tools/power turbostat: simplify output, add Avg_MHz

Use 8 columns for each number ouput.
We don't fit into 80 columns on most machines,
so keep the format simple.

Print frequency in MHz instead of GHz.
We've got 8 columns now, so use them to
show low frequency in a more natural unit.

Many users didn't understand what %c0 meant,
so re-name it to be %Busy.

Add Avg_MHz column, which is the frequency that many
users expect to see -- the total number of cycles executed
over the measurement interval.

People found the previous GHz to be confusing, since
it was the speed only over the non-idle interval.
That measurement has been re-named Bzy_MHz.

Suggested-by: Dirk J. Brandewie
Signed-off-by: Len Brown <len.brown@intel.com>
This commit is contained in:
Len Brown 2014-02-06 00:55:19 -05:00
parent 38dbfb59d1
commit fc04cc67ea
2 changed files with 151 additions and 206 deletions

View File

@ -47,21 +47,22 @@ displays the statistics gathered since it was forked.
.PP
.SH FIELD DESCRIPTIONS
.nf
\fBpk\fP processor package number.
\fBcor\fP processor core number.
\fBPackage\fP processor package number.
\fBCore\fP processor core number.
\fBCPU\fP Linux CPU (logical processor) number.
Note that multiple CPUs per core indicate support for Intel(R) Hyper-Threading Technology.
\fB%c0\fP percent of the interval that the CPU retired instructions.
\fBGHz\fP average clock rate while the CPU was in c0 state.
\fBTSC\fP average GHz that the TSC ran during the entire interval.
\fB%c1, %c3, %c6, %c7\fP show the percentage residency in hardware core idle states.
\fBCTMP\fP Degrees Celsius reported by the per-core Digital Thermal Sensor.
\fBPTMP\fP Degrees Celsius reported by the per-package Package Thermal Monitor.
\fB%pc2, %pc3, %pc6, %pc7\fP percentage residency in hardware package idle states.
\fBPkg_W\fP Watts consumed by the whole package.
\fBCor_W\fP Watts consumed by the core part of the package.
\fBGFX_W\fP Watts consumed by the Graphics part of the package -- available only on client processors.
\fBRAM_W\fP Watts consumed by the DRAM DIMMS -- available only on server processors.
\fBAVG_MHz\fP number of cycles executed divided by time elapsed.
\fB%Buzy\fP percent of the interval that the CPU retired instructions, aka. % of time in "C0" state.
\fBBzy_MHz\fP average clock rate while the CPU was busy (in "c0" state).
\fBTSC_MHz\fP average MHz that the TSC ran during the entire interval.
\fBCPU%c1, CPU%c3, CPU%c6, CPU%c7\fP show the percentage residency in hardware core idle states.
\fBCoreTmp\fP Degrees Celsius reported by the per-core Digital Thermal Sensor.
\fBPkgTtmp\fP Degrees Celsius reported by the per-package Package Thermal Monitor.
\fBPkg%pc2, Pkg%pc3, Pkg%pc6, Pkg%pc7\fP percentage residency in hardware package idle states.
\fBPkgWatt\fP Watts consumed by the whole package.
\fBCorWatt\fP Watts consumed by the core part of the package.
\fBGFXWatt\fP Watts consumed by the Graphics part of the package -- available only on client processors.
\fBRAMWatt\fP Watts consumed by the DRAM DIMMS -- available only on server processors.
\fBPKG_%\fP percent of the interval that RAPL throttling was active on the Package.
\fBRAM_%\fP percent of the interval that RAPL throttling was active on DRAM.
.fi
@ -78,29 +79,17 @@ For Watts columns, the summary is a system total.
Subsequent rows show per-CPU statistics.
