Merge branch 'rework/printk_safe-removal' into for-linus

This commit is contained in:
Petr Mladek 2021-08-30 16:36:10 +02:00
commit c985aafb60
14 changed files with 192 additions and 544 deletions

View File

@ -667,9 +667,9 @@ static void do_handle_IPI(int ipinr)
break;
case IPI_CPU_BACKTRACE:
printk_nmi_enter();
printk_deferred_enter();
nmi_cpu_backtrace(get_irq_regs());
printk_nmi_exit();
printk_deferred_exit();
break;
default:

View File

@ -171,7 +171,6 @@ extern void panic_flush_kmsg_start(void)
extern void panic_flush_kmsg_end(void)
{
printk_safe_flush_on_panic();
kmsg_dump(KMSG_DUMP_PANIC);
bust_spinlocks(0);
debug_locks_off();

View File

@ -184,11 +184,6 @@ static void watchdog_smp_panic(int cpu, u64 tb)
wd_smp_unlock(&flags);
printk_safe_flush();
/*
* printk_safe_flush() seems to require another print
* before anything actually goes out to console.
*/
if (sysctl_hardlockup_all_cpu_backtrace)
trigger_allbutself_cpu_backtrace();

View File

@ -313,7 +313,7 @@ void default_machine_crash_shutdown(struct pt_regs *regs)
int (*old_handler)(struct pt_regs *regs);
/* Avoid hardlocking with irresponsive CPU holding logbuf_lock */
printk_nmi_enter();
printk_deferred_enter();
/*
* This function is only called after the system

View File

@ -116,7 +116,6 @@ extern void rcu_nmi_exit(void);
do { \
lockdep_off(); \
arch_nmi_enter(); \
printk_nmi_enter(); \
BUG_ON(in_nmi() == NMI_MASK); \
__preempt_count_add(NMI_OFFSET + HARDIRQ_OFFSET); \
} while (0)
@ -135,7 +134,6 @@ extern void rcu_nmi_exit(void);
do { \
BUG_ON(!in_nmi()); \
__preempt_count_sub(NMI_OFFSET + HARDIRQ_OFFSET); \
printk_nmi_exit(); \
arch_nmi_exit(); \
lockdep_on(); \
} while (0)

View File

@ -141,18 +141,6 @@ static inline __printf(1, 2) __cold
void early_printk(const char *s, ...) { }
#endif
#ifdef CONFIG_PRINTK_NMI
extern void printk_nmi_enter(void);
extern void printk_nmi_exit(void);
extern void printk_nmi_direct_enter(void);
extern void printk_nmi_direct_exit(void);
#else
static inline void printk_nmi_enter(void) { }
static inline void printk_nmi_exit(void) { }
static inline void printk_nmi_direct_enter(void) { }
static inline void printk_nmi_direct_exit(void) { }
#endif /* PRINTK_NMI */
struct dev_printk_info;
#ifdef CONFIG_PRINTK
@ -172,6 +160,16 @@ int _printk(const char *fmt, ...);
*/
__printf(1, 2) __cold int _printk_deferred(const char *fmt, ...);
extern void __printk_safe_enter(void);
extern void __printk_safe_exit(void);
/*
* The printk_deferred_enter/exit macros are available only as a hack for
* some code paths that need to defer all printk console printing. Interrupts
* must be disabled for the deferred duration.
*/
#define printk_deferred_enter __printk_safe_enter
#define printk_deferred_exit __printk_safe_exit
/*
* Please don't use printk_ratelimit(), because it shares ratelimiting state
* with all other unrelated printk_ratelimit() callsites. Instead use
@ -200,8 +198,6 @@ void dump_stack_print_info(const char *log_lvl);
void show_regs_print_info(const char *log_lvl);
extern asmlinkage void dump_stack_lvl(const char *log_lvl) __cold;
extern asmlinkage void dump_stack(void) __cold;
extern void printk_safe_flush(void);
extern void printk_safe_flush_on_panic(void);
#else
static inline __printf(1, 0)
int vprintk(const char *s, va_list args)
@ -218,6 +214,15 @@ int _printk_deferred(const char *s, ...)
{
return 0;
}
static inline void printk_deferred_enter(void)
{
}
static inline void printk_deferred_exit(void)
{
}
static inline int printk_ratelimit(void)
{
return 0;
@ -269,14 +274,6 @@ static inline void dump_stack_lvl(const char *log_lvl)
static inline void dump_stack(void)
{
}
static inline void printk_safe_flush(void)
{
}
static inline void printk_safe_flush_on_panic(void)
{
}
#endif
#ifdef CONFIG_SMP

View File

@ -1523,11 +1523,6 @@ config PRINTK
very difficult to diagnose system problems, saying N here is
strongly discouraged.
config PRINTK_NMI
def_bool y
depends on PRINTK
depends on HAVE_NMI
config BUG
bool "BUG() support" if EXPERT
default y

View File

@ -979,7 +979,6 @@ void crash_kexec(struct pt_regs *regs)
old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu);
if (old_cpu == PANIC_CPU_INVALID) {
/* This is the 1st CPU which comes here, so go ahead. */
printk_safe_flush_on_panic();
__crash_kexec(regs);
/*

