified by the numbers that must be defined
in the LED device binding documentation.
- label : The label for this LED. If omitted, the label is
taken from the node name (excluding the unit address).
@ -14,6 +27,15 @@ Optional properties for child nodes:
"ide-disk" - LED indicates disk activity
"timer" - LED flashes at a fixed, configurable rate
- max-microamp : maximum intensity in microamperes of the LED
(torch LED for flash devices)
- flash-max-microamp : maximum intensity in microamperes of the
flash LED; it is mandatory if the LED should
support the flash mode
- flash-timeout-us : timeout in microseconds after which the flash
LED is turned off
Examples:
system-status {
@ -21,3 +43,11 @@ system-status {
linux,default-trigger = "heartbeat";
...
};
camera-flash {
label = "Flash";
led-sources = <0>, <1>;
max-microamp = <50000>;
flash-max-microamp = <320000>;
flash-timeout-us = <500000>;
};

View File

@ -38,7 +38,7 @@ Example:
i2c1: i2c@f0018000 {
ov2640: camera@0x30 {
compatible = "omnivision,ov2640";
compatible = "ovti,ov2640";
reg = <0x30>;
port {

View File

@ -28,7 +28,7 @@ Required properties:
for DMA contiguous memory allocation and its size.
Optional properties:
- samsung,power-domain : power-domain property defined with a phandle
- power-domains : power-domain property defined with a phandle
to respective power domain.
Example:
@ -38,7 +38,7 @@ mfc: codec@13400000 {
compatible = "samsung,mfc-v5";
reg = <0x13400000 0x10000>;
interrupts = <0 94 0>;
samsung,power-domain = <&pd_mfc>;
power-domains = <&pd_mfc>;
clocks = <&clock 273>;
clock-names = "mfc";
};

View File

@ -162,7 +162,7 @@ pipelines can be active: ov772x -> ceu0 or imx074 -> csi2 -> ceu0.
i2c0: i2c@0xfff20000 {
...
ov772x_1: camera@0x21 {
compatible = "omnivision,ov772x";
compatible = "ovti,ov772x";
reg = <0x21>;
vddio-supply = <&regulator1>;
vddcore-supply = <&regulator2>;

View File

@ -0,0 +1,44 @@
DT bindings for Renesas R-Mobile and SH-Mobile memory controllers
=================================================================
Renesas R-Mobile and SH-Mobile SoCs contain one or more memory controllers.
These memory controllers differ from one SoC variant to another, and are called
by different names ("DDR Bus Controller (DBSC)", "DDR3 Bus State Controller
(DBSC3)", "SDRAM Bus State Controller (SBSC)").
Currently memory controller device nodes are used only to reference PM
domains, and prevent these PM domains from being powered down, which would
crash the system.
As there exist no actual drivers for these controllers yet, these bindings
should be considered EXPERIMENTAL for now.
Required properties:
- compatible: Must be one of the following SoC-specific values:
- "renesas,dbsc-r8a73a4" (R-Mobile APE6)
- "renesas,dbsc3-r8a7740" (R-Mobile A1)
- "renesas,sbsc-sh73a0" (SH-Mobile AG5)
- reg: Must contain the base address and length of the memory controller's
registers.
Optional properties:
- interrupts: Must contain a list of interrupt specifiers for memory
controller interrupts, if available.
- interrupts-names: Must contain a list of interrupt names corresponding to
the interrupts in the interrupts property, if available.
Valid interrupt names are:
- "sec" (secure interrupt)
- "temp" (normal (temperature) interrupt)
- power-domains: Must contain a reference to the PM domain that the memory
controller belongs to, if available.
Example:
sbsc1: memory-controller@fe400000 {
compatible = "renesas,sbsc-sh73a0";
reg = <0xfe400000 0x400>;
interrupts = <0 35 IRQ_TYPE_LEVEL_HIGH>,
<0 36 IRQ_TYPE_LEVEL_HIGH>;
interrupt-names = "sec", "temp";
power-domains = <&pd_a4bc0>;
};

View File

@ -0,0 +1,24 @@
* Device tree bindings for Atmel Bus Matrix
The Bus Matrix registers are used to configure Atmel SoCs internal bus
behavior (master/slave priorities, undefined burst length type, ...)
Required properties:
- compatible: Should be one of the following
"atmel,at91sam9260-matrix", "syscon"
"atmel,at91sam9261-matrix", "syscon"
"atmel,at91sam9263-matrix", "syscon"
"atmel,at91sam9rl-matrix", "syscon"
"atmel,at91sam9g45-matrix", "syscon"
"atmel,at91sam9n12-matrix", "syscon"
"atmel,at91sam9x5-matrix", "syscon"
"atmel,sama5d3-matrix", "syscon"
- reg: Contains offset/length value of the Bus Matrix
memory region.
Example:
matrix: matrix@ffffec00 {
compatible = "atmel,sama5d3-matrix", "syscon";
reg = <0xffffec00 0x200>;
};

