ARC: disassembly (needed by kprobes/kgdb/unaligned-access-emul)
In-kernel disassembler Due Credits * Orig written by Rajeshwar Ranga * Consolidation/cleanups by Mischa Jonker Signed-off-by: Vineet Gupta <vgupta@synopsys.com> Cc: Rajeshwar Ranga <rajeshwar.ranga@gmail.com> Cc: Mischa Jonker <mjonker@synopsys.com>
This commit is contained in:
parent
44c8bb9140
commit
e65ab5a875
|
@ -0,0 +1,116 @@
|
|||
/*
|
||||
* several functions that help interpret ARC instructions
|
||||
* used for unaligned accesses, kprobes and kgdb
|
||||
*
|
||||
* Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License version 2 as
|
||||
* published by the Free Software Foundation.
|
||||
*/
|
||||
|
||||
#ifndef __ARC_DISASM_H__
|
||||
#define __ARC_DISASM_H__
|
||||
|
||||
enum {
|
||||
op_Bcc = 0, op_BLcc = 1, op_LD = 2, op_ST = 3, op_MAJOR_4 = 4,
|
||||
op_MAJOR_5 = 5, op_LD_ADD = 12, op_ADD_SUB_SHIFT = 13,
|
||||
op_ADD_MOV_CMP = 14, op_S = 15, op_LD_S = 16, op_LDB_S = 17,
|
||||
op_LDW_S = 18, op_LDWX_S = 19, op_ST_S = 20, op_STB_S = 21,
|
||||
op_STW_S = 22, op_Su5 = 23, op_SP = 24, op_GP = 25,
|
||||
op_Pcl = 26, op_MOV_S = 27, op_ADD_CMP = 28, op_BR_S = 29,
|
||||
op_B_S = 30, op_BL_S = 31
|
||||
};
|
||||
|
||||
enum flow {
|
||||
noflow,
|
||||
direct_jump,
|
||||
direct_call,
|
||||
indirect_jump,
|
||||
indirect_call,
|
||||
invalid_instr
|
||||
};
|
||||
|
||||
#define IS_BIT(word, n) ((word) & (1<<n))
|
||||
#define BITS(word, s, e) (((word) >> (s)) & (~((-2) << ((e) - (s)))))
|
||||
|
||||
#define MAJOR_OPCODE(word) (BITS((word), 27, 31))
|
||||
#define MINOR_OPCODE(word) (BITS((word), 16, 21))
|
||||
#define FIELD_A(word) (BITS((word), 0, 5))
|
||||
#define FIELD_B(word) ((BITS((word), 12, 14)<<3) | \
|
||||
(BITS((word), 24, 26)))
|
||||
#define FIELD_C(word) (BITS((word), 6, 11))
|
||||
#define FIELD_u6(word) FIELDC(word)
|
||||
#define FIELD_s12(word) sign_extend(((BITS((word), 0, 5) << 6) | \
|
||||
BITS((word), 6, 11)), 12)
|
||||
|
||||
/* note that for BL/BRcc these two macro's need another AND statement to mask
|
||||
* out bit 1 (make the result a multiple of 4) */
|
||||
#define FIELD_s9(word) sign_extend(((BITS(word, 15, 15) << 8) | \
|
||||
BITS(word, 16, 23)), 9)
|
||||
#define FIELD_s21(word) sign_extend(((BITS(word, 6, 15) << 11) | \
|
||||
(BITS(word, 17, 26) << 1)), 12)
|
||||
#define FIELD_s25(word) sign_extend(((BITS(word, 0, 3) << 21) | \
|
||||
(BITS(word, 6, 15) << 11) | \
|
||||
(BITS(word, 17, 26) << 1)), 12)
|
||||
|
||||
/* note: these operate on 16 bits! */
|
||||
#define FIELD_S_A(word) ((BITS((word), 2, 2)<<3) | BITS((word), 0, 2))
|
||||
#define FIELD_S_B(word) ((BITS((word), 10, 10)<<3) | \
|
||||
BITS((word), 8, 10))
|
||||
#define FIELD_S_C(word) ((BITS((word), 7, 7)<<3) | BITS((word), 5, 7))
|
||||
