Merge branch 'crc32'
Daniel Borkmann says: ==================== crc32 combine improvements So almost a month passed, and I don't want this to get lost somewhere. I have applied the feedback given at that time to this set, rebased plus tested it against latest net-next. I decided to route this via netdev as it improves performance upon library code that provides library bits for SCTP, i.e. for non-linear skb csum handling in IPVS. Thus, resending this for George before it gets lost. ==================== Signed-off-by: David S. Miller <davem@davemloft.net>
This commit is contained in:
commit
cb8eb77663
|
@ -8,8 +8,8 @@
|
|||
#include <linux/types.h>
|
||||
#include <linux/bitrev.h>
|
||||
|
||||
extern u32 crc32_le(u32 crc, unsigned char const *p, size_t len);
|
||||
extern u32 crc32_be(u32 crc, unsigned char const *p, size_t len);
|
||||
u32 __pure crc32_le(u32 crc, unsigned char const *p, size_t len);
|
||||
u32 __pure crc32_be(u32 crc, unsigned char const *p, size_t len);
|
||||
|
||||
/**
|
||||
* crc32_le_combine - Combine two crc32 check values into one. For two
|
||||
|
@ -29,9 +29,14 @@ extern u32 crc32_be(u32 crc, unsigned char const *p, size_t len);
|
|||
* with the same initializer as crc1, and crc2 seed was 0. See
|
||||
* also crc32_combine_test().
|
||||
*/
|
||||
extern u32 crc32_le_combine(u32 crc1, u32 crc2, size_t len2);
|
||||
u32 __attribute_const__ crc32_le_shift(u32 crc, size_t len);
|
||||
|
||||
extern u32 __crc32c_le(u32 crc, unsigned char const *p, size_t len);
|
||||
static inline u32 crc32_le_combine(u32 crc1, u32 crc2, size_t len2)
|
||||
{
|
||||
return crc32_le_shift(crc1, len2) ^ crc2;
|
||||
}
|
||||
|
||||
u32 __pure __crc32c_le(u32 crc, unsigned char const *p, size_t len);
|
||||
|
||||
/**
|
||||
* __crc32c_le_combine - Combine two crc32c check values into one. For two
|
||||
|
@ -51,7 +56,12 @@ extern u32 __crc32c_le(u32 crc, unsigned char const *p, size_t len);
|
|||
* seeded with the same initializer as crc1, and crc2 seed
|
||||
* was 0. See also crc32c_combine_test().
|
||||
*/
|
||||
extern u32 __crc32c_le_combine(u32 crc1, u32 crc2, size_t len2);
|
||||
u32 __attribute_const__ __crc32c_le_shift(u32 crc, size_t len);
|
||||
|
||||
static inline u32 __crc32c_le_combine(u32 crc1, u32 crc2, size_t len2)
|
||||
{
|
||||
return __crc32c_le_shift(crc1, len2) ^ crc2;
|
||||
}
|
||||
|
||||
#define crc32(seed, data, length) crc32_le(seed, (unsigned char const *)(data), length)
|
||||
|
||||
|
|
153
lib/crc32.c
153
lib/crc32.c
|
@ -50,34 +50,10 @@ MODULE_AUTHOR("Matt Domsch <Matt_Domsch@dell.com>");
|
|||
MODULE_DESCRIPTION("Various CRC32 calculations");
|
||||
MODULE_LICENSE("GPL");
|
||||
|
||||
#define GF2_DIM 32
|
||||
|
||||
static u32 gf2_matrix_times(u32 *mat, u32 vec)
|
||||
{
|
||||
u32 sum = 0;
|
||||
|
||||
while (vec) {
|
||||
if (vec & 1)
|
||||
sum ^= *mat;
|
||||
vec >>= 1;
|
||||
mat++;
|
||||
}
|
||||
|
||||
return sum;
|
||||
}
|
||||
|
||||
static void gf2_matrix_square(u32 *square, u32 *mat)
|
||||
{
|
||||
int i;
|
||||
|
||||
for (i = 0; i < GF2_DIM; i++)
|
||||
square[i] = gf2_matrix_times(mat, mat[i]);
|
||||
}
|
||||
|
||||
#if CRC_LE_BITS > 8 || CRC_BE_BITS > 8
|
||||
|
||||
/* implements slicing-by-4 or slicing-by-8 algorithm */
