Staging: ced1401: Fixes C99 // comments.

Patch fixes checkpatch warnings about C99 // comments.

Signed-off-by: Elena Ufimtseva <ufimtseva@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This commit is contained in:
Elena Ufimtseva 2013-05-15 12:57:15 -04:00 committed by Greg Kroah-Hartman
parent d7e09d0397
commit e4837704c5
6 changed files with 660 additions and 656 deletions

File diff suppressed because it is too large Load Diff

View File

@ -79,7 +79,7 @@
#if defined(LINUX) || defined(MAXOSX)
#define FAR
typedef int BOOL; // To match Windows
typedef int BOOL; /* To match Windows */
typedef char * LPSTR;
typedef const char * LPCSTR;
typedef unsigned short WORD;

File diff suppressed because it is too large Load Diff

View File

@ -26,31 +26,32 @@
#define UINT unsigned int
#endif
/// Device type codes, but these don't need to be extended - a succession is assumed
/// These are set for usb from the bcdDevice field (suitably mangled). Future devices
/// will be added in order of device creation to the list, so the names here are just
/// to help use remember which device is which. The U14ERR_... values follow the same
/// pattern for modern devices.
#define TYPEUNKNOWN -1 // dont know
#define TYPE1401 0 // standard 1401
#define TYPEPLUS 1 // 1401 plus
#define TYPEU1401 2 // u1401
#define TYPEPOWER 3 // Power1401
#define TYPEU14012 4 // u1401 mkII
#define TYPEPOWER2 5 // Power1401 mk II
#define TYPEMICRO3 6 // Micro1401-3
#define TYPEPOWER3 7 // Power1401-3
/** Device type codes, but these don't need to be extended - a succession is assumed
** These are set for usb from the bcdDevice field (suitably mangled). Future devices
** will be added in order of device creation to the list, so the names here are just
** to help use remember which device is which. The U14ERR_... values follow the same
** pattern for modern devices.a
**/
#define TYPEUNKNOWN -1 /* dont know */
#define TYPE1401 0 /* standard 1401 */
#define TYPEPLUS 1 /* 1401 plus */
#define TYPEU1401 2 /* u1401 */
#define TYPEPOWER 3 /* Power1401 */
#define TYPEU14012 4 /* u1401 mkII */
#define TYPEPOWER2 5 /* Power1401 mk II */
#define TYPEMICRO3 6 /* Micro1401-3 */
#define TYPEPOWER3 7 /* Power1401-3 */
/// Some useful defines of constants. DONT FORGET to change the version in the
/// resources whenever you change it here!.
#define DRIVERMAJREV 2 // driver revision level major (match windows)
#define DRIVERMINREV 0 // driver revision level minor
/* Some useful defines of constants. DONT FORGET to change the version in the */
/* resources whenever you change it here!. */
#define DRIVERMAJREV 2 /* driver revision level major (match windows) */
#define DRIVERMINREV 0 /* driver revision level minor */
/// Definitions of the various block transfer command codes
#define TM_EXTTOHOST 8 // extended tohost
#define TM_EXTTO1401 9 // extended to1401
/* Definitions of the various block transfer command codes */
#define TM_EXTTOHOST 8 /* extended tohost */
#define TM_EXTTO1401 9 /* extended to1401 */
/// Definitions of values in usbReqtype. Used in sorting out setup actions
/* Definitions of values in usbReqtype. Used in sorting out setup actions */
#define H_TO_D 0x00
#define D_TO_H 0x80
#define VENDOR 0x40
@ -58,7 +59,7 @@
#define INTREQ 0x01
#define ENDREQ 0x02
/// Definition of values in usbRequest, again used to sort out setup
/* Definition of values in usbRequest, again used to sort out setup */
#define GET_STATUS 0x00
#define CLEAR_FEATURE 0x01
#define SET_FEATURE 0x03
@ -71,8 +72,8 @@
#define SET_INTERFACE 0x0b
#define SYNCH_FRAME 0x0c
/// Definitions of the various debug command codes understood by the 1401. These
/// are used in various vendor-specific commands to achieve the desired effect
/* Definitions of the various debug command codes understood by the 1401. These */
/* are used in various vendor-specific commands to achieve the desired effect */
#define DB_GRAB 0x50 /* Grab is a NOP for USB */
#define DB_FREE 0x51 /* Free is a NOP for the USB */
#define DB_SETADD 0x52 /* Set debug address (double) */
@ -91,35 +92,35 @@
#define CR_CHAR 0x0D /* The carriage return character */
#define CR_CHAR_80 0x8d /* and with bit 7 set */
/// A structure holding information about a block of memory for use in circular transfers
/* A structure holding information about a block of memory for use in circular transfers */