#define FIELD_S_H(word) ((BITS((word), 0, 2)<<3) | BITS((word), 5, 8))
|
||||
#define FIELD_S_u5(word) (BITS((word), 0, 4))
|
||||
#define FIELD_S_u6(word) (BITS((word), 0, 4) << 1)
|
||||
#define FIELD_S_u7(word) (BITS((word), 0, 4) << 2)
|
||||
#define FIELD_S_u10(word) (BITS((word), 0, 7) << 2)
|
||||
#define FIELD_S_s7(word) sign_extend(BITS((word), 0, 5) << 1, 9)
|
||||
#define FIELD_S_s8(word) sign_extend(BITS((word), 0, 7) << 1, 9)
|
||||
#define FIELD_S_s9(word) sign_extend(BITS((word), 0, 8), 9)
|
||||
#define FIELD_S_s10(word) sign_extend(BITS((word), 0, 8) << 1, 10)
|
||||
#define FIELD_S_s11(word) sign_extend(BITS((word), 0, 8) << 2, 11)
|
||||
#define FIELD_S_s13(word) sign_extend(BITS((word), 0, 10) << 2, 13)
|
||||
|
||||
#define STATUS32_L 0x00000100
|
||||
#define REG_LIMM 62
|
||||
|
||||
struct disasm_state {
|
||||
/* generic info */
|
||||
unsigned long words[2];
|
||||
int instr_len;
|
||||
int major_opcode;
|
||||
/* info for branch/jump */
|
||||
int is_branch;
|
||||
int target;
|
||||
int delay_slot;
|
||||
enum flow flow;
|
||||
/* info for load/store */
|
||||
int src1, src2, src3, dest, wb_reg;
|
||||
int zz, aa, x, pref, di;
|
||||
int fault, write;
|
||||
};
|
||||
|
||||
static inline int sign_extend(int value, int bits)
|
||||
{
|
||||
if (IS_BIT(value, (bits - 1)))
|
||||
value |= (0xffffffff << bits);
|
||||
|
||||
return value;
|
||||
}
|
||||
|
||||
static inline int is_short_instr(unsigned long addr)
|
||||
{
|
||||
uint16_t word = *((uint16_t *)addr);
|
||||
int opcode = (word >> 11) & 0x1F;
|
||||
return (opcode >= 0x0B);
|
||||
}
|
||||
|
||||
void disasm_instr(unsigned long addr, struct disasm_state *state,
|
||||
int userspace, struct pt_regs *regs, struct callee_regs *cregs);
|
||||
int disasm_next_pc(unsigned long pc, struct pt_regs *regs, struct callee_regs
|
||||
*cregs, unsigned long *fall_thru, unsigned long *target);
|
||||
long get_reg(int reg, struct pt_regs *regs, struct callee_regs *cregs);
|
||||
void set_reg(int reg, long val, struct pt_regs *regs,
|
||||
struct callee_regs *cregs);
|
||||
|
||||
#endif /* __ARC_DISASM_H__ */
|
|
@ -9,7 +9,7 @@
|
|||
CFLAGS_ptrace.o += -DUTS_MACHINE='"$(UTS_MACHINE)"'
|
||||
|
||||
obj-y := arcksyms.o setup.o irq.o time.o reset.o ptrace.o entry.o process.o
|
||||
obj-y += signal.o traps.o sys.o troubleshoot.o stacktrace.o clk.o
|
||||
obj-y += signal.o traps.o sys.o troubleshoot.o stacktrace.o disasm.o clk.o
|
||||
obj-y += devtree.o
|
||||
|
||||
obj-$(CONFIG_MODULES) += arcksyms.o module.o
|
||||
|
|
|
@ -0,0 +1,539 @@
|
|||
/*
|
||||
* several functions that help interpret ARC instructions
|
||||
* used for unaligned accesses, kprobes and kgdb
|
||||
*
|
||||
* Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License version 2 as
|
||||
* published by the Free Software Foundation.
