linux-can-next-for-4.11-20170206

-----BEGIN PGP SIGNATURE-----
 
 iQFHBAABCgAxFiEE4bay/IylYqM/npjQHv7KIOw4HPYFAliYiW8THG1rbEBwZW5n
 dXRyb25peC5kZQAKCRAe/sog7Dgc9jdWCACU/2SxD8WcIcP5HZgJMxv9K9LyRC++
 qQb1SQKUiedAF0173IQAVawe105LEdZS08o8ovNCzcU0gLHmfAKysjXEnWVqpyLA
 9zOBkl5XzjFsi9KI1TVsn/pUlk3yCq8w2azmt3mi/G5yLoAE0G46pzjbpOYyz67d
 Gyoh4i9OhsQOmgpefkwtyPxlh5Xd28ohdPv8NCBb17No+1Dfs4qji1TTyVY9sqNr
 8AwRl9BmTqDvZMUPRsdXk+XqZyITGLt+kMa80hd+XFmNkoWy6EKMbFiuVjkpZqtL
 kX/Tfe5/mEiBegBvIUVkeOrA7MryNLOf0ZO+bLdNnSTJZJyIro1kAyIc
 =kgvC
 -----END PGP SIGNATURE-----

Merge tag 'linux-can-next-for-4.11-20170206' of git://git.kernel.org/pub/scm/linux/kernel/git/mkl/linux-can-next

Marc Kleine-Budde says:

====================
pull-request: can-next 2017-02-06

this is a pull request of 16 patches for net-next/master.

The first two patches by David Jander and me add the rx-offload
framework for CAN devices to the kernel. The remaining 14 patches
convert the flexcan driver to make use of it.
====================

Signed-off-by: David S. Miller <davem@davemloft.net>
This commit is contained in:
David S. Miller 2017-02-06 11:08:51 -05:00
commit fcdc103dac
4 changed files with 595 additions and 179 deletions

View File

@ -6,7 +6,8 @@ obj-$(CONFIG_CAN_VCAN) += vcan.o
obj-$(CONFIG_CAN_SLCAN) += slcan.o obj-$(CONFIG_CAN_SLCAN) += slcan.o
obj-$(CONFIG_CAN_DEV) += can-dev.o obj-$(CONFIG_CAN_DEV) += can-dev.o
can-dev-y := dev.o can-dev-y += dev.o
can-dev-y += rx-offload.o
can-dev-$(CONFIG_CAN_LEDS) += led.o can-dev-$(CONFIG_CAN_LEDS) += led.o