|
||||
static inline u32
|
||||
static inline u32 __pure
|
||||
crc32_body(u32 crc, unsigned char const *buf, size_t len, const u32 (*tab)[256])
|
||||
{
|
||||
# ifdef __LITTLE_ENDIAN
|
||||
|
@ -155,51 +131,6 @@ crc32_body(u32 crc, unsigned char const *buf, size_t len, const u32 (*tab)[256])
|
|||
}
|
||||
#endif
|
||||
|
||||
/* For conditions of distribution and use, see copyright notice in zlib.h */
|
||||
static u32 crc32_generic_combine(u32 crc1, u32 crc2, size_t len2,
|
||||
u32 polynomial)
|
||||
{
|
||||
u32 even[GF2_DIM]; /* Even-power-of-two zeros operator */
|
||||
u32 odd[GF2_DIM]; /* Odd-power-of-two zeros operator */
|
||||
u32 row;
|
||||
int i;
|
||||
|
||||
if (len2 <= 0)
|
||||
return crc1;
|
||||
|
||||
/* Put operator for one zero bit in odd */
|
||||
odd[0] = polynomial;
|
||||
row = 1;
|
||||
for (i = 1; i < GF2_DIM; i++) {
|
||||
odd[i] = row;
|
||||
row <<= 1;
|
||||
}
|
||||
|
||||
gf2_matrix_square(even, odd); /* Put operator for two zero bits in even */
|
||||
gf2_matrix_square(odd, even); /* Put operator for four zero bits in odd */
|
||||
|
||||
/* Apply len2 zeros to crc1 (first square will put the operator for one
|
||||
* zero byte, eight zero bits, in even).
|
||||
*/
|
||||
do {
|
||||
/* Apply zeros operator for this bit of len2 */
|
||||
gf2_matrix_square(even, odd);
|
||||
if (len2 & 1)
|
||||
crc1 = gf2_matrix_times(even, crc1);
|
||||
len2 >>= 1;
|
||||
/* If no more bits set, then done */
|
||||
if (len2 == 0)
|
||||
break;
|
||||
/* Another iteration of the loop with odd and even swapped */
|
||||
gf2_matrix_square(odd, even);
|
||||
if (len2 & 1)
|
||||
crc1 = gf2_matrix_times(odd, crc1);
|
||||
len2 >>= 1;
|
||||
} while (len2 != 0);
|
||||
|
||||
crc1 ^= crc2;
|
||||
return crc1;
|
||||
}
|
||||
|
||||
/**
|
||||
* crc32_le_generic() - Calculate bitwise little-endian Ethernet AUTODIN II
|
||||
|
@ -271,19 +202,81 @@ u32 __pure __crc32c_le(u32 crc, unsigned char const *p, size_t len)
|
|||
(const u32 (*)[256])crc32ctable_le, CRC32C_POLY_LE);
|
||||
}
|
||||
#endif
|
||||
u32 __pure crc32_le_combine(u32 crc1, u32 crc2, size_t len2)
|
||||
EXPORT_SYMBOL(crc32_le);
|
||||
EXPORT_SYMBOL(__crc32c_le);
|
||||
|
||||
/*
|
||||
* This multiplies the polynomials x and y modulo the given modulus.
|
||||
* This follows the "little-endian" CRC convention that the lsbit
|
||||
* represents the highest power of x, and the msbit represents x^0.
|
||||
*/
|
||||
static u32 __attribute_const__ gf2_multiply(u32 x, u32 y, u32 modulus)
|
||||
{
|
||||
return crc32_generic_combine(crc1, crc2, len2, CRCPOLY_LE);
|
||||
u32 product = x & 1 ? y : 0;
|
||||
int i;
|
||||
|
||||
for (i = 0; i < 31; i++) {
|
||||
product = (product >> 1) ^ (product & 1 ? modulus : 0);
|
||||
x >>= 1;
|
||||
product ^= x & 1 ? y : 0;
|
||||
}
|
||||
|
||||
return product;
|
||||
}
|
||||
|
||||
u32 __pure __crc32c_le_combine(u32 crc1, u32 crc2, size_t len2)
|
||||
/**
|
||||
* crc32_generic_shift - Append len 0 bytes to crc, in logarithmic time
|
||||
* @crc: The original little-endian CRC (i.e. lsbit is x^31 coefficient)
|
||||
* @len: The number of bytes. @crc is multiplied by x^(8*@len)
|
||||
* @polynomial: The modulus used to reduce the result to 32 bits.