|
||||
*/
|
||||
|
||||
#include <linux/types.h>
|
||||
#include <linux/kprobes.h>
|
||||
#include <linux/slab.h>
|
||||
#include <asm/disasm.h>
|
||||
#include <asm/uaccess.h>
|
||||
|
||||
#if defined(CONFIG_KGDB) || defined(CONFIG_MISALIGN_ACCESS) || \
|
||||
defined(CONFIG_KPROBES)
|
||||
|
||||
/* disasm_instr: Analyses instruction at addr, stores
|
||||
* findings in *state
|
||||
*/
|
||||
void __kprobes disasm_instr(unsigned long addr, struct disasm_state *state,
|
||||
int userspace, struct pt_regs *regs, struct callee_regs *cregs)
|
||||
{
|
||||
int fieldA = 0;
|
||||
int fieldC = 0, fieldCisReg = 0;
|
||||
uint16_t word1 = 0, word0 = 0;
|
||||
int subopcode, is_linked, op_format;
|
||||
uint16_t *ins_ptr;
|
||||
uint16_t ins_buf[4];
|
||||
int bytes_not_copied = 0;
|
||||
|
||||
memset(state, 0, sizeof(struct disasm_state));
|
||||
|
||||
/* This fetches the upper part of the 32 bit instruction
|
||||
* in both the cases of Little Endian or Big Endian configurations. */
|
||||
if (userspace) {
|
||||
bytes_not_copied = copy_from_user(ins_buf,
|
||||
(const void __user *) addr, 8);
|
||||
if (bytes_not_copied > 6)
|
||||
goto fault;
|
||||
ins_ptr = ins_buf;
|
||||
} else {
|
||||
ins_ptr = (uint16_t *) addr;
|
||||
}
|
||||
|
||||
word1 = *((uint16_t *)addr);
|
||||
|
||||
state->major_opcode = (word1 >> 11) & 0x1F;
|
||||
|
||||
/* Check if the instruction is 32 bit or 16 bit instruction */
|
||||
if (state->major_opcode < 0x0B) {
|
||||
if (bytes_not_copied > 4)
|
||||
goto fault;
|
||||
state->instr_len = 4;
|
||||
word0 = *((uint16_t *)(addr+2));
|
||||
state->words[0] = (word1 << 16) | word0;
|
||||
} else {
|
||||
state->instr_len = 2;
|
||||
state->words[0] = word1;
|
||||
}
|
||||
|
||||
/* Read the second word in case of limm */
|
||||
word1 = *((uint16_t *)(addr + state->instr_len));
|
||||
word0 = *((uint16_t *)(addr + state->instr_len + 2));
|
||||
state->words[1] = (word1 << 16) | word0;
|
||||
|
||||
switch (state->major_opcode) {
|
||||
case op_Bcc:
|
||||
state->is_branch = 1;
|
||||
|
||||
/* unconditional branch s25, conditional branch s21 */
|
||||
fieldA = (IS_BIT(state->words[0], 16)) ?
|
||||
FIELD_s25(state->words[0]) :
|
||||
FIELD_s21(state->words[0]);
|
||||
|
||||
state->delay_slot = IS_BIT(state->words[0], 5);
|
||||
state->target = fieldA + (addr & ~0x3);
|
||||
state->flow = direct_jump;
|
||||
break;
|
||||
|
||||
case op_BLcc:
|
||||
if (IS_BIT(state->words[0], 16)) {
|
||||
/* Branch and Link*/
|
||||
/* unconditional branch s25, conditional branch s21 */
|
||||
fieldA = (IS_BIT(state->words[0], 17)) ?