View File

@ -3,7 +3,8 @@
* *
* Copyright (c) 2005-2006 Varma Electronics Oy * Copyright (c) 2005-2006 Varma Electronics Oy
* Copyright (c) 2009 Sascha Hauer, Pengutronix * Copyright (c) 2009 Sascha Hauer, Pengutronix
* Copyright (c) 2010 Marc Kleine-Budde, Pengutronix * Copyright (c) 2010-2017 Pengutronix, Marc Kleine-Budde <kernel@pengutronix.de>
* Copyright (c) 2014 David Jander, Protonic Holland
* *
* Based on code originally by Andrey Volkov <avolkov@varma-el.com> * Based on code originally by Andrey Volkov <avolkov@varma-el.com>
* *
@ -24,6 +25,7 @@
#include <linux/can/dev.h> #include <linux/can/dev.h>
#include <linux/can/error.h> #include <linux/can/error.h>
#include <linux/can/led.h> #include <linux/can/led.h>
#include <linux/can/rx-offload.h>
#include <linux/clk.h> #include <linux/clk.h>
#include <linux/delay.h> #include <linux/delay.h>
#include <linux/interrupt.h> #include <linux/interrupt.h>
@ -55,9 +57,10 @@
#define FLEXCAN_MCR_WAK_SRC BIT(19) #define FLEXCAN_MCR_WAK_SRC BIT(19)
#define FLEXCAN_MCR_DOZE BIT(18) #define FLEXCAN_MCR_DOZE BIT(18)
#define FLEXCAN_MCR_SRX_DIS BIT(17) #define FLEXCAN_MCR_SRX_DIS BIT(17)
#define FLEXCAN_MCR_BCC BIT(16) #define FLEXCAN_MCR_IRMQ BIT(16)
#define FLEXCAN_MCR_LPRIO_EN BIT(13) #define FLEXCAN_MCR_LPRIO_EN BIT(13)
#define FLEXCAN_MCR_AEN BIT(12) #define FLEXCAN_MCR_AEN BIT(12)
/* MCR_MAXMB: maximum used MBs is MAXMB + 1 */
#define FLEXCAN_MCR_MAXMB(x) ((x) & 0x7f) #define FLEXCAN_MCR_MAXMB(x) ((x) & 0x7f)
#define FLEXCAN_MCR_IDAM_A (0x0 << 8) #define FLEXCAN_MCR_IDAM_A (0x0 << 8)
#define FLEXCAN_MCR_IDAM_B (0x1 << 8) #define FLEXCAN_MCR_IDAM_B (0x1 << 8)
@ -143,17 +146,20 @@
/* FLEXCAN interrupt flag register (IFLAG) bits */ /* FLEXCAN interrupt flag register (IFLAG) bits */
/* Errata ERR005829 step7: Reserve first valid MB */ /* Errata ERR005829 step7: Reserve first valid MB */
#define FLEXCAN_TX_BUF_RESERVED 8 #define FLEXCAN_TX_MB_RESERVED_OFF_FIFO 8
#define FLEXCAN_TX_BUF_ID 9 #define FLEXCAN_TX_MB_OFF_FIFO 9
#define FLEXCAN_IFLAG_BUF(x) BIT(x) #define FLEXCAN_TX_MB_RESERVED_OFF_TIMESTAMP 0
#define FLEXCAN_TX_MB_OFF_TIMESTAMP 1
#define FLEXCAN_RX_MB_OFF_TIMESTAMP_FIRST (FLEXCAN_TX_MB_OFF_TIMESTAMP + 1)
#define FLEXCAN_RX_MB_OFF_TIMESTAMP_LAST 63
#define FLEXCAN_IFLAG_MB(x) BIT(x)
#define FLEXCAN_IFLAG_RX_FIFO_OVERFLOW BIT(7) #define FLEXCAN_IFLAG_RX_FIFO_OVERFLOW BIT(7)
#define FLEXCAN_IFLAG_RX_FIFO_WARN BIT(6) #define FLEXCAN_IFLAG_RX_FIFO_WARN BIT(6)
#define FLEXCAN_IFLAG_RX_FIFO_AVAILABLE BIT(5) #define FLEXCAN_IFLAG_RX_FIFO_AVAILABLE BIT(5)
#define FLEXCAN_IFLAG_DEFAULT \
(FLEXCAN_IFLAG_RX_FIFO_OVERFLOW | FLEXCAN_IFLAG_RX_FIFO_AVAILABLE | \
FLEXCAN_IFLAG_BUF(FLEXCAN_TX_BUF_ID))
/* FLEXCAN message buffers */ /* FLEXCAN message buffers */
#define FLEXCAN_MB_CODE_MASK (0xf << 24)
#define FLEXCAN_MB_CODE_RX_BUSY_BIT (0x1 << 24)
#define FLEXCAN_MB_CODE_RX_INACTIVE (0x0 << 24) #define FLEXCAN_MB_CODE_RX_INACTIVE (0x0 << 24)
#define FLEXCAN_MB_CODE_RX_EMPTY (0x4 << 24) #define FLEXCAN_MB_CODE_RX_EMPTY (0x4 << 24)
#define FLEXCAN_MB_CODE_RX_FULL (0x2 << 24) #define FLEXCAN_MB_CODE_RX_FULL (0x2 << 24)
@ -189,7 +195,9 @@
*/ */
#define FLEXCAN_QUIRK_BROKEN_ERR_STATE BIT(1) /* [TR]WRN_INT not connected */ #define FLEXCAN_QUIRK_BROKEN_ERR_STATE BIT(1) /* [TR]WRN_INT not connected */
#define FLEXCAN_QUIRK_DISABLE_RXFG BIT(2) /* Disable RX FIFO Global mask */ #define FLEXCAN_QUIRK_DISABLE_RXFG BIT(2) /* Disable RX FIFO Global mask */
#define FLEXCAN_QUIRK_DISABLE_MECR BIT(3) /* Disble Memory error detection */ #define FLEXCAN_QUIRK_ENABLE_EACEN_RRS BIT(3) /* Enable EACEN and RRS bit in ctrl2 */
#define FLEXCAN_QUIRK_DISABLE_MECR BIT(4) /* Disble Memory error detection */
#define FLEXCAN_QUIRK_USE_OFF_TIMESTAMP BIT(5) /* Use timestamp based offloading */
/* Structure of the message buffer */ /* Structure of the message buffer */
struct flexcan_mb { struct flexcan_mb {
@ -213,7 +221,10 @@ struct flexcan_regs {
u32 imask1; /* 0x28 */ u32 imask1; /* 0x28 */
u32 iflag2; /* 0x2c */ u32 iflag2; /* 0x2c */
u32 iflag1; /* 0x30 */ u32 iflag1; /* 0x30 */
u32 ctrl2; /* 0x34 */ union { /* 0x34 */
u32 gfwr_mx28; /* MX28, MX53 */
u32 ctrl2; /* MX6, VF610 */
};
u32 esr2; /* 0x38 */ u32 esr2; /* 0x38 */
u32 imeur; /* 0x3c */ u32 imeur; /* 0x3c */
u32 lrfr; /* 0x40 */ u32 lrfr; /* 0x40 */
@ -232,7 +243,11 @@ struct flexcan_regs {
* size conf'ed via ctrl2::RFFN * size conf'ed via ctrl2::RFFN
* (mx6, vf610) * (mx6, vf610)
*/ */
u32 _reserved4[408]; u32 _reserved4[256]; /* 0x480 */
u32 rximr[64]; /* 0x880 */
u32 _reserved5[24]; /* 0x980 */
u32 gfwr_mx6; /* 0x9e0 - MX6 */
u32 _reserved6[63]; /* 0x9e4 */
u32 mecr; /* 0xae0 */ u32 mecr; /* 0xae0 */
u32 erriar; /* 0xae4 */ u32 erriar; /* 0xae4 */
u32 erridpr; /* 0xae8 */ u32 erridpr; /* 0xae8 */
@ -249,31 +264,36 @@ struct flexcan_devtype_data {
struct flexcan_priv { struct flexcan_priv {
struct can_priv can; struct can_priv can;
struct napi_struct napi; struct can_rx_offload offload;
