random32: make prandom_u32() output unpredictable
Non-cryptographic PRNGs may have great statistical properties, but are usually trivially predictable to someone who knows the algorithm, given a small sample of their output. An LFSR like prandom_u32() is particularly simple, even if the sample is widely scattered bits. It turns out the network stack uses prandom_u32() for some things like random port numbers which it would prefer are *not* trivially predictable. Predictability led to a practical DNS spoofing attack. Oops. This patch replaces the LFSR with a homebrew cryptographic PRNG based on the SipHash round function, which is in turn seeded with 128 bits of strong random key. (The authors of SipHash have *not* been consulted about this abuse of their algorithm.) Speed is prioritized over security; attacks are rare, while performance is always wanted. Replacing all callers of prandom_u32() is the quick fix. Whether to reinstate a weaker PRNG for uses which can tolerate it is an open question. Commitf227e3ec3b
("random32: update the net random state on interrupt and activity") was an earlier attempt at a solution. This patch replaces it. Reported-by: Amit Klein <aksecurity@gmail.com> Cc: Willy Tarreau <w@1wt.eu> Cc: Eric Dumazet <edumazet@google.com> Cc: "Jason A. Donenfeld" <Jason@zx2c4.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Kees Cook <keescook@chromium.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: tytso@mit.edu Cc: Florian Westphal <fw@strlen.de> Cc: Marc Plumb <lkml.mplumb@gmail.com> Fixes:f227e3ec3b
("random32: update the net random state on interrupt and activity") Signed-off-by: George Spelvin <lkml@sdf.org> Link: https://lore.kernel.org/netdev/20200808152628.GA27941@SDF.ORG/ [ willy: partial reversal of f227e3ec3b5c; moved SIPROUND definitions to prandom.h for later use; merged George's prandom_seed() proposal; inlined siprand_u32(); replaced the net_rand_state[] array with 4 members to fix a build issue; cosmetic cleanups to make checkpatch happy; fixed RANDOM32_SELFTEST build ] Signed-off-by: Willy Tarreau <w@1wt.eu>
This commit is contained in:
parent
f11901ed72
commit
c51f8f88d7
|
@ -1277,7 +1277,6 @@ void add_interrupt_randomness(int irq, int irq_flags)
|
|||
|
||||
fast_mix(fast_pool);
|
||||
add_interrupt_bench(cycles);
|
||||
this_cpu_add(net_rand_state.s1, fast_pool->pool[cycles & 3]);
|
||||
|
||||
if (unlikely(crng_init == 0)) {
|
||||
if ((fast_pool->count >= 64) &&
|
||||
|
|
|
@ -16,12 +16,44 @@ void prandom_bytes(void *buf, size_t nbytes);
|
|||
void prandom_seed(u32 seed);
|
||||
void prandom_reseed_late(void);
|
||||
|
||||
#if BITS_PER_LONG == 64
|
||||
/*
|
||||
* The core SipHash round function. Each line can be executed in
|
||||
* parallel given enough CPU resources.
|
||||
*/
|
||||
#define PRND_SIPROUND(v0, v1, v2, v3) ( \
|
||||
v0 += v1, v1 = rol64(v1, 13), v2 += v3, v3 = rol64(v3, 16), \
|
||||
v1 ^= v0, v0 = rol64(v0, 32), v3 ^= v2, \
|
||||
v0 += v3, v3 = rol64(v3, 21), v2 += v1, v1 = rol64(v1, 17), \
|
||||
v3 ^= v0, v1 ^= v2, v2 = rol64(v2, 32) \
|
||||
)
|
||||
|
||||
#define PRND_K0 (0x736f6d6570736575 ^ 0x6c7967656e657261)
|
||||
#define PRND_K1 (0x646f72616e646f6d ^ 0x7465646279746573)
|
||||
|
||||
#elif BITS_PER_LONG == 32
|
||||
/*
|
||||
* On 32-bit machines, we use HSipHash, a reduced-width version of SipHash.
|
||||
* This is weaker, but 32-bit machines are not used for high-traffic
|
||||
* applications, so there is less output for an attacker to analyze.