|
||||
(FIELD_s25(state->words[0]) & ~0x3) :
|
||||
FIELD_s21(state->words[0]);
|
||||
|
||||
state->flow = direct_call;
|
||||
} else {
|
||||
/*Branch On Compare */
|
||||
fieldA = FIELD_s9(state->words[0]) & ~0x3;
|
||||
state->flow = direct_jump;
|
||||
}
|
||||
|
||||
state->delay_slot = IS_BIT(state->words[0], 5);
|
||||
state->target = fieldA + (addr & ~0x3);
|
||||
state->is_branch = 1;
|
||||
break;
|
||||
|
||||
case op_LD: /* LD<zz> a,[b,s9] */
|
||||
state->write = 0;
|
||||
state->di = BITS(state->words[0], 11, 11);
|
||||
if (state->di)
|
||||
break;
|
||||
state->x = BITS(state->words[0], 6, 6);
|
||||
state->zz = BITS(state->words[0], 7, 8);
|
||||
state->aa = BITS(state->words[0], 9, 10);
|
||||
state->wb_reg = FIELD_B(state->words[0]);
|
||||
if (state->wb_reg == REG_LIMM) {
|
||||
state->instr_len += 4;
|
||||
state->aa = 0;
|
||||
state->src1 = state->words[1];
|
||||
} else {
|
||||
state->src1 = get_reg(state->wb_reg, regs, cregs);
|
||||
}
|
||||
state->src2 = FIELD_s9(state->words[0]);
|
||||
state->dest = FIELD_A(state->words[0]);
|
||||
state->pref = (state->dest == REG_LIMM);
|
||||
break;
|
||||
|
||||
case op_ST:
|
||||
state->write = 1;
|
||||
state->di = BITS(state->words[0], 5, 5);
|
||||
if (state->di)
|
||||
break;
|
||||
state->aa = BITS(state->words[0], 3, 4);
|
||||
state->zz = BITS(state->words[0], 1, 2);
|
||||
state->src1 = FIELD_C(state->words[0]);
|
||||
if (state->src1 == REG_LIMM) {
|
||||
state->instr_len += 4;
|
||||
state->src1 = state->words[1];
|
||||
} else {
|
||||
state->src1 = get_reg(state->src1, regs, cregs);
|
||||
}
|
||||
state->wb_reg = FIELD_B(state->words[0]);
|
||||
if (state->wb_reg == REG_LIMM) {
|
||||
state->aa = 0;
|
||||
state->instr_len += 4;
|
||||
state->src2 = state->words[1];
|
||||
} else {
|
||||
state->src2 = get_reg(state->wb_reg, regs, cregs);
|
||||
}
|
||||
state->src3 = FIELD_s9(state->words[0]);
|
||||
break;
|
||||
|
||||
case op_MAJOR_4:
|
||||
subopcode = MINOR_OPCODE(state->words[0]);
|
||||
switch (subopcode) {
|
||||
case 32: /* Jcc */
|
||||
case 33: /* Jcc.D */
|
||||
case 34: /* JLcc */
|
||||
case 35: /* JLcc.D */
|
||||
is_linked = 0;
|
||||
|
||||
if (subopcode == 33 || subopcode == 35)
|
||||
state->delay_slot = 1;
|
||||
|
||||
if (subopcode == 34 || subopcode == 35)
|
||||
is_linked = 1;
|
||||
|
||||
fieldCisReg = 0;
|
||||
op_format = BITS(state->words[0], 22, 23);
|
||||
if (op_format == 0 || ((op_format == 3) &&
|
||||
(!IS_BIT(state->words[0], 5)))) {
|
||||
fieldC = FIELD_C(state->words[0]);
|
||||
|
||||
if (fieldC == REG_LIMM) {
|
||||
fieldC = state->words[1];
|
||||
state->instr_len += 4;
|
||||
} else {
|
||||
fieldCisReg = 1;
|
||||
}
|
||||
} else if (op_format == 1 || ((op_format == 3)
|
||||
&& (IS_BIT(state->words[0], 5)))) {
|
||||
fieldC = FIELD_C(state->words[0]);
|
||||
} else {
|
||||
/* op_format == 2 */
|
||||
fieldC = FIELD_s12(state->words[0]);
|
||||
}
|
||||
|
||||
if (!fieldCisReg) {
|
||||
state->target = fieldC;
|
||||
state->flow = is_linked ?