struct flexcan_regs __iomem *regs; struct flexcan_regs __iomem *regs;
u32 reg_esr; struct flexcan_mb __iomem *tx_mb;
struct flexcan_mb __iomem *tx_mb_reserved;
u8 tx_mb_idx;
u32 reg_ctrl_default; u32 reg_ctrl_default;
u32 reg_imask1_default;
u32 reg_imask2_default;
struct clk *clk_ipg; struct clk *clk_ipg;
struct clk *clk_per; struct clk *clk_per;
struct flexcan_platform_data *pdata;
const struct flexcan_devtype_data *devtype_data; const struct flexcan_devtype_data *devtype_data;
struct regulator *reg_xceiver; struct regulator *reg_xceiver;
}; };
static struct flexcan_devtype_data fsl_p1010_devtype_data = { static const struct flexcan_devtype_data fsl_p1010_devtype_data = {
.quirks = FLEXCAN_QUIRK_BROKEN_ERR_STATE, .quirks = FLEXCAN_QUIRK_BROKEN_ERR_STATE,
}; };
static struct flexcan_devtype_data fsl_imx28_devtype_data; static const struct flexcan_devtype_data fsl_imx28_devtype_data;
static struct flexcan_devtype_data fsl_imx6q_devtype_data = { static const struct flexcan_devtype_data fsl_imx6q_devtype_data = {
.quirks = FLEXCAN_QUIRK_DISABLE_RXFG, .quirks = FLEXCAN_QUIRK_DISABLE_RXFG | FLEXCAN_QUIRK_ENABLE_EACEN_RRS |
FLEXCAN_QUIRK_USE_OFF_TIMESTAMP,
}; };
static struct flexcan_devtype_data fsl_vf610_devtype_data = { static const struct flexcan_devtype_data fsl_vf610_devtype_data = {
.quirks = FLEXCAN_QUIRK_DISABLE_RXFG | FLEXCAN_QUIRK_DISABLE_MECR, .quirks = FLEXCAN_QUIRK_DISABLE_RXFG | FLEXCAN_QUIRK_ENABLE_EACEN_RRS |
FLEXCAN_QUIRK_DISABLE_MECR | FLEXCAN_QUIRK_USE_OFF_TIMESTAMP,
}; };
static const struct can_bittiming_const flexcan_bittiming_const = { static const struct can_bittiming_const flexcan_bittiming_const = {
@ -331,13 +351,6 @@ static inline int flexcan_transceiver_disable(const struct flexcan_priv *priv)
return regulator_disable(priv->reg_xceiver); return regulator_disable(priv->reg_xceiver);
} }
static inline int flexcan_has_and_handle_berr(const struct flexcan_priv *priv,
u32 reg_esr)
{
return (priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) &&
(reg_esr & FLEXCAN_ESR_ERR_BUS);
}
static int flexcan_chip_enable(struct flexcan_priv *priv) static int flexcan_chip_enable(struct flexcan_priv *priv)
{ {
struct flexcan_regs __iomem *regs = priv->regs; struct flexcan_regs __iomem *regs = priv->regs;
@ -468,7 +481,6 @@ static int flexcan_get_berr_counter(const struct net_device *dev,
static int flexcan_start_xmit(struct sk_buff *skb, struct net_device *dev) static int flexcan_start_xmit(struct sk_buff *skb, struct net_device *dev)
{ {
const struct flexcan_priv *priv = netdev_priv(dev); const struct flexcan_priv *priv = netdev_priv(dev);
struct flexcan_regs __iomem *regs = priv->regs;
struct can_frame *cf = (struct can_frame *)skb->data; struct can_frame *cf = (struct can_frame *)skb->data;
u32 can_id; u32 can_id;
u32 data; u32 data;
@ -491,68 +503,73 @@ static int flexcan_start_xmit(struct sk_buff *skb, struct net_device *dev)
if (cf->can_dlc > 0) { if (cf->can_dlc > 0) {
data = be32_to_cpup((__be32 *)&cf->data[0]); data = be32_to_cpup((__be32 *)&cf->data[0]);
flexcan_write(data, &regs->mb[FLEXCAN_TX_BUF_ID].data[0]); flexcan_write(data, &priv->tx_mb->data[0]);
} }
if (cf->can_dlc > 3) { if (cf->can_dlc > 3) {
data = be32_to_cpup((__be32 *)&cf->data[4]); data = be32_to_cpup((__be32 *)&cf->data[4]);
flexcan_write(data, &regs->mb[FLEXCAN_TX_BUF_ID].data[1]); flexcan_write(data, &priv->tx_mb->data[1]);
} }
can_put_echo_skb(skb, dev, 0); can_put_echo_skb(skb, dev, 0);
flexcan_write(can_id, &regs->mb[FLEXCAN_TX_BUF_ID].can_id); flexcan_write(can_id, &priv->tx_mb->can_id);
flexcan_write(ctrl, &regs->mb[FLEXCAN_TX_BUF_ID].can_ctrl); flexcan_write(ctrl, &priv->tx_mb->can_ctrl);
/* Errata ERR005829 step8: /* Errata ERR005829 step8:
* Write twice INACTIVE(0x8) code to first MB. * Write twice INACTIVE(0x8) code to first MB.
*/ */
flexcan_write(FLEXCAN_MB_CODE_TX_INACTIVE, flexcan_write(FLEXCAN_MB_CODE_TX_INACTIVE,
&regs->mb[FLEXCAN_TX_BUF_RESERVED].can_ctrl); &priv->tx_mb_reserved->can_ctrl);
flexcan_write(FLEXCAN_MB_CODE_TX_INACTIVE, flexcan_write(FLEXCAN_MB_CODE_TX_INACTIVE,
&regs->mb[FLEXCAN_TX_BUF_RESERVED].can_ctrl); &priv->tx_mb_reserved->can_ctrl);
return NETDEV_TX_OK; return NETDEV_TX_OK;
} }
static void do_bus_err(struct net_device *dev, static void flexcan_irq_bus_err(struct net_device *dev, u32 reg_esr)
struct can_frame *cf, u32 reg_esr)
{ {
struct flexcan_priv *priv = netdev_priv(dev); struct flexcan_priv *priv = netdev_priv(dev);
int rx_errors = 0, tx_errors = 0; struct sk_buff *skb;
struct can_frame *cf;
bool rx_errors = false, tx_errors = false;
skb = alloc_can_err_skb(dev, &cf);
if (unlikely(!skb))
return;
cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR; cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
if (reg_esr & FLEXCAN_ESR_BIT1_ERR) { if (reg_esr & FLEXCAN_ESR_BIT1_ERR) {
netdev_dbg(dev, "BIT1_ERR irq\n"); netdev_dbg(dev, "BIT1_ERR irq\n");