|
||||
*/
|
||||
#define PRND_SIPROUND(v0, v1, v2, v3) ( \
|
||||
v0 += v1, v1 = rol32(v1, 5), v2 += v3, v3 = rol32(v3, 8), \
|
||||
v1 ^= v0, v0 = rol32(v0, 16), v3 ^= v2, \
|
||||
v0 += v3, v3 = rol32(v3, 7), v2 += v1, v1 = rol32(v1, 13), \
|
||||
v3 ^= v0, v1 ^= v2, v2 = rol32(v2, 16) \
|
||||
)
|
||||
#define PRND_K0 0x6c796765
|
||||
#define PRND_K1 0x74656462
|
||||
|
||||
#else
|
||||
#error Unsupported BITS_PER_LONG
|
||||
#endif
|
||||
|
||||
struct rnd_state {
|
||||
__u32 s1, s2, s3, s4;
|
||||
};
|
||||
|
||||
DECLARE_PER_CPU(struct rnd_state, net_rand_state);
|
||||
|
||||
u32 prandom_u32_state(struct rnd_state *state);
|
||||
void prandom_bytes_state(struct rnd_state *state, void *buf, size_t nbytes);
|
||||
void prandom_seed_full_state(struct rnd_state __percpu *pcpu_state);
|
||||
|
|
|
@ -1717,13 +1717,6 @@ void update_process_times(int user_tick)
|
|||
scheduler_tick();
|
||||
if (IS_ENABLED(CONFIG_POSIX_TIMERS))
|
||||
run_posix_cpu_timers();
|
||||
|
||||
/* The current CPU might make use of net randoms without receiving IRQs
|
||||
* to renew them often enough. Let's update the net_rand_state from a
|
||||
* non-constant value that's not affine to the number of calls to make
|
||||
* sure it's updated when there's some activity (we don't care in idle).
|
||||
*/
|
||||
this_cpu_add(net_rand_state.s1, rol32(jiffies, 24) + user_tick);
|
||||
}
|
||||
|
||||
/**
|
||||
|
|
464
lib/random32.c
464
lib/random32.c
|
@ -41,16 +41,6 @@
|
|||
#include <asm/unaligned.h>
|
||||
#include <trace/events/random.h>
|
||||
|
||||
#ifdef CONFIG_RANDOM32_SELFTEST
|
||||
static void __init prandom_state_selftest(void);
|
||||
#else
|
||||
static inline void prandom_state_selftest(void)
|
||||
{
|
||||
}
|
||||
#endif
|
||||
|
||||
DEFINE_PER_CPU(struct rnd_state, net_rand_state) __latent_entropy;
|
||||
|
||||
/**
|
||||
* prandom_u32_state - seeded pseudo-random number generator.
|
||||
* @state: pointer to state structure holding seeded state.
|
||||
|
@ -70,26 +60,6 @@ u32 prandom_u32_state(struct rnd_state *state)
|
|||
}
|
||||
EXPORT_SYMBOL(prandom_u32_state);
|
||||
|
||||
/**
|
||||
* prandom_u32 - pseudo random number generator
|
||||
*
|
||||
* A 32 bit pseudo-random number is generated using a fast
|
||||
* algorithm suitable for simulation. This algorithm is NOT
|
||||
* considered safe for cryptographic use.
