[TCP]: Remove TCP Compound
This reverts: f890f92104
The inclusion of TCP Compound needs to be reverted at this time
because it is not 100% certain that this code conforms to the
requirements of Developer's Certificate of Origin 1.1 paragraph (b).
Signed-off-by: David S. Miller <davem@davemloft.net>
This commit is contained in:
parent
1eeb7e4288
commit
c427d27452
|
@ -572,16 +572,6 @@ config TCP_CONG_VENO
|
|||
loss packets.
|
||||
See http://www.ntu.edu.sg/home5/ZHOU0022/papers/CPFu03a.pdf
|
||||
|
||||
config TCP_CONG_COMPOUND
|
||||
tristate "TCP Compound"
|
||||
depends on EXPERIMENTAL
|
||||
default n
|
||||
---help---
|
||||
TCP Compound is a sender-side only change to TCP that uses
|
||||
a mixed Reno/Vegas approach to calculate the cwnd.
|
||||
For further details look here:
|
||||
ftp://ftp.research.microsoft.com/pub/tr/TR-2005-86.pdf
|
||||
|
||||
endmenu
|
||||
|
||||
config TCP_CONG_BIC
|
||||
|
|
|
@ -47,7 +47,6 @@ obj-$(CONFIG_TCP_CONG_VEGAS) += tcp_vegas.o
|
|||
obj-$(CONFIG_TCP_CONG_VENO) += tcp_veno.o
|
||||
obj-$(CONFIG_TCP_CONG_SCALABLE) += tcp_scalable.o
|
||||
obj-$(CONFIG_TCP_CONG_LP) += tcp_lp.o
|
||||
obj-$(CONFIG_TCP_CONG_COMPOUND) += tcp_compound.o
|
||||
|
||||
obj-$(CONFIG_XFRM) += xfrm4_policy.o xfrm4_state.o xfrm4_input.o \
|
||||
xfrm4_output.o
|
||||
|
|
|
@ -1,448 +0,0 @@
|
|||
/*
|
||||
* TCP Vegas congestion control
|
||||
*
|
||||
* This is based on the congestion detection/avoidance scheme described in
|
||||
* Lawrence S. Brakmo and Larry L. Peterson.
|
||||
* "TCP Vegas: End to end congestion avoidance on a global internet."
|
||||
* IEEE Journal on Selected Areas in Communication, 13(8):1465--1480,
|
||||
* October 1995. Available from:
|
||||
* ftp://ftp.cs.arizona.edu/xkernel/Papers/jsac.ps
|
||||
*
|
||||
* See http://www.cs.arizona.edu/xkernel/ for their implementation.
|
||||
* The main aspects that distinguish this implementation from the
|
||||
* Arizona Vegas implementation are:
|
||||
* o We do not change the loss detection or recovery mechanisms of
|
||||
* Linux in any way. Linux already recovers from losses quite well,
|
||||
* using fine-grained timers, NewReno, and FACK.
|
||||
* o To avoid the performance penalty imposed by increasing cwnd
|
||||
* only every-other RTT during slow start, we increase during
|
||||
* every RTT during slow start, just like Reno.
|
||||
* o Largely to allow continuous cwnd growth during slow start,
|
||||
* we use the rate at which ACKs come back as the "actual"
|
||||
* rate, rather than the rate at which data is sent.
|
||||
* o To speed convergence to the right rate, we set the cwnd
|
||||
* to achieve the right ("actual") rate when we exit slow start.
|
||||
* o To filter out the noise caused by delayed ACKs, we use the
|
||||
* minimum RTT sample observed during the last RTT to calculate
|
||||
* the actual rate.
|
||||
* o When the sender re-starts from idle, it waits until it has
|
||||
* received ACKs for an entire flight of new data before making
|
||||
* a cwnd adjustment decision. The original Vegas implementation
|
||||
* assumed senders never went idle.
|
||||
*
|
||||
*
|
||||
* TCP Compound based on TCP Vegas
|
||||
*
|
||||
* further details can be found here:
|
||||
* ftp://ftp.research.microsoft.com/pub/tr/TR-2005-86.pdf
|
||||
*/
|
||||
|
||||
#include <linux/config.h>
|
||||
#include <linux/mm.h>
|
||||
#include <linux/module.h>
|
||||
#include <linux/skbuff.h>
|
||||
#include <linux/inet_diag.h>
|
||||
|
||||
#include <net/tcp.h>
|
||||
|
||||
/* Default values of the Vegas variables, in fixed-point representation
|
||||
* with V_PARAM_SHIFT bits to the right of the binary point.
