timers, sched/clock: Optimize cache line usage
Currently sched_clock(), a very hot code path, is not optimized to minimise its cache profile. In particular: 1. cd is not ____cacheline_aligned, 2. struct clock_data does not distinguish between hotpath and coldpath data, reducing locality of reference in the hotpath, 3. Some hotpath data is missing from struct clock_data and is marked __read_mostly (which more or less guarantees it will not share a cache line with cd). This patch corrects these problems by extracting all hotpath data into a separate structure and using ____cacheline_aligned to ensure the hotpath uses a single (64 byte) cache line. Signed-off-by: Daniel Thompson <daniel.thompson@linaro.org> Signed-off-by: John Stultz <john.stultz@linaro.org> Reviewed-by: Stephen Boyd <sboyd@codeaurora.org> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Russell King <linux@arm.linux.org.uk> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will.deacon@arm.com> Link: http://lkml.kernel.org/r/1427397806-20889-3-git-send-email-john.stultz@linaro.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
This commit is contained in:
parent
8710e91402
commit
cf7c9c1707
|
@ -18,28 +18,59 @@
|
|||
#include <linux/seqlock.h>
|
||||
#include <linux/bitops.h>
|
||||
|
||||
struct clock_data {
|
||||
ktime_t wrap_kt;
|
||||
/**
|
||||
* struct clock_read_data - data required to read from sched_clock
|
||||
*
|
||||
* @epoch_ns: sched_clock value at last update
|
||||
* @epoch_cyc: Clock cycle value at last update
|
||||
* @sched_clock_mask: Bitmask for two's complement subtraction of non 64bit
|
||||
* clocks
|
||||
* @read_sched_clock: Current clock source (or dummy source when suspended)
|
||||
* @mult: Multipler for scaled math conversion
|
||||
* @shift: Shift value for scaled math conversion
|
||||
* @suspended: Flag to indicate if the clock is suspended (stopped)
|
||||
*
|
||||
* Care must be taken when updating this structure; it is read by
|
||||
* some very hot code paths. It occupies <=48 bytes and, when combined
|
||||
* with the seqcount used to synchronize access, comfortably fits into
|
||||
* a 64 byte cache line.
|
||||
*/
|
||||
struct clock_read_data {
|
||||
u64 epoch_ns;
|
||||
u64 epoch_cyc;
|
||||
seqcount_t seq;
|
||||
unsigned long rate;
|
||||
u64 sched_clock_mask;
|
||||
u64 (*read_sched_clock)(void);
|
||||
u32 mult;
|
||||
u32 shift;
|
||||
bool suspended;
|
||||
};
|
||||
|
||||
/**
|
||||
* struct clock_data - all data needed for sched_clock (including
|
||||
* registration of a new clock source)
|
||||
*
|
||||
* @seq: Sequence counter for protecting updates.
|
||||
* @read_data: Data required to read from sched_clock.
|
||||
* @wrap_kt: Duration for which clock can run before wrapping
|
||||
* @rate: Tick rate of the registered clock
|
||||
* @actual_read_sched_clock: Registered clock read function
|
||||
*
|
||||
* The ordering of this structure has been chosen to optimize cache
|
||||
* performance. In particular seq and read_data (combined) should fit
|
||||
* into a single 64 byte cache line.
|
||||
*/
|
||||
struct clock_data {
|
||||
seqcount_t seq;
|
||||
struct clock_read_data read_data;
|
||||
ktime_t wrap_kt;
|
||||
unsigned long rate;
|
||||
};
|
||||
|
||||
static struct hrtimer sched_clock_timer;
|
||||
static int irqtime = -1;
|
||||
|
||||
core_param(irqtime, irqtime, int, 0400);
|
||||
|
||||
static struct clock_data cd = {
|
||||
.mult = NSEC_PER_SEC / HZ,
|
||||
};
|
||||
|
||||
static u64 __read_mostly sched_clock_mask;
|
||||
|
||||
static u64 notrace jiffy_sched_clock_read(void)
|
||||
{
|
||||
/*
|
||||
|
@ -49,7 +80,10 @@ static u64 notrace jiffy_sched_clock_read(void)
|
|||
return (u64)(jiffies - INITIAL_JIFFIES);
|
||||
}
|
||||
|
||||
static u64 __read_mostly (*read_sched_clock)(void) = jiffy_sched_clock_read;
|
||||
static struct clock_data cd ____cacheline_aligned = {
|
||||
.read_data = { .mult = NSEC_PER_SEC / HZ,
|
||||
.read_sched_clock = jiffy_sched_clock_read, },
|
||||
};
|
||||
|