View File

@ -248,7 +248,6 @@ void panic(const char *fmt, ...)
* Bypass the panic_cpu check and call __crash_kexec directly.
*/
if (!_crash_kexec_post_notifiers) {
printk_safe_flush_on_panic();
__crash_kexec(NULL);
/*
@ -272,8 +271,6 @@ void panic(const char *fmt, ...)
*/
atomic_notifier_call_chain(&panic_notifier_list, 0, buf);
/* Call flush even twice. It tries harder with a single online CPU */
printk_safe_flush_on_panic();
kmsg_dump(KMSG_DUMP_PANIC);
/*

View File

@ -6,12 +6,6 @@
#ifdef CONFIG_PRINTK
#define PRINTK_SAFE_CONTEXT_MASK 0x007ffffff
#define PRINTK_NMI_DIRECT_CONTEXT_MASK 0x008000000
#define PRINTK_NMI_CONTEXT_MASK 0xff0000000
#define PRINTK_NMI_CONTEXT_OFFSET 0x010000000
/* Flags for a single printk record. */
enum printk_info_flags {
LOG_NEWLINE = 2, /* text ended with a newline */
@ -25,10 +19,7 @@ int vprintk_store(int facility, int level,
__printf(1, 0) int vprintk_default(const char *fmt, va_list args);
__printf(1, 0) int vprintk_deferred(const char *fmt, va_list args);
void __printk_safe_enter(void);
void __printk_safe_exit(void);
void printk_safe_init(void);
bool printk_percpu_data_ready(void);
#define printk_safe_enter_irqsave(flags) \
@ -43,18 +34,6 @@ bool printk_percpu_data_ready(void);
local_irq_restore(flags); \
} while (0)
#define printk_safe_enter_irq() \
do { \
local_irq_disable(); \
__printk_safe_enter(); \
} while (0)
#define printk_safe_exit_irq() \
do { \
__printk_safe_exit(); \
local_irq_enable(); \
} while (0)
void defer_console_output(void);
u16 printk_parse_prefix(const char *text, int *level,
@ -69,9 +48,5 @@ u16 printk_parse_prefix(const char *text, int *level,
#define printk_safe_enter_irqsave(flags) local_irq_save(flags)
#define printk_safe_exit_irqrestore(flags) local_irq_restore(flags)
#define printk_safe_enter_irq() local_irq_disable()
#define printk_safe_exit_irq() local_irq_enable()
static inline void printk_safe_init(void) { }
static inline bool printk_percpu_data_ready(void) { return false; }
#endif /* CONFIG_PRINTK */

