sfc: Implement firmware-assisted TSO for EF10
Segmentation remains in the driver, but we generate option descriptors describing the required packet editing rather than making our own copies. Reduce tso_state::ipv4_id to 16 bits, so it doesn't overflow into the TCP_FLAGS field of the option descriptor. Signed-off-by: Ben Hutchings <bhutchings@solarflare.com>
This commit is contained in:
parent
c78c39e67c
commit
dfa50be95c
|
@ -21,6 +21,7 @@
|
|||
#include "efx.h"
|
||||
#include "nic.h"
|
||||
#include "workarounds.h"
|
||||
#include "ef10_regs.h"
|
||||
|
||||
static void efx_dequeue_buffer(struct efx_tx_queue *tx_queue,
|
||||
struct efx_tx_buffer *buffer,
|
||||
|
@ -83,8 +84,10 @@ unsigned int efx_tx_max_skb_descs(struct efx_nic *efx)
|
|||
*/
|
||||
unsigned int max_descs = EFX_TSO_MAX_SEGS * 2 + MAX_SKB_FRAGS;
|
||||
|
||||
/* Possibly one more per segment for the alignment workaround */
|
||||
if (EFX_WORKAROUND_5391(efx))
|
||||
/* Possibly one more per segment for the alignment workaround,
|
||||
* or for option descriptors
|
||||
*/
|
||||
if (EFX_WORKAROUND_5391(efx) || efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
|
||||
max_descs += EFX_TSO_MAX_SEGS;
|
||||
|
||||
/* Possibly more for PCIe page boundaries within input fragments */
|
||||
|
@ -628,6 +631,9 @@ void efx_remove_tx_queue(struct efx_tx_queue *tx_queue)
|
|||
* @tcp_off: Offset of TCP header
|
||||
* @header_len: Number of bytes of header
|
||||
* @ip_base_len: IPv4 tot_len or IPv6 payload_len, before TCP payload
|
||||
* @header_dma_addr: Header DMA address, when using option descriptors
|
||||
* @header_unmap_len: Header DMA mapped length, or 0 if not using option
|
||||
* descriptors
|
||||
*
|
||||
* The state used during segmentation. It is put into this data structure
|
||||
* just to make it easy to pass into inline functions.
|
||||
|
@ -636,7 +642,7 @@ struct tso_state {
|
|||
/* Output position */
|
||||
unsigned out_len;
|
||||
unsigned seqnum;
|
||||
unsigned ipv4_id;
|
||||
u16 ipv4_id;
|
||||
unsigned packet_space;
|
||||
|
||||
/* Input position */
|
||||
|
@ -651,6 +657,8 @@ struct tso_state {
|
|||
unsigned int tcp_off;
|
||||
unsigned header_len;
|
||||
unsigned int ip_base_len;
|
||||
dma_addr_t header_dma_addr;
|
||||
unsigned int header_unmap_len;
|
||||
};
|
||||
|
||||
|
||||
|
@ -825,7 +833,10 @@ static void efx_enqueue_unwind(struct efx_tx_queue *tx_queue)
|
|||
static int tso_start(struct tso_state *st, struct efx_nic *efx,
|
||||
const struct sk_buff *skb)
|
||||
{
|
||||
bool use_options = efx_nic_rev(efx) >= EFX_REV_HUNT_A0;
|
||||
struct device *dma_dev = &efx->pci_dev->dev;
|
||||
unsigned int header_len, in_len;
|
||||
dma_addr_t dma_addr;
|
||||
|
||||
st->ip_off = skb_network_header(skb) - skb->data;
|
||||
st->tcp_off = skb_transport_header(skb) - skb->data;
|
||||
|
@ -848,22 +859,32 @@ static int tso_start(struct tso_state *st, struct efx_nic *efx,
|
|||
|
||||
st->out_len = skb->len - header_len;
|
||||
|
||||
if (likely(in_len == 0)) {
|
||||
st->unmap_len = 0;
|
||||
if (!use_options) {
|
||||
st->header_unmap_len = 0;
|
||||
|
||||
if (likely(in_len == 0)) {
