NAND core

* Fixing typos
 * Adding missing of_node_put() in various drivers
 
 Raw NAND controller drivers:
 * Macronix: new controller driver
 * Omap2: Fixing the number of bitflips returned
 * Brcmnand: Fix a pointer not iterating over all the page chunks
 * W90x900: Driver removed
 * Onenand: Fix a memory leak
 * Sharpsl: Missing include guard
 * STM32: Avoid warnings when building with W=1
 * Ingenic: Fix a coccinelle warning
 * r852: Call a helper to simplify the code
 -----BEGIN PGP SIGNATURE-----
 
 iQEzBAABCgAdFiEE9HuaYnbmDhq/XIDIJWrqGEe9VoQFAl1ny0EACgkQJWrqGEe9
 VoSToQf9Gk13+TPg8oFu6tlmxuQlNU5Dpc+4Hmiahzb1IWwo9Deh2VtZaeWLqPob
 uAisb1HByUD0shgoG6cgmVajULlFpmTdfwBQCPR1Wgvq5pejoOC1MQOMexaZ7Gjx
 cj4DZEk15FFSR7/zSsN78kFDLFh590hUGfBLW55qE69M5xphmb42BVQUFn44Q/N2
 yBvqwUQO/h8TsOS4FXGNc1X0U2/wYQQSOZ6grN3x105cY8Rp05T15a+Qxu22cBem
 5IqPY4dwOTXjY5l0mHVIiO/Jk/N9bAgMSd1a15VVukiAL3oefH/kNpsI8T5d31f2
 uNONC6GhRJj8c3GDmO8gZ6skzTPhIg==
 =a6jq
 -----END PGP SIGNATURE-----

Merge tag 'nand/for-5.4' of git://git.kernel.org/pub/scm/linux/kernel/git/mtd/linux into mtd/for-5.4

NAND core
* Fixing typos
* Adding missing of_node_put() in various drivers

Raw NAND controller drivers:
* Macronix: new controller driver
* Omap2: Fixing the number of bitflips returned
* Brcmnand: Fix a pointer not iterating over all the page chunks
* W90x900: Driver removed
* Onenand: Fix a memory leak
* Sharpsl: Missing include guard
* STM32: Avoid warnings when building with W=1
* Ingenic: Fix a coccinelle warning
* r852: Call a helper to simplify the code
This commit is contained in:
Richard Weinberger 2019-09-15 23:00:10 +02:00
commit c3c1acaf03
19 changed files with 685 additions and 388 deletions

View File

@ -0,0 +1,36 @@
Macronix Raw NAND Controller Device Tree Bindings
-------------------------------------------------
Required properties:
- compatible: should be "mxic,multi-itfc-v009-nand-controller"
- reg: should contain 1 entry for the registers
- #address-cells: should be set to 1
- #size-cells: should be set to 0
- interrupts: interrupt line connected to this raw NAND controller
- clock-names: should contain "ps", "send" and "send_dly"
- clocks: should contain 3 phandles for the "ps", "send" and
"send_dly" clocks
Children nodes:
- children nodes represent the available NAND chips.
See Documentation/devicetree/bindings/mtd/nand-controller.yaml
for more details on generic bindings.
Example:
nand: nand-controller@43c30000 {
compatible = "mxic,multi-itfc-v009-nand-controller";
reg = <0x43c30000 0x10000>;
#address-cells = <1>;
#size-cells = <0>;
interrupts = <GIC_SPI 0x1d IRQ_TYPE_EDGE_RISING>;
clocks = <&clkwizard 0>, <&clkwizard 1>, <&clkc 15>;
clock-names = "send", "send_dly", "ps";
nand@0 {
reg = <0>;
nand-ecc-mode = "soft";
nand-ecc-algo = "bch";
};
};

View File

@ -3880,6 +3880,9 @@ int onenand_scan(struct mtd_info *mtd, int maxchips)
if (!this->oob_buf) {
if (this->options & ONENAND_PAGEBUF_ALLOC) {
this->options &= ~ONENAND_PAGEBUF_ALLOC;
#ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
kfree(this->verify_buf);
#endif
kfree(this->page_buf);
}
return -ENOMEM;

View File

@ -351,14 +351,6 @@ config MTD_NAND_SOCRATES
help
Enables support for NAND Flash chips wired onto Socrates board.
config MTD_NAND_NUC900
tristate "Nuvoton NUC9xx/w90p910 NAND controller"
depends on ARCH_W90X900 || COMPILE_TEST
depends on HAS_IOMEM
help
This enables the driver for the NAND Flash on evaluation board based
on w90p910 / NUC9xx.
source "drivers/mtd/nand/raw/ingenic/Kconfig"
config MTD_NAND_FSMC
@ -407,6 +399,12 @@ config MTD_NAND_MTK
Enables support for NAND controller on MTK SoCs.
This controller is found on mt27xx, mt81xx, mt65xx SoCs.
config MTD_NAND_MXIC
tristate "Macronix raw NAND controller"
depends on HAS_IOMEM || COMPILE_TEST
help
This selects the Macronix raw NAND controller driver.
config MTD_NAND_TEGRA
tristate "NVIDIA Tegra NAND controller"
depends on ARCH_TEGRA || COMPILE_TEST

View File

@ -41,7 +41,6 @@ obj-$(CONFIG_MTD_NAND_SH_FLCTL) += sh_flctl.o
obj-$(CONFIG_MTD_NAND_MXC) += mxc_nand.o
obj-$(CONFIG_MTD_NAND_SOCRATES) += socrates_nand.o
obj-$(CONFIG_MTD_NAND_TXX9NDFMC) += txx9ndfmc.o
obj-$(CONFIG_MTD_NAND_NUC900) += nuc900_nand.o
obj-$(CONFIG_MTD_NAND_MPC5121_NFC) += mpc5121_nfc.o
obj-$(CONFIG_MTD_NAND_VF610_NFC) += vf610_nfc.o
obj-$(CONFIG_MTD_NAND_RICOH) += r852.o
@ -54,6 +53,7 @@ obj-$(CONFIG_MTD_NAND_HISI504) += hisi504_nand.o
obj-$(CONFIG_MTD_NAND_BRCMNAND) += brcmnand/
obj-$(CONFIG_MTD_NAND_QCOM) += qcom_nandc.o
obj-$(CONFIG_MTD_NAND_MTK) += mtk_ecc.o mtk_nand.o
obj-$(CONFIG_MTD_NAND_MXIC) += mxic_nand.o
obj-$(CONFIG_MTD_NAND_TEGRA) += tegra_nand.o
obj-$(CONFIG_MTD_NAND_STM32_FMC2) += stm32_fmc2_nand.o
obj-$(CONFIG_MTD_NAND_MESON) += meson_nand.o

