arm64: kdump: provide /proc/vmcore file
Arch-specific functions are added to allow for implementing a crash dump file interface, /proc/vmcore, which can be viewed as a ELF file. A user space tool, like kexec-tools, is responsible for allocating a separate region for the core's ELF header within crash kdump kernel memory and filling it in when executing kexec_load(). Then, its location will be advertised to crash dump kernel via a new device-tree property, "linux,elfcorehdr", and crash dump kernel preserves the region for later use with reserve_elfcorehdr() at boot time. On crash dump kernel, /proc/vmcore will access the primary kernel's memory with copy_oldmem_page(), which feeds the data page-by-page by ioremap'ing it since it does not reside in linear mapping on crash dump kernel. Meanwhile, elfcorehdr_read() is simple as the region is always mapped. Signed-off-by: AKASHI Takahiro <takahiro.akashi@linaro.org> Reviewed-by: James Morse <james.morse@arm.com> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This commit is contained in:
parent
20a1662433
commit
e62aaeac42
|
@ -736,6 +736,17 @@ config KEXEC
|
|||
but it is independent of the system firmware. And like a reboot
|
||||
you can start any kernel with it, not just Linux.
|
||||
|
||||
config CRASH_DUMP
|
||||
bool "Build kdump crash kernel"
|
||||
help
|
||||
Generate crash dump after being started by kexec. This should
|
||||
be normally only set in special crash dump kernels which are
|
||||
loaded in the main kernel with kexec-tools into a specially
|
||||
reserved region and then later executed after a crash by
|
||||
kdump/kexec.
|
||||
|
||||
For more details see Documentation/kdump/kdump.txt
|
||||
|
||||
config XEN_DOM0
|
||||
def_bool y
|
||||
depends on XEN
|
||||
|
|
|
@ -52,6 +52,7 @@ arm64-obj-$(CONFIG_KEXEC) += machine_kexec.o relocate_kernel.o \
|
|||
cpu-reset.o
|
||||
arm64-obj-$(CONFIG_ARM64_RELOC_TEST) += arm64-reloc-test.o
|
||||
arm64-reloc-test-y := reloc_test_core.o reloc_test_syms.o
|
||||
arm64-obj-$(CONFIG_CRASH_DUMP) += crash_dump.o
|
||||
|
||||
obj-y += $(arm64-obj-y) vdso/ probes/
|
||||
obj-m += $(arm64-obj-m)
|
||||
|
|
|
@ -0,0 +1,71 @@
|
|||
/*
|
||||
* Routines for doing kexec-based kdump
|
||||
*
|
||||
* Copyright (C) 2017 Linaro Limited
|
||||
* Author: AKASHI Takahiro <takahiro.akashi@linaro.org>
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License version 2 as
|
||||
* published by the Free Software Foundation.
|
||||
*/
|
||||
|
||||
#include <linux/crash_dump.h>
|
||||
#include <linux/errno.h>
|
||||
#include <linux/io.h>
|
||||
#include <linux/memblock.h>
|
||||
#include <linux/uaccess.h>
|
||||
#include <asm/memory.h>
|
||||
|
||||
/**
|
||||
* copy_oldmem_page() - copy one page from old kernel memory
|
||||
* @pfn: page frame number to be copied
|
||||
* @buf: buffer where the copied page is placed
|
||||
* @csize: number of bytes to copy
|
||||
* @offset: offset in bytes into the page
|
||||
* @userbuf: if set, @buf is in a user address space
|
||||
*
|
||||
* This function copies one page from old kernel memory into buffer pointed by
|
||||
* @buf. If @buf is in userspace, set @userbuf to %1. Returns number of bytes
|
||||
* copied or negative error in case of failure.
