perf vendor events intel: Update meteorlake to 1.03

1.03 events were released in:
501a29e88b
It added a lot of events and all uncore events.

Signed-off-by: Ian Rogers <irogers@google.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Eduard Zingerman <eddyz87@gmail.com>
Cc: Sohom Datta <sohomdatta1@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Caleb Biggers <caleb.biggers@intel.com>
Cc: Edward Baker <edward.baker@intel.com>
Cc: Perry Taylor <perry.taylor@intel.com>
Cc: Samantha Alt <samantha.alt@intel.com>
Cc: Weilin Wang <weilin.wang@intel.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Andrii Nakryiko <andrii@kernel.org>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Jing Zhang <renyu.zj@linux.alibaba.com>
Cc: Kajol Jain <kjain@linux.ibm.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Kan Liang <kan.liang@linux.intel.com>
Cc: Zhengjun Xing <zhengjun.xing@linux.intel.com>
Cc: John Garry <john.g.garry@oracle.com>
Cc: Ingo Molnar <mingo@redhat.com>
Link: https://lore.kernel.org/r/20230623151016.4193660-6-irogers@google.com
Signed-off-by: Namhyung Kim <namhyung@kernel.org>
This commit is contained in:
Ian Rogers 2023-06-23 08:10:09 -07:00 committed by Namhyung Kim
parent 7e74ece31a
commit dfc83cc877
11 changed files with 3072 additions and 59 deletions

View File

@ -19,7 +19,7 @@ GenuineIntel-6-3A,v24,ivybridge,core
GenuineIntel-6-3E,v23,ivytown,core
GenuineIntel-6-2D,v23,jaketown,core
GenuineIntel-6-(57|85),v10,knightslanding,core
GenuineIntel-6-A[AC],v1.01,meteorlake,core
GenuineIntel-6-A[AC],v1.03,meteorlake,core
GenuineIntel-6-1[AEF],v3,nehalemep,core
GenuineIntel-6-2E,v3,nehalemex,core
GenuineIntel-6-A7,v1.01,rocketlake,core

1 Family-model Version Filename EventType
19 GenuineIntel-6-3E v23 ivytown core
20 GenuineIntel-6-2D v23 jaketown core
21 GenuineIntel-6-(57|85) v10 knightslanding core
22 GenuineIntel-6-A[AC] v1.01 v1.03 meteorlake core
23 GenuineIntel-6-1[AEF] v3 nehalemep core
24 GenuineIntel-6-2E v3 nehalemex core
25 GenuineIntel-6-A7 v1.01 rocketlake core