View File

@ -0,0 +1,19 @@
* Device tree bindings for Atmel SMC (Static Memory Controller)
The SMC registers are used to configure Atmel EBI (External Bus Interface)
to interface with standard memory devices (NAND, NOR, SRAM or specialized
devices like FPGAs).
Required properties:
- compatible: Should be one of the following
"atmel,at91sam9260-smc", "syscon"
"atmel,sama5d3-smc", "syscon"
- reg: Contains offset/length value of the SMC memory
region.
Example:
smc: smc@ffffc000 {
compatible = "atmel,sama5d3-smc", "syscon";
reg = <0xffffc000 0x1000>;
};

View File

@ -0,0 +1,40 @@
* Freescale Management Complex
The Freescale Management Complex (fsl-mc) is a hardware resource
manager that manages specialized hardware objects used in
network-oriented packet processing applications. After the fsl-mc
block is enabled, pools of hardware resources are available, such as
queues, buffer pools, I/O interfaces. These resources are building
blocks that can be used to create functional hardware objects/devices
such as network interfaces, crypto accelerator instances, L2 switches,
etc.
Required properties:
- compatible
Value type: <string>
Definition: Must be "fsl,qoriq-mc". A Freescale Management Complex
compatible with this binding must have Block Revision
Registers BRR1 and BRR2 at offset 0x0BF8 and 0x0BFC in
the MC control register region.
- reg
Value type: <prop-encoded-array>
Definition: A standard property. Specifies one or two regions
defining the MC's registers:
-the first region is the command portal for the
this machine and must always be present
-the second region is the MC control registers. This
region may not be present in some scenarios, such
as in the device tree presented to a virtual machine.
Example:
fsl_mc: fsl-mc@80c000000 {
compatible = "fsl,qoriq-mc";
reg = <0x00000008 0x0c000000 0 0x40>, /* MC portal base */
<0x00000000 0x08340000 0 0x40000>; /* MC control reg */
};

View File

@ -1,11 +1,10 @@
NVIDIA Tegra20/Tegra30/Tegr114/Tegra124 apbmisc block
Required properties:
- compatible : should be:
"nvidia,tegra20-apbmisc"
"nvidia,tegra30-apbmisc"
"nvidia,tegra114-apbmisc"
"nvidia,tegra124-apbmisc"
- compatible : For Tegra20, must be "nvidia,tegra20-apbmisc". For Tegra30,
must be "nvidia,tegra30-apbmisc". Otherwise, must contain
"nvidia,<chip>-apbmisc", plus one of the above, where <chip> is tegra114,
tegra124, tegra132.
- reg: Should contain 2 entries: the first entry gives the physical address
and length of the registers which contain revision and debug features.
The second entry gives the physical address and length of the

View File

@ -7,7 +7,11 @@ This file documents differences between the core properties described
by mmc.txt and the properties used by the sdhci-tegra driver.
Required properties:
- compatible : Should be "nvidia,<chip>-sdhci"
- compatible : For Tegra20, must contain "nvidia,tegra20-sdhci".
For Tegra30, must contain "nvidia,tegra30-sdhci". For Tegra114,
must contain "nvidia,tegra114-sdhci". For Tegra124, must contain
"nvidia,tegra124-sdhci". Otherwise, must contain "nvidia,<chip>-sdhci",
plus one of the above, where <chip> is tegra132 or tegra210.
- clocks : Must contain one entry, for the module clock.
See ../clocks/clock-bindings.txt for details.
- resets : Must contain an entry for each entry in reset-names.

View File

@ -0,0 +1,7 @@
Shanghai AVIC Optoelectronics 7" 1024x600 color TFT-LCD panel
Required properties:
- compatible: should be "avic,tm070ddh03"
This binding is compatible with the simple-panel binding, which is specified
in simple-panel.txt in this directory.

View File

@ -0,0 +1,7 @@
GiantPlus GPG48273QS5 4.3" (480x272) WQVGA TFT LCD panel
Required properties:
- compatible: should be "giantplus,gpg48273qs5"
This binding is compatible with the simple-panel binding, which is specified
in simple-panel.txt in this directory.

View File

@ -1,10 +1,10 @@
NVIDIA Tegra PCIe controller
Required properties:
- compatible: Must be one of:
- "nvidia,tegra20-pcie"
- "nvidia,tegra30-pcie"
- "nvidia,tegra124-pcie"
- compatible: For Tegra20, must contain "nvidia,tegra20-pcie". For Tegra30,
"nvidia,tegra30-pcie". For Tegra124, must contain "nvidia,tegra124-pcie".
Otherwise, must contain "nvidia,<chip>-pcie", plus one of the above, where
<chip> is tegra132 or tegra210.
- device_type: Must be "pci"
- reg: A list of physical base address and length for each set of controller
registers. Must contain an entry for each entry in the reg-names property.

