drm/i915/cnl: Fix SSEU Device Status.

CNL adds an extra register for slice/subslice information.
Although no SKU is planed with an extra slice let's already
handle this extra piece of information so we don't have the
risk in future of getting a part that might have chosen this
part of the die instead of other slices or anything like that.

Also if subslice is disabled the information of eu ack for that
is garbage, so let's skip checks for eu if subslice is disabled
as we skip the subslice if slice is disabled.

The rest is pretty much like gen9.

v2: Remove IS_CANNONLAKE from gen9 status function.

v3: Consider s_max = 6 and ss_max=4 to run over all possible
    slices and subslices possible by spec. Although no real
    hardware will have that many slices/subslices.
    To match with sseu info init.
v4: Fix offset calculation for slices 4 and 5.
    Removed Oscar's rv-b since this change also needs review.
v5: Let's consider only valid bits for SLICE*_PGCTL_ACK.
    This looks like wrong in Spec, but seems to be enough
    for now. Whenever Spec gets updated and fixed we come
    back and properly update the masks. Also add a FIXME,
    so we can revisit this later when we find some strange
    info on debugfs or when we noitce spec got updated.

Cc: Oscar Mateo <oscar.mateo@intel.com>
Signed-off-by: Rodrigo Vivi <rodrigo.vivi@intel.com>
Reviewed-by: Lionel Landwerlin <lionel.g.landwerlin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20171026001546.28203-1-rodrigo.vivi@intel.com
This commit is contained in:
Rodrigo Vivi 2017-10-25 17:15:46 -07:00
parent 9bdc3573a5
commit f8c3dcf946
2 changed files with 66 additions and 2 deletions

View File

@ -4448,6 +4448,61 @@ static void cherryview_sseu_device_status(struct drm_i915_private *dev_priv,
} }
} }
static void gen10_sseu_device_status(struct drm_i915_private *dev_priv,
struct sseu_dev_info *sseu)
{
const struct intel_device_info *info = INTEL_INFO(dev_priv);
int s_max = 6, ss_max = 4;
int s, ss;
u32 s_reg[s_max], eu_reg[2 * s_max], eu_mask[2];
for (s = 0; s < s_max; s++) {
/*
* FIXME: Valid SS Mask respects the spec and read
* only valid bits for those registers, excluding reserverd
* although this seems wrong because it would leave many
* subslices without ACK.
*/
s_reg[s] = I915_READ(GEN10_SLICE_PGCTL_ACK(s)) &
GEN10_PGCTL_VALID_SS_MASK(s);
eu_reg[2 * s] = I915_READ(GEN10_SS01_EU_PGCTL_ACK(s));
eu_reg[2 * s + 1] = I915_READ(GEN10_SS23_EU_PGCTL_ACK(s));
}
eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
GEN9_PGCTL_SSA_EU19_ACK |
GEN9_PGCTL_SSA_EU210_ACK |
GEN9_PGCTL_SSA_EU311_ACK;
eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
GEN9_PGCTL_SSB_EU19_ACK |
GEN9_PGCTL_SSB_EU210_ACK |
GEN9_PGCTL_SSB_EU311_ACK;
for (s = 0; s < s_max; s++) {
if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
/* skip disabled slice */
continue;
sseu->slice_mask |= BIT(s);
sseu->subslice_mask = info->sseu.subslice_mask;
for (ss = 0; ss < ss_max; ss++) {
unsigned int eu_cnt;
if (!(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
/* skip disabled subslice */
continue;
eu_cnt = 2 * hweight32(eu_reg[2 * s + ss / 2] &
eu_mask[ss % 2]);
sseu->eu_total += eu_cnt;
sseu->eu_per_subslice = max_t(unsigned int,
sseu->eu_per_subslice,
eu_cnt);
}
}
}
static void gen9_sseu_device_status(struct drm_i915_private *dev_priv, static void gen9_sseu_device_status(struct drm_i915_private *dev_priv,
struct sseu_dev_info *sseu) struct sseu_dev_info *sseu)
{ {
@ -4483,7 +4538,7 @@ static void gen9_sseu_device_status(struct drm_i915_private *dev_priv,
sseu->slice_mask |= BIT(s); sseu->slice_mask |= BIT(s);
if (IS_GEN9_BC(dev_priv) || IS_CANNONLAKE(dev_priv)) if (IS_GEN9_BC(dev_priv))
sseu->subslice_mask = sseu->subslice_mask =
INTEL_INFO(dev_priv)->sseu.subslice_mask; INTEL_INFO(dev_priv)->sseu.subslice_mask;
@ -4589,8 +4644,10 @@ static int i915_sseu_status(struct seq_file *m, void *unused)
cherryview_sseu_device_status(dev_priv, &sseu); cherryview_sseu_device_status(dev_priv, &sseu);
} else if (IS_BROADWELL(dev_priv)) { } else if (IS_BROADWELL(dev_priv)) {
broadwell_sseu_device_status(dev_priv, &sseu); broadwell_sseu_device_status(dev_priv, &sseu);
} else if (INTEL_GEN(dev_priv) >= 9) { } else if (IS_GEN9(dev_priv)) {
gen9_sseu_device_status(dev_priv, &sseu); gen9_sseu_device_status(dev_priv, &sseu);
} else if (INTEL_GEN(dev_priv) >= 10) {
gen10_sseu_device_status(dev_priv, &sseu);
} }
intel_runtime_pm_put(dev_priv); intel_runtime_pm_put(dev_priv);