typedef struct circBlk
{
volatile UINT dwOffset; /* Offset within area of block start */
volatile UINT dwSize; /* Size of the block, in bytes (0 = unused) */
} CIRCBLK;
/// A structure holding all of the information about a transfer area - an area of
/// memory set up for use either as a source or destination in DMA transfers.
/* A structure holding all of the information about a transfer area - an area of */
/* memory set up for use either as a source or destination in DMA transfers. */
typedef struct transarea
{
void* lpvBuff; // User address of xfer area saved for completeness
UINT dwBaseOffset; // offset to start of xfer area in first page
UINT dwLength; // Length of xfer area, in bytes
struct page **pPages; // Points at array of locked down pages
int nPages; // number of pages that are locked down
bool bUsed; // Is this structure in use?
bool bCircular; // Is this area for circular transfers?
bool bCircToHost; // Flag for direction of circular transfer
bool bEventToHost; // Set event on transfer to host?
int iWakeUp; // Set 1 on event, cleared by TestEvent()
UINT dwEventSt; // Defines section within xfer area for...
UINT dwEventSz; // ...notification by the event SZ is 0 if unset
CIRCBLK aBlocks[2]; // Info on a pair of circular blocks
wait_queue_head_t wqEvent; // The wait queue for events in this area MUST BE LAST
void* lpvBuff; /* User address of xfer area saved for completeness */
UINT dwBaseOffset; /* offset to start of xfer area in first page */
UINT dwLength; /* Length of xfer area, in bytes */
struct page **pPages; /* Points at array of locked down pages */
int nPages; /* number of pages that are locked down */
bool bUsed; /* Is this structure in use? */
bool bCircular; /* Is this area for circular transfers? */
bool bCircToHost; /* Flag for direction of circular transfer */
bool bEventToHost; /* Set event on transfer to host? */
int iWakeUp; /* Set 1 on event, cleared by TestEvent() */
UINT dwEventSt; /* Defines section within xfer area for... */
UINT dwEventSz; /* ...notification by the event SZ is 0 if unset */
CIRCBLK aBlocks[2]; /* Info on a pair of circular blocks */
wait_queue_head_t wqEvent; /* The wait queue for events in this area MUST BE LAST */
} TRANSAREA;
/// The DMADESC structure is used to hold information on the transfer in progress. It
/// is set up by ReadDMAInfo, using information sent by the 1401 in an escape sequence.
/* The DMADESC structure is used to hold information on the transfer in progress. It */
/* is set up by ReadDMAInfo, using information sent by the 1401 in an escape sequence. */
typedef struct dmadesc
{
unsigned short wTransType; /* transfer type as TM_xxx above */
@ -131,10 +132,10 @@ typedef struct dmadesc
#define INBUF_SZ 256 /* input buffer size */
#define OUTBUF_SZ 256 /* output buffer size */
#define STAGED_SZ 0x10000 // size of coherent buffer for staged transfers
#define STAGED_SZ 0x10000 /* size of coherent buffer for staged transfers */
/// Structure to hold all of our device specific stuff. We are making this as similar as we
/// can to the Windows driver to help in our understanding of what is going on.
/* Structure to hold all of our device specific stuff. We are making this as similar as we */
/* can to the Windows driver to help in our understanding of what is going on. */
typedef struct _DEVICE_EXTENSION
{
char inputBuffer[INBUF_SZ]; /* The two buffers */
@ -159,58 +160,58 @@ typedef struct _DEVICE_EXTENSION
volatile unsigned int dwDMAFlag; /* state of DMA */
TRANSAREA rTransDef[MAX_TRANSAREAS];/* transfer area info */
volatile DMADESC rDMAInfo; // info on current DMA transfer
volatile bool bXFerWaiting; // Flag set if DMA transfer stalled
volatile bool bInDrawDown; // Flag that we want to halt transfers
volatile DMADESC rDMAInfo; /* info on current DMA transfer */
volatile bool bXFerWaiting; /* Flag set if DMA transfer stalled */
volatile bool bInDrawDown; /* Flag that we want to halt transfers */
// Parameters relating to a block read\write that is in progress. Some of these values
// are equivalent to values in rDMAInfo. The values here are those in use, while those
// in rDMAInfo are those received from the 1401 via an escape sequence. If another
// escape sequence arrives before the previous xfer ends, rDMAInfo values are updated while these