|
||||
*/
|
||||
#define V_PARAM_SHIFT 1
|
||||
|
||||
#define TCP_COMPOUND_ALPHA 3U
|
||||
#define TCP_COMPOUND_BETA 1U
|
||||
#define TCP_COMPOUND_GAMMA 30
|
||||
#define TCP_COMPOUND_ZETA 1
|
||||
|
||||
/* TCP compound variables */
|
||||
struct compound {
|
||||
u32 beg_snd_nxt; /* right edge during last RTT */
|
||||
u32 beg_snd_una; /* left edge during last RTT */
|
||||
u32 beg_snd_cwnd; /* saves the size of the cwnd */
|
||||
u8 doing_vegas_now; /* if true, do vegas for this RTT */
|
||||
u16 cntRTT; /* # of RTTs measured within last RTT */
|
||||
u32 minRTT; /* min of RTTs measured within last RTT (in usec) */
|
||||
u32 baseRTT; /* the min of all Vegas RTT measurements seen (in usec) */
|
||||
|
||||
u32 cwnd;
|
||||
u32 dwnd;
|
||||
};
|
||||
|
||||
/* There are several situations when we must "re-start" Vegas:
|
||||
*
|
||||
* o when a connection is established
|
||||
* o after an RTO
|
||||
* o after fast recovery
|
||||
* o when we send a packet and there is no outstanding
|
||||
* unacknowledged data (restarting an idle connection)
|
||||
*
|
||||
* In these circumstances we cannot do a Vegas calculation at the
|
||||
* end of the first RTT, because any calculation we do is using
|
||||
* stale info -- both the saved cwnd and congestion feedback are
|
||||
* stale.
|
||||
*
|
||||
* Instead we must wait until the completion of an RTT during
|
||||
* which we actually receive ACKs.
|
||||
*/
|
||||
static inline void vegas_enable(struct sock *sk)
|
||||
{
|
||||
const struct tcp_sock *tp = tcp_sk(sk);
|
||||
struct compound *vegas = inet_csk_ca(sk);
|
||||
|
||||
/* Begin taking Vegas samples next time we send something. */
|
||||
vegas->doing_vegas_now = 1;
|
||||
|
||||
/* Set the beginning of the next send window. */
|
||||
vegas->beg_snd_nxt = tp->snd_nxt;
|
||||
|
||||
vegas->cntRTT = 0;
|
||||
vegas->minRTT = 0x7fffffff;
|
||||
}
|
||||
|
||||
/* Stop taking Vegas samples for now. */
|
||||
static inline void vegas_disable(struct sock *sk)
|
||||
{
|
||||
struct compound *vegas = inet_csk_ca(sk);
|
||||
|
||||
vegas->doing_vegas_now = 0;
|
||||
}
|
||||
|
||||
static void tcp_compound_init(struct sock *sk)
|
||||
{
|
||||
struct compound *vegas = inet_csk_ca(sk);
|
||||
const struct tcp_sock *tp = tcp_sk(sk);
|
||||
|
||||
vegas->baseRTT = 0x7fffffff;
|
||||
vegas_enable(sk);
|
||||
|
||||
vegas->dwnd = 0;
|
||||
vegas->cwnd = tp->snd_cwnd;
|
||||
}
|
||||
|
||||
/* Do RTT sampling needed for Vegas.