|
||||
direct_call : direct_jump;
|
||||
} else {
|
||||
state->target = get_reg(fieldC, regs, cregs);
|
||||
state->flow = is_linked ?
|
||||
indirect_call : indirect_jump;
|
||||
}
|
||||
state->is_branch = 1;
|
||||
break;
|
||||
|
||||
case 40: /* LPcc */
|
||||
if (BITS(state->words[0], 22, 23) == 3) {
|
||||
/* Conditional LPcc u7 */
|
||||
fieldC = FIELD_C(state->words[0]);
|
||||
|
||||
fieldC = fieldC << 1;
|
||||
fieldC += (addr & ~0x03);
|
||||
state->is_branch = 1;
|
||||
state->flow = direct_jump;
|
||||
state->target = fieldC;
|
||||
}
|
||||
/* For Unconditional lp, next pc is the fall through
|
||||
* which is updated */
|
||||
break;
|
||||
|
||||
case 48 ... 55: /* LD a,[b,c] */
|
||||
state->di = BITS(state->words[0], 15, 15);
|
||||
if (state->di)
|
||||
break;
|
||||
state->x = BITS(state->words[0], 16, 16);
|
||||
state->zz = BITS(state->words[0], 17, 18);
|
||||
state->aa = BITS(state->words[0], 22, 23);
|
||||
state->wb_reg = FIELD_B(state->words[0]);
|
||||
if (state->wb_reg == REG_LIMM) {
|
||||
state->instr_len += 4;
|
||||
state->src1 = state->words[1];
|
||||
} else {
|
||||
state->src1 = get_reg(state->wb_reg, regs,
|
||||
cregs);
|
||||
}
|
||||
state->src2 = FIELD_C(state->words[0]);
|
||||
if (state->src2 == REG_LIMM) {
|
||||
state->instr_len += 4;
|
||||
state->src2 = state->words[1];
|
||||
} else {
|
||||
state->src2 = get_reg(state->src2, regs,
|
||||
cregs);
|
||||
}
|
||||
state->dest = FIELD_A(state->words[0]);
|
||||
if (state->dest == REG_LIMM)
|
||||
state->pref = 1;
|
||||
break;
|
||||
|
||||
case 10: /* MOV */
|
||||
/* still need to check for limm to extract instr len */
|
||||
/* MOV is special case because it only takes 2 args */
|
||||
switch (BITS(state->words[0], 22, 23)) {
|
||||
case 0: /* OP a,b,c */
|
||||
if (FIELD_C(state->words[0]) == REG_LIMM)
|
||||
state->instr_len += 4;
|
||||
break;
|
||||
case 1: /* OP a,b,u6 */
|
||||
break;
|
||||
case 2: /* OP b,b,s12 */
|
||||
break;
|
||||
case 3: /* OP.cc b,b,c/u6 */
|
||||
if ((!IS_BIT(state->words[0], 5)) &&
|
||||
(FIELD_C(state->words[0]) == REG_LIMM))
|
||||
state->instr_len += 4;
|
||||
break;
|
||||
}
|
||||
break;
|
||||
|
||||
|
||||
default:
|
||||
/* Not a Load, Jump or Loop instruction */
|
||||
/* still need to check for limm to extract instr len */
|
||||
switch (BITS(state->words[0], 22, 23)) {
|
||||
case 0: /* OP a,b,c */
|
||||
if ((FIELD_B(state->words[0]) == REG_LIMM) ||