View File

@ -1792,6 +1792,7 @@ static int brcmstb_nand_verify_erased_page(struct mtd_info *mtd,
int bitflips = 0;
int page = addr >> chip->page_shift;
int ret;
void *ecc_chunk;
if (!buf)
buf = nand_get_data_buf(chip);
@ -1804,7 +1805,9 @@ static int brcmstb_nand_verify_erased_page(struct mtd_info *mtd,
return ret;
for (i = 0; i < chip->ecc.steps; i++, oob += sas) {
ret = nand_check_erased_ecc_chunk(buf, chip->ecc.size,
ecc_chunk = buf + chip->ecc.size * i;
ret = nand_check_erased_ecc_chunk(ecc_chunk,
chip->ecc.size,
oob, sas, NULL, 0,
chip->ecc.strength);
if (ret < 0)

View File

@ -310,7 +310,6 @@ static int ingenic_nand_init_chip(struct platform_device *pdev,
struct device *dev = &pdev->dev;
struct ingenic_nand *nand;
struct ingenic_nand_cs *cs;
struct resource *res;
struct nand_chip *chip;
struct mtd_info *mtd;
const __be32 *reg;
@ -326,8 +325,7 @@ static int ingenic_nand_init_chip(struct platform_device *pdev,
jz4780_nemc_set_type(nfc->dev, cs->bank, JZ4780_NEMC_BANK_NAND);
res = platform_get_resource(pdev, IORESOURCE_MEM, chipnr);
cs->base = devm_ioremap_resource(dev, res);
cs->base = devm_platform_ioremap_resource(pdev, chipnr);
if (IS_ERR(cs->base))
return PTR_ERR(cs->base);
@ -418,6 +416,7 @@ static int ingenic_nand_init_chips(struct ingenic_nfc *nfc,
ret = ingenic_nand_init_chip(pdev, nfc, np, i);
if (ret) {
ingenic_nand_cleanup_chips(nfc);
of_node_put(np);
return ret;
}

View File

@ -1320,6 +1320,7 @@ static int meson_nfc_nand_chips_init(struct device *dev,
ret = meson_nfc_nand_chip_init(dev, nfc, nand_np);
if (ret) {
meson_nfc_nand_chip_cleanup(nfc);
of_node_put(nand_np);
return ret;
}
}