View File

@ -351,7 +351,7 @@ static int console_msg_format = MSG_FORMAT_DEFAULT;
*/
/* syslog_lock protects syslog_* variables and write access to clear_seq. */
static DEFINE_RAW_SPINLOCK(syslog_lock);
static DEFINE_MUTEX(syslog_lock);
#ifdef CONFIG_PRINTK
DECLARE_WAIT_QUEUE_HEAD(log_wait);
@ -727,27 +727,22 @@ static ssize_t devkmsg_read(struct file *file, char __user *buf,
if (ret)
return ret;
printk_safe_enter_irq();
if (!prb_read_valid(prb, atomic64_read(&user->seq), r)) {
if (file->f_flags & O_NONBLOCK) {
ret = -EAGAIN;
printk_safe_exit_irq();
goto out;
}
printk_safe_exit_irq();
ret = wait_event_interruptible(log_wait,
prb_read_valid(prb, atomic64_read(&user->seq), r));
if (ret)
goto out;
printk_safe_enter_irq();
}
if (r->info->seq != atomic64_read(&user->seq)) {
/* our last seen message is gone, return error and reset */
atomic64_set(&user->seq, r->info->seq);
ret = -EPIPE;
printk_safe_exit_irq();
goto out;
}
@ -757,7 +752,6 @@ static ssize_t devkmsg_read(struct file *file, char __user *buf,
&r->info->dev_info);
atomic64_set(&user->seq, r->info->seq + 1);
printk_safe_exit_irq();
if (len > count) {
ret = -EINVAL;
@ -792,7 +786,6 @@ static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
if (offset)
return -ESPIPE;
printk_safe_enter_irq();
switch (whence) {
case SEEK_SET:
/* the first record */
@ -813,7 +806,6 @@ static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
default:
ret = -EINVAL;
}
printk_safe_exit_irq();
return ret;
}
@ -828,7 +820,6 @@ static __poll_t devkmsg_poll(struct file *file, poll_table *wait)
poll_wait(file, &log_wait, wait);
printk_safe_enter_irq();
if (prb_read_valid_info(prb, atomic64_read(&user->seq), &info, NULL)) {
/* return error when data has vanished underneath us */
if (info.seq != atomic64_read(&user->seq))
@ -836,7 +827,6 @@ static __poll_t devkmsg_poll(struct file *file, poll_table *wait)
else
ret = EPOLLIN|EPOLLRDNORM;
}
printk_safe_exit_irq();
return ret;
}
@ -869,9 +859,7 @@ static int devkmsg_open(struct inode *inode, struct file *file)
prb_rec_init_rd(&user->record, &user->info,
&user->text_buf[0], sizeof(user->text_buf));
printk_safe_enter_irq();
atomic64_set(&user->seq, prb_first_valid_seq(prb));
printk_safe_exit_irq();
file->private_data = user;
return 0;
@ -1037,9 +1025,6 @@ static inline void log_buf_add_cpu(void) {}
static void __init set_percpu_data_ready(void)
{
printk_safe_init();
/* Make sure we set this flag only after printk_safe() init is done */
barrier();
__printk_percpu_data_ready = true;
}
@ -1077,6 +1062,7 @@ void __init setup_log_buf(int early)
struct prb_desc *new_descs;
struct printk_info info;
struct printk_record r;
unsigned int text_size;
size_t new_descs_size;
size_t new_infos_size;
unsigned long flags;
@ -1137,24 +1123,37 @@ void __init setup_log_buf(int early)
new_descs, ilog2(new_descs_count),
new_infos);
printk_safe_enter_irqsave(flags);
local_irq_save(flags);
log_buf_len = new_log_buf_len;
log_buf = new_log_buf;
new_log_buf_len = 0;
free = __LOG_BUF_LEN;
prb_for_each_record(0, &printk_rb_static, seq, &r)
free -= add_to_rb(&printk_rb_dynamic, &r);
prb_for_each_record(0, &printk_rb_static, seq, &r) {
text_size = add_to_rb(&printk_rb_dynamic, &r);
if (text_size > free)
free = 0;
else
free -= text_size;
}
/*
* This is early enough that everything is still running on the
* boot CPU and interrupts are disabled. So no new messages will
* appear during the transition to the dynamic buffer.
*/
prb = &printk_rb_dynamic;
printk_safe_exit_irqrestore(flags);
local_irq_restore(flags);
/*
* Copy any remaining messages that might have appeared from
* NMI context after copying but before switching to the
* dynamic buffer.
*/
prb_for_each_record(seq, &printk_rb_static, seq, &r) {
text_size = add_to_rb(&printk_rb_dynamic, &r);
if (text_size > free)
free = 0;
else
free -= text_size;
}
if (seq != prb_next_seq(&printk_rb_static)) {
pr_err("dropped %llu messages\n",
@ -1476,12 +1475,14 @@ static u64 find_first_fitting_seq(u64 start_seq, u64 max_seq, size_t size,
return seq;
}
/* The caller is responsible for making sure @size is greater than 0. */
static int syslog_print(char __user *buf, int size)
{
struct printk_info info;
struct printk_record r;
char *text;
int len = 0;
u64 seq;
text = kmalloc(CONSOLE_LOG_MAX, GFP_KERNEL);
if (!text)
@ -1489,17 +1490,35 @@ static int syslog_print(char __user *buf, int size)
prb_rec_init_rd(&r, &info, text, CONSOLE_LOG_MAX);
while (size > 0) {
mutex_lock(&syslog_lock);
/*
* Wait for the @syslog_seq record to be available. @syslog_seq may
* change while waiting.
*/
do {
seq = syslog_seq;
mutex_unlock(&syslog_lock);
len = wait_event_interruptible(log_wait, prb_read_valid(prb, seq, NULL));
mutex_lock(&syslog_lock);
if (len)
goto out;
} while (syslog_seq != seq);
/*
* Copy records that fit into the buffer. The above cycle makes sure
* that the first record is always available.
*/
do {
size_t n;
size_t skip;
int err;
printk_safe_enter_irq();
raw_spin_lock(&syslog_lock);
if (!prb_read_valid(prb, syslog_seq, &r)) {
raw_spin_unlock(&syslog_lock);
printk_safe_exit_irq();
if (!prb_read_valid(prb, syslog_seq, &r))
break;
}
if (r.info->seq != syslog_seq) {
/* message is gone, move to next valid one */
syslog_seq = r.info->seq;
@ -1526,13 +1545,15 @@ static int syslog_print(char __user *buf, int size)
syslog_partial += n;
} else
n = 0;
raw_spin_unlock(&syslog_lock);
printk_safe_exit_irq();