View File

@ -26,6 +26,7 @@ Required properties (port (child) node):
filled in "reg". It can also contain the offset of the system configuration
registers used as glue-logic to setup the device for SATA/PCIe or USB3
devices.
- st,syscfg : Offset of the parent configuration register.
- resets : phandle to the parent reset controller.
- reset-names : Associated name must be "miphy-sw-rst".
@ -54,18 +55,12 @@ example:
phy_port0: port@9b22000 {
reg = <0x9b22000 0xff>,
<0x9b09000 0xff>,
<0x9b04000 0xff>,
<0x114 0x4>, /* sysctrl MiPHY cntrl */
<0x818 0x4>, /* sysctrl MiPHY status*/
<0xe0 0x4>, /* sysctrl PCIe */
<0xec 0x4>; /* sysctrl SATA */
<0x9b04000 0xff>;
reg-names = "sata-up",
"pcie-up",
"pipew",
"miphy-ctrl-glue",
"miphy-status-glue",
"pcie-glue",
"sata-glue";
"pipew";
st,syscfg = <0x114 0x818 0xe0 0xec>;
#phy-cells = <1>;
st,osc-rdy;
reset-names = "miphy-sw-rst";
@ -75,18 +70,13 @@ example:
phy_port1: port@9b2a000 {
reg = <0x9b2a000 0xff>,
<0x9b19000 0xff>,
<0x9b14000 0xff>,
<0x118 0x4>,
<0x81c 0x4>,
<0xe4 0x4>,
<0xf0 0x4>;
<0x9b14000 0xff>;
reg-names = "sata-up",
"pcie-up",
"pipew",
"miphy-ctrl-glue",
"miphy-status-glue",
"pcie-glue",
"sata-glue";
"pipew";
st,syscfg = <0x118 0x81c 0xe4 0xf0>;
#phy-cells = <1>;
st,osc-force-ext;
reset-names = "miphy-sw-rst";
@ -95,13 +85,12 @@ example:
phy_port2: port@8f95000 {
reg = <0x8f95000 0xff>,
<0x8f90000 0xff>,
<0x11c 0x4>,
<0x820 0x4>;
<0x8f90000 0xff>;
reg-names = "pipew",
"usb3-up",
"miphy-ctrl-glue",
"miphy-status-glue";
"usb3-up";
st,syscfg = <0x11c 0x820>;
#phy-cells = <1>;
reset-names = "miphy-sw-rst";
resets = <&softreset STIH407_MIPHY2_SOFTRESET>;
@ -125,4 +114,4 @@ example:
Macro definitions for the supported miphy configuration can be found in:
include/dt-bindings/phy/phy-miphy28lp.h
include/dt-bindings/phy/phy.h

View File

@ -0,0 +1,37 @@
ROCKCHIP USB2 PHY
Required properties:
- compatible: rockchip,rk3288-usb-phy
- rockchip,grf : phandle to the syscon managing the "general
register files"
- #address-cells: should be 1
- #size-cells: should be 0
Sub-nodes:
Each PHY should be represented as a sub-node.
Sub-nodes
required properties:
- #phy-cells: should be 0
- reg: PHY configure reg address offset in GRF
"0x320" - for PHY attach to OTG controller
"0x334" - for PHY attach to HOST0 controller
"0x348" - for PHY attach to HOST1 controller
Optional Properties:
- clocks : phandle + clock specifier for the phy clocks
- clock-names: string, clock name, must be "phyclk"
Example:
usbphy: phy {
compatible = "rockchip,rk3288-usb-phy";
rockchip,grf = <&grf>;
#address-cells = <1>;
#size-cells = <0>;
usbphy0: usb-phy0 {
#phy-cells = <0>;
reg = <0x320>;
};
};

View File

@ -3,8 +3,8 @@ Samsung S5P/EXYNOS SoC series MIPI CSIS/DSIM DPHY
Required properties:
- compatible : should be "samsung,s5pv210-mipi-video-phy";
- reg : offset and length of the MIPI DPHY register set;
- #phy-cells : from the generic phy bindings, must be 1;
- syscon - phandle to the PMU system controller;
For "samsung,s5pv210-mipi-video-phy" compatible PHYs the second cell in
the PHY specifier identifies the PHY and its meaning is as follows:

View File

@ -6,7 +6,8 @@ nvidia,tegra30-pinmux.txt. In fact, this document assumes that binding as
a baseline, and only documents the differences between the two bindings.
Required properties:
- compatible: "nvidia,tegra124-pinmux"
- compatible: For Tegra124, must contain "nvidia,tegra124-pinmux". For
Tegra132, must contain '"nvidia,tegra132-pinmux", "nvidia-tegra124-pinmux"'.
- reg: Should contain a list of base address and size pairs for:
-- first entry - the drive strength and pad control registers.
-- second entry - the pinmux registers

View File

@ -13,7 +13,9 @@ how to describe and reference PHYs in device trees.
Required properties:
--------------------
- compatible: should be "nvidia,tegra124-xusb-padctl"
- compatible: For Tegra124, must contain "nvidia,tegra124-xusb-padctl".
Otherwise, must contain '"nvidia,<chip>-xusb-padctl",
"nvidia-tegra124-xusb-padctl"', where <chip> is tegra132 or tegra210.
- reg: Physical base address and length of the controller's registers.
- resets: Must contain an entry for each entry in reset-names.
See ../reset/reset.txt for details.