|
||||
(FIELD_C(state->words[0]) == REG_LIMM))
|
||||
state->instr_len += 4;
|
||||
break;
|
||||
case 1: /* OP a,b,u6 */
|
||||
break;
|
||||
case 2: /* OP b,b,s12 */
|
||||
break;
|
||||
case 3: /* OP.cc b,b,c/u6 */
|
||||
if ((!IS_BIT(state->words[0], 5)) &&
|
||||
((FIELD_B(state->words[0]) == REG_LIMM) ||
|
||||
(FIELD_C(state->words[0]) == REG_LIMM)))
|
||||
state->instr_len += 4;
|
||||
break;
|
||||
}
|
||||
break;
|
||||
}
|
||||
break;
|
||||
|
||||
/* 16 Bit Instructions */
|
||||
case op_LD_ADD: /* LD_S|LDB_S|LDW_S a,[b,c] */
|
||||
state->zz = BITS(state->words[0], 3, 4);
|
||||
state->src1 = get_reg(FIELD_S_B(state->words[0]), regs, cregs);
|
||||
state->src2 = get_reg(FIELD_S_C(state->words[0]), regs, cregs);
|
||||
state->dest = FIELD_S_A(state->words[0]);
|
||||
break;
|
||||
|
||||
case op_ADD_MOV_CMP:
|
||||
/* check for limm, ignore mov_s h,b (== mov_s 0,b) */
|
||||
if ((BITS(state->words[0], 3, 4) < 3) &&
|
||||
(FIELD_S_H(state->words[0]) == REG_LIMM))
|
||||
state->instr_len += 4;
|
||||
break;
|
||||
|
||||
case op_S:
|
||||
subopcode = BITS(state->words[0], 5, 7);
|
||||
switch (subopcode) {
|
||||
case 0: /* j_s */
|
||||
case 1: /* j_s.d */
|
||||
case 2: /* jl_s */
|
||||
case 3: /* jl_s.d */
|
||||
state->target = get_reg(FIELD_S_B(state->words[0]),
|
||||
regs, cregs);
|
||||
state->delay_slot = subopcode & 1;
|
||||
state->flow = (subopcode >= 2) ?
|
||||
direct_call : indirect_jump;
|
||||
break;
|
||||
case 7:
|
||||
switch (BITS(state->words[0], 8, 10)) {
|
||||
case 4: /* jeq_s [blink] */
|
||||
case 5: /* jne_s [blink] */
|
||||
case 6: /* j_s [blink] */
|
||||
case 7: /* j_s.d [blink] */
|
||||
state->delay_slot = (subopcode == 7);
|
||||
state->flow = indirect_jump;
|
||||
state->target = get_reg(31, regs, cregs);
|
||||
default:
|
||||
break;
|
||||
}
|
||||
default:
|
||||
break;
|
||||
}
|
||||
break;
|
||||
|
||||
case op_LD_S: /* LD_S c, [b, u7] */
|
||||
state->src1 = get_reg(FIELD_S_B(state->words[0]), regs, cregs);
|
||||
state->src2 = FIELD_S_u7(state->words[0]);
|
||||
state->dest = FIELD_S_C(state->words[0]);
|
||||
break;
|
||||
|
||||
case op_LDB_S:
|
||||
case op_STB_S:
|
||||
/* no further handling required as byte accesses should not
|
||||
* cause an unaligned access exception */
|
||||
state->zz = 1;
|
||||
break;
|
||||
|
||||
case op_LDWX_S: /* LDWX_S c, [b, u6] */
|
||||
state->x = 1;
|
||||
/* intentional fall-through */
|