.nf
[root@sandy]# ./turbostat
cor CPU %c0 GHz TSC %c1 %c3 %c6 %c7 CTMP PTMP %pc2 %pc3 %pc6 %pc7 Pkg_W Cor_W GFX_W
0.06 0.80 2.29 0.11 0.00 0.00 99.83 47 40 0.26 0.01 0.44 98.78 3.49 0.12 0.14
0 0 0.07 0.80 2.29 0.07 0.00 0.00 99.86 40 40 0.26 0.01 0.44 98.78 3.49 0.12 0.14
0 4 0.03 0.80 2.29 0.12
1 1 0.04 0.80 2.29 0.25 0.01 0.00 99.71 40
1 5 0.16 0.80 2.29 0.13
2 2 0.05 0.80 2.29 0.06 0.01 0.00 99.88 40
2 6 0.03 0.80 2.29 0.08
3 3 0.05 0.80 2.29 0.08 0.00 0.00 99.87 47
3 7 0.04 0.84 2.29 0.09
.fi
.SH SUMMARY EXAMPLE
The "-s" option prints the column headers just once,
and then the one line system summary for each sample interval.
.nf
[root@wsm]# turbostat -S
%c0 GHz TSC %c1 %c3 %c6 CTMP %pc3 %pc6
1.40 2.81 3.38 10.78 43.47 44.35 42 13.67 2.09
1.34 2.90 3.38 11.48 58.96 28.23 41 19.89 0.15
1.55 2.72 3.38 26.73 37.66 34.07 42 2.53 2.80
1.37 2.83 3.38 16.95 60.05 21.63 42 5.76 0.20
[root@ivy]# ./turbostat
Core CPU Avg_MHz %Busy Bzy_MHz TSC_MHz SMI CPU%c1 CPU%c3 CPU%c6 CPU%c7 CoreTmp PkgTmp Pkg%pc2 Pkg%pc3 Pkg%pc6 Pkg%pc7 PkgWatt CorWatt GFXWatt
- - 6 0.36 1596 3492 0 0.59 0.01 99.04 0.00 23 24 23.82 0.01 72.47 0.00 6.40 1.01 0.00
0 0 9 0.58 1596 3492 0 0.28 0.01 99.13 0.00 23 24 23.82 0.01 72.47 0.00 6.40 1.01 0.00
0 4 1 0.07 1596 3492 0 0.79
1 1 10 0.65 1596 3492 0 0.59 0.00 98.76 0.00 23
1 5 5 0.28 1596 3492 0 0.95
2 2 10 0.66 1596 3492 0 0.41 0.01 98.92 0.00 23
2 6 2 0.10 1597 3492 0 0.97
3 3 3 0.20 1596 3492 0 0.44 0.00 99.37 0.00 23
3 7 5 0.31 1596 3492 0 0.33
.fi
.SH VERBOSE EXAMPLE
The "-v" option adds verbosity to the output:
@ -154,55 +143,35 @@ eg. Here a cycle soaker is run on 1 CPU (see %c0) for a few seconds
until ^C while the other CPUs are mostly idle:
.nf
[root@x980 lenb]# ./turbostat cat /dev/zero > /dev/null
root@ivy: turbostat cat /dev/zero > /dev/null
^C
cor CPU %c0 GHz TSC %c1 %c3 %c6 %pc3 %pc6
8.86 3.61 3.38 15.06 31.19 44.89 0.00 0.00
0 0 1.46 3.22 3.38 16.84 29.48 52.22 0.00 0.00
0 6 0.21 3.06 3.38 18.09
1 2 0.53 3.33 3.38 2.80 46.40 50.27
1 8 0.89 3.47 3.38 2.44
2 4 1.36 3.43 3.38 9.04 23.71 65.89
2 10 0.18 2.86 3.38 10.22
8 1 0.04 2.87 3.38 99.96 0.01 0.00
8 7 99.72 3.63 3.38 0.27
9 3 0.31 3.21 3.38 7.64 56.55 35.50
9 9 0.08 2.95 3.38 7.88
10 5 1.42 3.43 3.38 2.14 30.99 65.44
10 11 0.16 2.88 3.38 3.40
Core CPU Avg_MHz %Busy Bzy_MHz TSC_MHz SMI CPU%c1 CPU%c3 CPU%c6 CPU%c7 CoreTmp PkgTmp Pkg%pc2 Pkg%pc3 Pkg%pc6 Pkg%pc7 PkgWatt CorWatt GFXWatt
- - 496 12.75 3886 3492 0 13.16 0.04 74.04 0.00 36 36 0.00 0.00 0.00 0.00 23.15 17.65 0.00
0 0 22 0.57 3830 3492 0 0.83 0.02 98.59 0.00 27 36 0.00 0.00 0.00 0.00 23.15 17.65 0.00
0 4 9 0.24 3829 3492 0 1.15
1 1 4 0.09 3783 3492 0 99.91 0.00 0.00 0.00 36
1 5 3880 99.82 3888 3492 0 0.18
2 2 17 0.44 3813 3492 0 0.77 0.04 98.75 0.00 28
2 6 12 0.32 3823 3492 0 0.89
3 3 16 0.43 3844 3492 0 0.63 0.11 98.84 0.00 30
3 7 4 0.11 3827 3492 0 0.94
30.372243 sec
.fi
Above the cycle soaker drives cpu7 up its 3.6 GHz turbo limit
Above the cycle soaker drives cpu5 up its 3.8 GHz turbo limit
while the other processors are generally in various states of idle.