View File

@ -1,4 +1,114 @@
[
{
"BriefDescription": "L1D.HWPF_MISS",
"EventCode": "0x51",
"EventName": "L1D.HWPF_MISS",
"SampleAfterValue": "1000003",
"UMask": "0x20",
"Unit": "cpu_core"
},
{
"BriefDescription": "Counts the number of cache lines replaced in L1 data cache.",
"EventCode": "0x51",
"EventName": "L1D.REPLACEMENT",
"PublicDescription": "Counts L1D data line replacements including opportunistic replacements, and replacements that require stall-for-replace or block-for-replace.",
"SampleAfterValue": "100003",
"UMask": "0x1",
"Unit": "cpu_core"
},
{
"BriefDescription": "Number of cycles a demand request has waited due to L1D Fill Buffer (FB) unavailability.",
"EventCode": "0x48",
"EventName": "L1D_PEND_MISS.FB_FULL",
"PublicDescription": "Counts number of cycles a demand request has waited due to L1D Fill Buffer (FB) unavailability. Demand requests include cacheable/uncacheable demand load, store, lock or SW prefetch accesses.",
"SampleAfterValue": "1000003",
"UMask": "0x2",
"Unit": "cpu_core"
},
{
"BriefDescription": "Number of phases a demand request has waited due to L1D Fill Buffer (FB) unavailability.",
"CounterMask": "1",
"EdgeDetect": "1",
"EventCode": "0x48",
"EventName": "L1D_PEND_MISS.FB_FULL_PERIODS",
"PublicDescription": "Counts number of phases a demand request has waited due to L1D Fill Buffer (FB) unavailability. Demand requests include cacheable/uncacheable demand load, store, lock or SW prefetch accesses.",
"SampleAfterValue": "1000003",
"UMask": "0x2",
"Unit": "cpu_core"
},
{
"BriefDescription": "Number of L1D misses that are outstanding",
"EventCode": "0x48",
"EventName": "L1D_PEND_MISS.PENDING",
"PublicDescription": "Counts number of L1D misses that are outstanding in each cycle, that is each cycle the number of Fill Buffers (FB) outstanding required by Demand Reads. FB either is held by demand loads, or it is held by non-demand loads and gets hit at least once by demand. The valid outstanding interval is defined until the FB deallocation by one of the following ways: from FB allocation, if FB is allocated by demand from the demand Hit FB, if it is allocated by hardware or software prefetch. Note: In the L1D, a Demand Read contains cacheable or noncacheable demand loads, including ones causing cache-line splits and reads due to page walks resulted from any request type.",
"SampleAfterValue": "1000003",
"UMask": "0x1",
"Unit": "cpu_core"
},
{
"BriefDescription": "Cycles with L1D load Misses outstanding.",
"CounterMask": "1",
"EventCode": "0x48",
"EventName": "L1D_PEND_MISS.PENDING_CYCLES",
"PublicDescription": "Counts duration of L1D miss outstanding in cycles.",
"SampleAfterValue": "1000003",
"UMask": "0x1",
"Unit": "cpu_core"
},
{
"BriefDescription": "L2 cache lines filling L2",
"EventCode": "0x25",
"EventName": "L2_LINES_IN.ALL",
"PublicDescription": "Counts the number of L2 cache lines filling the L2. Counting does not cover rejects.",
"SampleAfterValue": "100003",
"UMask": "0x1f",
"Unit": "cpu_core"
},
{
"BriefDescription": "Modified cache lines that are evicted by L2 cache when triggered by an L2 cache fill.",
"EventCode": "0x26",
"EventName": "L2_LINES_OUT.NON_SILENT",
"PublicDescription": "Counts the number of lines that are evicted by L2 cache when triggered by an L2 cache fill. Those lines are in Modified state. Modified lines are written back to L3",
"SampleAfterValue": "200003",
"UMask": "0x2",
"Unit": "cpu_core"
},
{
"BriefDescription": "Non-modified cache lines that are silently dropped by L2 cache when triggered by an L2 cache fill.",
"EventCode": "0x26",
"EventName": "L2_LINES_OUT.SILENT",
"PublicDescription": "Counts the number of lines that are silently dropped by L2 cache when triggered by an L2 cache fill. These lines are typically in Shared or Exclusive state. A non-threaded event.",
"SampleAfterValue": "200003",
"UMask": "0x1",
"Unit": "cpu_core"
},
{
"BriefDescription": "All accesses to L2 cache [This event is alias to L2_RQSTS.REFERENCES]",
"EventCode": "0x24",
"EventName": "L2_REQUEST.ALL",
"PublicDescription": "Counts all requests that were hit or true misses in L2 cache. True-miss excludes misses that were merged with ongoing L2 misses. [This event is alias to L2_RQSTS.REFERENCES]",
"SampleAfterValue": "200003",
"UMask": "0xff",
"Unit": "cpu_core"
},
{
"BriefDescription": "All requests that hit L2 cache. [This event is alias to L2_RQSTS.HIT]",
"EventCode": "0x24",
"EventName": "L2_REQUEST.HIT",
"PublicDescription": "Counts all requests that hit L2 cache. [This event is alias to L2_RQSTS.HIT]",
"SampleAfterValue": "200003",
"UMask": "0xdf",
"Unit": "cpu_core"
},
{
"BriefDescription": "Read requests with true-miss in L2 cache [This event is alias to L2_RQSTS.MISS]",
"EventCode": "0x24",
"EventName": "L2_REQUEST.MISS",
"PublicDescription": "Counts read requests of any type with true-miss in the L2 cache. True-miss excludes L2 misses that were merged with ongoing L2 misses. [This event is alias to L2_RQSTS.MISS]",
"SampleAfterValue": "200003",
"UMask": "0x3f",
"Unit": "cpu_core"
},
{
"BriefDescription": "L2 code requests",
"EventCode": "0x24",
@ -17,6 +127,139 @@
"UMask": "0xe1",
"Unit": "cpu_core"
},
{
"BriefDescription": "Demand requests that miss L2 cache",
"EventCode": "0x24",
"EventName": "L2_RQSTS.ALL_DEMAND_MISS",
"PublicDescription": "Counts demand requests that miss L2 cache.",
"SampleAfterValue": "200003",
"UMask": "0x27",
"Unit": "cpu_core"
},
{
"BriefDescription": "Demand requests to L2 cache",
"EventCode": "0x24",
"EventName": "L2_RQSTS.ALL_DEMAND_REFERENCES",
"PublicDescription": "Counts demand requests to L2 cache.",
"SampleAfterValue": "200003",
"UMask": "0xe7",
"Unit": "cpu_core"
},
{
"BriefDescription": "L2_RQSTS.ALL_HWPF",
"EventCode": "0x24",
"EventName": "L2_RQSTS.ALL_HWPF",
"SampleAfterValue": "200003",
"UMask": "0xf0",
"Unit": "cpu_core"
},
{
"BriefDescription": "RFO requests to L2 cache",
"EventCode": "0x24",
"EventName": "L2_RQSTS.ALL_RFO",
"PublicDescription": "Counts the total number of RFO (read for ownership) requests to L2 cache. L2 RFO requests include both L1D demand RFO misses as well as L1D RFO prefetches.",
"SampleAfterValue": "200003",
"UMask": "0xe2",
"Unit": "cpu_core"
},
{
"BriefDescription": "L2 cache hits when fetching instructions, code reads.",
"EventCode": "0x24",
"EventName": "L2_RQSTS.CODE_RD_HIT",
"PublicDescription": "Counts L2 cache hits when fetching instructions, code reads.",
"SampleAfterValue": "200003",
"UMask": "0xc4",
"Unit": "cpu_core"
},
{
"BriefDescription": "L2 cache misses when fetching instructions",
"EventCode": "0x24",
"EventName": "L2_RQSTS.CODE_RD_MISS",
"PublicDescription": "Counts L2 cache misses when fetching instructions.",
"SampleAfterValue": "200003",
"UMask": "0x24",
"Unit": "cpu_core"
},
{
"BriefDescription": "Demand Data Read requests that hit L2 cache",
"EventCode": "0x24",
"EventName": "L2_RQSTS.DEMAND_DATA_RD_HIT",
"PublicDescription": "Counts the number of demand Data Read requests initiated by load instructions that hit L2 cache.",
"SampleAfterValue": "200003",
"UMask": "0xc1",
"Unit": "cpu_core"
},
{
"BriefDescription": "Demand Data Read miss L2 cache",
"EventCode": "0x24",
"EventName": "L2_RQSTS.DEMAND_DATA_RD_MISS",
"PublicDescription": "Counts demand Data Read requests with true-miss in the L2 cache. True-miss excludes misses that were merged with ongoing L2 misses. An access is counted once.",
"SampleAfterValue": "200003",
"UMask": "0x21",
"Unit": "cpu_core"
},
{
"BriefDescription": "All requests that hit L2 cache. [This event is alias to L2_REQUEST.HIT]",
"EventCode": "0x24",
"EventName": "L2_RQSTS.HIT",
"PublicDescription": "Counts all requests that hit L2 cache. [This event is alias to L2_REQUEST.HIT]",
"SampleAfterValue": "200003",
"UMask": "0xdf",
"Unit": "cpu_core"
},
{
"BriefDescription": "L2_RQSTS.HWPF_MISS",
"EventCode": "0x24",
"EventName": "L2_RQSTS.HWPF_MISS",
"SampleAfterValue": "200003",
"UMask": "0x30",
"Unit": "cpu_core"
},
{
"BriefDescription": "Read requests with true-miss in L2 cache [This event is alias to L2_REQUEST.MISS]",
"EventCode": "0x24",
"EventName": "L2_RQSTS.MISS",
"PublicDescription": "Counts read requests of any type with true-miss in the L2 cache. True-miss excludes L2 misses that were merged with ongoing L2 misses. [This event is alias to L2_REQUEST.MISS]",
"SampleAfterValue": "200003",
"UMask": "0x3f",
"Unit": "cpu_core"
},
{
"BriefDescription": "All accesses to L2 cache [This event is alias to L2_REQUEST.ALL]",
"EventCode": "0x24",
"EventName": "L2_RQSTS.REFERENCES",
"PublicDescription": "Counts all requests that were hit or true misses in L2 cache. True-miss excludes misses that were merged with ongoing L2 misses. [This event is alias to L2_REQUEST.ALL]",
"SampleAfterValue": "200003",
"UMask": "0xff",
"Unit": "cpu_core"
},
{
"BriefDescription": "RFO requests that hit L2 cache",
"EventCode": "0x24",
"EventName": "L2_RQSTS.RFO_HIT",
"PublicDescription": "Counts the RFO (Read-for-Ownership) requests that hit L2 cache.",
"SampleAfterValue": "200003",
"UMask": "0xc2",
"Unit": "cpu_core"
},
{
"BriefDescription": "RFO requests that miss L2 cache",
"EventCode": "0x24",
"EventName": "L2_RQSTS.RFO_MISS",
"PublicDescription": "Counts the RFO (Read-for-Ownership) requests that miss L2 cache.",
"SampleAfterValue": "200003",
"UMask": "0x22",
"Unit": "cpu_core"
},
{
"BriefDescription": "L2 writebacks that access L2 cache",
"EventCode": "0x23",
"EventName": "L2_TRANS.L2_WB",
"PublicDescription": "Counts L2 writebacks that access L2 cache.",
"SampleAfterValue": "200003",
"UMask": "0x40",
"Unit": "cpu_core"
},
{
"BriefDescription": "Counts the number of cacheable memory requests that miss in the LLC. Counts on a per core basis.",
"EventCode": "0x2e",
@ -53,6 +296,72 @@
"UMask": "0x4f",
"Unit": "cpu_core"
},
{
"BriefDescription": "Counts the number of unhalted cycles when the core is stalled due to an instruction cache or TLB miss.",
"EventCode": "0x35",
"EventName": "MEM_BOUND_STALLS_IFETCH.ALL",
"SampleAfterValue": "1000003",
"UMask": "0x6f",
"Unit": "cpu_atom"
},
{
"BriefDescription": "Counts the number of cycles the core is stalled due to an instruction cache or TLB miss which hit in the L2 cache.",
"EventCode": "0x35",
"EventName": "MEM_BOUND_STALLS_IFETCH.L2_HIT",
"PublicDescription": "Counts the number of cycles the core is stalled due to an instruction cache or Translation Lookaside Buffer (TLB) miss which hit in the L2 cache.",
"SampleAfterValue": "1000003",
"UMask": "0x1",
"Unit": "cpu_atom"
},
{
"BriefDescription": "Counts the number of unhalted cycles when the core is stalled due to an icache or itlb miss which hit in the LLC.",
"EventCode": "0x35",
"EventName": "MEM_BOUND_STALLS_IFETCH.LLC_HIT",
"SampleAfterValue": "1000003",
"UMask": "0x6",
"Unit": "cpu_atom"
},
{
"BriefDescription": "Counts the number of unhalted cycles when the core is stalled due to an icache or itlb miss which missed all the caches.",
"EventCode": "0x35",
"EventName": "MEM_BOUND_STALLS_IFETCH.LLC_MISS",
"SampleAfterValue": "1000003",
"UMask": "0x68",
"Unit": "cpu_atom"
},
{
"BriefDescription": "Counts the number of unhalted cycles when the core is stalled due to an L1 demand load miss.",
"EventCode": "0x34",
"EventName": "MEM_BOUND_STALLS_LOAD.ALL",
"SampleAfterValue": "1000003",
"UMask": "0x6f",
"Unit": "cpu_atom"
},
{
"BriefDescription": "Counts the number of cycles the core is stalled due to a demand load which hit in the L2 cache.",
"EventCode": "0x34",
"EventName": "MEM_BOUND_STALLS_LOAD.L2_HIT",
"PublicDescription": "Counts the number of cycles a core is stalled due to a demand load which hit in the L2 cache.",
"SampleAfterValue": "1000003",
"UMask": "0x1",
"Unit": "cpu_atom"
},
{
"BriefDescription": "Counts the number of unhalted cycles when the core is stalled due to a demand load miss which hit in the LLC.",
"EventCode": "0x34",
"EventName": "MEM_BOUND_STALLS_LOAD.LLC_HIT",
"SampleAfterValue": "1000003",
"UMask": "0x6",
"Unit": "cpu_atom"
},
{
"BriefDescription": "Counts the number of unhalted cycles when the core is stalled due to a demand load miss which missed all the local caches.",
"EventCode": "0x34",
"EventName": "MEM_BOUND_STALLS_LOAD.LLC_MISS",
"SampleAfterValue": "1000003",
"UMask": "0x68",
"Unit": "cpu_atom"
},
{
"BriefDescription": "Retired load instructions.",
"Data_LA": "1",
@ -75,6 +384,352 @@
"UMask": "0x82",
"Unit": "cpu_core"
},
{
"BriefDescription": "All retired memory instructions.",
"Data_LA": "1",
"EventCode": "0xd0",
"EventName": "MEM_INST_RETIRED.ANY",
"PEBS": "1",
"PublicDescription": "Counts all retired memory instructions - loads and stores.",
"SampleAfterValue": "1000003",
"UMask": "0x83",
"Unit": "cpu_core"
},
{
"BriefDescription": "Retired load instructions with locked access.",
"Data_LA": "1",
"EventCode": "0xd0",
"EventName": "MEM_INST_RETIRED.LOCK_LOADS",
"PEBS": "1",
"PublicDescription": "Counts retired load instructions with locked access.",
"SampleAfterValue": "100007",
"UMask": "0x21",
"Unit": "cpu_core"
},
{
"BriefDescription": "Retired load instructions that split across a cacheline boundary.",
"Data_LA": "1",
"EventCode": "0xd0",
"EventName": "MEM_INST_RETIRED.SPLIT_LOADS",
"PEBS": "1",
"PublicDescription": "Counts retired load instructions that split across a cacheline boundary.",
"SampleAfterValue": "100003",
"UMask": "0x41",
"Unit": "cpu_core"
},
{
"BriefDescription": "Retired store instructions that split across a cacheline boundary.",
"Data_LA": "1",
"EventCode": "0xd0",
"EventName": "MEM_INST_RETIRED.SPLIT_STORES",
"PEBS": "1",
"PublicDescription": "Counts retired store instructions that split across a cacheline boundary.",
"SampleAfterValue": "100003",
"UMask": "0x42",
"Unit": "cpu_core"
},
{
"BriefDescription": "Retired load instructions that hit the STLB.",
"Data_LA": "1",
"EventCode": "0xd0",
"EventName": "MEM_INST_RETIRED.STLB_HIT_LOADS",
"PEBS": "1",
"PublicDescription": "Number of retired load instructions with a clean hit in the 2nd-level TLB (STLB).",
"SampleAfterValue": "100003",
"UMask": "0x9",
"Unit": "cpu_core"
},
{
"BriefDescription": "Retired store instructions that hit the STLB.",
"Data_LA": "1",
"EventCode": "0xd0",
"EventName": "MEM_INST_RETIRED.STLB_HIT_STORES",
"PEBS": "1",
"PublicDescription": "Number of retired store instructions that hit in the 2nd-level TLB (STLB).",
"SampleAfterValue": "100003",
"UMask": "0xa",
"Unit": "cpu_core"
},
{
"BriefDescription": "Retired load instructions that miss the STLB.",
"Data_LA": "1",
"EventCode": "0xd0",
"EventName": "MEM_INST_RETIRED.STLB_MISS_LOADS",
"PEBS": "1",
"PublicDescription": "Number of retired load instructions that (start a) miss in the 2nd-level TLB (STLB).",
"SampleAfterValue": "100003",
"UMask": "0x11",
"Unit": "cpu_core"
},
{
"BriefDescription": "Retired store instructions that miss the STLB.",
"Data_LA": "1",
"EventCode": "0xd0",
"EventName": "MEM_INST_RETIRED.STLB_MISS_STORES",
"PEBS": "1",
"PublicDescription": "Number of retired store instructions that (start a) miss in the 2nd-level TLB (STLB).",
"SampleAfterValue": "100003",
"UMask": "0x12",
"Unit": "cpu_core"