View File

@ -0,0 +1,582 @@
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2019 Macronix International Co., Ltd.
*
* Author:
* Mason Yang <masonccyang@mxic.com.tw>
*/
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/rawnand.h>
#include <linux/mtd/nand_ecc.h>
#include <linux/platform_device.h>
#include "internals.h"
#define HC_CFG 0x0
#define HC_CFG_IF_CFG(x) ((x) << 27)
#define HC_CFG_DUAL_SLAVE BIT(31)
#define HC_CFG_INDIVIDUAL BIT(30)
#define HC_CFG_NIO(x) (((x) / 4) << 27)
#define HC_CFG_TYPE(s, t) ((t) << (23 + ((s) * 2)))
#define HC_CFG_TYPE_SPI_NOR 0
#define HC_CFG_TYPE_SPI_NAND 1
#define HC_CFG_TYPE_SPI_RAM 2
#define HC_CFG_TYPE_RAW_NAND 3
#define HC_CFG_SLV_ACT(x) ((x) << 21)
#define HC_CFG_CLK_PH_EN BIT(20)
#define HC_CFG_CLK_POL_INV BIT(19)
#define HC_CFG_BIG_ENDIAN BIT(18)
#define HC_CFG_DATA_PASS BIT(17)
#define HC_CFG_IDLE_SIO_LVL(x) ((x) << 16)
#define HC_CFG_MAN_START_EN BIT(3)
#define HC_CFG_MAN_START BIT(2)
#define HC_CFG_MAN_CS_EN BIT(1)
#define HC_CFG_MAN_CS_ASSERT BIT(0)
#define INT_STS 0x4
#define INT_STS_EN 0x8
#define INT_SIG_EN 0xc
#define INT_STS_ALL GENMASK(31, 0)
#define INT_RDY_PIN BIT(26)
#define INT_RDY_SR BIT(25)
#define INT_LNR_SUSP BIT(24)
#define INT_ECC_ERR BIT(17)
#define INT_CRC_ERR BIT(16)
#define INT_LWR_DIS BIT(12)
#define INT_LRD_DIS BIT(11)
#define INT_SDMA_INT BIT(10)
#define INT_DMA_FINISH BIT(9)
#define INT_RX_NOT_FULL BIT(3)
#define INT_RX_NOT_EMPTY BIT(2)
#define INT_TX_NOT_FULL BIT(1)
#define INT_TX_EMPTY BIT(0)
#define HC_EN 0x10
#define HC_EN_BIT BIT(0)
#define TXD(x) (0x14 + ((x) * 4))
#define RXD 0x24
#define SS_CTRL(s) (0x30 + ((s) * 4))
#define LRD_CFG 0x44
#define LWR_CFG 0x80
#define RWW_CFG 0x70
#define OP_READ BIT(23)
#define OP_DUMMY_CYC(x) ((x) << 17)
#define OP_ADDR_BYTES(x) ((x) << 14)
#define OP_CMD_BYTES(x) (((x) - 1) << 13)
#define OP_OCTA_CRC_EN BIT(12)
#define OP_DQS_EN BIT(11)
#define OP_ENHC_EN BIT(10)
#define OP_PREAMBLE_EN BIT(9)
#define OP_DATA_DDR BIT(8)
#define OP_DATA_BUSW(x) ((x) << 6)
#define OP_ADDR_DDR BIT(5)
#define OP_ADDR_BUSW(x) ((x) << 3)
#define OP_CMD_DDR BIT(2)
#define OP_CMD_BUSW(x) (x)
#define OP_BUSW_1 0
#define OP_BUSW_2 1
#define OP_BUSW_4 2
#define OP_BUSW_8 3
#define OCTA_CRC 0x38
#define OCTA_CRC_IN_EN(s) BIT(3 + ((s) * 16))
#define OCTA_CRC_CHUNK(s, x) ((fls((x) / 32)) << (1 + ((s) * 16)))
#define OCTA_CRC_OUT_EN(s) BIT(0 + ((s) * 16))
#define ONFI_DIN_CNT(s) (0x3c + (s))
#define LRD_CTRL 0x48
#define RWW_CTRL 0x74
#define LWR_CTRL 0x84
#define LMODE_EN BIT(31)
#define LMODE_SLV_ACT(x) ((x) << 21)
#define LMODE_CMD1(x) ((x) << 8)
#define LMODE_CMD0(x) (x)
#define LRD_ADDR 0x4c
#define LWR_ADDR 0x88
#define LRD_RANGE 0x50
#define LWR_RANGE 0x8c
#define AXI_SLV_ADDR 0x54
#define DMAC_RD_CFG 0x58
#define DMAC_WR_CFG 0x94
#define DMAC_CFG_PERIPH_EN BIT(31)
#define DMAC_CFG_ALLFLUSH_EN BIT(30)
#define DMAC_CFG_LASTFLUSH_EN BIT(29)
#define DMAC_CFG_QE(x) (((x) + 1) << 16)
#define DMAC_CFG_BURST_LEN(x) (((x) + 1) << 12)
#define DMAC_CFG_BURST_SZ(x) ((x) << 8)
#define DMAC_CFG_DIR_READ BIT(1)
#define DMAC_CFG_START BIT(0)
#define DMAC_RD_CNT 0x5c
#define DMAC_WR_CNT 0x98
#define SDMA_ADDR 0x60
#define DMAM_CFG 0x64
#define DMAM_CFG_START BIT(31)
#define DMAM_CFG_CONT BIT(30)
#define DMAM_CFG_SDMA_GAP(x) (fls((x) / 8192) << 2)
#define DMAM_CFG_DIR_READ BIT(1)
#define DMAM_CFG_EN BIT(0)
#define DMAM_CNT 0x68
#define LNR_TIMER_TH 0x6c
#define RDM_CFG0 0x78
#define RDM_CFG0_POLY(x) (x)
#define RDM_CFG1 0x7c
#define RDM_CFG1_RDM_EN BIT(31)
#define RDM_CFG1_SEED(x) (x)
#define LWR_SUSP_CTRL 0x90
#define LWR_SUSP_CTRL_EN BIT(31)
#define DMAS_CTRL 0x9c
#define DMAS_CTRL_EN BIT(31)
#define DMAS_CTRL_DIR_READ BIT(30)
#define DATA_STROB 0xa0
#define DATA_STROB_EDO_EN BIT(2)
#define DATA_STROB_INV_POL BIT(1)
#define DATA_STROB_DELAY_2CYC BIT(0)
#define IDLY_CODE(x) (0xa4 + ((x) * 4))
#define IDLY_CODE_VAL(x, v) ((v) << (((x) % 4) * 8))
#define GPIO 0xc4
#define GPIO_PT(x) BIT(3 + ((x) * 16))
#define GPIO_RESET(x) BIT(2 + ((x) * 16))
#define GPIO_HOLDB(x) BIT(1 + ((x) * 16))
#define GPIO_WPB(x) BIT((x) * 16)
#define HC_VER 0xd0
#define HW_TEST(x) (0xe0 + ((x) * 4))
#define MXIC_NFC_MAX_CLK_HZ 50000000
#define IRQ_TIMEOUT 1000
struct mxic_nand_ctlr {
struct clk *ps_clk;
struct clk *send_clk;
struct clk *send_dly_clk;
struct completion complete;
void __iomem *regs;
struct nand_controller controller;
struct device *dev;
struct nand_chip chip;
};
static int mxic_nfc_clk_enable(struct mxic_nand_ctlr *nfc)
{
int ret;
ret = clk_prepare_enable(nfc->ps_clk);
if (ret)
return ret;
ret = clk_prepare_enable(nfc->send_clk);
if (ret)
goto err_ps_clk;
ret = clk_prepare_enable(nfc->send_dly_clk);
if (ret)
goto err_send_dly_clk;
return ret;
err_send_dly_clk:
clk_disable_unprepare(nfc->send_clk);
err_ps_clk:
clk_disable_unprepare(nfc->ps_clk);
return ret;
}
static void mxic_nfc_clk_disable(struct mxic_nand_ctlr *nfc)
{
clk_disable_unprepare(nfc->send_clk);
clk_disable_unprepare(nfc->send_dly_clk);
clk_disable_unprepare(nfc->ps_clk);
}
static void mxic_nfc_set_input_delay(struct mxic_nand_ctlr *nfc, u8 idly_code)
{
writel(IDLY_CODE_VAL(0, idly_code) |
IDLY_CODE_VAL(1, idly_code) |
IDLY_CODE_VAL(2, idly_code) |
IDLY_CODE_VAL(3, idly_code),
nfc->regs + IDLY_CODE(0));
writel(IDLY_CODE_VAL(4, idly_code) |
IDLY_CODE_VAL(5, idly_code) |
IDLY_CODE_VAL(6, idly_code) |
IDLY_CODE_VAL(7, idly_code),
nfc->regs + IDLY_CODE(1));
}
static int mxic_nfc_clk_setup(struct mxic_nand_ctlr *nfc, unsigned long freq)
{
int ret;
ret = clk_set_rate(nfc->send_clk, freq);
if (ret)
return ret;
ret = clk_set_rate(nfc->send_dly_clk, freq);
if (ret)
return ret;
/*
* A constant delay range from 0x0 ~ 0x1F for input delay,
* the unit is 78 ps, the max input delay is 2.418 ns.
*/
mxic_nfc_set_input_delay(nfc, 0xf);
/*
* Phase degree = 360 * freq * output-delay
* where output-delay is a constant value 1 ns in FPGA.
*
* Get Phase degree = 360 * freq * 1 ns
* = 360 * freq * 1 sec / 1000000000
* = 9 * freq / 25000000
*/
ret = clk_set_phase(nfc->send_dly_clk, 9 * freq / 25000000);
if (ret)
return ret;
return 0;
}
static int mxic_nfc_set_freq(struct mxic_nand_ctlr *nfc, unsigned long freq)
{
int ret;
if (freq > MXIC_NFC_MAX_CLK_HZ)
freq = MXIC_NFC_MAX_CLK_HZ;
mxic_nfc_clk_disable(nfc);
ret = mxic_nfc_clk_setup(nfc, freq);
if (ret)
return ret;
ret = mxic_nfc_clk_enable(nfc);
if (ret)
return ret;
return 0;
}
static irqreturn_t mxic_nfc_isr(int irq, void *dev_id)
{
struct mxic_nand_ctlr *nfc = dev_id;
u32 sts;
sts = readl(nfc->regs + INT_STS);
if (sts & INT_RDY_PIN)
complete(&nfc->complete);
else
return IRQ_NONE;
return IRQ_HANDLED;
}
static void mxic_nfc_hw_init(struct mxic_nand_ctlr *nfc)
{
writel(HC_CFG_NIO(8) | HC_CFG_TYPE(1, HC_CFG_TYPE_RAW_NAND) |
HC_CFG_SLV_ACT(0) | HC_CFG_MAN_CS_EN |
HC_CFG_IDLE_SIO_LVL(1), nfc->regs + HC_CFG);
writel(INT_STS_ALL, nfc->regs + INT_STS_EN);
writel(INT_RDY_PIN, nfc->regs + INT_SIG_EN);
writel(0x0, nfc->regs + ONFI_DIN_CNT(0));
writel(0, nfc->regs + LRD_CFG);
writel(0, nfc->regs + LRD_CTRL);
writel(0x0, nfc->regs + HC_EN);
}
static void mxic_nfc_cs_enable(struct mxic_nand_ctlr *nfc)
{
writel(readl(nfc->regs + HC_CFG) | HC_CFG_MAN_CS_EN,
nfc->regs + HC_CFG);
writel(HC_CFG_MAN_CS_ASSERT | readl(nfc->regs + HC_CFG),
nfc->regs + HC_CFG);
}
static void mxic_nfc_cs_disable(struct mxic_nand_ctlr *nfc)
{
writel(~HC_CFG_MAN_CS_ASSERT & readl(nfc->regs + HC_CFG),
nfc->regs + HC_CFG);
}
static int mxic_nfc_wait_ready(struct nand_chip *chip)
{
struct mxic_nand_ctlr *nfc = nand_get_controller_data(chip);
int ret;
ret = wait_for_completion_timeout(&nfc->complete,
msecs_to_jiffies(IRQ_TIMEOUT));
if (!ret) {
dev_err(nfc->dev, "nand device timeout\n");
return -ETIMEDOUT;
}
return 0;
}
static int mxic_nfc_data_xfer(struct mxic_nand_ctlr *nfc, const void *txbuf,
void *rxbuf, unsigned int len)
{
unsigned int pos = 0;
while (pos < len) {
unsigned int nbytes = len - pos;
u32 data = 0xffffffff;
u32 sts;
int ret;
if (nbytes > 4)
nbytes = 4;
if (txbuf)
memcpy(&data, txbuf + pos, nbytes);
ret = readl_poll_timeout(nfc->regs + INT_STS, sts,
sts & INT_TX_EMPTY, 0, USEC_PER_SEC);
if (ret)
return ret;
writel(data, nfc->regs + TXD(nbytes % 4));
ret = readl_poll_timeout(nfc->regs + INT_STS, sts,
sts & INT_TX_EMPTY, 0, USEC_PER_SEC);
if (ret)
return ret;
ret = readl_poll_timeout(nfc->regs + INT_STS, sts,
sts & INT_RX_NOT_EMPTY, 0,
USEC_PER_SEC);
if (ret)
return ret;
data = readl(nfc->regs + RXD);
if (rxbuf) {
data >>= (8 * (4 - nbytes));
memcpy(rxbuf + pos, &data, nbytes);
}
if (readl(nfc->regs + INT_STS) & INT_RX_NOT_EMPTY)
dev_warn(nfc->dev, "RX FIFO not empty\n");
pos += nbytes;
}
return 0;
}
static int mxic_nfc_exec_op(struct nand_chip *chip,
const struct nand_operation *op, bool check_only)
{
struct mxic_nand_ctlr *nfc = nand_get_controller_data(chip);
const struct nand_op_instr *instr = NULL;
int ret = 0;
unsigned int op_id;
mxic_nfc_cs_enable(nfc);
init_completion(&nfc->complete);
for (op_id = 0; op_id < op->ninstrs; op_id++) {
instr = &op->instrs[op_id];
switch (instr->type) {
case NAND_OP_CMD_INSTR:
writel(0, nfc->regs + HC_EN);
writel(HC_EN_BIT, nfc->regs + HC_EN);
writel(OP_CMD_BUSW(OP_BUSW_8) | OP_DUMMY_CYC(0x3F) |
OP_CMD_BYTES(0), nfc->regs + SS_CTRL(0));
ret = mxic_nfc_data_xfer(nfc,
&instr->ctx.cmd.opcode,
NULL, 1);
break;
case NAND_OP_ADDR_INSTR:
writel(OP_ADDR_BUSW(OP_BUSW_8) | OP_DUMMY_CYC(0x3F) |
OP_ADDR_BYTES(instr->ctx.addr.naddrs),
nfc->regs + SS_CTRL(0));
ret = mxic_nfc_data_xfer(nfc,
instr->ctx.addr.addrs, NULL,
instr->ctx.addr.naddrs);
break;
case NAND_OP_DATA_IN_INSTR:
writel(0x0, nfc->regs + ONFI_DIN_CNT(0));
writel(OP_DATA_BUSW(OP_BUSW_8) | OP_DUMMY_CYC(0x3F) |
OP_READ, nfc->regs + SS_CTRL(0));
ret = mxic_nfc_data_xfer(nfc, NULL,
instr->ctx.data.buf.in,
instr->ctx.data.len);
break;
case NAND_OP_DATA_OUT_INSTR:
writel(instr->ctx.data.len,
nfc->regs + ONFI_DIN_CNT(0));
writel(OP_DATA_BUSW(OP_BUSW_8) | OP_DUMMY_CYC(0x3F),
nfc->regs + SS_CTRL(0));
ret = mxic_nfc_data_xfer(nfc,
instr->ctx.data.buf.out, NULL,
instr->ctx.data.len);
break;
case NAND_OP_WAITRDY_INSTR:
ret = mxic_nfc_wait_ready(chip);
break;
}
}
mxic_nfc_cs_disable(nfc);
return ret;
}
static int mxic_nfc_setup_data_interface(struct nand_chip *chip, int chipnr,
const struct nand_data_interface *conf)
{
struct mxic_nand_ctlr *nfc = nand_get_controller_data(chip);
const struct nand_sdr_timings *sdr;
unsigned long freq;
int ret;
sdr = nand_get_sdr_timings(conf);
if (IS_ERR(sdr))
return PTR_ERR(sdr);
if (chipnr == NAND_DATA_IFACE_CHECK_ONLY)
return 0;
freq = NSEC_PER_SEC / (sdr->tRC_min / 1000);
ret = mxic_nfc_set_freq(nfc, freq);
if (ret)
dev_err(nfc->dev, "set freq:%ld failed\n", freq);
if (sdr->tRC_min < 30000)
writel(DATA_STROB_EDO_EN, nfc->regs + DATA_STROB);
return 0;
}
static const struct nand_controller_ops mxic_nand_controller_ops = {
.exec_op = mxic_nfc_exec_op,
.setup_data_interface = mxic_nfc_setup_data_interface,
};
static int mxic_nfc_probe(struct platform_device *pdev)
{
struct device_node *nand_np, *np = pdev->dev.of_node;
struct mtd_info *mtd;
struct mxic_nand_ctlr *nfc;
struct nand_chip *nand_chip;
int err;
int irq;
nfc = devm_kzalloc(&pdev->dev, sizeof(struct mxic_nand_ctlr),
GFP_KERNEL);
if (!nfc)
return -ENOMEM;
nfc->ps_clk = devm_clk_get(&pdev->dev, "ps");
if (IS_ERR(nfc->ps_clk))
return PTR_ERR(nfc->ps_clk);
nfc->send_clk = devm_clk_get(&pdev->dev, "send");
if (IS_ERR(nfc->send_clk))
return PTR_ERR(nfc->send_clk);
nfc->send_dly_clk = devm_clk_get(&pdev->dev, "send_dly");
if (IS_ERR(nfc->send_dly_clk))
return PTR_ERR(nfc->send_dly_clk);
nfc->regs = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(nfc->regs))
return PTR_ERR(nfc->regs);
nand_chip = &nfc->chip;
mtd = nand_to_mtd(nand_chip);
mtd->dev.parent = &pdev->dev;
for_each_child_of_node(np, nand_np)
nand_set_flash_node(nand_chip, nand_np);
nand_chip->priv = nfc;
nfc->dev = &pdev->dev;
nfc->controller.ops = &mxic_nand_controller_ops;
nand_controller_init(&nfc->controller);
nand_chip->controller = &nfc->controller;
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
dev_err(&pdev->dev, "failed to retrieve irq\n");
return irq;
}
mxic_nfc_hw_init(nfc);
err = devm_request_irq(&pdev->dev, irq, mxic_nfc_isr,
0, "mxic-nfc", nfc);
if (err)
goto fail;
err = nand_scan(nand_chip, 1);
if (err)
goto fail;
err = mtd_device_register(mtd, NULL, 0);
if (err)
goto fail;
platform_set_drvdata(pdev, nfc);
return 0;
fail:
mxic_nfc_clk_disable(nfc);
return err;
}
static int mxic_nfc_remove(struct platform_device *pdev)
{
struct mxic_nand_ctlr *nfc = platform_get_drvdata(pdev);
nand_release(&nfc->chip);
mxic_nfc_clk_disable(nfc);
return 0;
}
static const struct of_device_id mxic_nfc_of_ids[] = {
{ .compatible = "mxic,multi-itfc-v009-nand-controller", },
{},
};
MODULE_DEVICE_TABLE(of, mxic_nfc_of_ids);
static struct platform_driver mxic_nfc_driver = {
.probe = mxic_nfc_probe,
.remove = mxic_nfc_remove,
.driver = {
.name = "mxic-nfc",
.of_match_table = mxic_nfc_of_ids,
},
};
module_platform_driver(mxic_nfc_driver);
MODULE_AUTHOR("Mason Yang <masonccyang@mxic.com.tw>");
MODULE_DESCRIPTION("Macronix raw NAND controller driver");
MODULE_LICENSE("GPL v2");