Note that cpu1 and cpu7 are HT siblings within core8.
As cpu7 is very busy, it prevents its sibling, cpu1,
Note that cpu1 and cpu5 are HT siblings within core1.
As cpu5 is very busy, it prevents its sibling, cpu1,
from entering a c-state deeper than c1.
Note that turbostat reports average GHz of 3.63, while
the arithmetic average of the GHz column above is lower.
This is a weighted average, where the weight is %c0. ie. it is the total number of
un-halted cycles elapsed per time divided by the number of CPUs.
.SH SMI COUNTING EXAMPLE
On Intel Nehalem and newer processors, MSR 0x34 is a System Management Mode Interrupt (SMI) counter.
This counter is shown by default under the "SMI" column.
.nf
[root@x980 ~]# turbostat
cor CPU %c0 GHz TSC SMI %c1 %c3 %c6 CTMP %pc3 %pc6
0.11 1.91 3.38 0 1.84 0.26 97.79 29 0.82 83.87
0 0 0.40 1.63 3.38 0 10.27 0.12 89.20 20 0.82 83.88
0 6 0.06 1.63 3.38 0 10.61
1 2 0.37 2.63 3.38 0 0.02 0.10 99.51 22
1 8 0.01 1.62 3.38 0 0.39
2 4 0.07 1.62 3.38 0 0.04 0.07 99.82 23
2 10 0.02 1.62 3.38 0 0.09
8 1 0.23 1.64 3.38 0 0.10 1.07 98.60 24
8 7 0.02 1.64 3.38 0 0.31
9 3 0.03 1.62 3.38 0 0.03 0.05 99.89 29
9 9 0.02 1.62 3.38 0 0.05
10 5 0.07 1.62 3.38 0 0.08 0.12 99.73 27
10 11 0.03 1.62 3.38 0 0.13
^C
.fi
Note that the Avg_MHz column reflects the total number of cycles executed
divided by the measurement interval. If the %Busy column is 100%,
then the processor was running at that speed the entire interval.
The Avg_MHz multiplied by the %Busy results in the Bzy_MHz --
which is the average frequency while the processor was executing --
not including any non-busy idle time.