View File

@ -0,0 +1,99 @@
DT bindings for the Renesas R-Mobile System Controller
== System Controller Node ==
The R-Mobile System Controller provides the following functions:
- Boot mode management,
- Reset generation,
- Power management.
Required properties:
- compatible: Should be "renesas,sysc-<soctype>", "renesas,sysc-rmobile" as
fallback.
Examples with soctypes are:
- "renesas,sysc-r8a7740" (R-Mobile A1)
- "renesas,sysc-sh73a0" (SH-Mobile AG5)
- reg: Two address start and address range blocks for the device:
- The first block refers to the normally accessible registers,
- the second block refers to the registers protected by the HPB
semaphore.
Optional nodes:
- pm-domains: This node contains a hierarchy of PM domain nodes, which should
match the Power Area Hierarchy in the Power Domain Specifications section of
the device's datasheet.
== PM Domain Nodes ==
Each of the PM domain nodes represents a PM domain, as documented by the
generic PM domain bindings in
Documentation/devicetree/bindings/power/power_domain.txt.
The nodes should be named by the real power area names, and thus their names
should be unique.
Required properties:
- #power-domain-cells: Must be 0.
Optional properties:
- reg: If the PM domain is not always-on, this property must contain the bit
index number for the corresponding power area in the various Power
Control and Status Registers. The parent's node must contain the
following two properties:
- #address-cells: Must be 1,
- #size-cells: Must be 0.
If the PM domain is always-on, this property must be omitted.
Example:
This shows a subset of the r8a7740 PM domain hierarchy, containing the
C5 "always-on" domain, 2 of its subdomains (A4S and A4SU), and the A3SP domain,
which is a subdomain of A4S.
sysc: system-controller@e6180000 {
compatible = "renesas,sysc-r8a7740", "renesas,sysc-rmobile";
reg = <0xe6180000 0x8000>, <0xe6188000 0x8000>;
pm-domains {
pd_c5: c5 {
#address-cells = <1>;
#size-cells = <0>;
#power-domain-cells = <0>;
pd_a4s: a4s@10 {
reg = <10>;
#address-cells = <1>;
#size-cells = <0>;
#power-domain-cells = <0>;
pd_a3sp: a3sp@11 {
reg = <11>;
#power-domain-cells = <0>;
};
};
pd_a4su: a4su@20 {
reg = <20>;
#power-domain-cells = <0>;
};
};
};
};
== PM Domain Consumers ==
Hardware blocks belonging to a PM domain should contain a "power-domains"
property that is a phandle pointing to the corresponding PM domain node.
Example:
tpu: pwm@e6600000 {
compatible = "renesas,tpu-r8a7740", "renesas,tpu";
reg = <0xe6600000 0x100>;
clocks = <&mstp3_clks R8A7740_CLK_TPU0>;
power-domains = <&pd_a3sp>;
#pwm-cells = <3>;
};

View File

@ -16,20 +16,28 @@ Example:
"fsl,pq2-localbus";
#address-cells = <2>;
#size-cells = <1>;
reg = <f0010100 40>;
reg = <0xf0010100 0x40>;
ranges = <0 0 fe000000 02000000
1 0 f4500000 00008000>;
ranges = <0x0 0x0 0xfe000000 0x02000000
0x1 0x0 0xf4500000 0x00008000
0x2 0x0 0xfd810000 0x00010000>;
flash@0,0 {
compatible = "jedec-flash";
reg = <0 0 2000000>;
reg = <0x0 0x0 0x2000000>;
bank-width = <4>;
device-width = <1>;
};
board-control@1,0 {
reg = <1 0 20>;
reg = <0x1 0x0 0x20>;
compatible = "fsl,mpc8272ads-bcsr";
};
simple-periph@2,0 {
compatible = "fsl,elbc-gpcm-uio";
reg = <0x2 0x0 0x10000>;
elbc-gpcm-br = <0xfd810800>;
elbc-gpcm-or = <0xffff09f7>;
};
};

View File

@ -1,9 +1,10 @@
Tegra SoC PWFM controller
Required properties:
- compatible: should be one of:
- "nvidia,tegra20-pwm"
- "nvidia,tegra30-pwm"
- compatible: For Tegra20, must contain "nvidia,tegra20-pwm". For Tegra30,
must contain "nvidia,tegra30-pwm". Otherwise, must contain
"nvidia,<chip>-pwm", plus one of the above, where <chip> is tegra114,
tegra124, tegra132, or tegra210.
- reg: physical base address and length of the controller's registers
- #pwm-cells: should be 2. See pwm.txt in this directory for a description of
the cells format.