},
{
"BriefDescription": "Completed demand load uops that miss the L1 d-cache.",
"EventCode": "0x43",
"EventName": "MEM_LOAD_COMPLETED.L1_MISS_ANY",
"PublicDescription": "Number of completed demand load requests that missed the L1 data cache including shadow misses (FB hits, merge to an ongoing L1D miss)",
"SampleAfterValue": "1000003",
"UMask": "0xfd",
"Unit": "cpu_core"
},
{
"BriefDescription": "Retired load instructions whose data sources were HitM responses from shared L3",
"Data_LA": "1",
"EventCode": "0xd2",
"EventName": "MEM_LOAD_L3_HIT_RETIRED.XSNP_FWD",
"PEBS": "1",
"PublicDescription": "Counts retired load instructions whose data sources were HitM responses from shared L3.",
"SampleAfterValue": "20011",
"UMask": "0x4",
"Unit": "cpu_core"
},
{
"BriefDescription": "Retired load instructions whose data sources were L3 and cross-core snoop hits in on-pkg core cache",
"Data_LA": "1",
"EventCode": "0xd2",
"EventName": "MEM_LOAD_L3_HIT_RETIRED.XSNP_HIT",
"PEBS": "1",
"PublicDescription": "Counts retired load instructions whose data sources were L3 and cross-core snoop hits in on-pkg core cache.",
"SampleAfterValue": "20011",
"UMask": "0x2",
"Unit": "cpu_core"
},
{
"BriefDescription": "Retired load instructions whose data sources were HitM responses from shared L3",
"Data_LA": "1",
"EventCode": "0xd2",
"EventName": "MEM_LOAD_L3_HIT_RETIRED.XSNP_HITM",
"PEBS": "1",
"PublicDescription": "Counts retired load instructions whose data sources were HitM responses from shared L3.",
"SampleAfterValue": "20011",
"UMask": "0x4",
"Unit": "cpu_core"
},
{
"BriefDescription": "Retired load instructions whose data sources were hits in L3 without snoops required",
"Data_LA": "1",
"EventCode": "0xd2",
"EventName": "MEM_LOAD_L3_HIT_RETIRED.XSNP_NONE",
"PEBS": "1",
"PublicDescription": "Counts retired load instructions whose data sources were hits in L3 without snoops required.",
"SampleAfterValue": "100003",
"UMask": "0x8",
"Unit": "cpu_core"
},
{
"BriefDescription": "Retired load instructions whose data sources were L3 and cross-core snoop hits in on-pkg core cache",
"Data_LA": "1",
"EventCode": "0xd2",
"EventName": "MEM_LOAD_L3_HIT_RETIRED.XSNP_NO_FWD",
"PEBS": "1",
"PublicDescription": "Counts retired load instructions whose data sources were L3 and cross-core snoop hits in on-pkg core cache.",
"SampleAfterValue": "20011",
"UMask": "0x2",
"Unit": "cpu_core"
},
{
"BriefDescription": "Retired load instructions which data sources missed L3 but serviced from local dram",
"Data_LA": "1",
"EventCode": "0xd3",
"EventName": "MEM_LOAD_L3_MISS_RETIRED.LOCAL_DRAM",
"PEBS": "1",
"PublicDescription": "Retired load instructions which data sources missed L3 but serviced from local DRAM.",
"SampleAfterValue": "100007",
"UMask": "0x1",
"Unit": "cpu_core"
},
{
"BriefDescription": "Retired instructions with at least 1 uncacheable load or lock.",
"Data_LA": "1",
"EventCode": "0xd4",
"EventName": "MEM_LOAD_MISC_RETIRED.UC",
"PEBS": "1",
"PublicDescription": "Retired instructions with at least one load to uncacheable memory-type, or at least one cache-line split locked access (Bus Lock).",
"SampleAfterValue": "100007",
"UMask": "0x4",
"Unit": "cpu_core"
},
{
"BriefDescription": "Number of completed demand load requests that missed the L1, but hit the FB(fill buffer), because a preceding miss to the same cacheline initiated the line to be brought into L1, but data is not yet ready in L1.",
"Data_LA": "1",
"EventCode": "0xd1",
"EventName": "MEM_LOAD_RETIRED.FB_HIT",
"PEBS": "1",
"PublicDescription": "Counts retired load instructions with at least one uop was load missed in L1 but hit FB (Fill Buffers) due to preceding miss to the same cache line with data not ready.",
"SampleAfterValue": "100007",
"UMask": "0x40",
"Unit": "cpu_core"
},
{
"BriefDescription": "Retired load instructions with L1 cache hits as data sources",
"Data_LA": "1",
"EventCode": "0xd1",
"EventName": "MEM_LOAD_RETIRED.L1_HIT",
"PEBS": "1",
"PublicDescription": "Counts retired load instructions with at least one uop that hit in the L1 data cache. This event includes all SW prefetches and lock instructions regardless of the data source.",
"SampleAfterValue": "1000003",
"UMask": "0x1",
"Unit": "cpu_core"
},
{
"BriefDescription": "Retired load instructions missed L1 cache as data sources",
"Data_LA": "1",
"EventCode": "0xd1",
"EventName": "MEM_LOAD_RETIRED.L1_MISS",
"PEBS": "1",
"PublicDescription": "Counts retired load instructions with at least one uop that missed in the L1 cache.",
"SampleAfterValue": "200003",
"UMask": "0x8",
"Unit": "cpu_core"
},
{
"BriefDescription": "Retired load instructions with L2 cache hits as data sources",
"Data_LA": "1",
"EventCode": "0xd1",
"EventName": "MEM_LOAD_RETIRED.L2_HIT",
"PEBS": "1",
"PublicDescription": "Counts retired load instructions with L2 cache hits as data sources.",
"SampleAfterValue": "200003",
"UMask": "0x2",
"Unit": "cpu_core"
},
{
"BriefDescription": "Retired load instructions missed L2 cache as data sources",
"Data_LA": "1",
"EventCode": "0xd1",
"EventName": "MEM_LOAD_RETIRED.L2_MISS",
"PEBS": "1",
"PublicDescription": "Counts retired load instructions missed L2 cache as data sources.",
"SampleAfterValue": "100021",
"UMask": "0x10",
"Unit": "cpu_core"
},
{
"BriefDescription": "Retired load instructions with L3 cache hits as data sources",
"Data_LA": "1",
"EventCode": "0xd1",
"EventName": "MEM_LOAD_RETIRED.L3_HIT",
"PEBS": "1",
"PublicDescription": "Counts retired load instructions with at least one uop that hit in the L3 cache.",
"SampleAfterValue": "100021",
"UMask": "0x4",
"Unit": "cpu_core"
},
{
"BriefDescription": "Retired load instructions missed L3 cache as data sources",
"Data_LA": "1",
"EventCode": "0xd1",
"EventName": "MEM_LOAD_RETIRED.L3_MISS",
"PEBS": "1",
"PublicDescription": "Counts retired load instructions with at least one uop that missed in the L3 cache.",
"SampleAfterValue": "50021",
"UMask": "0x20",
"Unit": "cpu_core"
},
{
"BriefDescription": "Counts the number of load ops retired that miss the L3 cache and hit in DRAM",
"EventCode": "0xd4",
"EventName": "MEM_LOAD_UOPS_MISC_RETIRED.LOCAL_DRAM",
"PEBS": "1",
"SampleAfterValue": "1000003",
"UMask": "0x2",
"Unit": "cpu_atom"
},
{
"BriefDescription": "Counts the number of load ops retired that hit the L1 data cache.",
"EventCode": "0xd1",
"EventName": "MEM_LOAD_UOPS_RETIRED.L1_HIT",
"PEBS": "1",
"SampleAfterValue": "200003",
"UMask": "0x1",
"Unit": "cpu_atom"
},
{
"BriefDescription": "Counts the number of load ops retired that miss in the L1 data cache.",
"EventCode": "0xd1",
"EventName": "MEM_LOAD_UOPS_RETIRED.L1_MISS",
"PEBS": "1",
"SampleAfterValue": "200003",
"UMask": "0x40",
"Unit": "cpu_atom"
},
{
"BriefDescription": "Counts the number of load ops retired that hit in the L2 cache.",
"EventCode": "0xd1",
"EventName": "MEM_LOAD_UOPS_RETIRED.L2_HIT",
"PEBS": "1",
"SampleAfterValue": "200003",
"UMask": "0x2",
"Unit": "cpu_atom"
},
{
"BriefDescription": "Counts the number of load ops retired that miss in the L2 cache.",
"EventCode": "0xd1",
"EventName": "MEM_LOAD_UOPS_RETIRED.L2_MISS",
"PEBS": "1",
"SampleAfterValue": "200003",
"UMask": "0x80",
"Unit": "cpu_atom"
},
{
"BriefDescription": "Counts the number of load ops retired that hit in the L3 cache.",
"EventCode": "0xd1",
"EventName": "MEM_LOAD_UOPS_RETIRED.L3_HIT",
"PEBS": "1",
"SampleAfterValue": "200003",
"UMask": "0x1c",
"Unit": "cpu_atom"
},
{
"BriefDescription": "Counts the number of loads that hit in a write combining buffer (WCB), excluding the first load that caused the WCB to allocate.",
"EventCode": "0xd1",
"EventName": "MEM_LOAD_UOPS_RETIRED.WCB_HIT",
"PEBS": "1",
"SampleAfterValue": "200003",
"UMask": "0x20",
"Unit": "cpu_atom"
},
{
"BriefDescription": "Counts the number of cycles that uops are blocked for any of the following reasons: load buffer, store buffer or RSV full.",
"EventCode": "0x04",
"EventName": "MEM_SCHEDULER_BLOCK.ALL",
"SampleAfterValue": "20003",
"UMask": "0x7",
"Unit": "cpu_atom"
},
{
"BriefDescription": "Counts the number of cycles that uops are blocked due to a load buffer full condition.",
"EventCode": "0x04",
"EventName": "MEM_SCHEDULER_BLOCK.LD_BUF",
"SampleAfterValue": "20003",
"UMask": "0x2",
"Unit": "cpu_atom"
},
{
"BriefDescription": "Counts the number of cycles that uops are blocked due to an RSV full condition.",
"EventCode": "0x04",
"EventName": "MEM_SCHEDULER_BLOCK.RSV",
"SampleAfterValue": "20003",
"UMask": "0x4",
"Unit": "cpu_atom"
},
{
"BriefDescription": "Counts the number of cycles that uops are blocked due to a store buffer full condition.",
"EventCode": "0x04",
"EventName": "MEM_SCHEDULER_BLOCK.ST_BUF",
"SampleAfterValue": "20003",
"UMask": "0x1",
"Unit": "cpu_atom"
},
{
"BriefDescription": "Counts the number of load ops retired.",
"Data_LA": "1",
@ -95,6 +750,18 @@
"UMask": "0x82",
"Unit": "cpu_atom"
},
{
"BriefDescription": "Counts the number of tagged load uops retired that exceed the latency threshold defined in MEC_CR_PEBS_LD_LAT_THRESHOLD - Only counts with PEBS enabled.",
"Data_LA": "1",
"EventCode": "0xd0",
"EventName": "MEM_UOPS_RETIRED.LOAD_LATENCY_GT_1024",
"MSRIndex": "0x3F6",
"MSRValue": "0x400",
"PEBS": "2",
"SampleAfterValue": "1000003",
"UMask": "0x5",
"Unit": "cpu_atom"
},
{
"BriefDescription": "Counts the number of tagged load uops retired that exceed the latency threshold defined in MEC_CR_PEBS_LD_LAT_THRESHOLD - Only counts with PEBS enabled.",
"Data_LA": "1",
@ -119,6 +786,18 @@
"UMask": "0x5",
"Unit": "cpu_atom"
},
{
"BriefDescription": "Counts the number of tagged load uops retired that exceed the latency threshold defined in MEC_CR_PEBS_LD_LAT_THRESHOLD - Only counts with PEBS enabled.",
"Data_LA": "1",
"EventCode": "0xd0",
"EventName": "MEM_UOPS_RETIRED.LOAD_LATENCY_GT_2048",
"MSRIndex": "0x3F6",
"MSRValue": "0x800",
"PEBS": "2",
"SampleAfterValue": "1000003",
"UMask": "0x5",
"Unit": "cpu_atom"
},
{
"BriefDescription": "Counts the number of tagged load uops retired that exceed the latency threshold defined in MEC_CR_PEBS_LD_LAT_THRESHOLD - Only counts with PEBS enabled.",
"Data_LA": "1",
@ -191,6 +870,46 @@
"UMask": "0x5",
"Unit": "cpu_atom"
},
{
"BriefDescription": "Counts the number of load uops retired that performed one or more locks",
"Data_LA": "1",
"EventCode": "0xd0",
"EventName": "MEM_UOPS_RETIRED.LOCK_LOADS",
"PEBS": "1",
"SampleAfterValue": "200003",
"UMask": "0x21",
"Unit": "cpu_atom"
},
{
"BriefDescription": "Counts the number of memory uops retired that were splits.",
"Data_LA": "1",
"EventCode": "0xd0",
"EventName": "MEM_UOPS_RETIRED.SPLIT",
"PEBS": "1",
"SampleAfterValue": "200003",
"UMask": "0x43",
"Unit": "cpu_atom"
},
{
"BriefDescription": "Counts the number of retired split load uops.",
"Data_LA": "1",
"EventCode": "0xd0",
"EventName": "MEM_UOPS_RETIRED.SPLIT_LOADS",
"PEBS": "1",
"SampleAfterValue": "200003",
"UMask": "0x41",
"Unit": "cpu_atom"
},
{
"BriefDescription": "Counts the number of retired split store uops.",
"Data_LA": "1",
"EventCode": "0xd0",
"EventName": "MEM_UOPS_RETIRED.SPLIT_STORES",
"PEBS": "1",
"SampleAfterValue": "200003",
"UMask": "0x42",
"Unit": "cpu_atom"
},
{
"BriefDescription": "Counts the number of stores uops retired same as MEM_UOPS_RETIRED.ALL_STORES",
"Data_LA": "1",
@ -200,5 +919,97 @@
"SampleAfterValue": "1000003",
"UMask": "0x6",
"Unit": "cpu_atom"
},
{
"BriefDescription": "Retired memory uops for any access",
"EventCode": "0xe5",
"EventName": "MEM_UOP_RETIRED.ANY",
"PublicDescription": "Number of retired micro-operations (uops) for load or store memory accesses",
"SampleAfterValue": "1000003",
"UMask": "0x3",
"Unit": "cpu_core"
},
{
"BriefDescription": "Counts demand data reads that resulted in a snoop hit in another cores caches, data forwarding is required as the data is modified.",
"EventCode": "0x2A,0x2B",
"EventName": "OCR.DEMAND_DATA_RD.L3_HIT.SNOOP_HITM",
"MSRIndex": "0x1a6,0x1a7",
"MSRValue": "0x10003C0001",
"SampleAfterValue": "100003",
"UMask": "0x1",
"Unit": "cpu_core"
},
{
"BriefDescription": "Counts demand data reads that resulted in a snoop hit in another cores caches which forwarded the unmodified data to the requesting core.",
"EventCode": "0x2A,0x2B",
"EventName": "OCR.DEMAND_DATA_RD.L3_HIT.SNOOP_HIT_WITH_FWD",
"MSRIndex": "0x1a6,0x1a7",
"MSRValue": "0x8003C0001",
"SampleAfterValue": "100003",
"UMask": "0x1",
"Unit": "cpu_core"
},
{
"BriefDescription": "Counts demand read for ownership (RFO) requests and software prefetches for exclusive ownership (PREFETCHW) that resulted in a snoop hit in another cores caches, data forwarding is required as the data is modified.",
"EventCode": "0x2A,0x2B",
"EventName": "OCR.DEMAND_RFO.L3_HIT.SNOOP_HITM",
"MSRIndex": "0x1a6,0x1a7",
"MSRValue": "0x10003C0002",
"SampleAfterValue": "100003",
"UMask": "0x1",
"Unit": "cpu_core"
},
{
"BriefDescription": "Any memory transaction that reached the SQ.",
"EventCode": "0x21",
"EventName": "OFFCORE_REQUESTS.ALL_REQUESTS",
"PublicDescription": "Counts memory transactions reached the super queue including requests initiated by the core, all L3 prefetches, page walks, etc..",
"SampleAfterValue": "100003",
"UMask": "0x80",
"Unit": "cpu_core"
},
{
"BriefDescription": "Demand and prefetch data reads",
"EventCode": "0x21",
"EventName": "OFFCORE_REQUESTS.DATA_RD",
"PublicDescription": "Counts the demand and prefetch data reads. All Core Data Reads include cacheable 'Demands' and L2 prefetchers (not L3 prefetchers). Counting also covers reads due to page walks resulted from any request type.",
"SampleAfterValue": "100003",
"UMask": "0x8",
"Unit": "cpu_core"
},
{
"BriefDescription": "Demand Data Read requests sent to uncore",
"EventCode": "0x21",
"EventName": "OFFCORE_REQUESTS.DEMAND_DATA_RD",
"PublicDescription": "Counts the Demand Data Read requests sent to uncore. Use it in conjunction with OFFCORE_REQUESTS_OUTSTANDING to determine average latency in the uncore.",
"SampleAfterValue": "100003",
"UMask": "0x1",
"Unit": "cpu_core"
},
{
"BriefDescription": "Demand RFO requests including regular RFOs, locks, ItoM",
"EventCode": "0x21",
"EventName": "OFFCORE_REQUESTS.DEMAND_RFO",
"PublicDescription": "Counts the demand RFO (read for ownership) requests including regular RFOs, locks, ItoM.",
"SampleAfterValue": "100003",
"UMask": "0x4",
"Unit": "cpu_core"
},
{
"BriefDescription": "Counts bus locks, accounts for cache line split locks and UC locks.",
"EventCode": "0x2c",
"EventName": "SQ_MISC.BUS_LOCK",
"PublicDescription": "Counts the more expensive bus lock needed to enforce cache coherency for certain memory accesses that need to be done atomically. Can be created by issuing an atomic instruction (via the LOCK prefix) which causes a cache line split or accesses uncacheable memory.",
"SampleAfterValue": "100003",
"UMask": "0x10",
"Unit": "cpu_core"
},
{
"BriefDescription": "Counts the number of issue slots every cycle that were not delivered by the frontend due to an icache miss",
"EventCode": "0x71",
"EventName": "TOPDOWN_FE_BOUND.ICACHE",
"SampleAfterValue": "1000003",
"UMask": "0x20",
"Unit": "cpu_atom"
}
]