cf->data[2] |= CAN_ERR_PROT_BIT1; cf->data[2] |= CAN_ERR_PROT_BIT1;
tx_errors = 1; tx_errors = true;
} }
if (reg_esr & FLEXCAN_ESR_BIT0_ERR) { if (reg_esr & FLEXCAN_ESR_BIT0_ERR) {
netdev_dbg(dev, "BIT0_ERR irq\n"); netdev_dbg(dev, "BIT0_ERR irq\n");
cf->data[2] |= CAN_ERR_PROT_BIT0; cf->data[2] |= CAN_ERR_PROT_BIT0;
tx_errors = 1; tx_errors = true;
} }
if (reg_esr & FLEXCAN_ESR_ACK_ERR) { if (reg_esr & FLEXCAN_ESR_ACK_ERR) {
netdev_dbg(dev, "ACK_ERR irq\n"); netdev_dbg(dev, "ACK_ERR irq\n");
cf->can_id |= CAN_ERR_ACK; cf->can_id |= CAN_ERR_ACK;
cf->data[3] = CAN_ERR_PROT_LOC_ACK; cf->data[3] = CAN_ERR_PROT_LOC_ACK;
tx_errors = 1; tx_errors = true;
} }
if (reg_esr & FLEXCAN_ESR_CRC_ERR) { if (reg_esr & FLEXCAN_ESR_CRC_ERR) {
netdev_dbg(dev, "CRC_ERR irq\n"); netdev_dbg(dev, "CRC_ERR irq\n");
cf->data[2] |= CAN_ERR_PROT_BIT; cf->data[2] |= CAN_ERR_PROT_BIT;
cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ; cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ;
rx_errors = 1; rx_errors = true;
} }
if (reg_esr & FLEXCAN_ESR_FRM_ERR) { if (reg_esr & FLEXCAN_ESR_FRM_ERR) {
netdev_dbg(dev, "FRM_ERR irq\n"); netdev_dbg(dev, "FRM_ERR irq\n");
cf->data[2] |= CAN_ERR_PROT_FORM; cf->data[2] |= CAN_ERR_PROT_FORM;
rx_errors = 1; rx_errors = true;
} }
if (reg_esr & FLEXCAN_ESR_STF_ERR) { if (reg_esr & FLEXCAN_ESR_STF_ERR) {
netdev_dbg(dev, "STF_ERR irq\n"); netdev_dbg(dev, "STF_ERR irq\n");
cf->data[2] |= CAN_ERR_PROT_STUFF; cf->data[2] |= CAN_ERR_PROT_STUFF;
rx_errors = 1; rx_errors = true;
} }
priv->can.can_stats.bus_error++; priv->can.can_stats.bus_error++;
@ -560,32 +577,16 @@ static void do_bus_err(struct net_device *dev,
dev->stats.rx_errors++; dev->stats.rx_errors++;
if (tx_errors) if (tx_errors)
dev->stats.tx_errors++; dev->stats.tx_errors++;
can_rx_offload_irq_queue_err_skb(&priv->offload, skb);
} }
static int flexcan_poll_bus_err(struct net_device *dev, u32 reg_esr) static void flexcan_irq_state(struct net_device *dev, u32 reg_esr)
{
struct sk_buff *skb;
struct can_frame *cf;
skb = alloc_can_err_skb(dev, &cf);
if (unlikely(!skb))
return 0;
do_bus_err(dev, cf, reg_esr);
dev->stats.rx_packets++;
dev->stats.rx_bytes += cf->can_dlc;
netif_receive_skb(skb);
return 1;
}
static int flexcan_poll_state(struct net_device *dev, u32 reg_esr)
{ {
struct flexcan_priv *priv = netdev_priv(dev); struct flexcan_priv *priv = netdev_priv(dev);
struct sk_buff *skb; struct sk_buff *skb;
struct can_frame *cf; struct can_frame *cf;
enum can_state new_state = 0, rx_state = 0, tx_state = 0; enum can_state new_state, rx_state, tx_state;
int flt; int flt;
struct can_berr_counter bec; struct can_berr_counter bec;
@ -606,33 +607,63 @@ static int flexcan_poll_state(struct net_device *dev, u32 reg_esr)
/* state hasn't changed */ /* state hasn't changed */
if (likely(new_state == priv->can.state)) if (likely(new_state == priv->can.state))
return 0; return;
skb = alloc_can_err_skb(dev, &cf); skb = alloc_can_err_skb(dev, &cf);
if (unlikely(!skb)) if (unlikely(!skb))
return 0; return;
can_change_state(dev, cf, tx_state, rx_state); can_change_state(dev, cf, tx_state, rx_state);
if (unlikely(new_state == CAN_STATE_BUS_OFF)) if (unlikely(new_state == CAN_STATE_BUS_OFF))
can_bus_off(dev); can_bus_off(dev);
dev->stats.rx_packets++; can_rx_offload_irq_queue_err_skb(&priv->offload, skb);
dev->stats.rx_bytes += cf->can_dlc;
netif_receive_skb(skb);
return 1;
} }
static void flexcan_read_fifo(const struct net_device *dev, static inline struct flexcan_priv *rx_offload_to_priv(struct can_rx_offload *offload)
struct can_frame *cf)
{ {
const struct flexcan_priv *priv = netdev_priv(dev); return container_of(offload, struct flexcan_priv, offload);
}
static unsigned int flexcan_mailbox_read(struct can_rx_offload *offload,
struct can_frame *cf,
u32 *timestamp, unsigned int n)
{
struct flexcan_priv *priv = rx_offload_to_priv(offload);
struct flexcan_regs __iomem *regs = priv->regs; struct flexcan_regs __iomem *regs = priv->regs;
struct flexcan_mb __iomem *mb = &regs->mb[0]; struct flexcan_mb __iomem *mb = &regs->mb[n];
u32 reg_ctrl, reg_id; u32 reg_ctrl, reg_id, reg_iflag1;
if (priv->devtype_data->quirks & FLEXCAN_QUIRK_USE_OFF_TIMESTAMP) {
u32 code;
do {
reg_ctrl = flexcan_read(&mb->can_ctrl);
} while (reg_ctrl & FLEXCAN_MB_CODE_RX_BUSY_BIT);
/* is this MB empty? */
code = reg_ctrl & FLEXCAN_MB_CODE_MASK;
if ((code != FLEXCAN_MB_CODE_RX_FULL) &&
(code != FLEXCAN_MB_CODE_RX_OVERRUN))
return 0;
if (code == FLEXCAN_MB_CODE_RX_OVERRUN) {
/* This MB was overrun, we lost data */
offload->dev->stats.rx_over_errors++;
offload->dev->stats.rx_errors++;
}
} else {
reg_iflag1 = flexcan_read(&regs->iflag1);
if (!(reg_iflag1 & FLEXCAN_IFLAG_RX_FIFO_AVAILABLE))
return 0;
reg_ctrl = flexcan_read(&mb->can_ctrl); reg_ctrl = flexcan_read(&mb->can_ctrl);
}
/* increase timstamp to full 32 bit */
*timestamp = reg_ctrl << 16;
reg_id = flexcan_read(&mb->can_id); reg_id = flexcan_read(&mb->can_id);