|
||||
*/
|
||||
ssize_t copy_oldmem_page(unsigned long pfn, char *buf,
|
||||
size_t csize, unsigned long offset,
|
||||
int userbuf)
|
||||
{
|
||||
void *vaddr;
|
||||
|
||||
if (!csize)
|
||||
return 0;
|
||||
|
||||
vaddr = memremap(__pfn_to_phys(pfn), PAGE_SIZE, MEMREMAP_WB);
|
||||
if (!vaddr)
|
||||
return -ENOMEM;
|
||||
|
||||
if (userbuf) {
|
||||
if (copy_to_user((char __user *)buf, vaddr + offset, csize)) {
|
||||
memunmap(vaddr);
|
||||
return -EFAULT;
|
||||
}
|
||||
} else {
|
||||
memcpy(buf, vaddr + offset, csize);
|
||||
}
|
||||
|
||||
memunmap(vaddr);
|
||||
|
||||
return csize;
|
||||
}
|
||||
|
||||
/**
|
||||
* elfcorehdr_read - read from ELF core header
|
||||
* @buf: buffer where the data is placed
|
||||
* @csize: number of bytes to read
|
||||
* @ppos: address in the memory
|
||||
*
|
||||
* This function reads @count bytes from elf core header which exists
|
||||
* on crash dump kernel's memory.
|
||||
*/
|
||||
ssize_t elfcorehdr_read(char *buf, size_t count, u64 *ppos)
|
||||
{
|
||||
memcpy(buf, phys_to_virt((phys_addr_t)*ppos), count);
|
||||
return count;
|
||||
}
|
|
@ -39,6 +39,7 @@
|
|||
#include <linux/vmalloc.h>
|
||||
#include <linux/mm.h>
|
||||
#include <linux/kexec.h>
|
||||
#include <linux/crash_dump.h>
|
||||
|
||||
#include <asm/boot.h>
|
||||
#include <asm/fixmap.h>
|
||||
|
@ -165,6 +166,56 @@ static void __init kexec_reserve_crashkres_pages(void)
|
|||
}
|
||||
#endif /* CONFIG_KEXEC_CORE */
|
||||
|
||||
#ifdef CONFIG_CRASH_DUMP
|
||||
static int __init early_init_dt_scan_elfcorehdr(unsigned long node,
|
||||
const char *uname, int depth, void *data)
|
||||
{
|
||||
const __be32 *reg;
|
||||
int len;
|
||||
|
||||
if (depth != 1 || strcmp(uname, "chosen") != 0)
|
||||
return 0;
|
||||
|
||||
reg = of_get_flat_dt_prop(node, "linux,elfcorehdr", &len);
|
||||
if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells)))
|
||||
return 1;
|
||||
|
||||
elfcorehdr_addr = dt_mem_next_cell(dt_root_addr_cells, ®);
|
||||
elfcorehdr_size = dt_mem_next_cell(dt_root_size_cells, ®);
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
/*
|
||||
* reserve_elfcorehdr() - reserves memory for elf core header
|
||||
*
|
||||
* This function reserves the memory occupied by an elf core header
|
||||
* described in the device tree. This region contains all the
|
||||
* information about primary kernel's core image and is used by a dump
|
||||
* capture kernel to access the system memory on primary kernel.
|
||||
*/
|
||||
static void __init reserve_elfcorehdr(void)
|
||||
{
|
||||
of_scan_flat_dt(early_init_dt_scan_elfcorehdr, NULL);
|
||||
|
||||
if (!elfcorehdr_size)
|
||||
return;
|
||||
|
||||
if (memblock_is_region_reserved(elfcorehdr_addr, elfcorehdr_size)) {
|
||||
pr_warn("elfcorehdr is overlapped\n");
|
||||
return;
|
||||
}
|
||||
|
||||
memblock_reserve(elfcorehdr_addr, elfcorehdr_size);
|
||||
|
||||
pr_info("Reserving %lldKB of memory at 0x%llx for elfcorehdr\n",
|
||||
elfcorehdr_size >> 10, elfcorehdr_addr);
|
||||
}
|
||||
#else
|
||||
static void __init reserve_elfcorehdr(void)
|
||||
{
|
||||
}
|
||||
#endif /* CONFIG_CRASH_DUMP */
|
||||
/*
|
||||
* Return the maximum physical address for ZONE_DMA (DMA_BIT_MASK(32)). It
|
||||
* currently assumes that for memory starting above 4G, 32-bit devices will
|
||||
|
@ -423,6 +474,8 @@ void __init arm64_memblock_init(void)
|
|||
|
||||
reserve_crashkernel();
|
||||
|
||||
reserve_elfcorehdr();
|
||||
|
||||
dma_contiguous_reserve(arm64_dma_phys_limit);
|
||||
|
||||
memblock_allow_resize();
|
||||
|
|
Loading…
Reference in New Issue