|
||||
*/
|
||||
u32 prandom_u32(void)
|
||||
{
|
||||
struct rnd_state *state = &get_cpu_var(net_rand_state);
|
||||
u32 res;
|
||||
|
||||
res = prandom_u32_state(state);
|
||||
trace_prandom_u32(res);
|
||||
put_cpu_var(net_rand_state);
|
||||
|
||||
return res;
|
||||
}
|
||||
EXPORT_SYMBOL(prandom_u32);
|
||||
|
||||
/**
|
||||
* prandom_bytes_state - get the requested number of pseudo-random bytes
|
||||
*
|
||||
|
@ -121,20 +91,6 @@ void prandom_bytes_state(struct rnd_state *state, void *buf, size_t bytes)
|
|||
}
|
||||
EXPORT_SYMBOL(prandom_bytes_state);
|
||||
|
||||
/**
|
||||
* prandom_bytes - get the requested number of pseudo-random bytes
|
||||
* @buf: where to copy the pseudo-random bytes to
|
||||
* @bytes: the requested number of bytes
|
||||
*/
|
||||
void prandom_bytes(void *buf, size_t bytes)
|
||||
{
|
||||
struct rnd_state *state = &get_cpu_var(net_rand_state);
|
||||
|
||||
prandom_bytes_state(state, buf, bytes);
|
||||
put_cpu_var(net_rand_state);
|
||||
}
|
||||
EXPORT_SYMBOL(prandom_bytes);
|
||||
|
||||
static void prandom_warmup(struct rnd_state *state)
|
||||
{
|
||||
/* Calling RNG ten times to satisfy recurrence condition */
|
||||
|
@ -150,96 +106,6 @@ static void prandom_warmup(struct rnd_state *state)
|
|||
prandom_u32_state(state);
|
||||
}
|
||||
|
||||
static u32 __extract_hwseed(void)
|
||||
{
|
||||
unsigned int val = 0;
|
||||
|
||||
(void)(arch_get_random_seed_int(&val) ||
|
||||
arch_get_random_int(&val));
|
||||
|
||||
return val;
|
||||
}
|
||||
|
||||
static void prandom_seed_early(struct rnd_state *state, u32 seed,
|
||||
bool mix_with_hwseed)
|
||||
{
|
||||
#define LCG(x) ((x) * 69069U) /* super-duper LCG */
|
||||
#define HWSEED() (mix_with_hwseed ? __extract_hwseed() : 0)
|
||||
state->s1 = __seed(HWSEED() ^ LCG(seed), 2U);
|
||||
state->s2 = __seed(HWSEED() ^ LCG(state->s1), 8U);
|
||||
state->s3 = __seed(HWSEED() ^ LCG(state->s2), 16U);
|
||||
state->s4 = __seed(HWSEED() ^ LCG(state->s3), 128U);
|
||||
}
|
||||
|
||||
/**
|
||||
* prandom_seed - add entropy to pseudo random number generator
|
||||
* @entropy: entropy value
|
||||
*
|
||||
* Add some additional entropy to the prandom pool.
|
||||
*/
|
||||
void prandom_seed(u32 entropy)
|
||||
{
|
||||
int i;
|
||||
/*
|
||||
* No locking on the CPUs, but then somewhat random results are, well,
|
||||
* expected.
|
||||
*/
|
||||
for_each_possible_cpu(i) {
|
||||
struct rnd_state *state = &per_cpu(net_rand_state, i);
|
||||
|
||||
state->s1 = __seed(state->s1 ^ entropy, 2U);
|
||||
prandom_warmup(state);
|
||||
}
|
||||
}
|
||||
EXPORT_SYMBOL(prandom_seed);
|
||||
|
||||
/*
|
||||
* Generate some initially weak seeding values to allow
|
||||
* to start the prandom_u32() engine.