if (reg_ctrl & FLEXCAN_MB_CNT_IDE) if (reg_ctrl & FLEXCAN_MB_CNT_IDE)
cf->can_id = ((reg_id >> 0) & CAN_EFF_MASK) | CAN_EFF_FLAG; cf->can_id = ((reg_id >> 0) & CAN_EFF_MASK) | CAN_EFF_FLAG;
@ -647,69 +678,31 @@ static void flexcan_read_fifo(const struct net_device *dev,
*(__be32 *)(cf->data + 4) = cpu_to_be32(flexcan_read(&mb->data[1])); *(__be32 *)(cf->data + 4) = cpu_to_be32(flexcan_read(&mb->data[1]));
/* mark as read */ /* mark as read */
if (priv->devtype_data->quirks & FLEXCAN_QUIRK_USE_OFF_TIMESTAMP) {
/* Clear IRQ */
if (n < 32)
flexcan_write(BIT(n), &regs->iflag1);
else
flexcan_write(BIT(n - 32), &regs->iflag2);
} else {
flexcan_write(FLEXCAN_IFLAG_RX_FIFO_AVAILABLE, &regs->iflag1); flexcan_write(FLEXCAN_IFLAG_RX_FIFO_AVAILABLE, &regs->iflag1);
flexcan_read(&regs->timer); flexcan_read(&regs->timer);
}
static int flexcan_read_frame(struct net_device *dev)
{
struct net_device_stats *stats = &dev->stats;
struct can_frame *cf;
struct sk_buff *skb;
skb = alloc_can_skb(dev, &cf);
if (unlikely(!skb)) {
stats->rx_dropped++;
return 0;
} }
flexcan_read_fifo(dev, cf);
stats->rx_packets++;
stats->rx_bytes += cf->can_dlc;
netif_receive_skb(skb);
can_led_event(dev, CAN_LED_EVENT_RX);
return 1; return 1;
} }
static int flexcan_poll(struct napi_struct *napi, int quota)
static inline u64 flexcan_read_reg_iflag_rx(struct flexcan_priv *priv)
{ {
struct net_device *dev = napi->dev;
const struct flexcan_priv *priv = netdev_priv(dev);
struct flexcan_regs __iomem *regs = priv->regs; struct flexcan_regs __iomem *regs = priv->regs;
u32 reg_iflag1, reg_esr; u32 iflag1, iflag2;
int work_done = 0;
/* The error bits are cleared on read, iflag2 = flexcan_read(&regs->iflag2) & priv->reg_imask2_default;
* use saved value from irq handler. iflag1 = flexcan_read(&regs->iflag1) & priv->reg_imask1_default &
*/ ~FLEXCAN_IFLAG_MB(priv->tx_mb_idx);
reg_esr = flexcan_read(&regs->esr) | priv->reg_esr;
/* handle state changes */ return (u64)iflag2 << 32 | iflag1;
work_done += flexcan_poll_state(dev, reg_esr);
/* handle RX-FIFO */
reg_iflag1 = flexcan_read(&regs->iflag1);
while (reg_iflag1 & FLEXCAN_IFLAG_RX_FIFO_AVAILABLE &&
work_done < quota) {
work_done += flexcan_read_frame(dev);
reg_iflag1 = flexcan_read(&regs->iflag1);
}
/* report bus errors */
if (flexcan_has_and_handle_berr(priv, reg_esr) && work_done < quota)
work_done += flexcan_poll_bus_err(dev, reg_esr);
if (work_done < quota) {
napi_complete_done(napi, work_done);
/* enable IRQs */
flexcan_write(FLEXCAN_IFLAG_DEFAULT, &regs->imask1);
flexcan_write(priv->reg_ctrl_default, &regs->ctrl);
}
return work_done;
} }
static irqreturn_t flexcan_irq(int irq, void *dev_id) static irqreturn_t flexcan_irq(int irq, void *dev_id)
@ -718,55 +711,70 @@ static irqreturn_t flexcan_irq(int irq, void *dev_id)
struct net_device_stats *stats = &dev->stats; struct net_device_stats *stats = &dev->stats;
struct flexcan_priv *priv = netdev_priv(dev); struct flexcan_priv *priv = netdev_priv(dev);
struct flexcan_regs __iomem *regs = priv->regs; struct flexcan_regs __iomem *regs = priv->regs;
irqreturn_t handled = IRQ_NONE;
u32 reg_iflag1, reg_esr; u32 reg_iflag1, reg_esr;
reg_iflag1 = flexcan_read(&regs->iflag1); reg_iflag1 = flexcan_read(&regs->iflag1);
reg_esr = flexcan_read(&regs->esr);
/* ACK all bus error and state change IRQ sources */ /* reception interrupt */
if (reg_esr & FLEXCAN_ESR_ALL_INT) if (priv->devtype_data->quirks & FLEXCAN_QUIRK_USE_OFF_TIMESTAMP) {
flexcan_write(reg_esr & FLEXCAN_ESR_ALL_INT, &regs->esr); u64 reg_iflag;
int ret;
/* schedule NAPI in case of: while ((reg_iflag = flexcan_read_reg_iflag_rx(priv))) {
* - rx IRQ handled = IRQ_HANDLED;
* - state change IRQ ret = can_rx_offload_irq_offload_timestamp(&priv->offload,
* - bus error IRQ and bus error reporting is activated reg_iflag);
*/ if (!ret)
if ((reg_iflag1 & FLEXCAN_IFLAG_RX_FIFO_AVAILABLE) || break;
(reg_esr & FLEXCAN_ESR_ERR_STATE) || }
flexcan_has_and_handle_berr(priv, reg_esr)) { } else {
/* The error bits are cleared on read, if (reg_iflag1 & FLEXCAN_IFLAG_RX_FIFO_AVAILABLE) {
* save them for later use. handled = IRQ_HANDLED;
*/ can_rx_offload_irq_offload_fifo(&priv->offload);
priv->reg_esr = reg_esr & FLEXCAN_ESR_ERR_BUS;
flexcan_write(FLEXCAN_IFLAG_DEFAULT &
~FLEXCAN_IFLAG_RX_FIFO_AVAILABLE, &regs->imask1);
flexcan_write(priv->reg_ctrl_default & ~FLEXCAN_CTRL_ERR_ALL,
&regs->ctrl);
napi_schedule(&priv->napi);
} }
/* FIFO overflow */ /* FIFO overflow interrupt */
if (reg_iflag1 & FLEXCAN_IFLAG_RX_FIFO_OVERFLOW) { if (reg_iflag1 & FLEXCAN_IFLAG_RX_FIFO_OVERFLOW) {
handled = IRQ_HANDLED;
flexcan_write(FLEXCAN_IFLAG_RX_FIFO_OVERFLOW, &regs->iflag1); flexcan_write(FLEXCAN_IFLAG_RX_FIFO_OVERFLOW, &regs->iflag1);
dev->stats.rx_over_errors++; dev->stats.rx_over_errors++;
dev->stats.rx_errors++; dev->stats.rx_errors++;
} }
}
/* transmission complete interrupt */ /* transmission complete interrupt */
if (reg_iflag1 & (1 << FLEXCAN_TX_BUF_ID)) { if (reg_iflag1 & FLEXCAN_IFLAG_MB(priv->tx_mb_idx)) {