View File

@ -0,0 +1,22 @@
* Real Time Clock of the Armada 38x SoCs
RTC controller for the Armada 38x SoCs
Required properties:
- compatible : Should be "marvell,armada-380-rtc"
- reg: a list of base address and size pairs, one for each entry in
reg-names
- reg names: should contain:
* "rtc" for the RTC registers
* "rtc-soc" for the SoC related registers and among them the one
related to the interrupt.
- interrupts: IRQ line for the RTC.
Example:
rtc@a3800 {
compatible = "marvell,armada-380-rtc";
reg = <0xa3800 0x20>, <0x184a0 0x0c>;
reg-names = "rtc", "rtc-soc";
interrupts = <GIC_SPI 21 IRQ_TYPE_LEVEL_HIGH>;
};

View File

@ -0,0 +1,78 @@
Intersil ISL12057 I2C RTC/Alarm chip
ISL12057 is a trivial I2C device (it has simple device tree bindings,
consisting of a compatible field, an address and possibly an interrupt
line).
Nonetheless, it also supports an option boolean property
("isil,irq2-can-wakeup-machine") to handle the specific use-case found
on at least three in-tree users of the chip (NETGEAR ReadyNAS 102, 104
and 2120 ARM-based NAS); On those devices, the IRQ#2 pin of the chip
(associated with the alarm supported by the driver) is not connected
to the SoC but to a PMIC. It allows the device to be powered up when
RTC alarm rings. In order to mark the device has a wakeup source and
get access to the 'wakealarm' sysfs entry, this specific property can
be set when the IRQ#2 pin of the chip is not connected to the SoC but
can wake up the device.
Required properties supported by the device:
- "compatible": must be "isil,isl12057"
- "reg": I2C bus address of the device
Optional properties:
- "isil,irq2-can-wakeup-machine": mark the chip as a wakeup source,
independently of the availability of an IRQ line connected to the
SoC.
- "interrupt-parent", "interrupts": for passing the interrupt line
of the SoC connected to IRQ#2 of the RTC chip.
Example isl12057 node without IRQ#2 pin connected (no alarm support):
isl12057: isl12057@68 {
compatible = "isil,isl12057";
reg = <0x68>;
};
Example isl12057 node with IRQ#2 pin connected to main SoC via MPP6 (note
that the pinctrl-related properties below are given for completeness and
may not be required or may be different depending on your system or
SoC, and the main function of the MPP used as IRQ line, i.e.
"interrupt-parent" and "interrupts" are usually sufficient):
pinctrl {
...
rtc_alarm_pin: rtc_alarm_pin {
marvell,pins = "mpp6";
marvell,function = "gpio";
};
...
};
...
isl12057: isl12057@68 {
compatible = "isil,isl12057";
reg = <0x68>;
pinctrl-0 = <&rtc_alarm_pin>;
pinctrl-names = "default";
interrupt-parent = <&gpio0>;
interrupts = <6 IRQ_TYPE_EDGE_FALLING>;
};
Example isl12057 node without IRQ#2 pin connected to the SoC but to a
PMIC, allowing the device to be started based on configured alarm:
isl12057: isl12057@68 {
compatible = "isil,isl12057";
reg = <0x68>;
isil,irq2-can-wakeup-machine;
};

View File

@ -6,7 +6,9 @@ state.
Required properties:
- compatible : should be "nvidia,tegra20-rtc".
- compatible : For Tegra20, must contain "nvidia,tegra20-rtc". Otherwise,
must contain '"nvidia,<chip>-rtc", "nvidia,tegra20-rtc"', where <chip>
can be tegra30, tegra114, tegra124, or tegra132.
- reg : Specifies base physical address and size of the registers.
- interrupts : A single interrupt specifier.
- clocks : Must contain one entry, for the module clock.

View File

@ -0,0 +1,16 @@
NXP PCF2123 SPI Real Time Clock
Required properties:
- compatible: should be: "nxp,rtc-pcf2123"
- reg: should be the SPI slave chipselect address
Optional properties:
- spi-cs-high: PCF2123 needs chipselect high
Example:
rtc: nxp,rtc-pcf2123@3 {
compatible = "nxp,rtc-pcf2123"
reg = <3>
spi-cs-high;
};