||||
|
||||
case op_LDW_S: /* LDW_S c, [b, u6] */
|
||||
state->zz = 2;
|
||||
state->src1 = get_reg(FIELD_S_B(state->words[0]), regs, cregs);
|
||||
state->src2 = FIELD_S_u6(state->words[0]);
|
||||
state->dest = FIELD_S_C(state->words[0]);
|
||||
break;
|
||||
|
||||
case op_ST_S: /* ST_S c, [b, u7] */
|
||||
state->write = 1;
|
||||
state->src1 = get_reg(FIELD_S_C(state->words[0]), regs, cregs);
|
||||
state->src2 = get_reg(FIELD_S_B(state->words[0]), regs, cregs);
|
||||
state->src3 = FIELD_S_u7(state->words[0]);
|
||||
break;
|
||||
|
||||
case op_STW_S: /* STW_S c,[b,u6] */
|
||||
state->write = 1;
|
||||
state->zz = 2;
|
||||
state->src1 = get_reg(FIELD_S_C(state->words[0]), regs, cregs);
|
||||
state->src2 = get_reg(FIELD_S_B(state->words[0]), regs, cregs);
|
||||
state->src3 = FIELD_S_u6(state->words[0]);
|
||||
break;
|
||||
|
||||
case op_SP: /* LD_S|LDB_S b,[sp,u7], ST_S|STB_S b,[sp,u7] */
|
||||
/* note: we are ignoring possibility of:
|
||||
* ADD_S, SUB_S, PUSH_S, POP_S as these should not
|
||||
* cause unaliged exception anyway */
|
||||
state->write = BITS(state->words[0], 6, 6);
|
||||
state->zz = BITS(state->words[0], 5, 5);
|
||||
if (state->zz)
|
||||
break; /* byte accesses should not come here */
|
||||
if (!state->write) {
|
||||
state->src1 = get_reg(28, regs, cregs);
|
||||
state->src2 = FIELD_S_u7(state->words[0]);
|
||||
state->dest = FIELD_S_B(state->words[0]);
|
||||
} else {
|
||||
state->src1 = get_reg(FIELD_S_B(state->words[0]), regs,
|
||||
cregs);
|
||||
state->src2 = get_reg(28, regs, cregs);
|
||||
state->src3 = FIELD_S_u7(state->words[0]);
|
||||
}
|
||||
break;
|
||||
|
||||
case op_GP: /* LD_S|LDB_S|LDW_S r0,[gp,s11/s9/s10] */
|
||||
/* note: ADD_S r0, gp, s11 is ignored */
|
||||
state->zz = BITS(state->words[0], 9, 10);
|
||||
state->src1 = get_reg(26, regs, cregs);
|
||||
state->src2 = state->zz ? FIELD_S_s10(state->words[0]) :
|
||||
FIELD_S_s11(state->words[0]);
|
||||
state->dest = 0;
|
||||
break;
|
||||
|
||||
case op_Pcl: /* LD_S b,[pcl,u10] */
|
||||
state->src1 = regs->ret & ~3;
|
||||
state->src2 = FIELD_S_u10(state->words[0]);
|
||||
state->dest = FIELD_S_B(state->words[0]);
|
||||
break;
|
||||
|
||||
case op_BR_S:
|
||||
state->target = FIELD_S_s8(state->words[0]) + (addr & ~0x03);
|
||||
state->flow = direct_jump;
|
||||
state->is_branch = 1;
|
||||
break;
|
||||
|
||||
case op_B_S:
|
||||
fieldA = (BITS(state->words[0], 9, 10) == 3) ?