|
||||
* Basically we:
|
||||
* o min-filter RTT samples from within an RTT to get the current
|
||||
* propagation delay + queuing delay (we are min-filtering to try to
|
||||
* avoid the effects of delayed ACKs)
|
||||
* o min-filter RTT samples from a much longer window (forever for now)
|
||||
* to find the propagation delay (baseRTT)
|
||||
*/
|
||||
static void tcp_compound_rtt_calc(struct sock *sk, u32 usrtt)
|
||||
{
|
||||
struct compound *vegas = inet_csk_ca(sk);
|
||||
u32 vrtt = usrtt + 1; /* Never allow zero rtt or baseRTT */
|
||||
|
||||
/* Filter to find propagation delay: */
|
||||
if (vrtt < vegas->baseRTT)
|
||||
vegas->baseRTT = vrtt;
|
||||
|
||||
/* Find the min RTT during the last RTT to find
|
||||
* the current prop. delay + queuing delay:
|
||||
*/
|
||||
|
||||
vegas->minRTT = min(vegas->minRTT, vrtt);
|
||||
vegas->cntRTT++;
|
||||
}
|
||||
|
||||
static void tcp_compound_state(struct sock *sk, u8 ca_state)
|
||||
{
|
||||
|
||||
if (ca_state == TCP_CA_Open)
|
||||
vegas_enable(sk);
|
||||
else
|
||||
vegas_disable(sk);
|
||||
}
|
||||
|
||||
|
||||
/* 64bit divisor, dividend and result. dynamic precision */
|
||||
static inline u64 div64_64(u64 dividend, u64 divisor)
|
||||
{
|
||||
u32 d = divisor;
|
||||
|
||||
if (divisor > 0xffffffffULL) {
|
||||
unsigned int shift = fls(divisor >> 32);
|
||||
|
||||
d = divisor >> shift;
|
||||
dividend >>= shift;
|
||||
}
|
||||
|
||||
/* avoid 64 bit division if possible */
|
||||
if (dividend >> 32)
|
||||
do_div(dividend, d);
|
||||
else
|
||||
dividend = (u32) dividend / d;
|
||||
|
||||
return dividend;
|
||||
}
|
||||
|
||||
/* calculate the quartic root of "a" using Newton-Raphson */
|
||||
static u32 qroot(u64 a)
|
||||
{
|
||||
u32 x, x1;
|
||||
|
||||
/* Initial estimate is based on:
|
||||
* qrt(x) = exp(log(x) / 4)
|
||||
*/
|
||||
x = 1u << (fls64(a) >> 2);
|
||||
|
||||
/*
|
||||
* Iteration based on:
|
||||
* 3
|
||||
* x = ( 3 * x + a / x ) / 4
|
||||
* k+1 k k
|
||||
*/
|
||||
do {
|
||||
u64 x3 = x;
|
||||
|
||||
x1 = x;
|
||||
x3 *= x;
|
||||
x3 *= x;
|
||||
|
||||
x = (3 * x + (u32) div64_64(a, x3)) / 4;
|
||||
} while (abs(x1 - x) > 1);
|
||||
|
||||
return x;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* If the connection is idle and we are restarting,
|
||||
* then we don't want to do any Vegas calculations
|
||||
* until we get fresh RTT samples. So when we
|
||||
* restart, we reset our Vegas state to a clean
|
||||
* slate. After we get acks for this flight of
|
||||
* packets, _then_ we can make Vegas calculations
|
||||
* again.
|
||||
*/
|
||||
static void tcp_compound_cwnd_event(struct sock *sk, enum tcp_ca_event event)
|
||||
{
|
||||
if (event == CA_EVENT_CWND_RESTART || event == CA_EVENT_TX_START)
|
||||
tcp_compound_init(sk);
|
||||
}
|
||||
|
||||
static void tcp_compound_cong_avoid(struct sock *sk, u32 ack,
|
||||
u32 seq_rtt, u32 in_flight, int flag)
|
||||
{
|
||||
struct tcp_sock *tp = tcp_sk(sk);
|
||||
struct compound *vegas = inet_csk_ca(sk);
|
||||
u8 inc = 0;
|
||||
|
||||
if (vegas->cwnd + vegas->dwnd > tp->snd_cwnd) {
|
||||
if (vegas->cwnd > tp->snd_cwnd || vegas->dwnd > tp->snd_cwnd) {
|
||||
vegas->cwnd = tp->snd_cwnd;
|
||||
vegas->dwnd = 0;
|
||||
} else
|
||||
vegas->cwnd = tp->snd_cwnd - vegas->dwnd;
|
||||
|
||||
}
|
||||
|
||||
if (!tcp_is_cwnd_limited(sk, in_flight))
|
||||
return;
|
||||
|
||||
if (vegas->cwnd <= tp->snd_ssthresh)
|
||||
inc = 1;
|
||||
else if (tp->snd_cwnd_cnt < tp->snd_cwnd)
|
||||
tp->snd_cwnd_cnt++;
|
||||
|
||||
if (tp->snd_cwnd_cnt >= tp->snd_cwnd) {
|
||||
inc = 1;
|
||||
tp->snd_cwnd_cnt = 0;
|
||||
}
|
||||
|
||||
if (inc && tp->snd_cwnd < tp->snd_cwnd_clamp)
|
||||
vegas->cwnd++;
|
||||
|
||||
/* The key players are v_beg_snd_una and v_beg_snd_nxt.
|
||||
*
|
||||
* These are so named because they represent the approximate values
|
||||
* of snd_una and snd_nxt at the beginning of the current RTT. More
|
||||
* precisely, they represent the amount of data sent during the RTT.
|
||||
* At the end of the RTT, when we receive an ACK for v_beg_snd_nxt,
|
||||
* we will calculate that (v_beg_snd_nxt - v_beg_snd_una) outstanding
|
||||
* bytes of data have been ACKed during the course of the RTT, giving
|
||||
* an "actual" rate of:
|
||||
*
|
||||
* (v_beg_snd_nxt - v_beg_snd_una) / (rtt duration)
|
||||
*
|
||||
* Unfortunately, v_beg_snd_una is not exactly equal to snd_una,
|
||||
* because delayed ACKs can cover more than one segment, so they
|
||||
* don't line up nicely with the boundaries of RTTs.
|
||||
*
|
||||
* Another unfortunate fact of life is that delayed ACKs delay the
|
||||
* advance of the left edge of our send window, so that the number
|
||||
* of bytes we send in an RTT is often less than our cwnd will allow.
|
||||
* So we keep track of our cwnd separately, in v_beg_snd_cwnd.
|
||||
*/
|
||||
|
||||
if (after(ack, vegas->beg_snd_nxt)) {
|
||||
/* Do the Vegas once-per-RTT cwnd adjustment. */
|
||||
u32 old_wnd, old_snd_cwnd;
|
||||
|
||||
/* Here old_wnd is essentially the window of data that was
|
||||
* sent during the previous RTT, and has all
|
||||
* been acknowledged in the course of the RTT that ended
|
||||
* with the ACK we just received. Likewise, old_snd_cwnd
|
||||
* is the cwnd during the previous RTT.
|
||||
*/
|
||||
if (!tp->mss_cache)
|
||||
return;
|
||||
|
||||
old_wnd = (vegas->beg_snd_nxt - vegas->beg_snd_una) /
|
||||
tp->mss_cache;
|
||||
old_snd_cwnd = vegas->beg_snd_cwnd;
|
||||
|
||||
/* Save the extent of the current window so we can use this
|
||||
* at the end of the next RTT.
|
||||
*/
|
||||
vegas->beg_snd_una = vegas->beg_snd_nxt;
|
||||
vegas->beg_snd_nxt = tp->snd_nxt;
|
||||
vegas->beg_snd_cwnd = tp->snd_cwnd;
|
||||
|
||||
/* We do the Vegas calculations only if we got enough RTT
|
||||
* samples that we can be reasonably sure that we got
|
||||
* at least one RTT sample that wasn't from a delayed ACK.
|
||||
* If we only had 2 samples total,
|
||||
* then that means we're getting only 1 ACK per RTT, which
|
||||
* means they're almost certainly delayed ACKs.
|
||||
* If we have 3 samples, we should be OK.
|
||||
*/
|
||||
|
||||
if (vegas->cntRTT > 2) {
|
||||
u32 rtt, target_cwnd, diff;
|
||||
u32 brtt, dwnd;
|
||||
|
||||
/* We have enough RTT samples, so, using the Vegas
|
||||
* algorithm, we determine if we should increase or
|
||||
* decrease cwnd, and by how much.
|
||||
*/
|
||||
|
||||
/* Pluck out the RTT we are using for the Vegas
|
||||
* calculations. This is the min RTT seen during the
|
||||
* last RTT. Taking the min filters out the effects
|
||||
* of delayed ACKs, at the cost of noticing congestion
|
||||
* a bit later.
|
||||
*/
|
||||
rtt = vegas->minRTT;
|
||||
|
||||
/* Calculate the cwnd we should have, if we weren't
|
||||
* going too fast.
|
||||
*
|
||||
* This is:
|
||||
* (actual rate in segments) * baseRTT
|
||||
* We keep it as a fixed point number with
|
||||
* V_PARAM_SHIFT bits to the right of the binary point.
|
||||
*/
|
||||
if (!rtt)
|
||||
return;
|
||||
|
||||
brtt = vegas->baseRTT;
|
||||
target_cwnd = ((old_wnd * brtt)
|
||||
<< V_PARAM_SHIFT) / rtt;
|
||||
|
||||
/* Calculate the difference between the window we had,
|
||||
* and the window we would like to have. This quantity
|
||||
* is the "Diff" from the Arizona Vegas papers.