|
||||
*/
|
||||
static int __init prandom_init(void)
|
||||
{
|
||||
int i;
|
||||
|
||||
prandom_state_selftest();
|
||||
|
||||
for_each_possible_cpu(i) {
|
||||
struct rnd_state *state = &per_cpu(net_rand_state, i);
|
||||
u32 weak_seed = (i + jiffies) ^ random_get_entropy();
|
||||
|
||||
prandom_seed_early(state, weak_seed, true);
|
||||
prandom_warmup(state);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
core_initcall(prandom_init);
|
||||
|
||||
static void __prandom_timer(struct timer_list *unused);
|
||||
|
||||
static DEFINE_TIMER(seed_timer, __prandom_timer);
|
||||
|
||||
static void __prandom_timer(struct timer_list *unused)
|
||||
{
|
||||
u32 entropy;
|
||||
unsigned long expires;
|
||||
|
||||
get_random_bytes(&entropy, sizeof(entropy));
|
||||
prandom_seed(entropy);
|
||||
|
||||
/* reseed every ~60 seconds, in [40 .. 80) interval with slack */
|
||||
expires = 40 + prandom_u32_max(40);
|
||||
seed_timer.expires = jiffies + msecs_to_jiffies(expires * MSEC_PER_SEC);
|
||||
|
||||
add_timer(&seed_timer);
|
||||
}
|
||||
|
||||
static void __init __prandom_start_seed_timer(void)
|
||||
{
|
||||
seed_timer.expires = jiffies + msecs_to_jiffies(40 * MSEC_PER_SEC);
|
||||
add_timer(&seed_timer);
|
||||
}
|
||||
|
||||
void prandom_seed_full_state(struct rnd_state __percpu *pcpu_state)
|
||||
{
|
||||
int i;
|
||||
|
@ -259,51 +125,6 @@ void prandom_seed_full_state(struct rnd_state __percpu *pcpu_state)
|
|||
}
|
||||
EXPORT_SYMBOL(prandom_seed_full_state);
|
||||
|
||||
/*
|
||||
* Generate better values after random number generator
|
||||
* is fully initialized.
|
||||
*/
|
||||
static void __prandom_reseed(bool late)
|
||||
{
|
||||
unsigned long flags;
|
||||
static bool latch = false;
|
||||
static DEFINE_SPINLOCK(lock);
|
||||
|
||||
/* Asking for random bytes might result in bytes getting
|
||||
* moved into the nonblocking pool and thus marking it
|
||||
* as initialized. In this case we would double back into
|
||||
* this function and attempt to do a late reseed.
|
||||
* Ignore the pointless attempt to reseed again if we're
|
||||
* already waiting for bytes when the nonblocking pool
|
||||
* got initialized.
|
||||
*/
|
||||
|
||||
/* only allow initial seeding (late == false) once */
|
||||
if (!spin_trylock_irqsave(&lock, flags))
|
||||
return;
|
||||
|
||||
if (latch && !late)
|
||||
goto out;
|
||||
|
||||
latch = true;
|
||||
prandom_seed_full_state(&net_rand_state);
|
||||
out:
|
||||
spin_unlock_irqrestore(&lock, flags);
|
||||
}
|
||||
|
||||
void prandom_reseed_late(void)
|
||||
{
|
||||
__prandom_reseed(true);
|
||||
}
|
||||
|
||||
static int __init prandom_reseed(void)
|
||||
{
|
||||
__prandom_reseed(false);
|
||||
__prandom_start_seed_timer();
|
||||
return 0;
|
||||
}
|
||||
late_initcall(prandom_reseed);
|
||||
|
||||
#ifdef CONFIG_RANDOM32_SELFTEST
|
||||
static struct prandom_test1 {
|
||||
u32 seed;
|
||||
|
@ -423,7 +244,28 @@ static struct prandom_test2 {
|
|||
{ 407983964U, 921U, 728767059U },
|
||||
};
|
||||
|
||||
static void __init prandom_state_selftest(void)
|
||||
static u32 __extract_hwseed(void)
|
||||
{
|
||||
unsigned int val = 0;
|
||||
|
||||
(void)(arch_get_random_seed_int(&val) ||
|
||||
arch_get_random_int(&val));
|
||||
|
||||
return val;
|
||||
}
|
||||
|
||||
static void prandom_seed_early(struct rnd_state *state, u32 seed,
|
||||
bool mix_with_hwseed)
|
||||
{
|
||||
#define LCG(x) ((x) * 69069U) /* super-duper LCG */
|
||||
#define HWSEED() (mix_with_hwseed ? __extract_hwseed() : 0)
|
||||
state->s1 = __seed(HWSEED() ^ LCG(seed), 2U);
|
||||
state->s2 = __seed(HWSEED() ^ LCG(state->s1), 8U);
|
||||
state->s3 = __seed(HWSEED() ^ LCG(state->s2), 16U);
|
||||
state->s4 = __seed(HWSEED() ^ LCG(state->s3), 128U);
|
||||
}
|
||||
|
||||
static int __init prandom_state_selftest(void)
|
||||
{
|
||||
int i, j, errors = 0, runs = 0;
|
||||
bool error = false;
|
||||
|
@ -463,5 +305,267 @@ static void __init prandom_state_selftest(void)
|
|||
pr_warn("prandom: %d/%d self tests failed\n", errors, runs);
|
||||
else
|
||||
pr_info("prandom: %d self tests passed\n", runs);
|
||||
return 0;
|
||||
}
|
||||
core_initcall(prandom_state_selftest);
|
||||
#endif
|
||||
|
||||
/*
|
||||
* The prandom_u32() implementation is now completely separate from the
|
||||
* prandom_state() functions, which are retained (for now) for compatibility.