.SH NOTES
.B "turbostat "

View File

@ -56,7 +56,7 @@ unsigned int do_slm_cstates;
unsigned int use_c1_residency_msr;
unsigned int has_aperf;
unsigned int has_epb;
unsigned int units = 1000000000; /* Ghz etc */
unsigned int units = 1000000; /* MHz etc */
unsigned int genuine_intel;
unsigned int has_invariant_tsc;
unsigned int do_nehalem_platform_info;
@ -264,88 +264,93 @@ int get_msr(int cpu, off_t offset, unsigned long long *msr)
return 0;
}
/*
* Example Format w/ field column widths:
*
* Package Core CPU Avg_MHz Bzy_MHz TSC_MHz SMI %Busy CPU_%c1 CPU_%c3 CPU_%c6 CPU_%c7 CoreTmp PkgTmp Pkg%pc2 Pkg%pc3 Pkg%pc6 Pkg%pc7 PkgWatt CorWatt GFXWatt
* 1234567 1234567 1234567 1234567 1234567 1234567 1234567 1234567 1234567 1234567 1234567 1234567 1234567 1234567 1234567 1234567 1234567 1234567 1234567 1234567 1234567
*/
void print_header(void)
{
if (show_pkg)
outp += sprintf(outp, "pk");
if (show_pkg)
outp += sprintf(outp, " ");
outp += sprintf(outp, "Package ");
if (show_core)
outp += sprintf(outp, "cor");
outp += sprintf(outp, " Core ");
if (show_cpu)
outp += sprintf(outp, " CPU");
if (show_pkg || show_core || show_cpu)
outp += sprintf(outp, " ");
if (do_nhm_cstates)
outp += sprintf(outp, " %%c0");
outp += sprintf(outp, " CPU ");
if (has_aperf)
outp += sprintf(outp, " GHz");
outp += sprintf(outp, " TSC");
outp += sprintf(outp, "Avg_MHz ");
if (do_nhm_cstates)
outp += sprintf(outp, " %%Busy ");
if (has_aperf)
outp += sprintf(outp, "Bzy_MHz ");
outp += sprintf(outp, "TSC_MHz ");
if (do_smi)
outp += sprintf(outp, " SMI");
outp += sprintf(outp, " SMI ");
if (extra_delta_offset32)
outp += sprintf(outp, " count 0x%03X", extra_delta_offset32);
outp += sprintf(outp, " count 0x%03X ", extra_delta_offset32);
if (extra_delta_offset64)
outp += sprintf(outp, " COUNT 0x%03X", extra_delta_offset64);
outp += sprintf(outp, " COUNT 0x%03X ", extra_delta_offset64);
if (extra_msr_offset32)
outp += sprintf(outp, " MSR 0x%03X", extra_msr_offset32);
outp += sprintf(outp, " MSR 0x%03X ", extra_msr_offset32);
if (extra_msr_offset64)
outp += sprintf(outp, " MSR 0x%03X", extra_msr_offset64);
outp += sprintf(outp, " MSR 0x%03X ", extra_msr_offset64);
if (do_nhm_cstates)
outp += sprintf(outp, " %%c1");
outp += sprintf(outp, " CPU%%c1 ");
if (do_nhm_cstates && !do_slm_cstates)
outp += sprintf(outp, " %%c3");
outp += sprintf(outp, " CPU%%c3 ");
if (do_nhm_cstates)
outp += sprintf(outp, " %%c6");
outp += sprintf(outp, " CPU%%c6 ");
if (do_snb_cstates)
outp += sprintf(outp, " %%c7");
outp += sprintf(outp, " CPU%%c7 ");
if (do_dts)
outp += sprintf(outp, " CTMP");
outp += sprintf(outp, "CoreTmp ");
if (do_ptm)
outp += sprintf(outp, " PTMP");
outp += sprintf(outp, " PkgTmp ");
if (do_snb_cstates)
outp += sprintf(outp, " %%pc2");
outp += sprintf(outp, "Pkg%%pc2 ");
if (do_nhm_cstates && !do_slm_cstates)
outp += sprintf(outp, " %%pc3");
outp += sprintf(outp, "Pkg%%pc3 ");
if (do_nhm_cstates && !do_slm_cstates)
outp += sprintf(outp, " %%pc6");
outp += sprintf(outp, "Pkg%%pc6 ");
if (do_snb_cstates)
outp += sprintf(outp, " %%pc7");
outp += sprintf(outp, "Pkg%%pc7 ");
if (do_c8_c9_c10) {
outp += sprintf(outp, " %%pc8");
outp += sprintf(outp, " %%pc9");
outp += sprintf(outp, " %%pc10");
outp += sprintf(outp, "Pkg%%pc8 ");