|
||||
*
|
||||
* Again, this is a fixed point number with
|
||||
* V_PARAM_SHIFT bits to the right of the binary
|
||||
* point.
|
||||
*/
|
||||
|
||||
diff = (old_wnd << V_PARAM_SHIFT) - target_cwnd;
|
||||
|
||||
dwnd = vegas->dwnd;
|
||||
|
||||
if (diff < (TCP_COMPOUND_GAMMA << V_PARAM_SHIFT)) {
|
||||
u64 v;
|
||||
u32 x;
|
||||
|
||||
/*
|
||||
* The TCP Compound paper describes the choice
|
||||
* of "k" determines the agressiveness,
|
||||
* ie. slope of the response function.
|
||||
*
|
||||
* For same value as HSTCP would be 0.8
|
||||
* but for computaional reasons, both the
|
||||
* original authors and this implementation
|
||||
* use 0.75.
|
||||
*/
|
||||
v = old_wnd;
|
||||
x = qroot(v * v * v) >> TCP_COMPOUND_ALPHA;
|
||||
if (x > 1)
|
||||
dwnd = x - 1;
|
||||
else
|
||||
dwnd = 0;
|
||||
|
||||
dwnd += vegas->dwnd;
|
||||
|
||||
} else if ((dwnd << V_PARAM_SHIFT) <
|
||||
(diff * TCP_COMPOUND_BETA))
|
||||
dwnd = 0;
|
||||
else
|
||||
dwnd =
|
||||
((dwnd << V_PARAM_SHIFT) -
|
||||
(diff *
|
||||
TCP_COMPOUND_BETA)) >> V_PARAM_SHIFT;
|
||||
|
||||
vegas->dwnd = dwnd;
|
||||
|
||||
}
|
||||
|
||||
/* Wipe the slate clean for the next RTT. */
|
||||
vegas->cntRTT = 0;
|
||||
vegas->minRTT = 0x7fffffff;
|
||||
}
|
||||
|
||||
tp->snd_cwnd = vegas->cwnd + vegas->dwnd;
|
||||
}
|
||||
|
||||
/* Extract info for Tcp socket info provided via netlink. */
|
||||
static void tcp_compound_get_info(struct sock *sk, u32 ext, struct sk_buff *skb)
|
||||
{
|
||||
const struct compound *ca = inet_csk_ca(sk);
|
||||
if (ext & (1 << (INET_DIAG_VEGASINFO - 1))) {
|
||||
struct tcpvegas_info *info;
|
||||
|
||||
info = RTA_DATA(__RTA_PUT(skb, INET_DIAG_VEGASINFO,
|
||||
sizeof(*info)));
|
||||
|
||||
info->tcpv_enabled = ca->doing_vegas_now;
|
||||
info->tcpv_rttcnt = ca->cntRTT;
|
||||
info->tcpv_rtt = ca->baseRTT;
|
||||
info->tcpv_minrtt = ca->minRTT;
|
||||
rtattr_failure:;
|
||||
}
|
||||
}
|
||||
|
||||
static struct tcp_congestion_ops tcp_compound = {
|
||||
.init = tcp_compound_init,
|
||||
.ssthresh = tcp_reno_ssthresh,
|
||||
.cong_avoid = tcp_compound_cong_avoid,
|
||||
.rtt_sample = tcp_compound_rtt_calc,
|
||||
.set_state = tcp_compound_state,
|
||||
.cwnd_event = tcp_compound_cwnd_event,
|
||||
.get_info = tcp_compound_get_info,
|
||||
|
||||
.owner = THIS_MODULE,
|
||||
.name = "compound",
|
||||
};
|
||||
|
||||
static int __init tcp_compound_register(void)
|
||||
{
|
||||
BUG_ON(sizeof(struct compound) > ICSK_CA_PRIV_SIZE);
|
||||
tcp_register_congestion_control(&tcp_compound);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void __exit tcp_compound_unregister(void)
|
||||
{
|
||||
tcp_unregister_congestion_control(&tcp_compound);
|
||||
}
|
||||
|
||||
module_init(tcp_compound_register);
|
||||
module_exit(tcp_compound_unregister);
|
||||
|
||||
MODULE_AUTHOR("Angelo P. Castellani, Stephen Hemminger");
|
||||
MODULE_LICENSE("GPL");
|
||||
MODULE_DESCRIPTION("TCP Compound");
|
Loading…
Reference in New Issue