|
||||
*
|
||||
* Because of (ab)use in the networking code for choosing random TCP/UDP port
|
||||
* numbers, which open DoS possibilities if guessable, we want something
|
||||
* stronger than a standard PRNG. But the performance requirements of
|
||||
* the network code do not allow robust crypto for this application.
|
||||
*
|
||||
* So this is a homebrew Junior Spaceman implementation, based on the
|
||||
* lowest-latency trustworthy crypto primitive available, SipHash.
|
||||
* (The authors of SipHash have not been consulted about this abuse of
|
||||
* their work.)
|
||||
*
|
||||
* Standard SipHash-2-4 uses 2n+4 rounds to hash n words of input to
|
||||
* one word of output. This abbreviated version uses 2 rounds per word
|
||||
* of output.
|
||||
*/
|
||||
|
||||
struct siprand_state {
|
||||
unsigned long v0;
|
||||
unsigned long v1;
|
||||
unsigned long v2;
|
||||
unsigned long v3;
|
||||
};
|
||||
|
||||
static DEFINE_PER_CPU(struct siprand_state, net_rand_state) __latent_entropy;
|
||||
|
||||
/*
|
||||
* This is the core CPRNG function. As "pseudorandom", this is not used
|
||||
* for truly valuable things, just intended to be a PITA to guess.
|
||||
* For maximum speed, we do just two SipHash rounds per word. This is
|
||||
* the same rate as 4 rounds per 64 bits that SipHash normally uses,
|
||||
* so hopefully it's reasonably secure.
|
||||
*
|
||||
* There are two changes from the official SipHash finalization:
|
||||
* - We omit some constants XORed with v2 in the SipHash spec as irrelevant;
|
||||
* they are there only to make the output rounds distinct from the input
|
||||
* rounds, and this application has no input rounds.
|
||||
* - Rather than returning v0^v1^v2^v3, return v1+v3.
|
||||
* If you look at the SipHash round, the last operation on v3 is
|
||||
* "v3 ^= v0", so "v0 ^ v3" just undoes that, a waste of time.
|
||||
* Likewise "v1 ^= v2". (The rotate of v2 makes a difference, but
|
||||
* it still cancels out half of the bits in v2 for no benefit.)
|
||||
* Second, since the last combining operation was xor, continue the
|
||||
* pattern of alternating xor/add for a tiny bit of extra non-linearity.
|
||||
*/
|
||||
static inline u32 siprand_u32(struct siprand_state *s)
|
||||
{
|
||||
unsigned long v0 = s->v0, v1 = s->v1, v2 = s->v2, v3 = s->v3;
|
||||
|
||||
PRND_SIPROUND(v0, v1, v2, v3);
|
||||
PRND_SIPROUND(v0, v1, v2, v3);
|
||||
s->v0 = v0; s->v1 = v1; s->v2 = v2; s->v3 = v3;
|
||||
return v1 + v3;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* prandom_u32 - pseudo random number generator
|
||||
*
|
||||
* A 32 bit pseudo-random number is generated using a fast
|
||||
* algorithm suitable for simulation. This algorithm is NOT
|
||||
* considered safe for cryptographic use.