|
||||
*
|
||||
* It's possible to parallelize CRC computations by computing a CRC
|
||||
* over separate ranges of a buffer, then summing them.
|
||||
* This shifts the given CRC by 8*len bits (i.e. produces the same effect
|
||||
* as appending len bytes of zero to the data), in time proportional
|
||||
* to log(len).
|
||||
*/
|
||||
static u32 __attribute_const__ crc32_generic_shift(u32 crc, size_t len,
|
||||
u32 polynomial)
|
||||
{
|
||||
return crc32_generic_combine(crc1, crc2, len2, CRC32C_POLY_LE);
|
||||
u32 power = polynomial; /* CRC of x^32 */
|
||||
int i;
|
||||
|
||||
/* Shift up to 32 bits in the simple linear way */
|
||||
for (i = 0; i < 8 * (int)(len & 3); i++)
|
||||
crc = (crc >> 1) ^ (crc & 1 ? polynomial : 0);
|
||||
|
||||
len >>= 2;
|
||||
if (!len)
|
||||
return crc;
|
||||
|
||||
for (;;) {
|
||||
/* "power" is x^(2^i), modulo the polynomial */
|
||||
if (len & 1)
|
||||
crc = gf2_multiply(crc, power, polynomial);
|
||||
|
||||
len >>= 1;
|
||||
if (!len)
|
||||
break;
|
||||
|
||||
/* Square power, advancing to x^(2^(i+1)) */
|
||||
power = gf2_multiply(power, power, polynomial);
|
||||
}
|
||||
|
||||
return crc;
|
||||
}
|
||||
EXPORT_SYMBOL(crc32_le);
|
||||
EXPORT_SYMBOL(crc32_le_combine);
|
||||
EXPORT_SYMBOL(__crc32c_le);
|
||||
EXPORT_SYMBOL(__crc32c_le_combine);
|
||||
|
||||
u32 __attribute_const__ crc32_le_shift(u32 crc, size_t len)
|
||||
{
|
||||
return crc32_generic_shift(crc, len, CRCPOLY_LE);
|
||||
}
|
||||
|
||||
u32 __attribute_const__ __crc32c_le_shift(u32 crc, size_t len)
|
||||
{
|
||||
return crc32_generic_shift(crc, len, CRC32C_POLY_LE);
|
||||
}
|
||||
EXPORT_SYMBOL(crc32_le_shift);
|
||||
EXPORT_SYMBOL(__crc32c_le_shift);
|
||||
|
||||
/**
|
||||
* crc32_be_generic() - Calculate bitwise big-endian Ethernet AUTODIN II CRC32
|
||||
|
@ -351,7 +344,7 @@ EXPORT_SYMBOL(crc32_be);
|
|||
#ifdef CONFIG_CRC32_SELFTEST
|
||||
|
||||
/* 4096 random bytes */
|
||||
static u8 __attribute__((__aligned__(8))) test_buf[] =
|
||||
static u8 const __aligned(8) test_buf[] __initconst =
|
||||
{
|
||||
0x5b, 0x85, 0x21, 0xcb, 0x09, 0x68, 0x7d, 0x30,
|
||||
0xc7, 0x69, 0xd7, 0x30, 0x92, 0xde, 0x59, 0xe4,
|
||||
|
@ -875,7 +868,7 @@ static struct crc_test {
|
|||
u32 crc_le; /* expected crc32_le result */
|
||||
u32 crc_be; /* expected crc32_be result */
|
||||
u32 crc32c_le; /* expected crc32c_le result */
|
||||
} test[] =
|
||||
} const test[] __initconst =
|
||||
{
|
||||
{0x674bf11d, 0x00000038, 0x00000542, 0x0af6d466, 0xd8b6e4c1, 0xf6e93d6c},
|
||||
{0x35c672c6, 0x0000003a, 0x000001aa, 0xc6d3dfba, 0x28aaf3ad, 0x0fe92aca},
|
||||
|
|
Loading…
Reference in New Issue