if (!n)
break;
if (copy_to_user(buf, text + skip, n)) {
mutex_unlock(&syslog_lock);
err = copy_to_user(buf, text + skip, n);
mutex_lock(&syslog_lock);
if (err) {
if (!len)
len = -EFAULT;
break;
@ -1541,8 +1562,9 @@ static int syslog_print(char __user *buf, int size)
len += n;
size -= n;
buf += n;
}
} while (size);
out:
mutex_unlock(&syslog_lock);
kfree(text);
return len;
}
@ -1561,7 +1583,6 @@ static int syslog_print_all(char __user *buf, int size, bool clear)
return -ENOMEM;
time = printk_time;
printk_safe_enter_irq();
/*
* Find first record that fits, including all following records,
* into the user-provided buffer for this dump.
@ -1582,23 +1603,20 @@ static int syslog_print_all(char __user *buf, int size, bool clear)
break;
}
printk_safe_exit_irq();
if (copy_to_user(buf + len, text, textlen))
len = -EFAULT;
else
len += textlen;
printk_safe_enter_irq();
if (len < 0)
break;
}
if (clear) {
raw_spin_lock(&syslog_lock);
mutex_lock(&syslog_lock);
latched_seq_write(&clear_seq, seq);
raw_spin_unlock(&syslog_lock);
mutex_unlock(&syslog_lock);
}
printk_safe_exit_irq();
kfree(text);
return len;
@ -1606,23 +1624,9 @@ static int syslog_print_all(char __user *buf, int size, bool clear)
static void syslog_clear(void)
{
printk_safe_enter_irq();
raw_spin_lock(&syslog_lock);
mutex_lock(&syslog_lock);
latched_seq_write(&clear_seq, prb_next_seq(prb));
raw_spin_unlock(&syslog_lock);
printk_safe_exit_irq();
}
/* Return a consistent copy of @syslog_seq. */
static u64 read_syslog_seq_irq(void)
{
u64 seq;
raw_spin_lock_irq(&syslog_lock);
seq = syslog_seq;
raw_spin_unlock_irq(&syslog_lock);
return seq;
mutex_unlock(&syslog_lock);
}
int do_syslog(int type, char __user *buf, int len, int source)
@ -1648,11 +1652,6 @@ int do_syslog(int type, char __user *buf, int len, int source)
return 0;
if (!access_ok(buf, len))
return -EFAULT;
error = wait_event_interruptible(log_wait,
prb_read_valid(prb, read_syslog_seq_irq(), NULL));
if (error)
return error;
error = syslog_print(buf, len);
break;
/* Read/clear last kernel messages */
@ -1698,12 +1697,10 @@ int do_syslog(int type, char __user *buf, int len, int source)
break;
/* Number of chars in the log buffer */
case SYSLOG_ACTION_SIZE_UNREAD:
printk_safe_enter_irq();
raw_spin_lock(&syslog_lock);
mutex_lock(&syslog_lock);
if (!prb_read_valid_info(prb, syslog_seq, &info, NULL)) {
/* No unread messages. */
raw_spin_unlock(&syslog_lock);
printk_safe_exit_irq();
mutex_unlock(&syslog_lock);
return 0;
}
if (info.seq != syslog_seq) {
@ -1731,8 +1728,7 @@ int do_syslog(int type, char __user *buf, int len, int source)
}
error -= syslog_partial;
}
raw_spin_unlock(&syslog_lock);
printk_safe_exit_irq();
mutex_unlock(&syslog_lock);
break;
/* Size of the log buffer */
case SYSLOG_ACTION_SIZE_BUFFER:
@ -1935,6 +1931,76 @@ static void call_console_drivers(const char *ext_text, size_t ext_len,
}
}
/*
* Recursion is tracked separately on each CPU. If NMIs are supported, an
* additional NMI context per CPU is also separately tracked. Until per-CPU
* is available, a separate "early tracking" is performed.
*/
static DEFINE_PER_CPU(u8, printk_count);
static u8 printk_count_early;
#ifdef CONFIG_HAVE_NMI
static DEFINE_PER_CPU(u8, printk_count_nmi);
static u8 printk_count_nmi_early;
#endif
/*
* Recursion is limited to keep the output sane. printk() should not require
* more than 1 level of recursion (allowing, for example, printk() to trigger
* a WARN), but a higher value is used in case some printk-internal errors
* exist, such as the ringbuffer validation checks failing.
*/
#define PRINTK_MAX_RECURSION 3
/*
* Return a pointer to the dedicated counter for the CPU+context of the
* caller.
*/
static u8 *__printk_recursion_counter(void)
{
#ifdef CONFIG_HAVE_NMI
if (in_nmi()) {
if (printk_percpu_data_ready())
return this_cpu_ptr(&printk_count_nmi);
return &printk_count_nmi_early;
}
#endif
if (printk_percpu_data_ready())
return this_cpu_ptr(&printk_count);
return &printk_count_early;
}
/*
* Enter recursion tracking. Interrupts are disabled to simplify tracking.
* The caller must check the boolean return value to see if the recursion is
* allowed. On failure, interrupts are not disabled.
*
* @recursion_ptr must be a variable of type (u8 *) and is the same variable
* that is passed to printk_exit_irqrestore().
*/
#define printk_enter_irqsave(recursion_ptr, flags) \
({ \
bool success = true; \
\
typecheck(u8 *, recursion_ptr); \
local_irq_save(flags); \
(recursion_ptr) = __printk_recursion_counter(); \
if (*(recursion_ptr) > PRINTK_MAX_RECURSION) { \
local_irq_restore(flags); \
success = false; \
} else { \
(*(recursion_ptr))++; \
} \
success; \
})
/* Exit recursion tracking, restoring interrupts. */
#define printk_exit_irqrestore(recursion_ptr, flags) \
do { \
typecheck(u8 *, recursion_ptr); \
(*(recursion_ptr))--; \
local_irq_restore(flags); \
} while (0)
int printk_delay_msec __read_mostly;
static inline void printk_delay(void)
@ -2037,11 +2103,14 @@ int vprintk_store(int facility, int level,
struct prb_reserved_entry e;
enum printk_info_flags flags = 0;
struct printk_record r;
unsigned long irqflags;
u16 trunc_msg_len = 0;
char prefix_buf[8];
u8 *recursion_ptr;
u16 reserve_size;
va_list args2;
u16 text_len;
int ret = 0;
u64 ts_nsec;
/*
@ -2052,6 +2121,9 @@ int vprintk_store(int facility, int level,
*/
ts_nsec = local_clock();
if (!printk_enter_irqsave(recursion_ptr, irqflags))