|
||||
*/
|
||||
u32 prandom_u32(void)
|
||||
{
|
||||
struct siprand_state *state = get_cpu_ptr(&net_rand_state);
|
||||
u32 res = siprand_u32(state);
|
||||
|
||||
trace_prandom_u32(res);
|
||||
put_cpu_ptr(&net_rand_state);
|
||||
return res;
|
||||
}
|
||||
EXPORT_SYMBOL(prandom_u32);
|
||||
|
||||
/**
|
||||
* prandom_bytes - get the requested number of pseudo-random bytes
|
||||
* @buf: where to copy the pseudo-random bytes to
|
||||
* @bytes: the requested number of bytes
|
||||
*/
|
||||
void prandom_bytes(void *buf, size_t bytes)
|
||||
{
|
||||
struct siprand_state *state = get_cpu_ptr(&net_rand_state);
|
||||
u8 *ptr = buf;
|
||||
|
||||
while (bytes >= sizeof(u32)) {
|
||||
put_unaligned(siprand_u32(state), (u32 *)ptr);
|
||||
ptr += sizeof(u32);
|
||||
bytes -= sizeof(u32);
|
||||
}
|
||||
|
||||
if (bytes > 0) {
|
||||
u32 rem = siprand_u32(state);
|
||||
|
||||
do {
|
||||
*ptr++ = (u8)rem;
|
||||
rem >>= BITS_PER_BYTE;
|
||||
} while (--bytes > 0);
|
||||
}
|
||||
put_cpu_ptr(&net_rand_state);
|
||||
}
|
||||
EXPORT_SYMBOL(prandom_bytes);
|
||||
|
||||
/**
|
||||
* prandom_seed - add entropy to pseudo random number generator
|
||||
* @entropy: entropy value
|
||||
*
|
||||
* Add some additional seed material to the prandom pool.
|
||||
* The "entropy" is actually our IP address (the only caller is
|
||||
* the network code), not for unpredictability, but to ensure that
|
||||
* different machines are initialized differently.
|
||||
*/
|
||||
void prandom_seed(u32 entropy)
|
||||
{
|
||||
int i;
|
||||
|
||||
add_device_randomness(&entropy, sizeof(entropy));
|
||||
|
||||
for_each_possible_cpu(i) {
|
||||
struct siprand_state *state = per_cpu_ptr(&net_rand_state, i);
|
||||
unsigned long v0 = state->v0, v1 = state->v1;
|
||||
unsigned long v2 = state->v2, v3 = state->v3;
|
||||
|
||||
do {
|
||||
v3 ^= entropy;
|
||||
PRND_SIPROUND(v0, v1, v2, v3);
|
||||
PRND_SIPROUND(v0, v1, v2, v3);
|
||||
v0 ^= entropy;
|
||||
} while (unlikely(!v0 || !v1 || !v2 || !v3));
|
||||
|
||||
WRITE_ONCE(state->v0, v0);
|
||||
WRITE_ONCE(state->v1, v1);
|
||||
WRITE_ONCE(state->v2, v2);
|
||||
WRITE_ONCE(state->v3, v3);
|
||||
}
|
||||
}
|
||||
EXPORT_SYMBOL(prandom_seed);
|
||||
|
||||
/*
|
||||
* Generate some initially weak seeding values to allow
|
||||
* the prandom_u32() engine to be started.
|
||||
*/
|
||||
static int __init prandom_init_early(void)
|
||||
{
|
||||
int i;
|
||||
unsigned long v0, v1, v2, v3;
|
||||
|
||||
if (!arch_get_random_long(&v0))
|
||||
v0 = jiffies;
|
||||
if (!arch_get_random_long(&v1))
|
||||
v1 = random_get_entropy();
|
||||
v2 = v0 ^ PRND_K0;
|
||||
v3 = v1 ^ PRND_K1;
|
||||
|
||||
for_each_possible_cpu(i) {
|
||||
struct siprand_state *state;
|
||||
|
||||
v3 ^= i;
|
||||
PRND_SIPROUND(v0, v1, v2, v3);
|
||||
PRND_SIPROUND(v0, v1, v2, v3);
|
||||
v0 ^= i;
|
||||
|
||||
state = per_cpu_ptr(&net_rand_state, i);
|
||||
state->v0 = v0; state->v1 = v1;
|
||||
state->v2 = v2; state->v3 = v3;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
core_initcall(prandom_init_early);
|
||||
|
||||
|
||||
/* Stronger reseeding when available, and periodically thereafter. */
|
||||
static void prandom_reseed(struct timer_list *unused);
|
||||
|
||||
static DEFINE_TIMER(seed_timer, prandom_reseed);
|
||||
|
||||
static void prandom_reseed(struct timer_list *unused)
|
||||
{
|
||||
unsigned long expires;
|
||||
int i;
|
||||
|
||||
/*
|
||||
* Reinitialize each CPU's PRNG with 128 bits of key.