outp += sprintf(outp, "Pkg%%pc9 ");
outp += sprintf(outp, "Pk%%pc10 ");
}
if (do_rapl && !rapl_joules) {
if (do_rapl & RAPL_PKG)
outp += sprintf(outp, " Pkg_W");
outp += sprintf(outp, "PkgWatt ");
if (do_rapl & RAPL_CORES)
outp += sprintf(outp, " Cor_W");
outp += sprintf(outp, "CorWatt ");
if (do_rapl & RAPL_GFX)
outp += sprintf(outp, " GFX_W");
outp += sprintf(outp, "GFXWatt ");
if (do_rapl & RAPL_DRAM)
outp += sprintf(outp, " RAM_W");
outp += sprintf(outp, "RAMWatt ");
if (do_rapl & RAPL_PKG_PERF_STATUS)
outp += sprintf(outp, " PKG_%%");
outp += sprintf(outp, " PKG_%% ");
if (do_rapl & RAPL_DRAM_PERF_STATUS)
outp += sprintf(outp, " RAM_%%");
outp += sprintf(outp, " RAM_%% ");
} else {
if (do_rapl & RAPL_PKG)
outp += sprintf(outp, " Pkg_J");
outp += sprintf(outp, " Pkg_J ");
if (do_rapl & RAPL_CORES)
outp += sprintf(outp, " Cor_J");
outp += sprintf(outp, " Cor_J ");
if (do_rapl & RAPL_GFX)
outp += sprintf(outp, " GFX_J");
outp += sprintf(outp, " GFX_J ");
if (do_rapl & RAPL_DRAM)
outp += sprintf(outp, " RAM_W");
outp += sprintf(outp, " RAM_W ");
if (do_rapl & RAPL_PKG_PERF_STATUS)
outp += sprintf(outp, " PKG_%%");
outp += sprintf(outp, " PKG_%% ");
if (do_rapl & RAPL_DRAM_PERF_STATUS)
outp += sprintf(outp, " RAM_%%");
outp += sprintf(outp, " time");
outp += sprintf(outp, " RAM_%% ");
outp += sprintf(outp, " time ");
}
outp += sprintf(outp, "\n");
@ -410,25 +415,12 @@ int dump_counters(struct thread_data *t, struct core_data *c,
/*
* column formatting convention & formats
* package: "pk" 2 columns %2d
* core: "cor" 3 columns %3d
* CPU: "CPU" 3 columns %3d
* Pkg_W: %6.2
* Cor_W: %6.2
* GFX_W: %5.2
* RAM_W: %5.2
* GHz: "GHz" 3 columns %3.2
* TSC: "TSC" 3 columns %3.2
* SMI: "SMI" 4 columns %4d
* percentage " %pc3" %6.2
* Perf Status percentage: %5.2
* "CTMP" 4 columns %4d
*/
int format_counters(struct thread_data *t, struct core_data *c,
struct pkg_data *p)
{
double interval_float;
char *fmt5, *fmt6;
char *fmt8;
/* if showing only 1st thread in core and this isn't one, bail out */
if (show_core_only && !(t->flags & CPU_IS_FIRST_THREAD_IN_CORE))
@ -443,65 +435,52 @@ int format_counters(struct thread_data *t, struct core_data *c,
/* topo columns, print blanks on 1st (average) line */
if (t == &average.threads) {
if (show_pkg)
outp += sprintf(outp, " ");
if (show_pkg && show_core)
outp += sprintf(outp, " ");
outp += sprintf(outp, " -");
if (show_core)
outp += sprintf(outp, " ");
outp += sprintf(outp, " -");
if (show_cpu)
outp += sprintf(outp, " " " ");
outp += sprintf(outp, " -");
} else {
if (show_pkg) {
if (p)
outp += sprintf(outp, "%2d", p->package_id);
outp += sprintf(outp, "%8d", p->package_id);
else
outp += sprintf(outp, " ");
outp += sprintf(outp, " -");
}
if (show_pkg && show_core)
outp += sprintf(outp, " ");
if (show_core) {
if (c)
outp += sprintf(outp, "%3d", c->core_id);
outp += sprintf(outp, "%8d", c->core_id);
else
outp += sprintf(outp, " ");
outp += sprintf(outp, " -");
}
if (show_cpu)
outp += sprintf(outp, " %3d", t->cpu_id);
outp += sprintf(outp, "%8d", t->cpu_id);
}
/* AvgMHz */
if (has_aperf)
outp += sprintf(outp, "%8.0f",
1.0 / units * t->aperf / interval_float);
/* %c0 */
if (do_nhm_cstates) {
if (show_pkg || show_core || show_cpu)
outp += sprintf(outp, " ");
if (!skip_c0)
outp += sprintf(outp, "%6.2f", 100.0 * t->mperf/t->tsc);
outp += sprintf(outp, "%8.2f", 100.0 * t->mperf/t->tsc);
else
outp += sprintf(outp, " ****");
outp += sprintf(outp, "********");
}
/* GHz */
if (has_aperf) {
if (!aperf_mperf_unstable) {
outp += sprintf(outp, " %3.2f",
1.0 * t->tsc / units * t->aperf /
t->mperf / interval_float);
} else {
if (t->aperf > t->tsc || t->mperf > t->tsc) {
outp += sprintf(outp, " ***");
} else {
outp += sprintf(outp, "%3.1f*",
1.0 * t->tsc /
units * t->aperf /
t->mperf / interval_float);
}
}
}
/* BzyMHz */
if (has_aperf)
outp += sprintf(outp, "%8.0f",
1.0 * t->tsc / units * t->aperf / t->mperf / interval_float);
/* TSC */
outp += sprintf(outp, "%5.2f", 1.0 * t->tsc/units/interval_float);
outp += sprintf(outp, "%8.0f", 1.0 * t->tsc/units/interval_float);
/* SMI */
if (do_smi)
outp += sprintf(outp, "%4d", t->smi_count);
outp += sprintf(outp, "%8d", t->smi_count);
/* delta */
if (extra_delta_offset32)
@ -520,9 +499,9 @@ int format_counters(struct thread_data *t, struct core_data *c,
if (do_nhm_cstates) {
if (!skip_c1)
outp += sprintf(outp, " %6.2f", 100.0 * t->c1/t->tsc);
outp += sprintf(outp, "%8.2f", 100.0 * t->c1/t->tsc);
else
outp += sprintf(outp, " ****");
outp += sprintf(outp, "********");
}
/* print per-core data only for 1st thread in core */
@ -530,79 +509,76 @@ int format_counters(struct thread_data *t, struct core_data *c,
goto done;
if (do_nhm_cstates && !do_slm_cstates)
outp += sprintf(outp, " %6.2f", 100.0 * c->c3/t->tsc);
outp += sprintf(outp, "%8.2f", 100.0 * c->c3/t->tsc);
if (do_nhm_cstates)
outp += sprintf(outp, " %6.2f", 100.0 * c->c6/t->tsc);
outp += sprintf(outp, "%8.2f", 100.0 * c->c6/t->tsc);
if (do_snb_cstates)
outp += sprintf(outp, " %6.2f", 100.0 * c->c7/t->tsc);
outp += sprintf(outp, "%8.2f", 100.0 * c->c7/t->tsc);
if (do_dts)
outp += sprintf(outp, " %4d", c->core_temp_c);
outp += sprintf(outp, "%8d", c->core_temp_c);
/* print per-package data only for 1st core in package */
if (!(t->flags & CPU_IS_FIRST_CORE_IN_PACKAGE))
goto done;
if (do_ptm)
outp += sprintf(outp, " %4d", p->pkg_temp_c);
outp += sprintf(outp, "%8d", p->pkg_temp_c);
if (do_snb_cstates)
outp += sprintf(outp, " %6.2f", 100.0 * p->pc2/t->tsc);
outp += sprintf(outp, "%8.2f", 100.0 * p->pc2/t->tsc);
if (do_nhm_cstates && !do_slm_cstates)
outp += sprintf(outp, " %6.2f", 100.0 * p->pc3/t->tsc);
outp += sprintf(outp, "%8.2f", 100.0 * p->pc3/t->tsc);
if (do_nhm_cstates && !do_slm_cstates)
outp += sprintf(outp, " %6.2f", 100.0 * p->pc6/t->tsc);
outp += sprintf(outp, "%8.2f", 100.0 * p->pc6/t->tsc);
if (do_snb_cstates)
outp += sprintf(outp, " %6.2f", 100.0 * p->pc7/t->tsc);
outp += sprintf(outp, "%8.2f", 100.0 * p->pc7/t->tsc);
if (do_c8_c9_c10) {
outp += sprintf(outp, " %6.2f", 100.0 * p->pc8/t->tsc);
outp += sprintf(outp, " %6.2f", 100.0 * p->pc9/t->tsc);
outp += sprintf(outp, " %6.2f", 100.0 * p->pc10/t->tsc);
outp += sprintf(outp, "%8.2f", 100.0 * p->pc8/t->tsc);
outp += sprintf(outp, "%8.2f", 100.0 * p->pc9/t->tsc);
outp += sprintf(outp, "%8.2f", 100.0 * p->pc10/t->tsc);
}
/*
* If measurement interval exceeds minimum RAPL Joule Counter range,
* indicate that results are suspect by printing "**" in fraction place.