||||
static inline u64 notrace cyc_to_ns(u64 cyc, u32 mult, u32 shift)
|
||||
{
|
||||
|
@ -60,15 +94,16 @@ unsigned long long notrace sched_clock(void)
|
|||
{
|
||||
u64 cyc, res;
|
||||
unsigned long seq;
|
||||
struct clock_read_data *rd = &cd.read_data;
|
||||
|
||||
do {
|
||||
seq = raw_read_seqcount_begin(&cd.seq);
|
||||
|
||||
res = cd.epoch_ns;
|
||||
if (!cd.suspended) {
|
||||
cyc = read_sched_clock();
|
||||
cyc = (cyc - cd.epoch_cyc) & sched_clock_mask;
|
||||
res += cyc_to_ns(cyc, cd.mult, cd.shift);
|
||||
res = rd->epoch_ns;
|
||||
if (!rd->suspended) {
|
||||
cyc = rd->read_sched_clock();
|
||||
cyc = (cyc - rd->epoch_cyc) & rd->sched_clock_mask;
|
||||
res += cyc_to_ns(cyc, rd->mult, rd->shift);
|
||||
}
|
||||
} while (read_seqcount_retry(&cd.seq, seq));
|
||||
|
||||
|
@ -83,16 +118,17 @@ static void notrace update_sched_clock(void)
|
|||
unsigned long flags;
|
||||
u64 cyc;
|
||||
u64 ns;
|
||||
struct clock_read_data *rd = &cd.read_data;
|
||||
|
||||
cyc = read_sched_clock();
|
||||
ns = cd.epoch_ns +
|
||||
cyc_to_ns((cyc - cd.epoch_cyc) & sched_clock_mask,
|
||||
cd.mult, cd.shift);
|
||||
cyc = rd->read_sched_clock();
|
||||
ns = rd->epoch_ns +
|
||||
cyc_to_ns((cyc - rd->epoch_cyc) & rd->sched_clock_mask,
|
||||
rd->mult, rd->shift);
|
||||
|
||||
raw_local_irq_save(flags);
|
||||
raw_write_seqcount_begin(&cd.seq);
|
||||
cd.epoch_ns = ns;
|
||||
cd.epoch_cyc = cyc;
|
||||
rd->epoch_ns = ns;
|
||||
rd->epoch_cyc = cyc;
|
||||
raw_write_seqcount_end(&cd.seq);
|
||||
raw_local_irq_restore(flags);
|
||||
}
|
||||
|
@ -111,6 +147,7 @@ void __init sched_clock_register(u64 (*read)(void), int bits,
|
|||
u32 new_mult, new_shift;
|
||||
unsigned long r;
|
||||
char r_unit;
|
||||
struct clock_read_data *rd = &cd.read_data;
|
||||
|
||||
if (cd.rate > rate)
|
||||
return;
|
||||
|
@ -129,17 +166,18 @@ void __init sched_clock_register(u64 (*read)(void), int bits,
|
|||
|
||||
/* update epoch for new counter and update epoch_ns from old counter*/
|
||||
new_epoch = read();
|
||||
cyc = read_sched_clock();
|
||||
ns = cd.epoch_ns + cyc_to_ns((cyc - cd.epoch_cyc) & sched_clock_mask,
|
||||
cd.mult, cd.shift);
|
||||
cyc = rd->read_sched_clock();
|
||||
ns = rd->epoch_ns +
|
||||
cyc_to_ns((cyc - rd->epoch_cyc) & rd->sched_clock_mask,
|
||||
rd->mult, rd->shift);
|
||||
|
||||
raw_write_seqcount_begin(&cd.seq);
|
||||
read_sched_clock = read;
|
||||
sched_clock_mask = new_mask;
|
||||
cd.mult = new_mult;
|
||||
cd.shift = new_shift;
|
||||
cd.epoch_cyc = new_epoch;
|
||||
cd.epoch_ns = ns;
|
||||
rd->read_sched_clock = read;
|
||||
rd->sched_clock_mask = new_mask;
|
||||
rd->mult = new_mult;
|
||||
rd->shift = new_shift;
|
||||
rd->epoch_cyc = new_epoch;
|
||||
rd->epoch_ns = ns;
|
||||
raw_write_seqcount_end(&cd.seq);
|
||||
|
||||
r = rate;
|
||||
|
@ -171,7 +209,7 @@ void __init sched_clock_postinit(void)
|
|||
* If no sched_clock function has been provided at that point,
|
||||
* make it the final one one.
|
||||
*/
|
||||
if (read_sched_clock == jiffy_sched_clock_read)
|
||||
if (cd.read_data.read_sched_clock == jiffy_sched_clock_read)
|
||||
sched_clock_register(jiffy_sched_clock_read, BITS_PER_LONG, HZ);
|
||||
|
||||
update_sched_clock();
|
||||
|
@ -187,17 +225,21 @@ void __init sched_clock_postinit(void)
|
|||
|
||||
static int sched_clock_suspend(void)
|
||||
{
|
||||
struct clock_read_data *rd = &cd.read_data;
|
||||
|
||||
update_sched_clock();
|
||||
hrtimer_cancel(&sched_clock_timer);
|
||||
cd.suspended = true;
|
||||
rd->suspended = true;
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void sched_clock_resume(void)
|
||||
{
|
||||
cd.epoch_cyc = read_sched_clock();
|
||||
struct clock_read_data *rd = &cd.read_data;
|
||||
|
||||
rd->epoch_cyc = rd->read_sched_clock();
|
||||
hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL);
|
||||
cd.suspended = false;
|
||||
rd->suspended = false;
|
||||
}
|
||||
|
||||
static struct syscore_ops sched_clock_ops = {
|
||||
|
|
Loading…
Reference in New Issue