View File

@ -0,0 +1,143 @@
[
{
"BriefDescription": "This event counts the cycles the floating point divider is busy.",
"CounterMask": "1",
"EventCode": "0xb0",
"EventName": "ARITH.FPDIV_ACTIVE",
"SampleAfterValue": "1000003",
"UMask": "0x1",
"Unit": "cpu_core"
},
{
"BriefDescription": "Counts all microcode FP assists.",
"EventCode": "0xc1",
"EventName": "ASSISTS.FP",
"PublicDescription": "Counts all microcode Floating Point assists.",
"SampleAfterValue": "100003",
"UMask": "0x2",
"Unit": "cpu_core"
},
{
"BriefDescription": "ASSISTS.SSE_AVX_MIX",
"EventCode": "0xc1",
"EventName": "ASSISTS.SSE_AVX_MIX",
"SampleAfterValue": "1000003",
"UMask": "0x10",
"Unit": "cpu_core"
},
{
"BriefDescription": "FP_ARITH_DISPATCHED.PORT_0",
"EventCode": "0xb3",
"EventName": "FP_ARITH_DISPATCHED.PORT_0",
"SampleAfterValue": "2000003",
"UMask": "0x1",
"Unit": "cpu_core"
},
{
"BriefDescription": "FP_ARITH_DISPATCHED.PORT_1",
"EventCode": "0xb3",
"EventName": "FP_ARITH_DISPATCHED.PORT_1",
"SampleAfterValue": "2000003",
"UMask": "0x2",
"Unit": "cpu_core"
},
{
"BriefDescription": "Counts number of SSE/AVX computational 128-bit packed double precision floating-point instructions retired; some instructions will count twice as noted below. Each count represents 2 computation operations, one for each element. Applies to SSE* and AVX* packed double precision floating-point instructions: ADD SUB HADD HSUB SUBADD MUL DIV MIN MAX SQRT DPP FM(N)ADD/SUB. DPP and FM(N)ADD/SUB instructions count twice as they perform 2 calculations per element.",
"EventCode": "0xc7",
"EventName": "FP_ARITH_INST_RETIRED.128B_PACKED_DOUBLE",
"PublicDescription": "Number of SSE/AVX computational 128-bit packed double precision floating-point instructions retired; some instructions will count twice as noted below. Each count represents 2 computation operations, one for each element. Applies to SSE* and AVX* packed double precision floating-point instructions: ADD SUB HADD HSUB SUBADD MUL DIV MIN MAX SQRT DPP FM(N)ADD/SUB. DPP and FM(N)ADD/SUB instructions count twice as they perform 2 calculations per element. The DAZ and FTZ flags in the MXCSR register need to be set when using these events.",
"SampleAfterValue": "100003",
"UMask": "0x4",
"Unit": "cpu_core"
},
{
"BriefDescription": "Number of SSE/AVX computational 128-bit packed single precision floating-point instructions retired; some instructions will count twice as noted below. Each count represents 4 computation operations, one for each element. Applies to SSE* and AVX* packed single precision floating-point instructions: ADD SUB MUL DIV MIN MAX RCP14 RSQRT14 SQRT DPP FM(N)ADD/SUB. DPP and FM(N)ADD/SUB instructions count twice as they perform 2 calculations per element.",
"EventCode": "0xc7",
"EventName": "FP_ARITH_INST_RETIRED.128B_PACKED_SINGLE",
"PublicDescription": "Number of SSE/AVX computational 128-bit packed single precision floating-point instructions retired; some instructions will count twice as noted below. Each count represents 4 computation operations, one for each element. Applies to SSE* and AVX* packed single precision floating-point instructions: ADD SUB HADD HSUB SUBADD MUL DIV MIN MAX SQRT RSQRT RCP DPP FM(N)ADD/SUB. DPP and FM(N)ADD/SUB instructions count twice as they perform 2 calculations per element. The DAZ and FTZ flags in the MXCSR register need to be set when using these events.",
"SampleAfterValue": "100003",
"UMask": "0x8",
"Unit": "cpu_core"
},
{
"BriefDescription": "Counts number of SSE/AVX computational 256-bit packed double precision floating-point instructions retired; some instructions will count twice as noted below. Each count represents 4 computation operations, one for each element. Applies to SSE* and AVX* packed double precision floating-point instructions: ADD SUB HADD HSUB SUBADD MUL DIV MIN MAX SQRT FM(N)ADD/SUB. FM(N)ADD/SUB instructions count twice as they perform 2 calculations per element.",
"EventCode": "0xc7",
"EventName": "FP_ARITH_INST_RETIRED.256B_PACKED_DOUBLE",
"PublicDescription": "Number of SSE/AVX computational 256-bit packed double precision floating-point instructions retired; some instructions will count twice as noted below. Each count represents 4 computation operations, one for each element. Applies to SSE* and AVX* packed double precision floating-point instructions: ADD SUB HADD HSUB SUBADD MUL DIV MIN MAX SQRT FM(N)ADD/SUB. FM(N)ADD/SUB instructions count twice as they perform 2 calculations per element. The DAZ and FTZ flags in the MXCSR register need to be set when using these events.",
"SampleAfterValue": "100003",
"UMask": "0x10",
"Unit": "cpu_core"
},
{
"BriefDescription": "Counts number of SSE/AVX computational 256-bit packed single precision floating-point instructions retired; some instructions will count twice as noted below. Each count represents 8 computation operations, one for each element. Applies to SSE* and AVX* packed single precision floating-point instructions: ADD SUB HADD HSUB SUBADD MUL DIV MIN MAX SQRT RSQRT RCP DPP FM(N)ADD/SUB. DPP and FM(N)ADD/SUB instructions count twice as they perform 2 calculations per element.",
"EventCode": "0xc7",
"EventName": "FP_ARITH_INST_RETIRED.256B_PACKED_SINGLE",
"PublicDescription": "Number of SSE/AVX computational 256-bit packed single precision floating-point instructions retired; some instructions will count twice as noted below. Each count represents 8 computation operations, one for each element. Applies to SSE* and AVX* packed single precision floating-point instructions: ADD SUB HADD HSUB SUBADD MUL DIV MIN MAX SQRT RSQRT RCP DPP FM(N)ADD/SUB. DPP and FM(N)ADD/SUB instructions count twice as they perform 2 calculations per element. The DAZ and FTZ flags in the MXCSR register need to be set when using these events.",
"SampleAfterValue": "100003",
"UMask": "0x20",
"Unit": "cpu_core"
},
{
"BriefDescription": "Number of SSE/AVX computational 128-bit packed single and 256-bit packed double precision FP instructions retired; some instructions will count twice as noted below. Each count represents 2 or/and 4 computation operations, 1 for each element. Applies to SSE* and AVX* packed single precision and packed double precision FP instructions: ADD SUB HADD HSUB SUBADD MUL DIV MIN MAX RCP14 RSQRT14 SQRT DPP FM(N)ADD/SUB. DPP and FM(N)ADD/SUB count twice as they perform 2 calculations per element.",
"EventCode": "0xc7",
"EventName": "FP_ARITH_INST_RETIRED.4_FLOPS",
"PublicDescription": "Number of SSE/AVX computational 128-bit packed single precision and 256-bit packed double precision floating-point instructions retired; some instructions will count twice as noted below. Each count represents 2 or/and 4 computation operations, one for each element. Applies to SSE* and AVX* packed single precision floating-point and packed double precision floating-point instructions: ADD SUB HADD HSUB SUBADD MUL DIV MIN MAX RCP14 RSQRT14 SQRT DPP FM(N)ADD/SUB. DPP and FM(N)ADD/SUB instructions count twice as they perform 2 calculations per element. The DAZ and FTZ flags in the MXCSR register need to be set when using these events.",
"SampleAfterValue": "100003",
"UMask": "0x18",
"Unit": "cpu_core"
},
{
"BriefDescription": "Number of SSE/AVX computational scalar floating-point instructions retired; some instructions will count twice as noted below. Applies to SSE* and AVX* scalar, double and single precision floating-point: ADD SUB MUL DIV MIN MAX RCP14 RSQRT14 RANGE SQRT DPP FM(N)ADD/SUB. DPP and FM(N)ADD/SUB instructions count twice as they perform multiple calculations per element.",
"EventCode": "0xc7",
"EventName": "FP_ARITH_INST_RETIRED.SCALAR",
"PublicDescription": "Number of SSE/AVX computational scalar single precision and double precision floating-point instructions retired; some instructions will count twice as noted below. Each count represents 1 computational operation. Applies to SSE* and AVX* scalar single precision floating-point instructions: ADD SUB MUL DIV MIN MAX SQRT RSQRT RCP FM(N)ADD/SUB. FM(N)ADD/SUB instructions count twice as they perform 2 calculations per element. The DAZ and FTZ flags in the MXCSR register need to be set when using these events.",
"SampleAfterValue": "1000003",
"UMask": "0x3",
"Unit": "cpu_core"
},
{
"BriefDescription": "Counts number of SSE/AVX computational scalar double precision floating-point instructions retired; some instructions will count twice as noted below. Each count represents 1 computational operation. Applies to SSE* and AVX* scalar double precision floating-point instructions: ADD SUB MUL DIV MIN MAX SQRT FM(N)ADD/SUB. FM(N)ADD/SUB instructions count twice as they perform 2 calculations per element.",
"EventCode": "0xc7",
"EventName": "FP_ARITH_INST_RETIRED.SCALAR_DOUBLE",
"PublicDescription": "Number of SSE/AVX computational scalar double precision floating-point instructions retired; some instructions will count twice as noted below. Each count represents 1 computational operation. Applies to SSE* and AVX* scalar double precision floating-point instructions: ADD SUB MUL DIV MIN MAX SQRT FM(N)ADD/SUB. FM(N)ADD/SUB instructions count twice as they perform 2 calculations per element. The DAZ and FTZ flags in the MXCSR register need to be set when using these events.",
"SampleAfterValue": "100003",
"UMask": "0x1",
"Unit": "cpu_core"
},
{
"BriefDescription": "Counts number of SSE/AVX computational scalar single precision floating-point instructions retired; some instructions will count twice as noted below. Each count represents 1 computational operation. Applies to SSE* and AVX* scalar single precision floating-point instructions: ADD SUB MUL DIV MIN MAX SQRT RSQRT RCP FM(N)ADD/SUB. FM(N)ADD/SUB instructions count twice as they perform 2 calculations per element.",
"EventCode": "0xc7",
"EventName": "FP_ARITH_INST_RETIRED.SCALAR_SINGLE",
"PublicDescription": "Number of SSE/AVX computational scalar single precision floating-point instructions retired; some instructions will count twice as noted below. Each count represents 1 computational operation. Applies to SSE* and AVX* scalar single precision floating-point instructions: ADD SUB MUL DIV MIN MAX SQRT RSQRT RCP FM(N)ADD/SUB. FM(N)ADD/SUB instructions count twice as they perform 2 calculations per element. The DAZ and FTZ flags in the MXCSR register need to be set when using these events.",
"SampleAfterValue": "100003",
"UMask": "0x2",
"Unit": "cpu_core"
},
{
"BriefDescription": "Number of any Vector retired FP arithmetic instructions",
"EventCode": "0xc7",
"EventName": "FP_ARITH_INST_RETIRED.VECTOR",
"PublicDescription": "Number of any Vector retired FP arithmetic instructions. The DAZ and FTZ flags in the MXCSR register need to be set when using these events.",
"SampleAfterValue": "1000003",
"UMask": "0xfc",
"Unit": "cpu_core"
},
{
"BriefDescription": "Counts the number of floating point operations retired that required microcode assist.",
"EventCode": "0xc3",
"EventName": "MACHINE_CLEARS.FP_ASSIST",
"PublicDescription": "Counts the number of floating point operations retired that required microcode assist, which is not a reflection of the number of FP operations, instructions or uops.",
"SampleAfterValue": "20003",
"UMask": "0x4",
"Unit": "cpu_atom"
},
{
"BriefDescription": "Counts the number of floating point divide uops retired (x87 and sse, including x87 sqrt).",
"EventCode": "0xc2",
"EventName": "UOPS_RETIRED.FPDIV",
"PEBS": "1",
"SampleAfterValue": "2000003",
"UMask": "0x8",
"Unit": "cpu_atom"
}
]