handled = IRQ_HANDLED;
stats->tx_bytes += can_get_echo_skb(dev, 0); stats->tx_bytes += can_get_echo_skb(dev, 0);
stats->tx_packets++; stats->tx_packets++;
can_led_event(dev, CAN_LED_EVENT_TX); can_led_event(dev, CAN_LED_EVENT_TX);
/* after sending a RTR frame MB is in RX mode */ /* after sending a RTR frame MB is in RX mode */
flexcan_write(FLEXCAN_MB_CODE_TX_INACTIVE, flexcan_write(FLEXCAN_MB_CODE_TX_INACTIVE,
&regs->mb[FLEXCAN_TX_BUF_ID].can_ctrl); &priv->tx_mb->can_ctrl);
flexcan_write((1 << FLEXCAN_TX_BUF_ID), &regs->iflag1); flexcan_write(FLEXCAN_IFLAG_MB(priv->tx_mb_idx), &regs->iflag1);
netif_wake_queue(dev); netif_wake_queue(dev);
} }
return IRQ_HANDLED; reg_esr = flexcan_read(&regs->esr);
/* ACK all bus error and state change IRQ sources */
if (reg_esr & FLEXCAN_ESR_ALL_INT) {
handled = IRQ_HANDLED;
flexcan_write(reg_esr & FLEXCAN_ESR_ALL_INT, &regs->esr);
}
/* state change interrupt */
if (reg_esr & FLEXCAN_ESR_ERR_STATE)
flexcan_irq_state(dev, reg_esr);
/* bus error IRQ - handle if bus error reporting is activated */
if ((reg_esr & FLEXCAN_ESR_ERR_BUS) &&
(priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING))
flexcan_irq_bus_err(dev, reg_esr);
return handled;
} }
static void flexcan_set_bittiming(struct net_device *dev) static void flexcan_set_bittiming(struct net_device *dev)
@ -839,14 +847,23 @@ static int flexcan_chip_start(struct net_device *dev)
* only supervisor access * only supervisor access
* enable warning int * enable warning int
* disable local echo * disable local echo
* enable individual RX masking
* choose format C * choose format C
* set max mailbox number * set max mailbox number
*/ */
reg_mcr = flexcan_read(&regs->mcr); reg_mcr = flexcan_read(&regs->mcr);
reg_mcr &= ~FLEXCAN_MCR_MAXMB(0xff); reg_mcr &= ~FLEXCAN_MCR_MAXMB(0xff);
reg_mcr |= FLEXCAN_MCR_FRZ | FLEXCAN_MCR_FEN | FLEXCAN_MCR_HALT | reg_mcr |= FLEXCAN_MCR_FRZ | FLEXCAN_MCR_HALT | FLEXCAN_MCR_SUPV |
FLEXCAN_MCR_SUPV | FLEXCAN_MCR_WRN_EN | FLEXCAN_MCR_SRX_DIS | FLEXCAN_MCR_WRN_EN | FLEXCAN_MCR_SRX_DIS | FLEXCAN_MCR_IRMQ |
FLEXCAN_MCR_IDAM_C | FLEXCAN_MCR_MAXMB(FLEXCAN_TX_BUF_ID); FLEXCAN_MCR_IDAM_C;
if (priv->devtype_data->quirks & FLEXCAN_QUIRK_USE_OFF_TIMESTAMP) {
reg_mcr &= ~FLEXCAN_MCR_FEN;
reg_mcr |= FLEXCAN_MCR_MAXMB(priv->offload.mb_last);
} else {
reg_mcr |= FLEXCAN_MCR_FEN |
FLEXCAN_MCR_MAXMB(priv->tx_mb_idx);
}
netdev_dbg(dev, "%s: writing mcr=0x%08x", __func__, reg_mcr); netdev_dbg(dev, "%s: writing mcr=0x%08x", __func__, reg_mcr);
flexcan_write(reg_mcr, &regs->mcr); flexcan_write(reg_mcr, &regs->mcr);
@ -883,19 +900,31 @@ static int flexcan_chip_start(struct net_device *dev)
netdev_dbg(dev, "%s: writing ctrl=0x%08x", __func__, reg_ctrl); netdev_dbg(dev, "%s: writing ctrl=0x%08x", __func__, reg_ctrl);
flexcan_write(reg_ctrl, &regs->ctrl); flexcan_write(reg_ctrl, &regs->ctrl);
if ((priv->devtype_data->quirks & FLEXCAN_QUIRK_ENABLE_EACEN_RRS)) {
reg_ctrl2 = flexcan_read(&regs->ctrl2);
reg_ctrl2 |= FLEXCAN_CTRL2_EACEN | FLEXCAN_CTRL2_RRS;
flexcan_write(reg_ctrl2, &regs->ctrl2);
}
/* clear and invalidate all mailboxes first */ /* clear and invalidate all mailboxes first */
for (i = FLEXCAN_TX_BUF_ID; i < ARRAY_SIZE(regs->mb); i++) { for (i = priv->tx_mb_idx; i < ARRAY_SIZE(regs->mb); i++) {
flexcan_write(FLEXCAN_MB_CODE_RX_INACTIVE, flexcan_write(FLEXCAN_MB_CODE_RX_INACTIVE,
&regs->mb[i].can_ctrl); &regs->mb[i].can_ctrl);
} }
if (priv->devtype_data->quirks & FLEXCAN_QUIRK_USE_OFF_TIMESTAMP) {
for (i = priv->offload.mb_first; i <= priv->offload.mb_last; i++)
flexcan_write(FLEXCAN_MB_CODE_RX_EMPTY,
&regs->mb[i].can_ctrl);
}
/* Errata ERR005829: mark first TX mailbox as INACTIVE */ /* Errata ERR005829: mark first TX mailbox as INACTIVE */
flexcan_write(FLEXCAN_MB_CODE_TX_INACTIVE, flexcan_write(FLEXCAN_MB_CODE_TX_INACTIVE,
&regs->mb[FLEXCAN_TX_BUF_RESERVED].can_ctrl); &priv->tx_mb_reserved->can_ctrl);
/* mark TX mailbox as INACTIVE */ /* mark TX mailbox as INACTIVE */
flexcan_write(FLEXCAN_MB_CODE_TX_INACTIVE, flexcan_write(FLEXCAN_MB_CODE_TX_INACTIVE,
&regs->mb[FLEXCAN_TX_BUF_ID].can_ctrl); &priv->tx_mb->can_ctrl);
/* acceptance mask/acceptance code (accept everything) */ /* acceptance mask/acceptance code (accept everything) */
flexcan_write(0x0, &regs->rxgmask); flexcan_write(0x0, &regs->rxgmask);
@ -905,6 +934,10 @@ static int flexcan_chip_start(struct net_device *dev)
if (priv->devtype_data->quirks & FLEXCAN_QUIRK_DISABLE_RXFG) if (priv->devtype_data->quirks & FLEXCAN_QUIRK_DISABLE_RXFG)
flexcan_write(0x0, &regs->rxfgmask); flexcan_write(0x0, &regs->rxfgmask);
/* clear acceptance filters */
for (i = 0; i < ARRAY_SIZE(regs->mb); i++)
flexcan_write(0, &regs->rximr[i]);
/* On Vybrid, disable memory error detection interrupts /* On Vybrid, disable memory error detection interrupts
* and freeze mode. * and freeze mode.
* This also works around errata e5295 which generates * This also works around errata e5295 which generates