|
||||
st->dma_flags = 0;
|
||||
st->unmap_len = 0;
|
||||
return 0;
|
||||
}
|
||||
|
||||
dma_addr = dma_map_single(dma_dev, skb->data + header_len,
|
||||
in_len, DMA_TO_DEVICE);
|
||||
st->dma_flags = EFX_TX_BUF_MAP_SINGLE;
|
||||
st->dma_addr = dma_addr;
|
||||
st->unmap_addr = dma_addr;
|
||||
st->unmap_len = in_len;
|
||||
} else {
|
||||
dma_addr = dma_map_single(dma_dev, skb->data,
|
||||
skb_headlen(skb), DMA_TO_DEVICE);
|
||||
st->header_dma_addr = dma_addr;
|
||||
st->header_unmap_len = skb_headlen(skb);
|
||||
st->dma_flags = 0;
|
||||
return 0;
|
||||
st->dma_addr = dma_addr + header_len;
|
||||
st->unmap_len = 0;
|
||||
}
|
||||
|
||||
st->unmap_addr = dma_map_single(&efx->pci_dev->dev,
|
||||
skb->data + header_len, in_len,
|
||||
DMA_TO_DEVICE);
|
||||
if (unlikely(dma_mapping_error(&efx->pci_dev->dev, st->unmap_addr)))
|
||||
return -ENOMEM;
|
||||
|
||||
st->dma_flags = EFX_TX_BUF_MAP_SINGLE;
|
||||
st->unmap_len = in_len;
|
||||
st->dma_addr = st->unmap_addr;
|
||||
return 0;
|
||||
return unlikely(dma_mapping_error(dma_dev, dma_addr)) ? -ENOMEM : 0;
|
||||
}
|
||||
|
||||
static int tso_get_fragment(struct tso_state *st, struct efx_nic *efx,
|
||||
|
@ -948,54 +969,97 @@ static int tso_start_new_packet(struct efx_tx_queue *tx_queue,
|
|||
{
|
||||
struct efx_tx_buffer *buffer =
|
||||
&tx_queue->buffer[tx_queue->insert_count & tx_queue->ptr_mask];
|
||||
struct tcphdr *tsoh_th;
|
||||
unsigned ip_length;
|
||||
u8 *header;
|
||||
int rc;
|
||||
bool is_last = st->out_len <= skb_shinfo(skb)->gso_size;
|
||||
u8 tcp_flags_clear;
|
||||
|
||||
/* Allocate and insert a DMA-mapped header buffer. */
|
||||
header = efx_tsoh_get_buffer(tx_queue, buffer, st->header_len);
|
||||
if (!header)
|
||||
return -ENOMEM;
|
||||
|
||||
tsoh_th = (struct tcphdr *)(header + st->tcp_off);
|
||||
|
||||
/* Copy and update the headers. */
|
||||
memcpy(header, skb->data, st->header_len);
|
||||
|
||||
tsoh_th->seq = htonl(st->seqnum);
|
||||
st->seqnum += skb_shinfo(skb)->gso_size;
|
||||
if (st->out_len > skb_shinfo(skb)->gso_size) {
|
||||
/* This packet will not finish the TSO burst. */
|
||||
if (!is_last) {
|
||||
st->packet_space = skb_shinfo(skb)->gso_size;
|
||||
tsoh_th->fin = 0;
|
||||
tsoh_th->psh = 0;
|
||||
tcp_flags_clear = 0x09; /* mask out FIN and PSH */
|
||||
} else {
|
||||
/* This packet will be the last in the TSO burst. */
|
||||
st->packet_space = st->out_len;
|
||||
tsoh_th->fin = tcp_hdr(skb)->fin;
|
||||
tsoh_th->psh = tcp_hdr(skb)->psh;
|
||||
tcp_flags_clear = 0x00;
|
||||
}
|
||||
ip_length = st->ip_base_len + st->packet_space;
|
||||
|
||||
if (st->protocol == htons(ETH_P_IP)) {
|
||||
struct iphdr *tsoh_iph = (struct iphdr *)(header + st->ip_off);
|
||||
if (!st->header_unmap_len) {
|
||||
/* Allocate and insert a DMA-mapped header buffer. */
|
||||
struct tcphdr *tsoh_th;
|
||||
unsigned ip_length;
|
||||
u8 *header;
|
||||
int rc;
|
||||
|
||||
tsoh_iph->tot_len = htons(ip_length);
|
||||
header = efx_tsoh_get_buffer(tx_queue, buffer, st->header_len);
|
||||
if (!header)
|
||||
return -ENOMEM;
|
||||
|
||||