*/
if (interval_float < rapl_joule_counter_range) {
fmt5 = " %5.2f";
fmt6 = " %6.2f";
} else {
fmt5 = " %3.0f**";
fmt6 = " %4.0f**";
}
if (interval_float < rapl_joule_counter_range)
fmt8 = "%8.2f";
else
fmt8 = " %6.0f**";
if (do_rapl && !rapl_joules) {
if (do_rapl & RAPL_PKG)
outp += sprintf(outp, fmt6, p->energy_pkg * rapl_energy_units / interval_float);
outp += sprintf(outp, fmt8, p->energy_pkg * rapl_energy_units / interval_float);
if (do_rapl & RAPL_CORES)
outp += sprintf(outp, fmt6, p->energy_cores * rapl_energy_units / interval_float);
outp += sprintf(outp, fmt8, p->energy_cores * rapl_energy_units / interval_float);
if (do_rapl & RAPL_GFX)
outp += sprintf(outp, fmt5, p->energy_gfx * rapl_energy_units / interval_float);
outp += sprintf(outp, fmt8, p->energy_gfx * rapl_energy_units / interval_float);
if (do_rapl & RAPL_DRAM)
outp += sprintf(outp, fmt5, p->energy_dram * rapl_energy_units / interval_float);
outp += sprintf(outp, fmt8, p->energy_dram * rapl_energy_units / interval_float);
if (do_rapl & RAPL_PKG_PERF_STATUS)
outp += sprintf(outp, fmt5, 100.0 * p->rapl_pkg_perf_status * rapl_time_units / interval_float);
outp += sprintf(outp, fmt8, 100.0 * p->rapl_pkg_perf_status * rapl_time_units / interval_float);
if (do_rapl & RAPL_DRAM_PERF_STATUS)
outp += sprintf(outp, fmt5, 100.0 * p->rapl_dram_perf_status * rapl_time_units / interval_float);
outp += sprintf(outp, fmt8, 100.0 * p->rapl_dram_perf_status * rapl_time_units / interval_float);
} else {
if (do_rapl & RAPL_PKG)
outp += sprintf(outp, fmt6,
outp += sprintf(outp, fmt8,
p->energy_pkg * rapl_energy_units);
if (do_rapl & RAPL_CORES)
outp += sprintf(outp, fmt6,
outp += sprintf(outp, fmt8,
p->energy_cores * rapl_energy_units);
if (do_rapl & RAPL_GFX)
outp += sprintf(outp, fmt5,
outp += sprintf(outp, fmt8,
p->energy_gfx * rapl_energy_units);
if (do_rapl & RAPL_DRAM)
outp += sprintf(outp, fmt5,
outp += sprintf(outp, fmt8,
p->energy_dram * rapl_energy_units);
if (do_rapl & RAPL_PKG_PERF_STATUS)
outp += sprintf(outp, fmt5, 100.0 * p->rapl_pkg_perf_status * rapl_time_units / interval_float);
outp += sprintf(outp, fmt8, 100.0 * p->rapl_pkg_perf_status * rapl_time_units / interval_float);
if (do_rapl & RAPL_DRAM_PERF_STATUS)
outp += sprintf(outp, fmt5, 100.0 * p->rapl_dram_perf_status * rapl_time_units / interval_float);
outp += sprintf(outp, fmt5, interval_float);
outp += sprintf(outp, fmt8, 100.0 * p->rapl_dram_perf_status * rapl_time_units / interval_float);
outp += sprintf(outp, fmt8, interval_float);
}
done:
@ -2455,7 +2431,7 @@ int main(int argc, char **argv)
cmdline(argc, argv);
if (verbose)
fprintf(stderr, "turbostat v3.6 Dec 2, 2013"
fprintf(stderr, "turbostat v3.7 Feb 6, 2014"
" - Len Brown <lenb@kernel.org>\n");
turbostat_init();