View File

@ -4112,7 +4112,7 @@ static int nand_write_oob(struct mtd_info *mtd, loff_t to,
struct mtd_oob_ops *ops)
{
struct nand_chip *chip = mtd_to_nand(mtd);
int ret = -ENOTSUPP;
int ret;
ops->retlen = 0;

View File

@ -1232,7 +1232,7 @@ static int nand_scan_bbt(struct nand_chip *this, struct nand_bbt_descr *bd)
if (!td) {
if ((res = nand_memory_bbt(this, bd))) {
pr_err("nand_bbt: can't scan flash and build the RAM-based BBT\n");
goto err;
goto err_free_bbt;
}
return 0;
}
@ -1245,7 +1245,7 @@ static int nand_scan_bbt(struct nand_chip *this, struct nand_bbt_descr *bd)
buf = vmalloc(len);
if (!buf) {
res = -ENOMEM;
goto err;
goto err_free_bbt;
}
/* Is the bbt at a given page? */
@ -1258,7 +1258,7 @@ static int nand_scan_bbt(struct nand_chip *this, struct nand_bbt_descr *bd)
res = check_create(this, buf, bd);
if (res)
goto err;
goto err_free_buf;
/* Prevent the bbt regions from erasing / writing */
mark_bbt_region(this, td);
@ -1268,7 +1268,9 @@ static int nand_scan_bbt(struct nand_chip *this, struct nand_bbt_descr *bd)
vfree(buf);
return 0;
err:
err_free_buf:
vfree(buf);
err_free_bbt:
kfree(this->bbt);
this->bbt = NULL;
return res;