View File

@ -1,4 +1,259 @@
[
{
"BriefDescription": "Counts the total number of BACLEARS due to all branch types including conditional and unconditional jumps, returns, and indirect branches.",
"EventCode": "0xe6",
"EventName": "BACLEARS.ANY",
"PublicDescription": "Counts the total number of BACLEARS, which occur when the Branch Target Buffer (BTB) prediction or lack thereof, was corrected by a later branch predictor in the frontend. Includes BACLEARS due to all branch types including conditional and unconditional jumps, returns, and indirect branches.",
"SampleAfterValue": "200003",
"UMask": "0x1",
"Unit": "cpu_atom"
},
{
"BriefDescription": "Clears due to Unknown Branches.",
"EventCode": "0x60",
"EventName": "BACLEARS.ANY",
"PublicDescription": "Number of times the front-end is resteered when it finds a branch instruction in a fetch line. This is called Unknown Branch which occurs for the first time a branch instruction is fetched or when the branch is not tracked by the BPU (Branch Prediction Unit) anymore.",
"SampleAfterValue": "100003",
"UMask": "0x1",
"Unit": "cpu_core"
},
{
"BriefDescription": "Stalls caused by changing prefix length of the instruction.",
"EventCode": "0x87",
"EventName": "DECODE.LCP",
"PublicDescription": "Counts cycles that the Instruction Length decoder (ILD) stalls occurred due to dynamically changing prefix length of the decoded instruction (by operand size prefix instruction 0x66, address size prefix instruction 0x67 or REX.W for Intel64). Count is proportional to the number of prefixes in a 16B-line. This may result in a three-cycle penalty for each LCP (Length changing prefix) in a 16-byte chunk.",
"SampleAfterValue": "500009",
"UMask": "0x1",
"Unit": "cpu_core"
},
{
"BriefDescription": "Cycles the Microcode Sequencer is busy.",
"EventCode": "0x87",
"EventName": "DECODE.MS_BUSY",
"SampleAfterValue": "500009",
"UMask": "0x2",
"Unit": "cpu_core"
},
{
"BriefDescription": "DSB-to-MITE switch true penalty cycles.",
"EventCode": "0x61",
"EventName": "DSB2MITE_SWITCHES.PENALTY_CYCLES",
"PublicDescription": "Decode Stream Buffer (DSB) is a Uop-cache that holds translations of previously fetched instructions that were decoded by the legacy x86 decode pipeline (MITE). This event counts fetch penalty cycles when a transition occurs from DSB to MITE.",
"SampleAfterValue": "100003",
"UMask": "0x2",
"Unit": "cpu_core"
},
{
"BriefDescription": "Retired ANT branches",
"EventCode": "0xc6",
"EventName": "FRONTEND_RETIRED.ANY_ANT",
"MSRIndex": "0x3F7",
"MSRValue": "0x9",
"PEBS": "1",
"PublicDescription": "Always Not Taken (ANT) conditional retired branches (no BTB entry and not mispredicted)",
"SampleAfterValue": "100007",
"UMask": "0x3",
"Unit": "cpu_core"
},
{
"BriefDescription": "Counts the number of instructions retired that were tagged because empty issue slots were seen before the uop due to ITLB miss",
"EventCode": "0xc6",
"EventName": "FRONTEND_RETIRED.ITLB_MISS",
"PEBS": "1",
"SampleAfterValue": "1000003",
"UMask": "0x10",
"Unit": "cpu_atom"
},
{
"BriefDescription": "Retired Instructions who experienced iTLB true miss.",
"EventCode": "0xc6",
"EventName": "FRONTEND_RETIRED.ITLB_MISS",
"MSRIndex": "0x3F7",
"MSRValue": "0x14",
"PEBS": "1",
"PublicDescription": "Counts retired Instructions that experienced iTLB (Instruction TLB) true miss.",
"SampleAfterValue": "100007",
"UMask": "0x3",
"Unit": "cpu_core"
},
{
"BriefDescription": "Retired Instructions who experienced Instruction L1 Cache true miss.",
"EventCode": "0xc6",
"EventName": "FRONTEND_RETIRED.L1I_MISS",
"MSRIndex": "0x3F7",
"MSRValue": "0x12",
"PEBS": "1",
"PublicDescription": "Counts retired Instructions who experienced Instruction L1 Cache true miss.",
"SampleAfterValue": "100007",
"UMask": "0x3",
"Unit": "cpu_core"
},
{
"BriefDescription": "Retired instructions after front-end starvation of at least 1 cycle",
"EventCode": "0xc6",
"EventName": "FRONTEND_RETIRED.LATENCY_GE_1",
"MSRIndex": "0x3F7",
"MSRValue": "0x600106",
"PEBS": "1",
"PublicDescription": "Retired instructions that are fetched after an interval where the front-end delivered no uops for a period of at least 1 cycle which was not interrupted by a back-end stall.",
"SampleAfterValue": "100007",
"UMask": "0x3",
"Unit": "cpu_core"
},
{
"BriefDescription": "Retired instructions that are fetched after an interval where the front-end delivered no uops for a period of 128 cycles which was not interrupted by a back-end stall.",
"EventCode": "0xc6",
"EventName": "FRONTEND_RETIRED.LATENCY_GE_128",
"MSRIndex": "0x3F7",
"MSRValue": "0x608006",
"PEBS": "1",
"PublicDescription": "Counts retired instructions that are fetched after an interval where the front-end delivered no uops for a period of 128 cycles which was not interrupted by a back-end stall.",
"SampleAfterValue": "100007",
"UMask": "0x3",
"Unit": "cpu_core"
},
{
"BriefDescription": "Retired instructions that are fetched after an interval where the front-end delivered no uops for a period of 16 cycles which was not interrupted by a back-end stall.",
"EventCode": "0xc6",
"EventName": "FRONTEND_RETIRED.LATENCY_GE_16",
"MSRIndex": "0x3F7",
"MSRValue": "0x601006",
"PEBS": "1",
"PublicDescription": "Counts retired instructions that are delivered to the back-end after a front-end stall of at least 16 cycles. During this period the front-end delivered no uops.",
"SampleAfterValue": "100007",
"UMask": "0x3",
"Unit": "cpu_core"
},
{
"BriefDescription": "Retired instructions after front-end starvation of at least 2 cycles",
"EventCode": "0xc6",
"EventName": "FRONTEND_RETIRED.LATENCY_GE_2",
"MSRIndex": "0x3F7",
"MSRValue": "0x600206",
"PEBS": "1",
"PublicDescription": "Retired instructions that are fetched after an interval where the front-end delivered no uops for a period of at least 2 cycles which was not interrupted by a back-end stall.",
"SampleAfterValue": "100007",
"UMask": "0x3",
"Unit": "cpu_core"
},
{
"BriefDescription": "Retired instructions that are fetched after an interval where the front-end delivered no uops for a period of 256 cycles which was not interrupted by a back-end stall.",
"EventCode": "0xc6",
"EventName": "FRONTEND_RETIRED.LATENCY_GE_256",
"MSRIndex": "0x3F7",
"MSRValue": "0x610006",
"PEBS": "1",
"PublicDescription": "Counts retired instructions that are fetched after an interval where the front-end delivered no uops for a period of 256 cycles which was not interrupted by a back-end stall.",
"SampleAfterValue": "100007",
"UMask": "0x3",
"Unit": "cpu_core"
},
{
"BriefDescription": "Retired instructions that are fetched after an interval where the front-end had at least 1 bubble-slot for a period of 2 cycles which was not interrupted by a back-end stall.",
"EventCode": "0xc6",
"EventName": "FRONTEND_RETIRED.LATENCY_GE_2_BUBBLES_GE_1",
"MSRIndex": "0x3F7",
"MSRValue": "0x100206",
"PEBS": "1",
"PublicDescription": "Counts retired instructions that are delivered to the back-end after the front-end had at least 1 bubble-slot for a period of 2 cycles. A bubble-slot is an empty issue-pipeline slot while there was no RAT stall.",
"SampleAfterValue": "100007",
"UMask": "0x3",
"Unit": "cpu_core"
},
{
"BriefDescription": "Retired instructions that are fetched after an interval where the front-end delivered no uops for a period of 32 cycles which was not interrupted by a back-end stall.",
"EventCode": "0xc6",
"EventName": "FRONTEND_RETIRED.LATENCY_GE_32",
"MSRIndex": "0x3F7",
"MSRValue": "0x602006",
"PEBS": "1",
"PublicDescription": "Counts retired instructions that are delivered to the back-end after a front-end stall of at least 32 cycles. During this period the front-end delivered no uops.",
"SampleAfterValue": "100007",
"UMask": "0x3",
"Unit": "cpu_core"
},
{
"BriefDescription": "Retired instructions that are fetched after an interval where the front-end delivered no uops for a period of 4 cycles which was not interrupted by a back-end stall.",
"EventCode": "0xc6",
"EventName": "FRONTEND_RETIRED.LATENCY_GE_4",
"MSRIndex": "0x3F7",
"MSRValue": "0x600406",
"PEBS": "1",
"PublicDescription": "Counts retired instructions that are fetched after an interval where the front-end delivered no uops for a period of 4 cycles which was not interrupted by a back-end stall.",
"SampleAfterValue": "100007",
"UMask": "0x3",
"Unit": "cpu_core"
},
{
"BriefDescription": "Retired instructions that are fetched after an interval where the front-end delivered no uops for a period of 512 cycles which was not interrupted by a back-end stall.",
"EventCode": "0xc6",
"EventName": "FRONTEND_RETIRED.LATENCY_GE_512",
"MSRIndex": "0x3F7",
"MSRValue": "0x620006",
"PEBS": "1",
"PublicDescription": "Counts retired instructions that are fetched after an interval where the front-end delivered no uops for a period of 512 cycles which was not interrupted by a back-end stall.",
"SampleAfterValue": "100007",
"UMask": "0x3",
"Unit": "cpu_core"
},
{
"BriefDescription": "Retired instructions that are fetched after an interval where the front-end delivered no uops for a period of 64 cycles which was not interrupted by a back-end stall.",
"EventCode": "0xc6",
"EventName": "FRONTEND_RETIRED.LATENCY_GE_64",
"MSRIndex": "0x3F7",
"MSRValue": "0x604006",
"PEBS": "1",
"PublicDescription": "Counts retired instructions that are fetched after an interval where the front-end delivered no uops for a period of 64 cycles which was not interrupted by a back-end stall.",
"SampleAfterValue": "100007",
"UMask": "0x3",
"Unit": "cpu_core"
},
{
"BriefDescription": "Retired instructions that are fetched after an interval where the front-end delivered no uops for a period of 8 cycles which was not interrupted by a back-end stall.",
"EventCode": "0xc6",
"EventName": "FRONTEND_RETIRED.LATENCY_GE_8",
"MSRIndex": "0x3F7",
"MSRValue": "0x600806",
"PEBS": "1",
"PublicDescription": "Counts retired instructions that are delivered to the back-end after a front-end stall of at least 8 cycles. During this period the front-end delivered no uops.",
"SampleAfterValue": "100007",
"UMask": "0x3",
"Unit": "cpu_core"
},
{
"BriefDescription": "Mispredicted Retired ANT branches",
"EventCode": "0xc6",
"EventName": "FRONTEND_RETIRED.MISP_ANT",
"MSRIndex": "0x3F7",
"MSRValue": "0x9",
"PEBS": "1",
"PublicDescription": "ANT retired branches that got just mispredicted",
"SampleAfterValue": "100007",
"UMask": "0x2",
"Unit": "cpu_core"
},
{
"BriefDescription": "FRONTEND_RETIRED.MS_FLOWS",
"EventCode": "0xc6",
"EventName": "FRONTEND_RETIRED.MS_FLOWS",
"MSRIndex": "0x3F7",
"MSRValue": "0x8",
"PEBS": "1",
"SampleAfterValue": "100007",
"UMask": "0x3",
"Unit": "cpu_core"
},
{
"BriefDescription": "FRONTEND_RETIRED.UNKNOWN_BRANCH",
"EventCode": "0xc6",
"EventName": "FRONTEND_RETIRED.UNKNOWN_BRANCH",
"MSRIndex": "0x3F7",
"MSRValue": "0x17",
"PEBS": "1",
"SampleAfterValue": "100007",
"UMask": "0x3",
"Unit": "cpu_core"
},
{
"BriefDescription": "Counts every time the code stream enters into a new cache line by walking sequential from the previous line or being redirected by a jump.",
"EventCode": "0x80",
@ -15,6 +270,131 @@
"UMask": "0x2",
"Unit": "cpu_atom"
},
{
"BriefDescription": "Cycles where a code fetch is stalled due to L1 instruction cache miss.",
"EventCode": "0x80",
"EventName": "ICACHE_DATA.STALLS",
"PublicDescription": "Counts cycles where a code line fetch is stalled due to an L1 instruction cache miss. The decode pipeline works at a 32 Byte granularity.",
"SampleAfterValue": "500009",
"UMask": "0x4",
"Unit": "cpu_core"
},
{
"BriefDescription": "ICACHE_DATA.STALL_PERIODS",
"CounterMask": "1",
"EdgeDetect": "1",
"EventCode": "0x80",
"EventName": "ICACHE_DATA.STALL_PERIODS",
"SampleAfterValue": "500009",
"UMask": "0x4",
"Unit": "cpu_core"
},
{
"BriefDescription": "Instruction fetch tag lookups that hit in the instruction cache (L1I). Counts at 64-byte cache-line granularity.",
"EventCode": "0x83",
"EventName": "ICACHE_TAG.HIT",
"PublicDescription": "Counts instruction fetch tag lookups that hit in the instruction cache (L1I). Counts at 64-byte cache-line granularity. Accounts for both cacheable and uncacheable accesses.",
"SampleAfterValue": "200003",
"UMask": "0x1",
"Unit": "cpu_core"
},
{
"BriefDescription": "Cycles where a code fetch is stalled due to L1 instruction cache tag miss.",
"EventCode": "0x83",
"EventName": "ICACHE_TAG.STALLS",
"PublicDescription": "Counts cycles where a code fetch is stalled due to L1 instruction cache tag miss.",
"SampleAfterValue": "200003",
"UMask": "0x4",
"Unit": "cpu_core"
},
{
"BriefDescription": "Cycles Decode Stream Buffer (DSB) is delivering any Uop",
"CounterMask": "1",
"EventCode": "0x79",
"EventName": "IDQ.DSB_CYCLES_ANY",
"PublicDescription": "Counts the number of cycles uops were delivered to Instruction Decode Queue (IDQ) from the Decode Stream Buffer (DSB) path.",
"SampleAfterValue": "2000003",
"UMask": "0x8",
"Unit": "cpu_core"
},
{
"BriefDescription": "Cycles DSB is delivering optimal number of Uops",
"CounterMask": "6",
"EventCode": "0x79",
"EventName": "IDQ.DSB_CYCLES_OK",
"PublicDescription": "Counts the number of cycles where optimal number of uops was delivered to the Instruction Decode Queue (IDQ) from the MITE (legacy decode pipeline) path. During these cycles uops are not being delivered from the Decode Stream Buffer (DSB).",
"SampleAfterValue": "2000003",
"UMask": "0x8",
"Unit": "cpu_core"
},
{
"BriefDescription": "Uops delivered to Instruction Decode Queue (IDQ) from the Decode Stream Buffer (DSB) path",
"EventCode": "0x79",
"EventName": "IDQ.DSB_UOPS",
"PublicDescription": "Counts the number of uops delivered to Instruction Decode Queue (IDQ) from the Decode Stream Buffer (DSB) path.",
"SampleAfterValue": "2000003",
"UMask": "0x8",
"Unit": "cpu_core"
},
{
"BriefDescription": "Cycles MITE is delivering any Uop",
"CounterMask": "1",
"EventCode": "0x79",
"EventName": "IDQ.MITE_CYCLES_ANY",
"PublicDescription": "Counts the number of cycles uops were delivered to the Instruction Decode Queue (IDQ) from the MITE (legacy decode pipeline) path. During these cycles uops are not being delivered from the Decode Stream Buffer (DSB).",
"SampleAfterValue": "2000003",
"UMask": "0x4",
"Unit": "cpu_core"
},
{
"BriefDescription": "Cycles MITE is delivering optimal number of Uops",
"CounterMask": "6",
"EventCode": "0x79",
"EventName": "IDQ.MITE_CYCLES_OK",
"PublicDescription": "Counts the number of cycles where optimal number of uops was delivered to the Instruction Decode Queue (IDQ) from the MITE (legacy decode pipeline) path. During these cycles uops are not being delivered from the Decode Stream Buffer (DSB).",
"SampleAfterValue": "2000003",
"UMask": "0x4",
"Unit": "cpu_core"
},
{
"BriefDescription": "Uops delivered to Instruction Decode Queue (IDQ) from MITE path",
"EventCode": "0x79",
"EventName": "IDQ.MITE_UOPS",
"PublicDescription": "Counts the number of uops delivered to Instruction Decode Queue (IDQ) from the MITE path. This also means that uops are not being delivered from the Decode Stream Buffer (DSB).",
"SampleAfterValue": "2000003",
"UMask": "0x4",
"Unit": "cpu_core"
},
{
"BriefDescription": "Cycles when uops are being delivered to IDQ while MS is busy",
"CounterMask": "1",
"EventCode": "0x79",
"EventName": "IDQ.MS_CYCLES_ANY",
"PublicDescription": "Counts cycles during which uops are being delivered to Instruction Decode Queue (IDQ) while the Microcode Sequencer (MS) is busy. Uops maybe initiated by Decode Stream Buffer (DSB) or MITE.",
"SampleAfterValue": "2000003",
"UMask": "0x20",
"Unit": "cpu_core"
},
{
"BriefDescription": "Number of switches from DSB or MITE to the MS",
"CounterMask": "1",
"EdgeDetect": "1",
"EventCode": "0x79",
"EventName": "IDQ.MS_SWITCHES",
"PublicDescription": "Number of switches from DSB (Decode Stream Buffer) or MITE (legacy decode pipeline) to the Microcode Sequencer.",
"SampleAfterValue": "100003",
"UMask": "0x20",
"Unit": "cpu_core"
},
{
"BriefDescription": "Uops initiated by MITE or Decode Stream Buffer (DSB) and delivered to Instruction Decode Queue (IDQ) while Microcode Sequencer (MS) is busy",
"EventCode": "0x79",
"EventName": "IDQ.MS_UOPS",
"PublicDescription": "Counts the number of uops initiated by MITE or Decode Stream Buffer (DSB) and delivered to Instruction Decode Queue (IDQ) while the Microcode Sequencer (MS) is busy. Counting includes uops that may 'bypass' the IDQ.",
"SampleAfterValue": "1000003",
"UMask": "0x20",
"Unit": "cpu_core"
},
{
"BriefDescription": "This event counts a subset of the Topdown Slots event that were no operation was delivered to the back-end pipeline due to instruction fetch limitations when the back-end could have accepted more operations. Common examples include instruction cache misses or x86 instruction decode limitations.",
"EventCode": "0x9c",
@ -23,5 +403,35 @@
"SampleAfterValue": "1000003",
"UMask": "0x1",
"Unit": "cpu_core"
},
{
"BriefDescription": "Uops not delivered by IDQ when backend of the machine is not stalled",
"EventCode": "0x9c",
"EventName": "IDQ_UOPS_NOT_DELIVERED.CORE",
"PublicDescription": "Counts the number of uops not delivered to by the Instruction Decode Queue (IDQ) to the back-end of the pipeline when there was no back-end stalls. This event counts for one SMT thread in a given cycle.",
"SampleAfterValue": "1000003",
"UMask": "0x1",
"Unit": "cpu_core"
},
{
"BriefDescription": "Cycles when no uops are not delivered by the IDQ when backend of the machine is not stalled",
"CounterMask": "6",
"EventCode": "0x9c",
"EventName": "IDQ_UOPS_NOT_DELIVERED.CYCLES_0_UOPS_DELIV.CORE",
"PublicDescription": "Counts the number of cycles when no uops were delivered by the Instruction Decode Queue (IDQ) to the back-end of the pipeline when there was no back-end stalls. This event counts for one SMT thread in a given cycle.",
"SampleAfterValue": "1000003",
"UMask": "0x1",
"Unit": "cpu_core"
},
{
"BriefDescription": "Cycles when optimal number of uops was delivered to the back-end when the back-end is not stalled",
"CounterMask": "1",
"EventCode": "0x9c",
"EventName": "IDQ_UOPS_NOT_DELIVERED.CYCLES_FE_WAS_OK",
"Invert": "1",
"PublicDescription": "Counts the number of cycles when the optimal number of uops were delivered by the Instruction Decode Queue (IDQ) to the back-end of the pipeline when there was no back-end stalls. This event counts for one SMT thread in a given cycle.",
"SampleAfterValue": "1000003",
"UMask": "0x1",
"Unit": "cpu_core"
}
]

View File

@ -1,4 +1,100 @@
[
{
"BriefDescription": "Cycles while L3 cache miss demand load is outstanding.",
"CounterMask": "2",
"EventCode": "0xa3",
"EventName": "CYCLE_ACTIVITY.CYCLES_L3_MISS",
"SampleAfterValue": "1000003",
"UMask": "0x2",
"Unit": "cpu_core"
},
{
"BriefDescription": "Execution stalls while L3 cache miss demand load is outstanding.",
"CounterMask": "6",
"EventCode": "0xa3",
"EventName": "CYCLE_ACTIVITY.STALLS_L3_MISS",
"SampleAfterValue": "1000003",
"UMask": "0x6",
"Unit": "cpu_core"
},
{
"BriefDescription": "Counts the number of cycles that the head (oldest load) of the load buffer is stalled due to any number of reasons, including an L1 miss, WCB full, pagewalk, store address block or store data block, on a load that retires.",
"EventCode": "0x05",
"EventName": "LD_HEAD.ANY_AT_RET",
"SampleAfterValue": "1000003",
"UMask": "0xff",
"Unit": "cpu_atom"
},
{
"BriefDescription": "Counts the number of cycles that the head (oldest load) of the load buffer is stalled due to a core bound stall including a store address match, a DTLB miss or a page walk that detains the load from retiring.",
"EventCode": "0x05",
"EventName": "LD_HEAD.L1_BOUND_AT_RET",
"SampleAfterValue": "1000003",
"UMask": "0xf4",
"Unit": "cpu_atom"
},
{
"BriefDescription": "Counts the number of cycles that the head (oldest load) of the load buffer and retirement are both stalled due to a DL1 miss.",
"EventCode": "0x05",
"EventName": "LD_HEAD.L1_MISS_AT_RET",
"SampleAfterValue": "1000003",
"UMask": "0x81",
"Unit": "cpu_atom"
},
{
"BriefDescription": "Counts the number of cycles that the head (oldest load) of the load buffer and retirement are both stalled due to other block cases.",
"EventCode": "0x05",
"EventName": "LD_HEAD.OTHER_AT_RET",
"PublicDescription": "Counts the number of cycles that the head (oldest load) of the load buffer and retirement are both stalled due to other block cases such as pipeline conflicts, fences, etc.",
"SampleAfterValue": "1000003",
"UMask": "0xc0",
"Unit": "cpu_atom"
},
{
"BriefDescription": "Counts the number of cycles that the head (oldest load) of the load buffer and retirement are both stalled due to a pagewalk.",
"EventCode": "0x05",
"EventName": "LD_HEAD.PGWALK_AT_RET",
"SampleAfterValue": "1000003",
"UMask": "0xa0",
"Unit": "cpu_atom"
},
{
"BriefDescription": "Counts the number of cycles that the head (oldest load) of the load buffer and retirement are both stalled due to a store address match.",
"EventCode": "0x05",
"EventName": "LD_HEAD.ST_ADDR_AT_RET",
"SampleAfterValue": "1000003",
"UMask": "0x84",
"Unit": "cpu_atom"
},
{
"BriefDescription": "Execution stalls while L1 cache miss demand load is outstanding.",
"CounterMask": "3",
"EventCode": "0x47",
"EventName": "MEMORY_ACTIVITY.STALLS_L1D_MISS",
"SampleAfterValue": "1000003",
"UMask": "0x3",
"Unit": "cpu_core"
},
{
"BriefDescription": "Execution stalls while L2 cache miss demand cacheable load request is outstanding.",
"CounterMask": "5",
"EventCode": "0x47",
"EventName": "MEMORY_ACTIVITY.STALLS_L2_MISS",
"PublicDescription": "Execution stalls while L2 cache miss demand cacheable load request is outstanding (will not count for uncacheable demand requests e.g. bus lock).",
"SampleAfterValue": "1000003",
"UMask": "0x5",
"Unit": "cpu_core"
},
{
"BriefDescription": "Execution stalls while L3 cache miss demand cacheable load request is outstanding.",
"CounterMask": "9",
"EventCode": "0x47",
"EventName": "MEMORY_ACTIVITY.STALLS_L3_MISS",
"PublicDescription": "Execution stalls while L3 cache miss demand cacheable load request is outstanding (will not count for uncacheable demand requests e.g. bus lock).",
"SampleAfterValue": "1000003",
"UMask": "0x9",
"Unit": "cpu_core"
},
{
"BriefDescription": "Counts randomly selected loads when the latency from first dispatch to completion is greater than 128 cycles.",
"Data_LA": "1",
@ -115,43 +211,29 @@
"Unit": "cpu_core"
},
{
"BriefDescription": "Counts demand data reads that were not supplied by the L3 cache.",
"EventCode": "0xB7",
"EventName": "OCR.DEMAND_DATA_RD.L3_MISS",
"MSRIndex": "0x1a6,0x1a7",
"MSRValue": "0x3FBFC00001",
"SampleAfterValue": "100003",
"UMask": "0x1",
"BriefDescription": "Counts misaligned loads that are 4K page splits.",
"EventCode": "0x13",
"EventName": "MISALIGN_MEM_REF.LOAD_PAGE_SPLIT",
"PEBS": "1",
"SampleAfterValue": "200003",
"UMask": "0x2",
"Unit": "cpu_atom"
},
{
"BriefDescription": "Counts demand data reads that were not supplied by the L3 cache.",
"EventCode": "0x2A,0x2B",
"EventName": "OCR.DEMAND_DATA_RD.L3_MISS",
"MSRIndex": "0x1a6,0x1a7",
"MSRValue": "0x3FBFC00001",
"SampleAfterValue": "100003",
"UMask": "0x1",
"Unit": "cpu_core"
},
{
"BriefDescription": "Counts demand reads for ownership (RFO) and software prefetches for exclusive ownership (PREFETCHW) that were not supplied by the L3 cache.",
"EventCode": "0xB7",
"EventName": "OCR.DEMAND_RFO.L3_MISS",
"MSRIndex": "0x1a6,0x1a7",
"MSRValue": "0x3FBFC00002",
"SampleAfterValue": "100003",
"UMask": "0x1",
"BriefDescription": "Counts misaligned stores that are 4K page splits.",
"EventCode": "0x13",
"EventName": "MISALIGN_MEM_REF.STORE_PAGE_SPLIT",
"PEBS": "1",
"SampleAfterValue": "200003",
"UMask": "0x4",
"Unit": "cpu_atom"
},
{
"BriefDescription": "Counts demand read for ownership (RFO) requests and software prefetches for exclusive ownership (PREFETCHW) that were not supplied by the L3 cache.",
"EventCode": "0x2A,0x2B",
"EventName": "OCR.DEMAND_RFO.L3_MISS",
"MSRIndex": "0x1a6,0x1a7",
"MSRValue": "0x3FBFC00002",
"BriefDescription": "Counts demand data read requests that miss the L3 cache.",
"EventCode": "0x21",
"EventName": "OFFCORE_REQUESTS.L3_MISS_DEMAND_DATA_RD",
"SampleAfterValue": "100003",
"UMask": "0x1",
"UMask": "0x10",
"Unit": "cpu_core"
}
]