@ -942,7 +975,8 @@ static int flexcan_chip_start(struct net_device *dev)
/* enable interrupts atomically */ /* enable interrupts atomically */
disable_irq(dev->irq); disable_irq(dev->irq);
flexcan_write(priv->reg_ctrl_default, &regs->ctrl); flexcan_write(priv->reg_ctrl_default, &regs->ctrl);
flexcan_write(FLEXCAN_IFLAG_DEFAULT, &regs->imask1); flexcan_write(priv->reg_imask1_default, &regs->imask1);
flexcan_write(priv->reg_imask2_default, &regs->imask2);
enable_irq(dev->irq); enable_irq(dev->irq);
/* print chip status */ /* print chip status */
@ -972,6 +1006,7 @@ static void flexcan_chip_stop(struct net_device *dev)
flexcan_chip_disable(priv); flexcan_chip_disable(priv);
/* Disable all interrupts */ /* Disable all interrupts */
flexcan_write(0, &regs->imask2);
flexcan_write(0, &regs->imask1); flexcan_write(0, &regs->imask1);
flexcan_write(priv->reg_ctrl_default & ~FLEXCAN_CTRL_ERR_ALL, flexcan_write(priv->reg_ctrl_default & ~FLEXCAN_CTRL_ERR_ALL,
&regs->ctrl); &regs->ctrl);
@ -1008,7 +1043,7 @@ static int flexcan_open(struct net_device *dev)
can_led_event(dev, CAN_LED_EVENT_OPEN); can_led_event(dev, CAN_LED_EVENT_OPEN);
napi_enable(&priv->napi); can_rx_offload_enable(&priv->offload);
netif_start_queue(dev); netif_start_queue(dev);
return 0; return 0;
@ -1030,7 +1065,7 @@ static int flexcan_close(struct net_device *dev)
struct flexcan_priv *priv = netdev_priv(dev); struct flexcan_priv *priv = netdev_priv(dev);
netif_stop_queue(dev); netif_stop_queue(dev);
napi_disable(&priv->napi); can_rx_offload_disable(&priv->offload);
flexcan_chip_stop(dev); flexcan_chip_stop(dev);
free_irq(dev->irq, dev); free_irq(dev->irq, dev);
@ -1104,8 +1139,9 @@ static int register_flexcandev(struct net_device *dev)
flexcan_write(reg, &regs->mcr); flexcan_write(reg, &regs->mcr);
/* Currently we only support newer versions of this core /* Currently we only support newer versions of this core
* featuring a RX FIFO. Older cores found on some Coldfire * featuring a RX hardware FIFO (although this driver doesn't
* derivates are not yet supported. * make use of it on some cores). Older cores, found on some
* Coldfire derivates are not tested.
*/ */
reg = flexcan_read(&regs->mcr); reg = flexcan_read(&regs->mcr);
if (!(reg & FLEXCAN_MCR_FEN)) { if (!(reg & FLEXCAN_MCR_FEN)) {
@ -1208,6 +1244,9 @@ static int flexcan_probe(struct platform_device *pdev)
if (!dev) if (!dev)
return -ENOMEM; return -ENOMEM;
platform_set_drvdata(pdev, dev);
SET_NETDEV_DEV(dev, &pdev->dev);
dev->netdev_ops = &flexcan_netdev_ops; dev->netdev_ops = &flexcan_netdev_ops;
dev->irq = irq; dev->irq = irq;
dev->flags |= IFF_ECHO; dev->flags |= IFF_ECHO;
@ -1223,14 +1262,41 @@ static int flexcan_probe(struct platform_device *pdev)
priv->regs = regs; priv->regs = regs;
priv->clk_ipg = clk_ipg; priv->clk_ipg = clk_ipg;
priv->clk_per = clk_per; priv->clk_per = clk_per;
priv->pdata = dev_get_platdata(&pdev->dev);
priv->devtype_data = devtype_data; priv->devtype_data = devtype_data;
priv->reg_xceiver = reg_xceiver; priv->reg_xceiver = reg_xceiver;
netif_napi_add(dev, &priv->napi, flexcan_poll, FLEXCAN_NAPI_WEIGHT); if (priv->devtype_data->quirks & FLEXCAN_QUIRK_USE_OFF_TIMESTAMP) {
priv->tx_mb_idx = FLEXCAN_TX_MB_OFF_TIMESTAMP;
priv->tx_mb_reserved = &regs->mb[FLEXCAN_TX_MB_RESERVED_OFF_TIMESTAMP];
} else {
priv->tx_mb_idx = FLEXCAN_TX_MB_OFF_FIFO;
priv->tx_mb_reserved = &regs->mb[FLEXCAN_TX_MB_RESERVED_OFF_FIFO];
}
priv->tx_mb = &regs->mb[priv->tx_mb_idx];
platform_set_drvdata(pdev, dev); priv->reg_imask1_default = FLEXCAN_IFLAG_MB(priv->tx_mb_idx);
SET_NETDEV_DEV(dev, &pdev->dev); priv->reg_imask2_default = 0;
priv->offload.mailbox_read = flexcan_mailbox_read;
if (priv->devtype_data->quirks & FLEXCAN_QUIRK_USE_OFF_TIMESTAMP) {
u64 imask;
priv->offload.mb_first = FLEXCAN_RX_MB_OFF_TIMESTAMP_FIRST;
priv->offload.mb_last = FLEXCAN_RX_MB_OFF_TIMESTAMP_LAST;
imask = GENMASK_ULL(priv->offload.mb_last, priv->offload.mb_first);
priv->reg_imask1_default |= imask;
priv->reg_imask2_default |= imask >> 32;
err = can_rx_offload_add_timestamp(dev, &priv->offload);
} else {
priv->reg_imask1_default |= FLEXCAN_IFLAG_RX_FIFO_OVERFLOW |
FLEXCAN_IFLAG_RX_FIFO_AVAILABLE;
err = can_rx_offload_add_fifo(dev, &priv->offload, FLEXCAN_NAPI_WEIGHT);
}
if (err)
goto failed_offload;
err = register_flexcandev(dev); err = register_flexcandev(dev);
if (err) { if (err) {
@ -1245,6 +1311,7 @@ static int flexcan_probe(struct platform_device *pdev)
return 0; return 0;
failed_offload:
failed_register: failed_register:
free_candev(dev); free_candev(dev);
return err; return err;
@ -1256,7 +1323,7 @@ static int flexcan_remove(struct platform_device *pdev)
struct flexcan_priv *priv = netdev_priv(dev); struct flexcan_priv *priv = netdev_priv(dev);
unregister_flexcandev(dev); unregister_flexcandev(dev);
netif_napi_del(&priv->napi); can_rx_offload_del(&priv->offload);
free_candev(dev); free_candev(dev);
return 0; return 0;