return 0;
/*
* The sprintf needs to come first since the syslog prefix might be
* passed in as a parameter. An extra byte must be reserved so that
@ -2089,7 +2161,8 @@ int vprintk_store(int facility, int level,
prb_commit(&e);
}
return text_len;
ret = text_len;
goto out;
}
}
@ -2105,7 +2178,7 @@ int vprintk_store(int facility, int level,
prb_rec_init_wr(&r, reserve_size + trunc_msg_len);
if (!prb_reserve(&e, prb, &r))
return 0;
goto out;
}
/* fill message */
@ -2127,7 +2200,10 @@ int vprintk_store(int facility, int level,
else
prb_final_commit(&e);
return (text_len + trunc_msg_len);
ret = text_len + trunc_msg_len;
out:
printk_exit_irqrestore(recursion_ptr, irqflags);
return ret;
}
asmlinkage int vprintk_emit(int facility, int level,
@ -2136,7 +2212,6 @@ asmlinkage int vprintk_emit(int facility, int level,
{
int printed_len;
bool in_sched = false;
unsigned long flags;
/* Suppress unimportant messages after panic happens */
if (unlikely(suppress_printk))
@ -2150,9 +2225,7 @@ asmlinkage int vprintk_emit(int facility, int level,
boot_delay_msec(level);
printk_delay();
printk_safe_enter_irqsave(flags);
printed_len = vprintk_store(facility, level, dev_info, fmt, args);
printk_safe_exit_irqrestore(flags);
/* If called from the scheduler, we can not call up(). */
if (!in_sched) {
@ -2573,9 +2646,9 @@ again:
for (;;) {
size_t ext_len = 0;
int handover;
size_t len;
printk_safe_enter_irqsave(flags);
skip:
if (!prb_read_valid(prb, console_seq, &r))
break;
@ -2625,19 +2698,22 @@ skip:
* were to occur on another CPU, it may wait for this one to
* finish. This task can not be preempted if there is a
* waiter waiting to take over.
*
* Interrupts are disabled because the hand over to a waiter
* must not be interrupted until the hand over is completed
* (@console_waiter is cleared).
*/
printk_safe_enter_irqsave(flags);
console_lock_spinning_enable();
stop_critical_timings(); /* don't trace print latency */
call_console_drivers(ext_text, ext_len, text, len);
start_critical_timings();
if (console_lock_spinning_disable_and_check()) {
printk_safe_exit_irqrestore(flags);
return;
}
handover = console_lock_spinning_disable_and_check();
printk_safe_exit_irqrestore(flags);
if (handover)
return;
if (do_cond_resched)
cond_resched();
@ -2656,8 +2732,6 @@ skip:
* flush, no worries.
*/
retry = prb_read_valid(prb, next_seq, NULL);
printk_safe_exit_irqrestore(flags);
if (retry && console_trylock())
goto again;
}
@ -2719,13 +2793,8 @@ void console_flush_on_panic(enum con_flush_mode mode)
console_trylock();
console_may_schedule = 0;
if (mode == CONSOLE_REPLAY_ALL) {
unsigned long flags;
printk_safe_enter_irqsave(flags);
if (mode == CONSOLE_REPLAY_ALL)
console_seq = prb_first_valid_seq(prb);
printk_safe_exit_irqrestore(flags);
}
console_unlock();
}
@ -2860,7 +2929,6 @@ static int try_enable_new_console(struct console *newcon, bool user_specified)
*/
void register_console(struct console *newcon)
{
unsigned long flags;
struct console *bcon = NULL;
int err;
@ -2965,9 +3033,9 @@ void register_console(struct console *newcon)
exclusive_console_stop_seq = console_seq;
/* Get a consistent copy of @syslog_seq. */
raw_spin_lock_irqsave(&syslog_lock, flags);
mutex_lock(&syslog_lock);
console_seq = syslog_seq;
raw_spin_unlock_irqrestore(&syslog_lock, flags);
mutex_unlock(&syslog_lock);
}
console_unlock();
console_sysfs_notify();
@ -3377,14 +3445,12 @@ bool kmsg_dump_get_line(struct kmsg_dump_iter *iter, bool syslog,
struct printk_info info;
unsigned int line_count;
struct printk_record r;
unsigned long flags;
size_t l = 0;
bool ret = false;
if (iter->cur_seq < min_seq)
iter->cur_seq = min_seq;
printk_safe_enter_irqsave(flags);
prb_rec_init_rd(&r, &info, line, size);
/* Read text or count text lines? */
@ -3405,7 +3471,6 @@ bool kmsg_dump_get_line(struct kmsg_dump_iter *iter, bool syslog,
iter->cur_seq = r.info->seq + 1;
ret = true;
out:
printk_safe_exit_irqrestore(flags);
if (len)
*len = l;
return ret;
@ -3437,7 +3502,6 @@ bool kmsg_dump_get_buffer(struct kmsg_dump_iter *iter, bool syslog,
u64 min_seq = latched_seq_read_nolock(&clear_seq);
struct printk_info info;
struct printk_record r;
unsigned long flags;
u64 seq;
u64 next_seq;
size_t len = 0;
@ -3450,7 +3514,6 @@ bool kmsg_dump_get_buffer(struct kmsg_dump_iter *iter, bool syslog,
if (iter->cur_seq < min_seq)
iter->cur_seq = min_seq;
printk_safe_enter_irqsave(flags);
if (prb_read_valid_info(prb, iter->cur_seq, &info, NULL)) {
if (info.seq != iter->cur_seq) {
/* messages are gone, move to first available one */
@ -3459,10 +3522,8 @@ bool kmsg_dump_get_buffer(struct kmsg_dump_iter *iter, bool syslog,
}
/* last entry */
if (iter->cur_seq >= iter->next_seq) {
printk_safe_exit_irqrestore(flags);
if (iter->cur_seq >= iter->next_seq)
goto out;
}
/*
* Find first record that fits, including all following records,
@ -3494,7 +3555,6 @@ bool kmsg_dump_get_buffer(struct kmsg_dump_iter *iter, bool syslog,
iter->next_seq = next_seq;
ret = true;
printk_safe_exit_irqrestore(flags);
out:
if (len_out)
*len_out = len;
@ -3512,12 +3572,8 @@ EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
*/
void kmsg_dump_rewind(struct kmsg_dump_iter *iter)
{
unsigned long flags;
printk_safe_enter_irqsave(flags);
iter->cur_seq = latched_seq_read_nolock(&clear_seq);
iter->next_seq = prb_next_seq(prb);
printk_safe_exit_irqrestore(flags);
}
EXPORT_SYMBOL_GPL(kmsg_dump_rewind);