View File

@ -1,41 +1,50 @@
[
{
"BriefDescription": "Counts demand data reads that have any type of response.",
"EventCode": "0xB7",
"EventName": "OCR.DEMAND_DATA_RD.ANY_RESPONSE",
"MSRIndex": "0x1a6,0x1a7",
"MSRValue": "0x10001",
"SampleAfterValue": "100003",
"UMask": "0x1",
"Unit": "cpu_atom"
},
{
"BriefDescription": "Counts demand data reads that have any type of response.",
"BriefDescription": "Counts streaming stores that have any type of response.",
"EventCode": "0x2A,0x2B",
"EventName": "OCR.DEMAND_DATA_RD.ANY_RESPONSE",
"EventName": "OCR.STREAMING_WR.ANY_RESPONSE",
"MSRIndex": "0x1a6,0x1a7",
"MSRValue": "0x10001",
"MSRValue": "0x10800",
"SampleAfterValue": "100003",
"UMask": "0x1",
"Unit": "cpu_core"
},
{
"BriefDescription": "Counts demand reads for ownership (RFO) and software prefetches for exclusive ownership (PREFETCHW) that have any type of response.",
"EventCode": "0xB7",
"EventName": "OCR.DEMAND_RFO.ANY_RESPONSE",
"MSRIndex": "0x1a6,0x1a7",
"MSRValue": "0x10002",
"BriefDescription": "Cycles when Reservation Station (RS) is empty for the thread.",
"EventCode": "0xa5",
"EventName": "RS.EMPTY",
"PublicDescription": "Counts cycles during which the reservation station (RS) is empty for this logical processor. This is usually caused when the front-end pipeline runs into starvation periods (e.g. branch mispredictions or i-cache misses)",
"SampleAfterValue": "1000003",
"UMask": "0x7",
"Unit": "cpu_core"
},
{
"BriefDescription": "Counts end of periods where the Reservation Station (RS) was empty.",
"CounterMask": "1",
"EdgeDetect": "1",
"EventCode": "0xa5",
"EventName": "RS.EMPTY_COUNT",
"Invert": "1",
"PublicDescription": "Counts end of periods where the Reservation Station (RS) was empty. Could be useful to closely sample on front-end latency issues (see the FRONTEND_RETIRED event of designated precise events)",
"SampleAfterValue": "100003",
"UMask": "0x1",
"UMask": "0x7",
"Unit": "cpu_core"
},
{
"BriefDescription": "Counts the number of issue slots in a UMWAIT or TPAUSE instruction where no uop issues due to the instruction putting the CPU into the C0.1 activity state. For Tremont, UMWAIT and TPAUSE will only put the CPU into C0.1 activity state (not C0.2 activity state)",
"EventCode": "0x75",
"EventName": "SERIALIZATION.C01_MS_SCB",
"SampleAfterValue": "200003",
"UMask": "0x4",
"Unit": "cpu_atom"
},
{
"BriefDescription": "Counts demand read for ownership (RFO) requests and software prefetches for exclusive ownership (PREFETCHW) that have any type of response.",
"EventCode": "0x2A,0x2B",
"EventName": "OCR.DEMAND_RFO.ANY_RESPONSE",
"MSRIndex": "0x1a6,0x1a7",
"MSRValue": "0x10002",
"SampleAfterValue": "100003",
"BriefDescription": "Cycles the uncore cannot take further requests",
"CounterMask": "1",
"EventCode": "0x2d",
"EventName": "XQ.FULL_CYCLES",
"PublicDescription": "number of cycles when the thread is active and the uncore cannot take any further requests (for example prefetches, loads or stores initiated by the Core that miss the L2 cache).",
"SampleAfterValue": "1000003",
"UMask": "0x1",
"Unit": "cpu_core"
}

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,18 @@
[
{
"BriefDescription": "Number of all entries allocated. Includes also retries.",
"EventCode": "0x35",
"EventName": "UNC_HAC_CBO_TOR_ALLOCATION.ALL",
"PerPkg": "1",
"UMask": "0x8",
"Unit": "HAC_CBO"
},
{
"BriefDescription": "Asserted on coherent DRD + DRdPref allocations into the queue. Cacheable only",
"EventCode": "0x35",
"EventName": "UNC_HAC_CBO_TOR_ALLOCATION.DRD",
"PerPkg": "1",
"UMask": "0x1",
"Unit": "HAC_CBO"
}
]

View File

@ -0,0 +1,42 @@
[
{
"BriefDescription": "Number of all coherent Data Read entries. Doesn't include prefetches",
"EventCode": "0x81",
"EventName": "UNC_HAC_ARB_REQ_TRK_REQUEST.DRD",
"PerPkg": "1",
"UMask": "0x2",
"Unit": "HAC_ARB"
},
{
"BriefDescription": "Number of all CMI transactions",
"EventCode": "0x8a",
"EventName": "UNC_HAC_ARB_TRANSACTIONS.ALL",
"PerPkg": "1",
"UMask": "0x1",
"Unit": "HAC_ARB"
},
{
"BriefDescription": "Number of all CMI reads",
"EventCode": "0x8a",
"EventName": "UNC_HAC_ARB_TRANSACTIONS.READS",
"PerPkg": "1",
"UMask": "0x2",
"Unit": "HAC_ARB"
},
{
"BriefDescription": "Number of all CMI writes not including Mflush",
"EventCode": "0x8a",
"EventName": "UNC_HAC_ARB_TRANSACTIONS.WRITES",
"PerPkg": "1",
"UMask": "0x4",
"Unit": "HAC_ARB"
},
{
"BriefDescription": "Total number of all outgoing entries allocated. Accounts for Coherent and non-coherent traffic.",
"EventCode": "0x81",
"EventName": "UNC_HAC_ARB_TRK_REQUESTS.ALL",
"PerPkg": "1",
"UMask": "0x1",
"Unit": "HAC_ARB"
}
]

View File

@ -0,0 +1,126 @@
[
{
"BriefDescription": "Counts every CAS read command sent from the Memory Controller 0 to DRAM (sum of all channels).",
"EventCode": "0xff",
"EventName": "UNC_MC0_RDCAS_COUNT_FREERUN",
"PerPkg": "1",
"PublicDescription": "Counts every CAS read command sent from the Memory Controller 0 to DRAM (sum of all channels). Each CAS commands can be for 32B or 64B of data.",
"UMask": "0x20",
"Unit": "imc_free_running_0"
},
{
"BriefDescription": "Counts every read and write request entering the Memory Controller 0.",
"EventCode": "0xff",
"EventName": "UNC_MC0_TOTAL_REQCOUNT_FREERUN",
"PerPkg": "1",
"PublicDescription": "Counts every read and write request entering the Memory Controller 0 (sum of all channels). All requests are counted as one, whether they are 32B or 64B Read/Write or partial/full line writes. Some write requests to the same address may merge to a single write command to DRAM. Therefore, the total request count may be higher than total DRAM BW.",
"UMask": "0x10",
"Unit": "imc_free_running_0"
},
{
"BriefDescription": "Counts every CAS write command sent from the Memory Controller 0 to DRAM (sum of all channels).",
"EventCode": "0xff",
"EventName": "UNC_MC0_WRCAS_COUNT_FREERUN",
"PerPkg": "1",
"PublicDescription": "Counts every CAS write command sent from the Memory Controller 0 to DRAM (sum of all channels). Each CAS commands can be for 32B or 64B of data.",
"UMask": "0x30",
"Unit": "imc_free_running_0"
},
{
"BriefDescription": "Counts every CAS read command sent from the Memory Controller 1 to DRAM (sum of all channels).",
"EventCode": "0xff",
"EventName": "UNC_MC1_RDCAS_COUNT_FREERUN",
"PerPkg": "1",
"PublicDescription": "Counts every CAS read command sent from the Memory Controller 1 to DRAM (sum of all channels). Each CAS commands can be for 32B or 64B of data.",
"UMask": "0x20",
"Unit": "imc_free_running_1"
},
{
"BriefDescription": "Counts every read and write request entering the Memory Controller 1.",
"EventCode": "0xff",
"EventName": "UNC_MC1_TOTAL_REQCOUNT_FREERUN",
"PerPkg": "1",
"PublicDescription": "Counts every read and write request entering the Memory Controller 1 (sum of all channels). All requests are counted as one, whether they are 32B or 64B Read/Write or partial/full line writes. Some write requests to the same address may merge to a single write command to DRAM. Therefore, the total request count may be higher than total DRAM BW.",
"UMask": "0x10",
"Unit": "imc_free_running_1"
},
{
"BriefDescription": "Counts every CAS write command sent from the Memory Controller 1 to DRAM (sum of all channels).",
"EventCode": "0xff",
"EventName": "UNC_MC1_WRCAS_COUNT_FREERUN",
"PerPkg": "1",
"PublicDescription": "Counts every CAS write command sent from the Memory Controller 1 to DRAM (sum of all channels). Each CAS commands can be for 32B or 64B of data.",
"UMask": "0x30",
"Unit": "imc_free_running_1"
},
{
"BriefDescription": "ACT command for a read request sent to DRAM",
"EventCode": "0x24",
"EventName": "UNC_M_ACT_COUNT_RD",
"PerPkg": "1",
"Unit": "iMC"
},
{
"BriefDescription": "ACT command sent to DRAM",
"EventCode": "0x26",
"EventName": "UNC_M_ACT_COUNT_TOTAL",
"PerPkg": "1",
"Unit": "iMC"
},
{
"BriefDescription": "ACT command for a write request sent to DRAM",
"EventCode": "0x25",
"EventName": "UNC_M_ACT_COUNT_WR",
"PerPkg": "1",
"Unit": "iMC"
},
{
"BriefDescription": "Read CAS command sent to DRAM",
"EventCode": "0x22",
"EventName": "UNC_M_CAS_COUNT_RD",
"PerPkg": "1",
"Unit": "iMC"
},
{
"BriefDescription": "Write CAS command sent to DRAM",
"EventCode": "0x23",
"EventName": "UNC_M_CAS_COUNT_WR",
"PerPkg": "1",
"Unit": "iMC"
},
{
"BriefDescription": "PRE command sent to DRAM due to page table idle timer expiration",
"EventCode": "0x28",
"EventName": "UNC_M_PRE_COUNT_IDLE",
"PerPkg": "1",
"Unit": "iMC"
},
{
"BriefDescription": "PRE command sent to DRAM for a read/write request",
"EventCode": "0x27",
"EventName": "UNC_M_PRE_COUNT_PAGE_MISS",
"PerPkg": "1",
"Unit": "iMC"
},
{
"BriefDescription": "Number of bytes read from DRAM, in 32B chunks. Counter increments by 1 after receiving 32B chunk data.",
"EventCode": "0x3A",
"EventName": "UNC_M_RD_DATA",
"PerPkg": "1",
"Unit": "iMC"
},
{
"BriefDescription": "Total number of read and write byte transfers to/from DRAM, in 32B chunks. Counter increments by 1 after sending or receiving 32B chunk data.",
"EventCode": "0x3C",
"EventName": "UNC_M_TOTAL_DATA",
"PerPkg": "1",
"Unit": "iMC"
},
{
"BriefDescription": "Number of bytes written to DRAM, in 32B chunks. Counter increments by 1 after sending 32B chunk data.",
"EventCode": "0x3B",
"EventName": "UNC_M_WR_DATA",
"PerPkg": "1",
"Unit": "iMC"
}
]