View File

@ -0,0 +1,36 @@
* STMicroelectronics SAS. ST33ZP24 TPM SoC
Required properties:
- compatible: Should be "st,st33zp24-i2c".
- clock-frequency: I²C work frequency.
- reg: address on the bus
Optional ST33ZP24 Properties:
- interrupt-parent: phandle for the interrupt gpio controller
- interrupts: GPIO interrupt to which the chip is connected
- lpcpd-gpios: Output GPIO pin used for ST33ZP24 power management D1/D2 state.
If set, power must be present when the platform is going into sleep/hibernate mode.
Optional SoC Specific Properties:
- pinctrl-names: Contains only one value - "default".
- pintctrl-0: Specifies the pin control groups used for this controller.
Example (for ARM-based BeagleBoard xM with ST33ZP24 on I2C2):
&i2c2 {
status = "okay";
st33zp24: st33zp24@13 {
compatible = "st,st33zp24-i2c";
reg = <0x13>;
clock-frequency = <400000>;
interrupt-parent = <&gpio5>;
interrupts = <7 IRQ_TYPE_LEVEL_HIGH>;
lpcpd-gpios = <&gpio5 15 GPIO_ACTIVE_HIGH>;
};
};

View File

@ -0,0 +1,27 @@
Binding for Conexant Digicolor USART
Note: this binding is only applicable for using the USART peripheral as
UART. USART also support synchronous serial protocols like SPI and I2S. Use
the binding that matches the wiring of your system.
Required properties:
- compatible : should be "cnxt,cx92755-usart".
- reg: Should contain USART controller registers location and length.
- interrupts: Should contain a single USART controller interrupt.
- clocks: Must contain phandles to the USART clock
See ../clocks/clock-bindings.txt for details.
Note: Each UART port should have an alias correctly numbered
in "aliases" node.
Example:
aliases {
serial0 = &uart0;
};
uart0: uart@f0000740 {
compatible = "cnxt,cx92755-usart";
reg = <0xf0000740 0x20>;
clocks = <&main_clk>;
interrupts = <44>;
};

View File

@ -2,9 +2,13 @@
Required properties:
- compatible should contain:
* "mediatek,mt8135-uart" for MT8135 compatible UARTS
* "mediatek,mt8127-uart" for MT8127 compatible UARTS
* "mediatek,mt8173-uart" for MT8173 compatible UARTS
* "mediatek,mt6589-uart" for MT6589 compatible UARTS
* "mediatek,mt6582-uart" for MT6582 compatible UARTS
* "mediatek,mt6577-uart" for all compatible UARTS (MT6589, MT6582, MT6577)
* "mediatek,mt6577-uart" for all compatible UARTS (MT8173, MT6589, MT6582,
MT6577)
- reg: The base address of the UART register bank.

View File

@ -8,7 +8,10 @@ Required properties:
- "ns16550"
- "ns16750"
- "ns16850"
- "nvidia,tegra20-uart"
- For Tegra20, must contain "nvidia,tegra20-uart"
- For other Tegra, must contain '"nvidia,<chip>-uart",
"nvidia,tegra20-uart"' where <chip> is tegra30, tegra114, tegra124,
tegra132, or tegra210.
- "nxp,lpc3220-uart"
- "ralink,rt2880-uart"
- "ibm,qpace-nwp-serial"
@ -16,6 +19,7 @@ Required properties:
- "altr,16550-FIFO64"
- "altr,16550-FIFO128"
- "fsl,16550-FIFO64"
- "fsl,ns16550"
- "serial" if the port type is unknown.
- reg : offset and length of the register set for the device.
- interrupts : should contain uart interrupt.
@ -40,6 +44,17 @@ Optional properties:
driver is allowed to detect support for the capability even without this
property.
Note:
* fsl,ns16550:
------------
Freescale DUART is very similar to the PC16552D (and to a
pair of NS16550A), albeit with some nonstandard behavior such as
erratum A-004737 (relating to incorrect BRK handling).
Represents a single port that is compatible with the DUART found
on many Freescale chips (examples include mpc8349, mpc8548,
mpc8641d, p4080 and ls2085a).
Example:
uart@80230000 {

View File

@ -2,7 +2,7 @@
Required properties:
- compatible : Should be "sirf,prima2-uart", "sirf, prima2-usp-uart",
"sirf,marco-uart" or "sirf,marco-bt-uart" which means
"sirf,atlas7-uart" or "sirf,atlas7-bt-uart" which means
uart located in BT module and used for BT.
- reg : Offset and length of the register set for the device
- interrupts : Should contain uart interrupt
@ -37,7 +37,7 @@ usp@b0090000 {
for uart use in BT module,
uart6: uart@11000000 {
cell-index = <6>;
compatible = "sirf,marco-bt-uart", "sirf,marco-uart";
compatible = "sirf,atlas7-bt-uart", "sirf,atlas7-uart";
reg = <0x11000000 0x1000>;
interrupts = <0 100 0>;
clocks = <&clks 138>, <&clks 140>, <&clks 141>;

View File

@ -0,0 +1,7 @@
* Spreadtrum serial UART
Required properties:
- compatible: must be "sprd,sc9836-uart"
- reg: offset and length of the register set for the device
- interrupts: exactly one interrupt specifier
- clocks: phandles to input clocks.