View File

@ -4,347 +4,16 @@
*/
#include <linux/preempt.h>
#include <linux/spinlock.h>
#include <linux/debug_locks.h>
#include <linux/kdb.h>
#include <linux/smp.h>
#include <linux/cpumask.h>
#include <linux/irq_work.h>
#include <linux/printk.h>
#include <linux/kprobes.h>
#include "internal.h"
/*
* In NMI and safe mode, printk() avoids taking locks. Instead,
* it uses an alternative implementation that temporary stores
* the strings into a per-CPU buffer. The content of the buffer
* is later flushed into the main ring buffer via IRQ work.
*
* The alternative implementation is chosen transparently
* by examining current printk() context mask stored in @printk_context
* per-CPU variable.
*
* The implementation allows to flush the strings also from another CPU.
* There are situations when we want to make sure that all buffers
* were handled or when IRQs are blocked.
*/
#define SAFE_LOG_BUF_LEN ((1 << CONFIG_PRINTK_SAFE_LOG_BUF_SHIFT) - \
sizeof(atomic_t) - \
sizeof(atomic_t) - \
sizeof(struct irq_work))
struct printk_safe_seq_buf {
atomic_t len; /* length of written data */
atomic_t message_lost;
struct irq_work work; /* IRQ work that flushes the buffer */
unsigned char buffer[SAFE_LOG_BUF_LEN];
};
static DEFINE_PER_CPU(struct printk_safe_seq_buf, safe_print_seq);
static DEFINE_PER_CPU(int, printk_context);
static DEFINE_RAW_SPINLOCK(safe_read_lock);
#ifdef CONFIG_PRINTK_NMI
static DEFINE_PER_CPU(struct printk_safe_seq_buf, nmi_print_seq);
#endif
/* Get flushed in a more safe context. */
static void queue_flush_work(struct printk_safe_seq_buf *s)
{
if (printk_percpu_data_ready())
irq_work_queue(&s->work);
}
/*
* Add a message to per-CPU context-dependent buffer. NMI and printk-safe
* have dedicated buffers, because otherwise printk-safe preempted by
* NMI-printk would have overwritten the NMI messages.
*
* The messages are flushed from irq work (or from panic()), possibly,
* from other CPU, concurrently with printk_safe_log_store(). Should this
* happen, printk_safe_log_store() will notice the buffer->len mismatch
* and repeat the write.
*/
static __printf(2, 0) int printk_safe_log_store(struct printk_safe_seq_buf *s,
const char *fmt, va_list args)
{
int add;
size_t len;
va_list ap;
again:
len = atomic_read(&s->len);
/* The trailing '\0' is not counted into len. */
if (len >= sizeof(s->buffer) - 1) {
atomic_inc(&s->message_lost);
queue_flush_work(s);
return 0;
}
/*
* Make sure that all old data have been read before the buffer
* was reset. This is not needed when we just append data.
*/
if (!len)
smp_rmb();
va_copy(ap, args);
add = vscnprintf(s->buffer + len, sizeof(s->buffer) - len, fmt, ap);
va_end(ap);
if (!add)
return 0;
/*
* Do it once again if the buffer has been flushed in the meantime.
* Note that atomic_cmpxchg() is an implicit memory barrier that
* makes sure that the data were written before updating s->len.
*/
if (atomic_cmpxchg(&s->len, len, len + add) != len)
goto again;
queue_flush_work(s);
return add;
}
static inline void printk_safe_flush_line(const char *text, int len)
{
/*
* Avoid any console drivers calls from here, because we may be
* in NMI or printk_safe context (when in panic). The messages
* must go only into the ring buffer at this stage. Consoles will
* get explicitly called later when a crashdump is not generated.
*/
printk_deferred("%.*s", len, text);
}
/* printk part of the temporary buffer line by line */
static int printk_safe_flush_buffer(const char *start, size_t len)
{
const char *c, *end;
bool header;
c = start;
end = start + len;
header = true;
/* Print line by line. */
while (c < end) {
if (*c == '\n') {
printk_safe_flush_line(start, c - start + 1);
start = ++c;
header = true;
continue;
}
/* Handle continuous lines or missing new line. */
if ((c + 1 < end) && printk_get_level(c)) {
if (header) {
c = printk_skip_level(c);
continue;
}
printk_safe_flush_line(start, c - start);
start = c++;
header = true;
continue;
}
header = false;
c++;
}
/* Check if there was a partial line. Ignore pure header. */
if (start < end && !header) {
static const char newline[] = KERN_CONT "\n";
printk_safe_flush_line(start, end - start);
printk_safe_flush_line(newline, strlen(newline));
}
return len;
}
static void report_message_lost(struct printk_safe_seq_buf *s)
{
int lost = atomic_xchg(&s->message_lost, 0);
if (lost)
printk_deferred("Lost %d message(s)!\n", lost);
}
/*
* Flush data from the associated per-CPU buffer. The function
* can be called either via IRQ work or independently.
*/
static void __printk_safe_flush(struct irq_work *work)
{
struct printk_safe_seq_buf *s =
container_of(work, struct printk_safe_seq_buf, work);
unsigned long flags;
size_t len;
int i;
/*
* The lock has two functions. First, one reader has to flush all
* available message to make the lockless synchronization with
* writers easier. Second, we do not want to mix messages from
* different CPUs. This is especially important when printing
* a backtrace.
*/
raw_spin_lock_irqsave(&safe_read_lock, flags);