View File

@ -1,304 +0,0 @@
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright © 2009 Nuvoton technology corporation.
*
* Wan ZongShun <mcuos.com@gmail.com>
*/
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/platform_device.h>
#include <linux/delay.h>
#include <linux/clk.h>
#include <linux/err.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/rawnand.h>
#include <linux/mtd/partitions.h>
#define REG_FMICSR 0x00
#define REG_SMCSR 0xa0
#define REG_SMISR 0xac
#define REG_SMCMD 0xb0
#define REG_SMADDR 0xb4
#define REG_SMDATA 0xb8
#define RESET_FMI 0x01
#define NAND_EN 0x08
#define READYBUSY (0x01 << 18)
#define SWRST 0x01
#define PSIZE (0x01 << 3)
#define DMARWEN (0x03 << 1)
#define BUSWID (0x01 << 4)
#define ECC4EN (0x01 << 5)
#define WP (0x01 << 24)
#define NANDCS (0x01 << 25)
#define ENDADDR (0x01 << 31)
#define read_data_reg(dev) \
__raw_readl((dev)->reg + REG_SMDATA)
#define write_data_reg(dev, val) \
__raw_writel((val), (dev)->reg + REG_SMDATA)
#define write_cmd_reg(dev, val) \
__raw_writel((val), (dev)->reg + REG_SMCMD)
#define write_addr_reg(dev, val) \
__raw_writel((val), (dev)->reg + REG_SMADDR)
struct nuc900_nand {
struct nand_chip chip;
void __iomem *reg;
struct clk *clk;
spinlock_t lock;
};
static inline struct nuc900_nand *mtd_to_nuc900(struct mtd_info *mtd)
{
return container_of(mtd_to_nand(mtd), struct nuc900_nand, chip);
}
static const struct mtd_partition partitions[] = {
{
.name = "NAND FS 0",
.offset = 0,
.size = 8 * 1024 * 1024
},
{
.name = "NAND FS 1",
.offset = MTDPART_OFS_APPEND,
.size = MTDPART_SIZ_FULL
}
};
static unsigned char nuc900_nand_read_byte(struct nand_chip *chip)
{
unsigned char ret;
struct nuc900_nand *nand = mtd_to_nuc900(nand_to_mtd(chip));
ret = (unsigned char)read_data_reg(nand);
return ret;
}
static void nuc900_nand_read_buf(struct nand_chip *chip,
unsigned char *buf, int len)
{
int i;
struct nuc900_nand *nand = mtd_to_nuc900(nand_to_mtd(chip));
for (i = 0; i < len; i++)
buf[i] = (unsigned char)read_data_reg(nand);
}
static void nuc900_nand_write_buf(struct nand_chip *chip,
const unsigned char *buf, int len)
{
int i;
struct nuc900_nand *nand = mtd_to_nuc900(nand_to_mtd(chip));
for (i = 0; i < len; i++)
write_data_reg(nand, buf[i]);
}
static int nuc900_check_rb(struct nuc900_nand *nand)
{
unsigned int val;
spin_lock(&nand->lock);
val = __raw_readl(nand->reg + REG_SMISR);
val &= READYBUSY;
spin_unlock(&nand->lock);
return val;
}
static int nuc900_nand_devready(struct nand_chip *chip)
{
struct nuc900_nand *nand = mtd_to_nuc900(nand_to_mtd(chip));
int ready;
ready = (nuc900_check_rb(nand)) ? 1 : 0;
return ready;
}
static void nuc900_nand_command_lp(struct nand_chip *chip,
unsigned int command,
int column, int page_addr)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct nuc900_nand *nand = mtd_to_nuc900(mtd);
if (command == NAND_CMD_READOOB) {
column += mtd->writesize;
command = NAND_CMD_READ0;
}
write_cmd_reg(nand, command & 0xff);
if (column != -1 || page_addr != -1) {
if (column != -1) {
if (chip->options & NAND_BUSWIDTH_16 &&
!nand_opcode_8bits(command))
column >>= 1;
write_addr_reg(nand, column);
write_addr_reg(nand, column >> 8 | ENDADDR);
}
if (page_addr != -1) {
write_addr_reg(nand, page_addr);
if (chip->options & NAND_ROW_ADDR_3) {
write_addr_reg(nand, page_addr >> 8);
write_addr_reg(nand, page_addr >> 16 | ENDADDR);
} else {
write_addr_reg(nand, page_addr >> 8 | ENDADDR);
}
}
}
switch (command) {
case NAND_CMD_CACHEDPROG:
case NAND_CMD_PAGEPROG:
case NAND_CMD_ERASE1:
case NAND_CMD_ERASE2:
case NAND_CMD_SEQIN:
case NAND_CMD_RNDIN:
case NAND_CMD_STATUS:
return;
case NAND_CMD_RESET:
if (chip->legacy.dev_ready)
break;
udelay(chip->legacy.chip_delay);
write_cmd_reg(nand, NAND_CMD_STATUS);
write_cmd_reg(nand, command);
while (!nuc900_check_rb(nand))
;
return;
case NAND_CMD_RNDOUT:
write_cmd_reg(nand, NAND_CMD_RNDOUTSTART);
return;
case NAND_CMD_READ0:
write_cmd_reg(nand, NAND_CMD_READSTART);
/* fall through */
default:
if (!chip->legacy.dev_ready) {
udelay(chip->legacy.chip_delay);
return;
}
}
/* Apply this short delay always to ensure that we do wait tWB in
* any case on any machine. */
ndelay(100);
while (!chip->legacy.dev_ready(chip))
;
}
static void nuc900_nand_enable(struct nuc900_nand *nand)
{
unsigned int val;
spin_lock(&nand->lock);
__raw_writel(RESET_FMI, (nand->reg + REG_FMICSR));
val = __raw_readl(nand->reg + REG_FMICSR);
if (!(val & NAND_EN))
__raw_writel(val | NAND_EN, nand->reg + REG_FMICSR);
val = __raw_readl(nand->reg + REG_SMCSR);
val &= ~(SWRST|PSIZE|DMARWEN|BUSWID|ECC4EN|NANDCS);
val |= WP;
__raw_writel(val, nand->reg + REG_SMCSR);
spin_unlock(&nand->lock);
}
static int nuc900_nand_probe(struct platform_device *pdev)
{
struct nuc900_nand *nuc900_nand;
struct nand_chip *chip;
struct mtd_info *mtd;
struct resource *res;
nuc900_nand = devm_kzalloc(&pdev->dev, sizeof(struct nuc900_nand),
GFP_KERNEL);
if (!nuc900_nand)
return -ENOMEM;
chip = &(nuc900_nand->chip);
mtd = nand_to_mtd(chip);
mtd->dev.parent = &pdev->dev;
spin_lock_init(&nuc900_nand->lock);
nuc900_nand->clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(nuc900_nand->clk))
return -ENOENT;
clk_enable(nuc900_nand->clk);
chip->legacy.cmdfunc = nuc900_nand_command_lp;
chip->legacy.dev_ready = nuc900_nand_devready;
chip->legacy.read_byte = nuc900_nand_read_byte;
chip->legacy.write_buf = nuc900_nand_write_buf;
chip->legacy.read_buf = nuc900_nand_read_buf;
chip->legacy.chip_delay = 50;
chip->options = 0;
chip->ecc.mode = NAND_ECC_SOFT;
chip->ecc.algo = NAND_ECC_HAMMING;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
nuc900_nand->reg = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(nuc900_nand->reg))
return PTR_ERR(nuc900_nand->reg);
nuc900_nand_enable(nuc900_nand);
if (nand_scan(chip, 1))
return -ENXIO;
mtd_device_register(mtd, partitions, ARRAY_SIZE(partitions));
platform_set_drvdata(pdev, nuc900_nand);
return 0;
}
static int nuc900_nand_remove(struct platform_device *pdev)
{
struct nuc900_nand *nuc900_nand = platform_get_drvdata(pdev);
nand_release(&nuc900_nand->chip);
clk_disable(nuc900_nand->clk);
return 0;
}
static struct platform_driver nuc900_nand_driver = {
.probe = nuc900_nand_probe,
.remove = nuc900_nand_remove,
.driver = {
.name = "nuc900-fmi",
},
};
module_platform_driver(nuc900_nand_driver);
MODULE_AUTHOR("Wan ZongShun <mcuos.com@gmail.com>");
MODULE_DESCRIPTION("w90p910/NUC9xx nand driver!");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:nuc900-fmi");