View File

@ -0,0 +1,20 @@
* Atmel AC97 controller
Required properties:
- compatible: "atmel,at91sam9263-ac97c"
- reg: Address and length of the register set for the device
- interrupts: Should contain AC97 interrupt
- ac97-gpios: Please refer to soc-ac97link.txt, only ac97-reset is used
Optional properties:
- pinctrl-names, pinctrl-0: Please refer to pinctrl-bindings.txt
Example:
sound@fffa0000 {
compatible = "atmel,at91sam9263-ac97c";
pinctrl-names = "default";
pinctrl-0 = <&pinctrl_ac97>;
reg = <0xfffa0000 0x4000>;
interrupts = <18 IRQ_TYPE_LEVEL_HIGH 5>;
ac97-gpios = <&pioB 0 0 &pioB 2 0 &pioC 29 GPIO_ACTIVE_LOW>;
};

View File

@ -1,7 +1,10 @@
NVIDIA Tegra30 AHUB (Audio Hub)
Required properties:
- compatible : "nvidia,tegra30-ahub", "nvidia,tegra114-ahub", etc.
- compatible : For Tegra30, must contain "nvidia,tegra30-ahub". For Tegra114,
must contain "nvidia,tegra114-ahub". For Tegra124, must contain
"nvidia,tegra124-ahub". Otherwise, must contain "nvidia,<chip>-ahub",
plus at least one of the above, where <chip> is tegra132.
- reg : Should contain the register physical address and length for each of
the AHUB's register blocks.
- Tegra30 requires 2 entries, for the APBIF and AHUB/AUDIO register blocks.

View File

@ -1,7 +1,9 @@
NVIDIA Tegra30 HDA controller
Required properties:
- compatible : "nvidia,tegra30-hda"
- compatible : For Tegra30, must contain "nvidia,tegra30-hda". Otherwise,
must contain '"nvidia,<chip>-hda", "nvidia,tegra30-hda"', where <chip> is
tegra114, tegra124, or tegra132.
- reg : Should contain the HDA registers location and length.
- interrupts : The interrupt from the HDA controller.
- clocks : Must contain an entry for each required entry in clock-names.

View File

@ -1,7 +1,10 @@
NVIDIA Tegra30 I2S controller
Required properties:
- compatible : "nvidia,tegra30-i2s"
- compatible : For Tegra30, must contain "nvidia,tegra30-i2s". For Tegra124,
must contain "nvidia,tegra124-i2s". Otherwise, must contain
"nvidia,<chip>-i2s" plus at least one of the above, where <chip> is
tegra114 or tegra132.
- reg : Should contain I2S registers location and length
- clocks : Must contain one entry, for the module clock.
See ../clocks/clock-bindings.txt for details.

View File

@ -1,7 +1,9 @@
NVIDIA Tegra114 SPI controller.
Required properties:
- compatible : should be "nvidia,tegra114-spi".
- compatible : For Tegra114, must contain "nvidia,tegra114-spi".
Otherwise, must contain '"nvidia,<chip>-spi", "nvidia,tegra114-spi"' where
<chip> is tegra124, tegra132, or tegra210.
- reg: Should contain SPI registers location and length.
- interrupts: Should contain SPI interrupts.
- clock-names : Must include the following entries:

View File

@ -12,9 +12,9 @@ Optional properties:
property is not present, then the touchscreen is
disabled. 5 wires is valid for i.MX28 SoC only.
- fsl,ave-ctrl: number of samples per direction to calculate an average value.
Allowed value is 1 ... 31, default is 4
Allowed value is 1 ... 32, default is 4
- fsl,ave-delay: delay between consecutive samples. Allowed value is
1 ... 2047. It is used if 'fsl,ave-ctrl' > 1, counts at
2 ... 2048. It is used if 'fsl,ave-ctrl' > 1, counts at
2 kHz and its default is 2 (= 1 ms)
- fsl,settling: delay between plate switch to next sample. Allowed value is
1 ... 2047. It counts at 2 kHz and its default is

View File

@ -15,6 +15,29 @@ I. For patch submitters
3) The Documentation/ portion of the patch should come in the series before
the code implementing the binding.
4) Any compatible strings used in a chip or board DTS file must be
previously documented in the corresponding DT binding text file
in Documentation/devicetree/bindings. This rule applies even if
the Linux device driver does not yet match on the compatible
string. [ checkpatch will emit warnings if this step is not
followed as of commit bff5da4335256513497cc8c79f9a9d1665e09864
("checkpatch: add DT compatible string documentation checks"). ]
5) The wildcard "<chip>" may be used in compatible strings, as in
the following example:
- compatible: Must contain '"nvidia,<chip>-pcie",
"nvidia,tegra20-pcie"' where <chip> is tegra30, tegra132, ...
As in the above example, the known values of "<chip>" should be
documented if it is used.
6) If a documented compatible string is not yet matched by the
driver, the documentation should also include a compatible
string that is matched by the driver (as in the "nvidia,tegra20-pcie"
example above).
II. For kernel maintainers
1) If you aren't comfortable reviewing a given binding, reply to it and ask