View File

@ -8037,11 +8037,18 @@ enum {
#define CHV_EU311_PG_ENABLE (1<<1) #define CHV_EU311_PG_ENABLE (1<<1)
#define GEN9_SLICE_PGCTL_ACK(slice) _MMIO(0x804c + (slice)*0x4) #define GEN9_SLICE_PGCTL_ACK(slice) _MMIO(0x804c + (slice)*0x4)
#define GEN10_SLICE_PGCTL_ACK(slice) _MMIO(0x804c + ((slice) / 3) * 0x34 + \
((slice) % 3) * 0x4)
#define GEN9_PGCTL_SLICE_ACK (1 << 0) #define GEN9_PGCTL_SLICE_ACK (1 << 0)
#define GEN9_PGCTL_SS_ACK(subslice) (1 << (2 + (subslice)*2)) #define GEN9_PGCTL_SS_ACK(subslice) (1 << (2 + (subslice)*2))
#define GEN10_PGCTL_VALID_SS_MASK(slice) ((slice) == 0 ? 0x7F : 0x1F)
#define GEN9_SS01_EU_PGCTL_ACK(slice) _MMIO(0x805c + (slice)*0x8) #define GEN9_SS01_EU_PGCTL_ACK(slice) _MMIO(0x805c + (slice)*0x8)
#define GEN10_SS01_EU_PGCTL_ACK(slice) _MMIO(0x805c + ((slice) / 3) * 0x30 + \
((slice) % 3) * 0x8)
#define GEN9_SS23_EU_PGCTL_ACK(slice) _MMIO(0x8060 + (slice)*0x8) #define GEN9_SS23_EU_PGCTL_ACK(slice) _MMIO(0x8060 + (slice)*0x8)
#define GEN10_SS23_EU_PGCTL_ACK(slice) _MMIO(0x8060 + ((slice) / 3) * 0x30 + \
((slice) % 3) * 0x8)
#define GEN9_PGCTL_SSA_EU08_ACK (1 << 0) #define GEN9_PGCTL_SSA_EU08_ACK (1 << 0)
#define GEN9_PGCTL_SSA_EU19_ACK (1 << 2) #define GEN9_PGCTL_SSA_EU19_ACK (1 << 2)
#define GEN9_PGCTL_SSA_EU210_ACK (1 << 4) #define GEN9_PGCTL_SSA_EU210_ACK (1 << 4)