View File

@ -1,4 +1,39 @@
[
{
"BriefDescription": "Counts the number of first level TLB misses but second level hits due to a demand load that did not start a page walk. Accounts for all page sizes. Will result in a DTLB write from STLB.",
"EventCode": "0x08",
"EventName": "DTLB_LOAD_MISSES.STLB_HIT",
"SampleAfterValue": "200003",
"UMask": "0x20",
"Unit": "cpu_atom"
},
{
"BriefDescription": "Loads that miss the DTLB and hit the STLB.",
"EventCode": "0x12",
"EventName": "DTLB_LOAD_MISSES.STLB_HIT",
"PublicDescription": "Counts loads that miss the DTLB (Data TLB) and hit the STLB (Second level TLB).",
"SampleAfterValue": "100003",
"UMask": "0x20",
"Unit": "cpu_core"
},
{
"BriefDescription": "Cycles when at least one PMH is busy with a page walk for a demand load.",
"CounterMask": "1",
"EventCode": "0x12",
"EventName": "DTLB_LOAD_MISSES.WALK_ACTIVE",
"PublicDescription": "Counts cycles when at least one PMH (Page Miss Handler) is busy with a page walk for a demand load.",
"SampleAfterValue": "100003",
"UMask": "0x10",
"Unit": "cpu_core"
},
{
"BriefDescription": "Counts the number of page walks completed due to load DTLB misses.",
"EventCode": "0x08",
"EventName": "DTLB_LOAD_MISSES.WALK_COMPLETED",
"SampleAfterValue": "200003",
"UMask": "0xe",
"Unit": "cpu_atom"
},
{
"BriefDescription": "Load miss in all TLB levels causes a page walk that completes. (All page sizes)",
"EventCode": "0x12",
@ -8,6 +43,95 @@
"UMask": "0xe",
"Unit": "cpu_core"
},
{
"BriefDescription": "Page walks completed due to a demand data load to a 1G page.",
"EventCode": "0x12",
"EventName": "DTLB_LOAD_MISSES.WALK_COMPLETED_1G",
"PublicDescription": "Counts completed page walks (1G sizes) caused by demand data loads. This implies address translations missed in the DTLB and further levels of TLB. The page walk can end with or without a fault.",
"SampleAfterValue": "100003",
"UMask": "0x8",
"Unit": "cpu_core"
},
{
"BriefDescription": "Counts the number of page walks completed due to load DTLB misses to a 2M or 4M page.",
"EventCode": "0x08",
"EventName": "DTLB_LOAD_MISSES.WALK_COMPLETED_2M_4M",
"PublicDescription": "Counts the number of page walks completed due to loads (including SW prefetches) whose address translations missed in all Translation Lookaside Buffer (TLB) levels and were mapped to 2M or 4M pages. Includes page walks that page fault.",
"SampleAfterValue": "200003",
"UMask": "0x4",
"Unit": "cpu_atom"
},
{
"BriefDescription": "Page walks completed due to a demand data load to a 2M/4M page.",
"EventCode": "0x12",
"EventName": "DTLB_LOAD_MISSES.WALK_COMPLETED_2M_4M",
"PublicDescription": "Counts completed page walks (2M/4M sizes) caused by demand data loads. This implies address translations missed in the DTLB and further levels of TLB. The page walk can end with or without a fault.",
"SampleAfterValue": "100003",
"UMask": "0x4",
"Unit": "cpu_core"
},
{
"BriefDescription": "Page walks completed due to a demand data load to a 4K page.",
"EventCode": "0x12",
"EventName": "DTLB_LOAD_MISSES.WALK_COMPLETED_4K",
"PublicDescription": "Counts completed page walks (4K sizes) caused by demand data loads. This implies address translations missed in the DTLB and further levels of TLB. The page walk can end with or without a fault.",
"SampleAfterValue": "100003",
"UMask": "0x2",
"Unit": "cpu_core"
},
{
"BriefDescription": "Counts the number of page walks outstanding for Loads (demand or SW prefetch) in PMH every cycle.",
"EventCode": "0x08",
"EventName": "DTLB_LOAD_MISSES.WALK_PENDING",
"PublicDescription": "Counts the number of page walks outstanding for Loads (demand or SW prefetch) in PMH every cycle. A PMH page walk is outstanding from page walk start till PMH becomes idle again (ready to serve next walk). Includes EPT-walk intervals.",
"SampleAfterValue": "200003",
"UMask": "0x10",
"Unit": "cpu_atom"
},
{
"BriefDescription": "Number of page walks outstanding for a demand load in the PMH each cycle.",
"EventCode": "0x12",
"EventName": "DTLB_LOAD_MISSES.WALK_PENDING",
"PublicDescription": "Counts the number of page walks outstanding for a demand load in the PMH (Page Miss Handler) each cycle.",
"SampleAfterValue": "100003",
"UMask": "0x10",
"Unit": "cpu_core"
},
{
"BriefDescription": "Counts the number of first level TLB misses but second level hits due to stores that did not start a page walk. Accounts for all pages sizes. Will result in a DTLB write from STLB.",
"EventCode": "0x49",
"EventName": "DTLB_STORE_MISSES.STLB_HIT",
"SampleAfterValue": "2000003",
"UMask": "0x20",
"Unit": "cpu_atom"
},
{
"BriefDescription": "Stores that miss the DTLB and hit the STLB.",
"EventCode": "0x13",
"EventName": "DTLB_STORE_MISSES.STLB_HIT",
"PublicDescription": "Counts stores that miss the DTLB (Data TLB) and hit the STLB (2nd Level TLB).",
"SampleAfterValue": "100003",
"UMask": "0x20",
"Unit": "cpu_core"
},
{
"BriefDescription": "Cycles when at least one PMH is busy with a page walk for a store.",
"CounterMask": "1",
"EventCode": "0x13",
"EventName": "DTLB_STORE_MISSES.WALK_ACTIVE",
"PublicDescription": "Counts cycles when at least one PMH (Page Miss Handler) is busy with a page walk for a store.",
"SampleAfterValue": "100003",
"UMask": "0x10",
"Unit": "cpu_core"
},
{
"BriefDescription": "Counts the number of page walks completed due to store DTLB misses to a 1G page.",
"EventCode": "0x49",
"EventName": "DTLB_STORE_MISSES.WALK_COMPLETED",
"SampleAfterValue": "2000003",
"UMask": "0xe",
"Unit": "cpu_atom"
},
{
"BriefDescription": "Store misses in all TLB levels causes a page walk that completes. (All page sizes)",
"EventCode": "0x13",
@ -17,6 +141,86 @@
"UMask": "0xe",
"Unit": "cpu_core"
},
{
"BriefDescription": "Page walks completed due to a demand data store to a 1G page.",
"EventCode": "0x13",
"EventName": "DTLB_STORE_MISSES.WALK_COMPLETED_1G",
"PublicDescription": "Counts completed page walks (1G sizes) caused by demand data stores. This implies address translations missed in the DTLB and further levels of TLB. The page walk can end with or without a fault.",
"SampleAfterValue": "100003",
"UMask": "0x8",
"Unit": "cpu_core"
},
{
"BriefDescription": "Page walks completed due to a demand data store to a 2M/4M page.",
"EventCode": "0x13",
"EventName": "DTLB_STORE_MISSES.WALK_COMPLETED_2M_4M",
"PublicDescription": "Counts completed page walks (2M/4M sizes) caused by demand data stores. This implies address translations missed in the DTLB and further levels of TLB. The page walk can end with or without a fault.",
"SampleAfterValue": "100003",
"UMask": "0x4",
"Unit": "cpu_core"
},
{
"BriefDescription": "Page walks completed due to a demand data store to a 4K page.",
"EventCode": "0x13",
"EventName": "DTLB_STORE_MISSES.WALK_COMPLETED_4K",
"PublicDescription": "Counts completed page walks (4K sizes) caused by demand data stores. This implies address translations missed in the DTLB and further levels of TLB. The page walk can end with or without a fault.",
"SampleAfterValue": "100003",
"UMask": "0x2",
"Unit": "cpu_core"
},
{
"BriefDescription": "Counts the number of page walks outstanding in the page miss handler (PMH) for stores every cycle.",
"EventCode": "0x49",
"EventName": "DTLB_STORE_MISSES.WALK_PENDING",
"PublicDescription": "Counts the number of page walks outstanding in the page miss handler (PMH) for stores every cycle. A PMH page walk is outstanding from page walk start till PMH becomes idle again (ready to serve next walk). Includes EPT-walk intervals.",
"SampleAfterValue": "200003",
"UMask": "0x10",
"Unit": "cpu_atom"
},
{
"BriefDescription": "Number of page walks outstanding for a store in the PMH each cycle.",
"EventCode": "0x13",
"EventName": "DTLB_STORE_MISSES.WALK_PENDING",
"PublicDescription": "Counts the number of page walks outstanding for a store in the PMH (Page Miss Handler) each cycle.",
"SampleAfterValue": "100003",
"UMask": "0x10",
"Unit": "cpu_core"
},
{
"BriefDescription": "Counts the number of page walks initiated by a instruction fetch that missed the first and second level TLBs.",
"EventCode": "0x85",
"EventName": "ITLB_MISSES.MISS_CAUSED_WALK",
"SampleAfterValue": "1000003",
"UMask": "0x1",
"Unit": "cpu_atom"
},
{
"BriefDescription": "Counts the number of first level TLB misses but second level hits due to an instruction fetch that did not start a page walk. Account for all pages sizes. Will result in an ITLB write from STLB.",
"EventCode": "0x85",
"EventName": "ITLB_MISSES.STLB_HIT",
"SampleAfterValue": "2000003",
"UMask": "0x20",
"Unit": "cpu_atom"
},
{
"BriefDescription": "Instruction fetch requests that miss the ITLB and hit the STLB.",
"EventCode": "0x11",
"EventName": "ITLB_MISSES.STLB_HIT",
"PublicDescription": "Counts instruction fetch requests that miss the ITLB (Instruction TLB) and hit the STLB (Second-level TLB).",
"SampleAfterValue": "100003",
"UMask": "0x20",
"Unit": "cpu_core"
},
{
"BriefDescription": "Cycles when at least one PMH is busy with a page walk for code (instruction fetch) request.",
"CounterMask": "1",
"EventCode": "0x11",
"EventName": "ITLB_MISSES.WALK_ACTIVE",
"PublicDescription": "Counts cycles when at least one PMH (Page Miss Handler) is busy with a page walk for a code (instruction fetch) request.",
"SampleAfterValue": "100003",
"UMask": "0x10",
"Unit": "cpu_core"
},
{
"BriefDescription": "Counts the number of page walks completed due to instruction fetch misses to any page size.",
"EventCode": "0x85",
@ -34,5 +238,58 @@
"SampleAfterValue": "100003",
"UMask": "0xe",
"Unit": "cpu_core"
},
{
"BriefDescription": "Counts the number of page walks completed due to instruction fetch misses to a 2M or 4M page.",
"EventCode": "0x85",
"EventName": "ITLB_MISSES.WALK_COMPLETED_2M_4M",
"PublicDescription": "Counts the number of page walks completed due to instruction fetches whose address translations missed in all Translation Lookaside Buffer (TLB) levels and were mapped to 2M or 4M pages. Includes page walks that page fault.",
"SampleAfterValue": "2000003",
"UMask": "0x4",
"Unit": "cpu_atom"
},
{
"BriefDescription": "Code miss in all TLB levels causes a page walk that completes. (2M/4M)",
"EventCode": "0x11",
"EventName": "ITLB_MISSES.WALK_COMPLETED_2M_4M",
"PublicDescription": "Counts completed page walks (2M/4M page sizes) caused by a code fetch. This implies it missed in the ITLB (Instruction TLB) and further levels of TLB. The page walk can end with or without a fault.",
"SampleAfterValue": "100003",
"UMask": "0x4",
"Unit": "cpu_core"
},
{
"BriefDescription": "Code miss in all TLB levels causes a page walk that completes. (4K)",
"EventCode": "0x11",
"EventName": "ITLB_MISSES.WALK_COMPLETED_4K",
"PublicDescription": "Counts completed page walks (4K page sizes) caused by a code fetch. This implies it missed in the ITLB (Instruction TLB) and further levels of TLB. The page walk can end with or without a fault.",
"SampleAfterValue": "100003",
"UMask": "0x2",
"Unit": "cpu_core"
},
{
"BriefDescription": "Counts the number of page walks outstanding for iside in PMH every cycle.",
"EventCode": "0x85",
"EventName": "ITLB_MISSES.WALK_PENDING",
"PublicDescription": "Counts the number of page walks outstanding for iside in PMH every cycle. A PMH page walk is outstanding from page walk start till PMH becomes idle again (ready to serve next walk). Includes EPT-walk intervals. Walks could be counted by edge detecting on this event, but would count restarted suspended walks.",
"SampleAfterValue": "200003",
"UMask": "0x10",
"Unit": "cpu_atom"
},
{
"BriefDescription": "Number of page walks outstanding for an outstanding code request in the PMH each cycle.",
"EventCode": "0x11",
"EventName": "ITLB_MISSES.WALK_PENDING",
"PublicDescription": "Counts the number of page walks outstanding for an outstanding code (instruction fetch) request in the PMH (Page Miss Handler) each cycle.",
"SampleAfterValue": "100003",
"UMask": "0x10",
"Unit": "cpu_core"
},
{
"BriefDescription": "Counts the number of cycles that the head (oldest load) of the load buffer and retirement are both stalled due to a DTLB miss.",
"EventCode": "0x05",
"EventName": "LD_HEAD.DTLB_MISS_AT_RET",
"SampleAfterValue": "1000003",
"UMask": "0x90",
"Unit": "cpu_atom"
}
]