View File

@ -7,7 +7,9 @@ notifications. It is also used to manage emergency shutdown in an
overheating situation.
Required properties :
- compatible : "nvidia,tegra124-soctherm".
- compatible : For Tegra124, must contain "nvidia,tegra124-soctherm".
For Tegra132, must contain "nvidia,tegra132-soctherm".
For Tegra210, must contain "nvidia,tegra210-soctherm".
- reg : Should contain 1 entry:
- SOCTHERM register set
- interrupts : Defines the interrupt used by SOCTHERM

View File

@ -0,0 +1,18 @@
Conexant Digicolor SoCs Timer Controller
Required properties:
- compatible : should be "cnxt,cx92755-timer"
- reg : Specifies base physical address and size of the "Agent Communication"
timer registers
- interrupts : Contains 8 interrupts, one for each timer
- clocks: phandle to the main clock
Example:
timer@f0000fc0 {
compatible = "cnxt,cx92755-timer";
reg = <0xf0000fc0 0x40>;
interrupts = <19>, <31>, <34>, <35>, <52>, <53>, <54>, <55>;
clocks = <&main_clk>;
};

View File

@ -6,7 +6,9 @@ trigger a legacy watchdog reset.
Required properties:
- compatible : should be "nvidia,tegra30-timer", "nvidia,tegra20-timer".
- compatible : For Tegra30, must contain "nvidia,tegra30-timer". Otherwise,
must contain '"nvidia,<chip>-timer", "nvidia,tegra30-timer"' where
<chip> is tegra124 or tegra132.
- reg : Specifies base physical address and size of the registers.
- interrupts : A list of 6 interrupts; one per each of timer channels 1
through 5, and one for the shared interrupt for the remaining channels.

View File

@ -0,0 +1,18 @@
Rockchip rk3288 timer
Required properties:
- compatible: shall be "rockchip,rk3288-timer"
- reg: base address of the timer register starting with TIMERS CONTROL register
- interrupts: should contain the interrupts for Timer0
- clocks : must contain an entry for each entry in clock-names
- clock-names : must include the following entries:
"timer", "pclk"
Example:
timer: timer@ff810000 {
compatible = "rockchip,rk3288-timer";
reg = <0xff810000 0x20>;
interrupts = <GIC_SPI 72 IRQ_TYPE_LEVEL_HIGH>;
clocks = <&xin24m>, <&cru PCLK_TIMER>;
clock-names = "timer", "pclk";
};

View File

@ -1,4 +1,4 @@
* OF selftest platform device
1) OF selftest platform device
** selftest
@ -12,3 +12,60 @@ Example:
compatible = "selftest";
status = "okay";
};
2) OF selftest i2c adapter platform device
** platform device unittest adapter
Required properties:
- compatible: must be selftest-i2c-bus
Children nodes contain selftest i2c devices.
Example:
selftest-i2c-bus {
compatible = "selftest-i2c-bus";
status = "okay";
};
3) OF selftest i2c device
** I2C selftest device
Required properties:
- compatible: must be selftest-i2c-dev
All other properties are optional
Example:
selftest-i2c-dev {
compatible = "selftest-i2c-dev";
status = "okay";
};
4) OF selftest i2c mux device
** I2C selftest mux
Required properties:
- compatible: must be selftest-i2c-mux
Children nodes contain selftest i2c bus nodes per channel.
Example:
selftest-i2c-mux {
compatible = "selftest-i2c-mux";
status = "okay";
#address-cells = <1>;
#size-cells = <0>;
channel-0 {
reg = <0>;
#address-cells = <1>;
#size-cells = <0>;
i2c-dev {
reg = <8>;
compatible = "selftest-i2c-dev";
status = "okay";
};
};
};

View File

@ -33,9 +33,17 @@ usb1: ehci@00800000 {
AT91 USB device controller
Required properties:
- compatible: Should be "atmel,at91rm9200-udc"
- compatible: Should be one of the following
"atmel,at91rm9200-udc"
"atmel,at91sam9260-udc"
"atmel,at91sam9261-udc"
"atmel,at91sam9263-udc"
- reg: Address and length of the register set for the device
- interrupts: Should contain macb interrupt
- clocks: Should reference the peripheral and the AHB clocks
- clock-names: Should contains two strings
"pclk" for the peripheral clock
"hclk" for the AHB clock
Optional properties:
- atmel,vbus-gpio: If present, specifies a gpio that needs to be
@ -51,7 +59,10 @@ usb1: gadget@fffa4000 {
Atmel High-Speed USB device controller
Required properties:
- compatible: Should be "atmel,at91sam9rl-udc"
- compatible: Should be one of the following
"at91sam9rl-udc"
"at91sam9g45-udc"
"sama5d3-udc"
- reg: Address and length of the register set for the device
- interrupts: Should contain usba interrupt
- ep childnode: To specify the number of endpoints and their properties.

Some files were not shown because too many files have changed in this diff Show More