View File

@ -1501,7 +1501,7 @@ static int omap_elm_correct_data(struct nand_chip *chip, u_char *data,
}
/* Update number of correctable errors */
stat += err_vec[i].error_count;
stat = max_t(unsigned int, stat, err_vec[i].error_count);
/* Update page data with sector size */
data += ecc->size;

View File

@ -116,7 +116,7 @@ static int oxnas_nand_probe(struct platform_device *pdev)
GFP_KERNEL);
if (!chip) {
err = -ENOMEM;
goto err_clk_unprepare;
goto err_release_child;
}
chip->controller = &oxnas->base;
@ -137,12 +137,12 @@ static int oxnas_nand_probe(struct platform_device *pdev)
/* Scan to find existence of the device */
err = nand_scan(chip, 1);
if (err)
goto err_clk_unprepare;
goto err_release_child;
err = mtd_device_register(mtd, NULL, 0);
if (err) {
nand_release(chip);
goto err_clk_unprepare;
goto err_release_child;
}
oxnas->chips[nchips] = chip;
@ -159,6 +159,8 @@ static int oxnas_nand_probe(struct platform_device *pdev)
return 0;
err_release_child:
of_node_put(nand_np);
err_clk_unprepare:
clk_disable_unprepare(oxnas->clk);
return err;

View File

@ -998,7 +998,7 @@ static void r852_shutdown(struct pci_dev *pci_dev)
#ifdef CONFIG_PM_SLEEP
static int r852_suspend(struct device *device)
{
struct r852_device *dev = pci_get_drvdata(to_pci_dev(device));
struct r852_device *dev = dev_get_drvdata(device);
if (dev->ctlreg & R852_CTL_CARDENABLE)
return -EBUSY;
@ -1019,7 +1019,7 @@ static int r852_suspend(struct device *device)
static int r852_resume(struct device *device)
{
struct r852_device *dev = pci_get_drvdata(to_pci_dev(device));
struct r852_device *dev = dev_get_drvdata(device);
r852_disable_irqs(dev);
r852_card_update_present(dev);