i = 0;
more:
len = atomic_read(&s->len);
/*
* This is just a paranoid check that nobody has manipulated
* the buffer an unexpected way. If we printed something then
* @len must only increase. Also it should never overflow the
* buffer size.
*/
if ((i && i >= len) || len > sizeof(s->buffer)) {
const char *msg = "printk_safe_flush: internal error\n";
printk_safe_flush_line(msg, strlen(msg));
len = 0;
}
if (!len)
goto out; /* Someone else has already flushed the buffer. */
/* Make sure that data has been written up to the @len */
smp_rmb();
i += printk_safe_flush_buffer(s->buffer + i, len - i);
/*
* Check that nothing has got added in the meantime and truncate
* the buffer. Note that atomic_cmpxchg() is an implicit memory
* barrier that makes sure that the data were copied before
* updating s->len.
*/
if (atomic_cmpxchg(&s->len, len, 0) != len)
goto more;
out:
report_message_lost(s);
raw_spin_unlock_irqrestore(&safe_read_lock, flags);
}
/**
* printk_safe_flush - flush all per-cpu nmi buffers.
*
* The buffers are flushed automatically via IRQ work. This function
* is useful only when someone wants to be sure that all buffers have
* been flushed at some point.
*/
void printk_safe_flush(void)
{
int cpu;
for_each_possible_cpu(cpu) {
#ifdef CONFIG_PRINTK_NMI
__printk_safe_flush(&per_cpu(nmi_print_seq, cpu).work);
#endif
__printk_safe_flush(&per_cpu(safe_print_seq, cpu).work);
}
}
/**
* printk_safe_flush_on_panic - flush all per-cpu nmi buffers when the system
* goes down.
*
* Similar to printk_safe_flush() but it can be called even in NMI context when
* the system goes down. It does the best effort to get NMI messages into
* the main ring buffer.
*
* Note that it could try harder when there is only one CPU online.
*/
void printk_safe_flush_on_panic(void)
{
/*
* Make sure that we could access the safe buffers.
* Do not risk a double release when more CPUs are up.
*/
if (raw_spin_is_locked(&safe_read_lock)) {
if (num_online_cpus() > 1)
return;
debug_locks_off();
raw_spin_lock_init(&safe_read_lock);
}
printk_safe_flush();
}
#ifdef CONFIG_PRINTK_NMI
/*
* Safe printk() for NMI context. It uses a per-CPU buffer to
* store the message. NMIs are not nested, so there is always only
* one writer running. But the buffer might get flushed from another
* CPU, so we need to be careful.
*/
static __printf(1, 0) int vprintk_nmi(const char *fmt, va_list args)
{
struct printk_safe_seq_buf *s = this_cpu_ptr(&nmi_print_seq);
return printk_safe_log_store(s, fmt, args);
}
void noinstr printk_nmi_enter(void)
{
this_cpu_add(printk_context, PRINTK_NMI_CONTEXT_OFFSET);
}
void noinstr printk_nmi_exit(void)
{
this_cpu_sub(printk_context, PRINTK_NMI_CONTEXT_OFFSET);
}
/*
* Marks a code that might produce many messages in NMI context
* and the risk of losing them is more critical than eventual
* reordering.
*
* It has effect only when called in NMI context. Then printk()
* will store the messages into the main logbuf directly.
*/
void printk_nmi_direct_enter(void)
{
if (this_cpu_read(printk_context) & PRINTK_NMI_CONTEXT_MASK)
this_cpu_or(printk_context, PRINTK_NMI_DIRECT_CONTEXT_MASK);
}
void printk_nmi_direct_exit(void)
{
this_cpu_and(printk_context, ~PRINTK_NMI_DIRECT_CONTEXT_MASK);
}
#else
static __printf(1, 0) int vprintk_nmi(const char *fmt, va_list args)
{
return 0;
}
#endif /* CONFIG_PRINTK_NMI */
/*
* Lock-less printk(), to avoid deadlocks should the printk() recurse
* into itself. It uses a per-CPU buffer to store the message, just like
* NMI.
*/
static __printf(1, 0) int vprintk_safe(const char *fmt, va_list args)
{
struct printk_safe_seq_buf *s = this_cpu_ptr(&safe_print_seq);
return printk_safe_log_store(s, fmt, args);
}
/* Can be preempted by NMI. */
void __printk_safe_enter(void)
{
@ -369,46 +38,15 @@ asmlinkage int vprintk(const char *fmt, va_list args)
* Use the main logbuf even in NMI. But avoid calling console
* drivers that might have their own locks.
*/
if ((this_cpu_read(printk_context) & PRINTK_NMI_DIRECT_CONTEXT_MASK)) {
unsigned long flags;
if (this_cpu_read(printk_context) || in_nmi()) {
int len;
printk_safe_enter_irqsave(flags);
len = vprintk_store(0, LOGLEVEL_DEFAULT, NULL, fmt, args);
printk_safe_exit_irqrestore(flags);
defer_console_output();
return len;
}
/* Use extra buffer in NMI. */
if (this_cpu_read(printk_context) & PRINTK_NMI_CONTEXT_MASK)
return vprintk_nmi(fmt, args);
/* Use extra buffer to prevent a recursion deadlock in safe mode. */
if (this_cpu_read(printk_context) & PRINTK_SAFE_CONTEXT_MASK)
return vprintk_safe(fmt, args);
/* No obstacles. */
return vprintk_default(fmt, args);
}
EXPORT_SYMBOL(vprintk);
void __init printk_safe_init(void)
{
int cpu;
for_each_possible_cpu(cpu) {
struct printk_safe_seq_buf *s;
s = &per_cpu(safe_print_seq, cpu);
init_irq_work(&s->work, __printk_safe_flush);
#ifdef CONFIG_PRINTK_NMI
s = &per_cpu(nmi_print_seq, cpu);
init_irq_work(&s->work, __printk_safe_flush);
#endif
}
/* Flush pending messages that did not have scheduled IRQ works. */
printk_safe_flush();
}