// are used to finish off the current transfer.
volatile short StagedId; // The transfer area id for this transfer
volatile bool StagedRead; // Flag TRUE for read from 1401, FALSE for write
volatile unsigned int StagedLength; // Total length of this transfer
volatile unsigned int StagedOffset; // Offset within memory area for transfer start
volatile unsigned int StagedDone; // Bytes transferred so far
volatile bool bStagedUrbPending; // Flag to indicate active
char* pCoherStagedIO; // buffer used for block transfers
struct urb* pStagedUrb; // The URB to use
spinlock_t stagedLock; // protects ReadWriteMem() and circular buffer stuff
/* Parameters relating to a block read\write that is in progress. Some of these values */
/* are equivalent to values in rDMAInfo. The values here are those in use, while those */
/* in rDMAInfo are those received from the 1401 via an escape sequence. If another */
/* escape sequence arrives before the previous xfer ends, rDMAInfo values are updated while these */
/* are used to finish off the current transfer. */
volatile short StagedId; /* The transfer area id for this transfer */
volatile bool StagedRead; /* Flag TRUE for read from 1401, FALSE for write */
volatile unsigned int StagedLength; /* Total length of this transfer */
volatile unsigned int StagedOffset; /* Offset within memory area for transfer start */
volatile unsigned int StagedDone; /* Bytes transferred so far */
volatile bool bStagedUrbPending; /* Flag to indicate active */
char* pCoherStagedIO; /* buffer used for block transfers */
struct urb* pStagedUrb; /* The URB to use */
spinlock_t stagedLock; /* protects ReadWriteMem() and circular buffer stuff */
short s1401Type; // type of 1401 attached
short sCurrentState; // current error state
bool bIsUSB2; // type of the interface we connect to
bool bForceReset; // Flag to make sure we get a real reset
__u32 statBuf[2]; // buffer for 1401 state info
short s1401Type; /* type of 1401 attached */
short sCurrentState; /* current error state */
bool bIsUSB2; /* type of the interface we connect to */
bool bForceReset; /* Flag to make sure we get a real reset */
__u32 statBuf[2]; /* buffer for 1401 state info */
unsigned long ulSelfTestTime; // used to timeout self test
unsigned long ulSelfTestTime; /* used to timeout self test */
int nPipes; // Should be 3 or 4 depending on 1401 usb chip
int bPipeError[4]; // set non-zero if an error on one of the pipe
__u8 epAddr[4]; // addresses of the 3/4 end points
int nPipes; /* Should be 3 or 4 depending on 1401 usb chip */
int bPipeError[4]; /* set non-zero if an error on one of the pipe */
__u8 epAddr[4]; /* addresses of the 3/4 end points */
struct usb_device *udev; // the usb device for this device
struct usb_interface *interface; // the interface for this device, NULL if removed
struct usb_anchor submitted; // in case we need to retract our submissions
struct mutex io_mutex; // synchronize I/O with disconnect, one user-mode caller at a time
struct usb_device *udev; /* the usb device for this device */
struct usb_interface *interface; /* the interface for this device, NULL if removed */
struct usb_anchor submitted; /* in case we need to retract our submissions */
struct mutex io_mutex; /* synchronize I/O with disconnect, one user-mode caller at a time */
int errors; // the last request tanked
int open_count; // count the number of openers
spinlock_t err_lock; // lock for errors
int errors; /* the last request tanked */
int open_count; /* count the number of openers */
spinlock_t err_lock; /* lock for errors */
struct kref kref;
}DEVICE_EXTENSION, *PDEVICE_EXTENSION;
#define to_DEVICE_EXTENSION(d) container_of(d, DEVICE_EXTENSION, kref)
/// Definitions of routimes used between compilation object files
// in usb1401.c
/* Definitions of routimes used between compilation object files */
/* in usb1401.c */
extern int Allowi(DEVICE_EXTENSION* pdx);
extern int SendChars(DEVICE_EXTENSION* pdx);
extern void ced_draw_down(DEVICE_EXTENSION *pdx);
extern int ReadWriteMem(DEVICE_EXTENSION *pdx, bool Read, unsigned short wIdent,
unsigned int dwOffs, unsigned int dwLen);
// in ced_ioc.c
/* in ced_ioc.c */
extern int ClearArea(DEVICE_EXTENSION *pdx, int nArea);
extern int SendString(DEVICE_EXTENSION* pdx, const char __user* pData, unsigned int n);
extern int SendChar(DEVICE_EXTENSION *pdx, char c);

View File

@ -11,10 +11,10 @@
#define __USE1401_H__
#include "machine.h"
// Some definitions to make things compatible. If you want to use Use1401 directly
// from a Windows program you should define U14_NOT_DLL, in which case you also
// MUST make sure that your application startup code calls U14InitLib().
// DLL_USE1401 is defined when you are building the Use1401 dll, not otherwise.
/* Some definitions to make things compatible. If you want to use Use1401 directly */
/* from a Windows program you should define U14_NOT_DLL, in which case you also */
/* MUST make sure that your application startup code calls U14InitLib(). */
/* DLL_USE1401 is defined when you are building the Use1401 dll, not otherwise. */
#ifdef _IS_WINDOWS_
#ifndef U14_NOT_DLL
#ifdef DLL_USE1401
@ -50,20 +50,20 @@
#define U14LONG long
#endif
/// Error codes: We need them here as user space can see them.
#define U14ERR_NOERROR 0 // no problems
/* Error codes: We need them here as user space can see them. */
#define U14ERR_NOERROR 0 /* no problems */
/// Device error codes, but these don't need to be extended - a succession is assumed
#define U14ERR_STD 4 // standard 1401 connected
#define U14ERR_U1401 5 // u1401 connected
#define U14ERR_PLUS 6 // 1401 plus connected
#define U14ERR_POWER 7 // Power1401 connected
#define U14ERR_U14012 8 // u1401 mkII connected
/* Device error codes, but these don't need to be extended - a succession is assumed */
#define U14ERR_STD 4 /* standard 1401 connected */
#define U14ERR_U1401 5 /* u1401 connected */
#define U14ERR_PLUS 6 /* 1401 plus connected */
#define U14ERR_POWER 7 /* Power1401 connected */
#define U14ERR_U14012 8 /* u1401 mkII connected */
#define U14ERR_POWER2 9
#define U14ERR_U14013 10
#define U14ERR_POWER3 11
/// NBNB Error numbers need shifting as some linux error codes start at 512
/* NBNB Error numbers need shifting as some linux error codes start at 512 */
#define U14ERR(n) (n+U14ERRBASE)
#define U14ERR_OFF U14ERR(0) /* 1401 there but switched off */
#define U14ERR_NC U14ERR(-1) /* 1401 not connected */
@ -113,7 +113,7 @@
#define U14ERR_DRIVCOMMS U14ERR(-110) /* failed talking to driver */
#define U14ERR_OUTOFMEMORY U14ERR(-111) /* needed memory and couldnt get it*/
/// 1401 type codes.
/* / 1401 type codes. */
#define U14TYPE1401 0 /* standard 1401 */
#define U14TYPEPLUS 1 /* 1401 plus */
#define U14TYPEU1401 2 /* u1401 */
@ -124,9 +124,9 @@
#define U14TYPEPOWER3 7 /* power1401-3 */
#define U14TYPEUNKNOWN -1 /* dont know */
/// Transfer flags to allow driver capabilities to be interrogated
/* Transfer flags to allow driver capabilities to be interrogated */
/// Constants for transfer flags
/* Constants for transfer flags */
#define U14TF_USEDMA 1 /* Transfer flag for use DMA */
#define U14TF_MULTIA 2 /* Transfer flag for multi areas */
#define U14TF_FIFO 4 /* for FIFO interface card */
@ -138,18 +138,18 @@
#define U14TF_DIAG 256 /* Diagnostics/debug functions */
#define U14TF_CIRC14 512 /* Circular-mode to 1401 */
/// Definitions of element sizes for DMA transfers - to allow byte-swapping
/* Definitions of element sizes for DMA transfers - to allow byte-swapping */
#define ESZBYTES 0 /* BYTE element size value */
#define ESZWORDS 1 /* WORD element size value */
#define ESZLONGS 2 /* long element size value */
#define ESZUNKNOWN 0 /* unknown element size value */
/// These define required access types for the debug/diagnostics function
/* These define required access types for the debug/diagnostics function */
#define BYTE_SIZE 1 /* 8-bit access */
#define WORD_SIZE 2 /* 16-bit access */
#define LONG_SIZE 3 /* 32-bit access */
/// Stuff used by U14_GetTransfer
/* Stuff used by U14_GetTransfer */
#define GET_TX_MAXENTRIES 257 /* (max length / page size + 1) */
#ifdef _IS_WINDOWS_
@ -200,8 +200,8 @@ typedef struct TGetTxBlock /* used for U14_GetTransfer results */
extern "C" {
#endif
U14API(int) U14WhenToTimeOut(short hand); // when to timeout in ms
U14API(short) U14PassedTime(int iTime); // non-zero if iTime passed
U14API(int) U14WhenToTimeOut(short hand); /* when to timeout in ms */
U14API(short) U14PassedTime(int iTime); /* non-zero if iTime passed */
U14API(short) U14LastErrCode(short hand);

View File

@ -246,7 +246,7 @@
METHOD_BUFFERED, \
FILE_ANY_ACCESS)
//--------------- Structures that are shared with the driver -------------
/*--------------- Structures that are shared with the driver ------------- */
#pragma pack(1)
typedef struct /* used for get/set standard 1401 registers */
@ -298,4 +298,4 @@ typedef struct VXTransferDesc /* use1401.c and use1432x.x use only */
#pragma pack()
#endif
#endif