|
||||
FIELD_S_s7(state->words[0]) :
|
||||
FIELD_S_s10(state->words[0]);
|
||||
state->target = fieldA + (addr & ~0x03);
|
||||
state->flow = direct_jump;
|
||||
state->is_branch = 1;
|
||||
break;
|
||||
|
||||
case op_BL_S:
|
||||
state->target = FIELD_S_s13(state->words[0]) + (addr & ~0x03);
|
||||
state->flow = direct_call;
|
||||
state->is_branch = 1;
|
||||
break;
|
||||
|
||||
default:
|
||||
break;
|
||||
}
|
||||
|
||||
if (bytes_not_copied <= (8 - state->instr_len))
|
||||
return;
|
||||
|
||||
fault: state->fault = 1;
|
||||
}
|
||||
|
||||
long __kprobes get_reg(int reg, struct pt_regs *regs,
|
||||
struct callee_regs *cregs)
|
||||
{
|
||||
long *p;
|
||||
|
||||
if (reg <= 12) {
|
||||
p = ®s->r0;
|
||||
return p[-reg];
|
||||
}
|
||||
|
||||
if (cregs && (reg <= 25)) {
|
||||
p = &cregs->r13;
|
||||
return p[13-reg];
|
||||
}
|
||||
|
||||
if (reg == 26)
|
||||
return regs->r26;
|
||||
if (reg == 27)
|
||||
return regs->fp;
|
||||
if (reg == 28)
|
||||
return regs->sp;
|
||||
if (reg == 31)
|
||||
return regs->blink;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
void __kprobes set_reg(int reg, long val, struct pt_regs *regs,
|
||||
struct callee_regs *cregs)
|
||||
{
|
||||
long *p;
|
||||
|
||||
switch (reg) {
|
||||
case 0 ... 12:
|
||||
p = ®s->r0;
|
||||
p[-reg] = val;
|
||||
break;
|
||||
case 13 ... 25:
|
||||
if (cregs) {
|
||||
p = &cregs->r13;
|
||||
p[13-reg] = val;
|
||||
}
|
||||
break;
|
||||
case 26:
|
||||
regs->r26 = val;
|
||||
break;
|
||||
case 27:
|
||||
regs->fp = val;
|
||||
break;
|
||||
case 28:
|
||||
regs->sp = val;
|
||||
break;
|
||||
case 31:
|
||||
regs->blink = val;
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Disassembles the insn at @pc and sets @next_pc to next PC (which could be
|
||||
* @pc +2/4/6 (ARCompact ISA allows free intermixing of 16/32 bit insns).
|
||||
*
|
||||
* If @pc is a branch
|
||||
* -@tgt_if_br is set to branch target.
|
||||
* -If branch has delay slot, @next_pc updated with actual next PC.
|
||||
*
|
||||
*/
|
||||
int __kprobes disasm_next_pc(unsigned long pc, struct pt_regs *regs,
|
||||
struct callee_regs *cregs,
|
||||
unsigned long *next_pc, unsigned long *tgt_if_br)
|
||||
{
|
||||
struct disasm_state instr;
|
||||
|
||||
memset(&instr, 0, sizeof(struct disasm_state));
|
||||
disasm_instr(pc, &instr, 0, regs, cregs);
|
||||
|
||||
*next_pc = pc + instr.instr_len;
|
||||
|
||||
/* Instruction with possible two targets branch, jump and loop */
|
||||
if (instr.is_branch)
|
||||
*tgt_if_br = instr.target;
|
||||
|
||||
/* For the instructions with delay slots, the fall through is the
|
||||
* instruction following the instruction in delay slot.
|
||||
*/
|
||||
if (instr.delay_slot) {
|
||||
struct disasm_state instr_d;
|
||||
|
||||
disasm_instr(*next_pc, &instr_d, 0, regs, cregs);
|
||||
|
||||
*next_pc += instr_d.instr_len;
|
||||
}
|
||||
|
||||
/* Zero Overhead Loop - end of the loop */
|
||||
if (!(regs->status32 & STATUS32_L) && (*next_pc == regs->lp_end)
|
||||
&& (regs->lp_count > 1)) {
|
||||
*next_pc = regs->lp_start;
|
||||
}
|
||||
|
||||
return instr.is_branch;
|
||||
}
|
||||
|
||||
#endif /* CONFIG_KGDB || CONFIG_MISALIGN_ACCESS || CONFIG_KPROBES */
|
Loading…
Reference in New Issue