|
||||
* No locking on the CPUs, but then somewhat random results are,
|
||||
* well, expected.
|
||||
*/
|
||||
for_each_possible_cpu(i) {
|
||||
struct siprand_state *state;
|
||||
unsigned long v0 = get_random_long(), v2 = v0 ^ PRND_K0;
|
||||
unsigned long v1 = get_random_long(), v3 = v1 ^ PRND_K1;
|
||||
#if BITS_PER_LONG == 32
|
||||
int j;
|
||||
|
||||
/*
|
||||
* On 32-bit machines, hash in two extra words to
|
||||
* approximate 128-bit key length. Not that the hash
|
||||
* has that much security, but this prevents a trivial
|
||||
* 64-bit brute force.
|
||||
*/
|
||||
for (j = 0; j < 2; j++) {
|
||||
unsigned long m = get_random_long();
|
||||
|
||||
v3 ^= m;
|
||||
PRND_SIPROUND(v0, v1, v2, v3);
|
||||
PRND_SIPROUND(v0, v1, v2, v3);
|
||||
v0 ^= m;
|
||||
}
|
||||
#endif
|
||||
/*
|
||||
* Probably impossible in practice, but there is a
|
||||
* theoretical risk that a race between this reseeding
|
||||
* and the target CPU writing its state back could
|
||||
* create the all-zero SipHash fixed point.
|
||||
*
|
||||
* To ensure that never happens, ensure the state
|
||||
* we write contains no zero words.
|
||||
*/
|
||||
state = per_cpu_ptr(&net_rand_state, i);
|
||||
WRITE_ONCE(state->v0, v0 ? v0 : -1ul);
|
||||
WRITE_ONCE(state->v1, v1 ? v1 : -1ul);
|
||||
WRITE_ONCE(state->v2, v2 ? v2 : -1ul);
|
||||
WRITE_ONCE(state->v3, v3 ? v3 : -1ul);
|
||||
}
|
||||
|
||||
/* reseed every ~60 seconds, in [40 .. 80) interval with slack */
|
||||
expires = round_jiffies(jiffies + 40 * HZ + prandom_u32_max(40 * HZ));
|
||||
mod_timer(&seed_timer, expires);
|
||||
}
|
||||
|
||||
/*
|
||||
* The random ready callback can be called from almost any interrupt.
|
||||
* To avoid worrying about whether it's safe to delay that interrupt
|
||||
* long enough to seed all CPUs, just schedule an immediate timer event.
|
||||
*/
|
||||
static void prandom_timer_start(struct random_ready_callback *unused)
|
||||
{
|
||||
mod_timer(&seed_timer, jiffies);
|
||||
}
|
||||
|
||||
/*
|
||||
* Start periodic full reseeding as soon as strong
|
||||
* random numbers are available.
|
||||
*/
|
||||
static int __init prandom_init_late(void)
|
||||
{
|
||||
static struct random_ready_callback random_ready = {
|
||||
.func = prandom_timer_start
|
||||
};
|
||||
int ret = add_random_ready_callback(&random_ready);
|
||||
|
||||
if (ret == -EALREADY) {
|
||||
prandom_timer_start(&random_ready);
|
||||
ret = 0;
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
late_initcall(prandom_init_late);
|
||||
|
|
Loading…
Reference in New Issue