View File

@ -1427,21 +1427,16 @@ static void stm32_fmc2_calc_timings(struct nand_chip *chip,
struct stm32_fmc2_timings *tims = &nand->timings;
unsigned long hclk = clk_get_rate(fmc2->clk);
unsigned long hclkp = NSEC_PER_SEC / (hclk / 1000);
int tar, tclr, thiz, twait, tset_mem, tset_att, thold_mem, thold_att;
unsigned long timing, tar, tclr, thiz, twait;
unsigned long tset_mem, tset_att, thold_mem, thold_att;
tar = hclkp;
if (tar < sdrt->tAR_min)
tar = sdrt->tAR_min;
tims->tar = DIV_ROUND_UP(tar, hclkp) - 1;
if (tims->tar > FMC2_PCR_TIMING_MASK)
tims->tar = FMC2_PCR_TIMING_MASK;
tar = max_t(unsigned long, hclkp, sdrt->tAR_min);
timing = DIV_ROUND_UP(tar, hclkp) - 1;
tims->tar = min_t(unsigned long, timing, FMC2_PCR_TIMING_MASK);
tclr = hclkp;
if (tclr < sdrt->tCLR_min)
tclr = sdrt->tCLR_min;
tims->tclr = DIV_ROUND_UP(tclr, hclkp) - 1;
if (tims->tclr > FMC2_PCR_TIMING_MASK)
tims->tclr = FMC2_PCR_TIMING_MASK;
tclr = max_t(unsigned long, hclkp, sdrt->tCLR_min);
timing = DIV_ROUND_UP(tclr, hclkp) - 1;
tims->tclr = min_t(unsigned long, timing, FMC2_PCR_TIMING_MASK);
tims->thiz = FMC2_THIZ;
thiz = (tims->thiz + 1) * hclkp;
@ -1451,18 +1446,11 @@ static void stm32_fmc2_calc_timings(struct nand_chip *chip,
* tWAIT > tWP
* tWAIT > tREA + tIO
*/
twait = hclkp;
if (twait < sdrt->tRP_min)
twait = sdrt->tRP_min;
if (twait < sdrt->tWP_min)
twait = sdrt->tWP_min;
if (twait < sdrt->tREA_max + FMC2_TIO)
twait = sdrt->tREA_max + FMC2_TIO;
tims->twait = DIV_ROUND_UP(twait, hclkp);
if (tims->twait == 0)
tims->twait = 1;
else if (tims->twait > FMC2_PMEM_PATT_TIMING_MASK)
tims->twait = FMC2_PMEM_PATT_TIMING_MASK;
twait = max_t(unsigned long, hclkp, sdrt->tRP_min);
twait = max_t(unsigned long, twait, sdrt->tWP_min);
twait = max_t(unsigned long, twait, sdrt->tREA_max + FMC2_TIO);
timing = DIV_ROUND_UP(twait, hclkp);
tims->twait = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
/*
* tSETUP_MEM > tCS - tWAIT
@ -1477,20 +1465,15 @@ static void stm32_fmc2_calc_timings(struct nand_chip *chip,
if (twait > thiz && (sdrt->tDS_min > twait - thiz) &&
(tset_mem < sdrt->tDS_min - (twait - thiz)))
tset_mem = sdrt->tDS_min - (twait - thiz);
tims->tset_mem = DIV_ROUND_UP(tset_mem, hclkp);
if (tims->tset_mem == 0)
tims->tset_mem = 1;
else if (tims->tset_mem > FMC2_PMEM_PATT_TIMING_MASK)
tims->tset_mem = FMC2_PMEM_PATT_TIMING_MASK;
timing = DIV_ROUND_UP(tset_mem, hclkp);
tims->tset_mem = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
/*
* tHOLD_MEM > tCH
* tHOLD_MEM > tREH - tSETUP_MEM
* tHOLD_MEM > max(tRC, tWC) - (tSETUP_MEM + tWAIT)
*/
thold_mem = hclkp;
if (thold_mem < sdrt->tCH_min)
thold_mem = sdrt->tCH_min;
thold_mem = max_t(unsigned long, hclkp, sdrt->tCH_min);
if (sdrt->tREH_min > tset_mem &&
(thold_mem < sdrt->tREH_min - tset_mem))
thold_mem = sdrt->tREH_min - tset_mem;
@ -1500,11 +1483,8 @@ static void stm32_fmc2_calc_timings(struct nand_chip *chip,
if ((sdrt->tWC_min > tset_mem + twait) &&
(thold_mem < sdrt->tWC_min - (tset_mem + twait)))
thold_mem = sdrt->tWC_min - (tset_mem + twait);
tims->thold_mem = DIV_ROUND_UP(thold_mem, hclkp);
if (tims->thold_mem == 0)
tims->thold_mem = 1;
else if (tims->thold_mem > FMC2_PMEM_PATT_TIMING_MASK)
tims->thold_mem = FMC2_PMEM_PATT_TIMING_MASK;
timing = DIV_ROUND_UP(thold_mem, hclkp);
tims->thold_mem = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
/*
* tSETUP_ATT > tCS - tWAIT
@ -1526,11 +1506,8 @@ static void stm32_fmc2_calc_timings(struct nand_chip *chip,
if (twait > thiz && (sdrt->tDS_min > twait - thiz) &&
(tset_att < sdrt->tDS_min - (twait - thiz)))
tset_att = sdrt->tDS_min - (twait - thiz);
tims->tset_att = DIV_ROUND_UP(tset_att, hclkp);
if (tims->tset_att == 0)
tims->tset_att = 1;
else if (tims->tset_att > FMC2_PMEM_PATT_TIMING_MASK)
tims->tset_att = FMC2_PMEM_PATT_TIMING_MASK;
timing = DIV_ROUND_UP(tset_att, hclkp);
tims->tset_att = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
/*
* tHOLD_ATT > tALH
@ -1545,17 +1522,11 @@ static void stm32_fmc2_calc_timings(struct nand_chip *chip,
* tHOLD_ATT > tRC - (tSETUP_ATT + tWAIT)
* tHOLD_ATT > tWC - (tSETUP_ATT + tWAIT)
*/
thold_att = hclkp;
if (thold_att < sdrt->tALH_min)
thold_att = sdrt->tALH_min;
if (thold_att < sdrt->tCH_min)
thold_att = sdrt->tCH_min;
if (thold_att < sdrt->tCLH_min)
thold_att = sdrt->tCLH_min;
if (thold_att < sdrt->tCOH_min)
thold_att = sdrt->tCOH_min;
if (thold_att < sdrt->tDH_min)
thold_att = sdrt->tDH_min;
thold_att = max_t(unsigned long, hclkp, sdrt->tALH_min);
thold_att = max_t(unsigned long, thold_att, sdrt->tCH_min);
thold_att = max_t(unsigned long, thold_att, sdrt->tCLH_min);
thold_att = max_t(unsigned long, thold_att, sdrt->tCOH_min);
thold_att = max_t(unsigned long, thold_att, sdrt->tDH_min);
if ((sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC > tset_mem) &&
(thold_att < sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC - tset_mem))
thold_att = sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC - tset_mem;
@ -1574,11 +1545,8 @@ static void stm32_fmc2_calc_timings(struct nand_chip *chip,
if ((sdrt->tWC_min > tset_att + twait) &&
(thold_att < sdrt->tWC_min - (tset_att + twait)))
thold_att = sdrt->tWC_min - (tset_att + twait);
tims->thold_att = DIV_ROUND_UP(thold_att, hclkp);
if (tims->thold_att == 0)
tims->thold_att = 1;
else if (tims->thold_att > FMC2_PMEM_PATT_TIMING_MASK)
tims->thold_att = FMC2_PMEM_PATT_TIMING_MASK;
timing = DIV_ROUND_UP(thold_att, hclkp);
tims->thold_att = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
}
static int stm32_fmc2_setup_interface(struct nand_chip *chip, int chipnr,

View File

@ -659,6 +659,7 @@ static int tango_nand_probe(struct platform_device *pdev)
err = chip_init(&pdev->dev, np);
if (err) {
tango_nand_remove(pdev);
of_node_put(np);
return err;
}
}

View File

@ -862,6 +862,7 @@ static int vf610_nfc_probe(struct platform_device *pdev)
dev_err(nfc->dev,
"Only one NAND chip supported!\n");
err = -EINVAL;
of_node_put(child);
goto err_disable_clk;
}

View File

@ -346,7 +346,7 @@ static inline unsigned int nanddev_ntargets(const struct nand_device *nand)
}
/**
* nanddev_neraseblocks() - Get the total number of erasablocks
* nanddev_neraseblocks() - Get the total number of eraseblocks
* @nand: NAND device
*
* Return: the total number of eraseblocks exposed by @nand.

View File

@ -5,6 +5,9 @@
* Copyright (C) 2008 Dmitry Baryshkov
*/
#ifndef _MTD_SHARPSL_H
#define _MTD_SHARPSL_H
#include <linux/mtd/rawnand.h>
#include <linux/mtd/nand_ecc.h>
#include <linux/mtd/partitions.h>
@ -16,3 +19,5 @@ struct sharpsl_nand_platform_data {
unsigned int nr_partitions;
const char *const *part_parsers;
};
#endif /* _MTD_SHARPSL_H */