View File

@ -9797,7 +9797,6 @@ void ftrace_dump(enum ftrace_dump_mode oops_dump_mode)
tracing_off();
local_irq_save(flags);
printk_nmi_direct_enter();
/* Simulate the iterator */
trace_init_global_iter(&iter);
@ -9879,7 +9878,6 @@ void ftrace_dump(enum ftrace_dump_mode oops_dump_mode)
atomic_dec(&per_cpu_ptr(iter.array_buffer->data, cpu)->disabled);
}
atomic_dec(&dump_running);
printk_nmi_direct_exit();
local_irq_restore(flags);
}
EXPORT_SYMBOL_GPL(ftrace_dump);

View File

@ -75,12 +75,6 @@ void nmi_trigger_cpumask_backtrace(const cpumask_t *mask,
touch_softlockup_watchdog();
}
/*
* Force flush any remote buffers that might be stuck in IRQ context
* and therefore could not run their irq_work.
*/
printk_safe_flush();
clear_bit_unlock(0, &backtrace_flag);
put_cpu();
}
@ -92,8 +86,14 @@ module_param(backtrace_idle, bool, 0644);
bool nmi_cpu_backtrace(struct pt_regs *regs)
{
int cpu = smp_processor_id();
unsigned long flags;
if (cpumask_test_cpu(cpu, to_cpumask(backtrace_mask))) {
/*
* Allow nested NMI backtraces while serializing
* against other CPUs.
*/
printk_cpu_lock_irqsave(flags);
if (!READ_ONCE(backtrace_idle) && regs && cpu_in_idle(instruction_pointer(regs))) {
pr_warn("NMI backtrace for cpu %d skipped: idling at %pS\n",
cpu, (void *)instruction_pointer(regs));
@ -104,6 +104,7 @@ bool nmi_cpu_backtrace(struct pt_regs *regs)
else
dump_stack();
}
printk_cpu_unlock_irqrestore(flags);
cpumask_clear_cpu(cpu, to_cpumask(backtrace_mask));
return true;
}