View File

@ -0,0 +1,289 @@
/*
* Copyright (c) 2014 David Jander, Protonic Holland
* Copyright (C) 2014-2017 Pengutronix, Marc Kleine-Budde <kernel@pengutronix.de>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the version 2 of the GNU General Public License
* as published by the Free Software Foundation
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include <linux/can/dev.h>
#include <linux/can/rx-offload.h>
struct can_rx_offload_cb {
u32 timestamp;
};
static inline struct can_rx_offload_cb *can_rx_offload_get_cb(struct sk_buff *skb)
{
BUILD_BUG_ON(sizeof(struct can_rx_offload_cb) > sizeof(skb->cb));
return (struct can_rx_offload_cb *)skb->cb;
}
static inline bool can_rx_offload_le(struct can_rx_offload *offload, unsigned int a, unsigned int b)
{
if (offload->inc)
return a <= b;
else
return a >= b;
}
static inline unsigned int can_rx_offload_inc(struct can_rx_offload *offload, unsigned int *val)
{
if (offload->inc)
return (*val)++;
else
return (*val)--;
}
static int can_rx_offload_napi_poll(struct napi_struct *napi, int quota)
{
struct can_rx_offload *offload = container_of(napi, struct can_rx_offload, napi);
struct net_device *dev = offload->dev;
struct net_device_stats *stats = &dev->stats;
struct sk_buff *skb;
int work_done = 0;
while ((work_done < quota) &&
(skb = skb_dequeue(&offload->skb_queue))) {
struct can_frame *cf = (struct can_frame *)skb->data;
work_done++;
stats->rx_packets++;
stats->rx_bytes += cf->can_dlc;
netif_receive_skb(skb);
}
if (work_done < quota) {
napi_complete_done(napi, work_done);
/* Check if there was another interrupt */
if (!skb_queue_empty(&offload->skb_queue))
napi_reschedule(&offload->napi);
}
can_led_event(offload->dev, CAN_LED_EVENT_RX);
return work_done;
}
static inline void __skb_queue_add_sort(struct sk_buff_head *head, struct sk_buff *new,
int (*compare)(struct sk_buff *a, struct sk_buff *b))
{
struct sk_buff *pos, *insert = (struct sk_buff *)head;
skb_queue_reverse_walk(head, pos) {
const struct can_rx_offload_cb *cb_pos, *cb_new;
cb_pos = can_rx_offload_get_cb(pos);
cb_new = can_rx_offload_get_cb(new);
netdev_dbg(new->dev,
"%s: pos=0x%08x, new=0x%08x, diff=%10d, queue_len=%d\n",
__func__,
cb_pos->timestamp, cb_new->timestamp,
cb_new->timestamp - cb_pos->timestamp,
skb_queue_len(head));
if (compare(pos, new) < 0)
continue;
insert = pos;
break;
}
__skb_queue_after(head, insert, new);
}
static int can_rx_offload_compare(struct sk_buff *a, struct sk_buff *b)
{
const struct can_rx_offload_cb *cb_a, *cb_b;
cb_a = can_rx_offload_get_cb(a);
cb_b = can_rx_offload_get_cb(b);
/* Substract two u32 and return result as int, to keep
* difference steady around the u32 overflow.
*/
return cb_b->timestamp - cb_a->timestamp;
}
static struct sk_buff *can_rx_offload_offload_one(struct can_rx_offload *offload, unsigned int n)
{
struct sk_buff *skb = NULL;
struct can_rx_offload_cb *cb;
struct can_frame *cf;
int ret;
/* If queue is full or skb not available, read to discard mailbox */
if (likely(skb_queue_len(&offload->skb_queue) <=
offload->skb_queue_len_max))
skb = alloc_can_skb(offload->dev, &cf);
if (!skb) {
struct can_frame cf_overflow;
u32 timestamp;
ret = offload->mailbox_read(offload, &cf_overflow,
&timestamp, n);
if (ret)
offload->dev->stats.rx_dropped++;
return NULL;
}
cb = can_rx_offload_get_cb(skb);
ret = offload->mailbox_read(offload, cf, &cb->timestamp, n);
if (!ret) {
kfree_skb(skb);
return NULL;
}
return skb;
}
int can_rx_offload_irq_offload_timestamp(struct can_rx_offload *offload, u64 pending)
{
struct sk_buff_head skb_queue;
unsigned int i;
__skb_queue_head_init(&skb_queue);
for (i = offload->mb_first;
can_rx_offload_le(offload, i, offload->mb_last);
can_rx_offload_inc(offload, &i)) {
struct sk_buff *skb;
if (!(pending & BIT_ULL(i)))
continue;
skb = can_rx_offload_offload_one(offload, i);
if (!skb)
break;
__skb_queue_add_sort(&skb_queue, skb, can_rx_offload_compare);
}
if (!skb_queue_empty(&skb_queue)) {
unsigned long flags;
u32 queue_len;
spin_lock_irqsave(&offload->skb_queue.lock, flags);
skb_queue_splice_tail(&skb_queue, &offload->skb_queue);
spin_unlock_irqrestore(&offload->skb_queue.lock, flags);
if ((queue_len = skb_queue_len(&offload->skb_queue)) >
(offload->skb_queue_len_max / 8))
netdev_dbg(offload->dev, "%s: queue_len=%d\n",
__func__, queue_len);
can_rx_offload_schedule(offload);
}
return skb_queue_len(&skb_queue);
}
EXPORT_SYMBOL_GPL(can_rx_offload_irq_offload_timestamp);
int can_rx_offload_irq_offload_fifo(struct can_rx_offload *offload)
{
struct sk_buff *skb;
int received = 0;
while ((skb = can_rx_offload_offload_one(offload, 0))) {
skb_queue_tail(&offload->skb_queue, skb);
received++;
}
if (received)
can_rx_offload_schedule(offload);
return received;
}
EXPORT_SYMBOL_GPL(can_rx_offload_irq_offload_fifo);
int can_rx_offload_irq_queue_err_skb(struct can_rx_offload *offload, struct sk_buff *skb)
{
if (skb_queue_len(&offload->skb_queue) >
offload->skb_queue_len_max)
return -ENOMEM;
skb_queue_tail(&offload->skb_queue, skb);
can_rx_offload_schedule(offload);
return 0;
}
EXPORT_SYMBOL_GPL(can_rx_offload_irq_queue_err_skb);
static int can_rx_offload_init_queue(struct net_device *dev, struct can_rx_offload *offload, unsigned int weight)
{
offload->dev = dev;
/* Limit queue len to 4x the weight (rounted to next power of two) */
offload->skb_queue_len_max = 2 << fls(weight);
offload->skb_queue_len_max *= 4;
skb_queue_head_init(&offload->skb_queue);
can_rx_offload_reset(offload);
netif_napi_add(dev, &offload->napi, can_rx_offload_napi_poll, weight);
dev_dbg(dev->dev.parent, "%s: skb_queue_len_max=%d\n",
__func__, offload->skb_queue_len_max);
return 0;
}
int can_rx_offload_add_timestamp(struct net_device *dev, struct can_rx_offload *offload)
{
unsigned int weight;
if (offload->mb_first > BITS_PER_LONG_LONG ||
offload->mb_last > BITS_PER_LONG_LONG || !offload->mailbox_read)
return -EINVAL;
if (offload->mb_first < offload->mb_last) {
offload->inc = true;
weight = offload->mb_last - offload->mb_first;
} else {
offload->inc = false;
weight = offload->mb_first - offload->mb_last;
}
return can_rx_offload_init_queue(dev, offload, weight);;
}
EXPORT_SYMBOL_GPL(can_rx_offload_add_timestamp);
int can_rx_offload_add_fifo(struct net_device *dev, struct can_rx_offload *offload, unsigned int weight)
{
if (!offload->mailbox_read)
return -EINVAL;
return can_rx_offload_init_queue(dev, offload, weight);
}
EXPORT_SYMBOL_GPL(can_rx_offload_add_fifo);
void can_rx_offload_enable(struct can_rx_offload *offload)
{
can_rx_offload_reset(offload);
napi_enable(&offload->napi);
}
EXPORT_SYMBOL_GPL(can_rx_offload_enable);
void can_rx_offload_del(struct can_rx_offload *offload)
{
netif_napi_del(&offload->napi);
skb_queue_purge(&offload->skb_queue);
}
EXPORT_SYMBOL_GPL(can_rx_offload_del);
void can_rx_offload_reset(struct can_rx_offload *offload)
{
}
EXPORT_SYMBOL_GPL(can_rx_offload_reset);

View File

@ -0,0 +1,59 @@
/*
* linux/can/rx-offload.h
*
* Copyright (c) 2014 David Jander, Protonic Holland
* Copyright (c) 2014-2017 Pengutronix, Marc Kleine-Budde <kernel@pengutronix.de>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the version 2 of the GNU General Public License
* as published by the Free Software Foundation
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#ifndef _CAN_RX_OFFLOAD_H
#define _CAN_RX_OFFLOAD_H
#include <linux/netdevice.h>
#include <linux/can.h>
struct can_rx_offload {
struct net_device *dev;
unsigned int (*mailbox_read)(struct can_rx_offload *offload, struct can_frame *cf,
u32 *timestamp, unsigned int mb);
struct sk_buff_head skb_queue;
u32 skb_queue_len_max;
unsigned int mb_first;
unsigned int mb_last;
struct napi_struct napi;
bool inc;
};
int can_rx_offload_add_timestamp(struct net_device *dev, struct can_rx_offload *offload);
int can_rx_offload_add_fifo(struct net_device *dev, struct can_rx_offload *offload, unsigned int weight);
int can_rx_offload_irq_offload_timestamp(struct can_rx_offload *offload, u64 reg);
int can_rx_offload_irq_offload_fifo(struct can_rx_offload *offload);
int can_rx_offload_irq_queue_err_skb(struct can_rx_offload *offload, struct sk_buff *skb);
void can_rx_offload_reset(struct can_rx_offload *offload);
void can_rx_offload_del(struct can_rx_offload *offload);
void can_rx_offload_enable(struct can_rx_offload *offload);
static inline void can_rx_offload_schedule(struct can_rx_offload *offload)
{
napi_schedule(&offload->napi);
}
static inline void can_rx_offload_disable(struct can_rx_offload *offload)
{
napi_disable(&offload->napi);
}
#endif /* !_CAN_RX_OFFLOAD_H */