/* Linux leaves suitable gaps in the IP ID space for us to fill. */
|
||||
tsoh_iph->id = htons(st->ipv4_id);
|
||||
st->ipv4_id++;
|
||||
tsoh_th = (struct tcphdr *)(header + st->tcp_off);
|
||||
|
||||
/* Copy and update the headers. */
|
||||
memcpy(header, skb->data, st->header_len);
|
||||
|
||||
tsoh_th->seq = htonl(st->seqnum);
|
||||
((u8 *)tsoh_th)[13] &= ~tcp_flags_clear;
|
||||
|
||||
ip_length = st->ip_base_len + st->packet_space;
|
||||
|
||||
if (st->protocol == htons(ETH_P_IP)) {
|
||||
struct iphdr *tsoh_iph =
|
||||
(struct iphdr *)(header + st->ip_off);
|
||||
|
||||
tsoh_iph->tot_len = htons(ip_length);
|
||||
tsoh_iph->id = htons(st->ipv4_id);
|
||||
} else {
|
||||
struct ipv6hdr *tsoh_iph =
|
||||
(struct ipv6hdr *)(header + st->ip_off);
|
||||
|
||||
tsoh_iph->payload_len = htons(ip_length);
|
||||
}
|
||||
|
||||
rc = efx_tso_put_header(tx_queue, buffer, header);
|
||||
if (unlikely(rc))
|
||||
return rc;
|
||||
} else {
|
||||
struct ipv6hdr *tsoh_iph =
|
||||
(struct ipv6hdr *)(header + st->ip_off);
|
||||
/* Send the original headers with a TSO option descriptor
|
||||
* in front
|
||||
*/
|
||||
u8 tcp_flags = ((u8 *)tcp_hdr(skb))[13] & ~tcp_flags_clear;
|
||||
|
||||
tsoh_iph->payload_len = htons(ip_length);
|
||||
buffer->flags = EFX_TX_BUF_OPTION;
|
||||
buffer->len = 0;
|
||||
buffer->unmap_len = 0;
|
||||
EFX_POPULATE_QWORD_5(buffer->option,
|
||||
ESF_DZ_TX_DESC_IS_OPT, 1,
|
||||
ESF_DZ_TX_OPTION_TYPE,
|
||||
ESE_DZ_TX_OPTION_DESC_TSO,
|
||||
ESF_DZ_TX_TSO_TCP_FLAGS, tcp_flags,
|
||||
ESF_DZ_TX_TSO_IP_ID, st->ipv4_id,
|
||||
ESF_DZ_TX_TSO_TCP_SEQNO, st->seqnum);
|
||||
++tx_queue->insert_count;
|
||||
|
||||
/* We mapped the headers in tso_start(). Unmap them
|
||||
* when the last segment is completed.
|
||||
*/
|
||||
buffer = &tx_queue->buffer[tx_queue->insert_count &
|
||||
tx_queue->ptr_mask];
|
||||
buffer->dma_addr = st->header_dma_addr;
|
||||
buffer->len = st->header_len;
|
||||
if (is_last) {
|
||||
buffer->flags = EFX_TX_BUF_CONT | EFX_TX_BUF_MAP_SINGLE;
|
||||
buffer->unmap_len = st->header_unmap_len;
|
||||
/* Ensure we only unmap them once in case of a
|
||||
* later DMA mapping error and rollback
|
||||
*/
|
||||
st->header_unmap_len = 0;
|
||||
} else {
|
||||
buffer->flags = EFX_TX_BUF_CONT;
|
||||
buffer->unmap_len = 0;
|
||||
}
|
||||
++tx_queue->insert_count;
|
||||
}
|
||||
|
||||
rc = efx_tso_put_header(tx_queue, buffer, header);
|
||||
if (unlikely(rc))
|
||||
return rc;
|
||||
st->seqnum += skb_shinfo(skb)->gso_size;
|
||||
|
||||
/* Linux leaves suitable gaps in the IP ID space for us to fill. */
|
||||
++st->ipv4_id;
|
||||
|
||||
++tx_queue->tso_packets;
|
||||
|
||||
|
@ -1091,6 +1155,11 @@ static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
|
|||
state.unmap_len, DMA_TO_DEVICE);
|
||||
}
|
||||
|
||||
/* Free the header DMA mapping, if using option descriptors */
|
||||
if (state.header_unmap_len)
|
||||
dma_unmap_single(&efx->pci_dev->dev, state.header_dma_addr,
|
||||
state.header_unmap_len, DMA_TO_DEVICE);
|
||||
|
||||
efx_enqueue_unwind(tx_queue);
|
||||
return NETDEV_TX_OK;
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue