MIPS: Fix an FCSR access API regression with NT_PRFPREG and MSA
Fix a commit72b22bbad1
("MIPS: Don't assume 64-bit FP registers for FP regset") public API regression, then activated by commit1db1af84d6
("MIPS: Basic MSA context switching support"), that caused the FCSR register not to be read or written for CONFIG_CPU_HAS_MSA kernel configurations (regardless of actual presence or absence of the MSA feature in a given processor) with ptrace(2) PTRACE_GETREGSET and PTRACE_SETREGSET requests nor recorded in core dumps. This is because with !CONFIG_CPU_HAS_MSA configurations the whole of `elf_fpregset_t' array is bulk-copied as it is, which includes the FCSR in one half of the last, 33rd slot, whereas with CONFIG_CPU_HAS_MSA configurations array elements are copied individually, and then only the leading 32 FGR slots while the remaining slot is ignored. Correct the code then such that only FGR slots are copied in the respective !MSA and MSA helpers an then the FCSR slot is handled separately in common code. Use `ptrace_setfcr31' to update the FCSR too, so that the read-only mask is respected. Retrieving a correct value of FCSR is important in debugging not only for the human to be able to get the right interpretation of the situation, but for correct operation of GDB as well. This is because the condition code bits in FSCR are used by GDB to determine the location to place a breakpoint at when single-stepping through an FPU branch instruction. If such a breakpoint is placed incorrectly (i.e. with the condition reversed), then it will be missed, likely causing the debuggee to run away from the control of GDB and consequently breaking the process of investigation. Fortunately GDB continues using the older PTRACE_GETFPREGS ptrace(2) request which is unaffected, so the regression only really hits with post-mortem debug sessions using a core dump file, in which case execution, and consequently single-stepping through branches is not possible. Of course core files created by buggy kernels out there will have the value of FCSR recorded clobbered, but such core files cannot be corrected and the person using them simply will have to be aware that the value of FCSR retrieved is not reliable. Which also means we can likely get away without defining a replacement API which would ensure a correct value of FSCR to be retrieved, or none at all. This is based on previous work by Alex Smith, extensively rewritten. Signed-off-by: Alex Smith <alex@alex-smith.me.uk> Signed-off-by: James Hogan <james.hogan@mips.com> Signed-off-by: Maciej W. Rozycki <macro@mips.com> Fixes:72b22bbad1
("MIPS: Don't assume 64-bit FP registers for FP regset") Cc: Paul Burton <Paul.Burton@mips.com> Cc: Dave Martin <Dave.Martin@arm.com> Cc: linux-mips@linux-mips.org Cc: linux-kernel@vger.kernel.org Cc: stable@vger.kernel.org # v3.15+ Patchwork: https://patchwork.linux-mips.org/patch/17928/ Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
This commit is contained in:
parent
80b3ffce01
commit
be07a6a118
|
@ -422,7 +422,7 @@ static int gpr64_set(struct task_struct *target,
|
|||
/*
|
||||
* Copy the floating-point context to the supplied NT_PRFPREG buffer,
|
||||
* !CONFIG_CPU_HAS_MSA variant. FP context's general register slots
|
||||
* correspond 1:1 to buffer slots.
|
||||
* correspond 1:1 to buffer slots. Only general registers are copied.
|
||||
*/
|
||||
static int fpr_get_fpa(struct task_struct *target,
|
||||
unsigned int *pos, unsigned int *count,
|
||||
|
@ -430,13 +430,14 @@ static int fpr_get_fpa(struct task_struct *target,
|
|||
{
|
||||
return user_regset_copyout(pos, count, kbuf, ubuf,
|
||||
&target->thread.fpu,
|
||||
0, sizeof(elf_fpregset_t));
|
||||
0, NUM_FPU_REGS * sizeof(elf_fpreg_t));
|
||||
}
|
||||
|
||||
/*
|
||||
* Copy the floating-point context to the supplied NT_PRFPREG buffer,
|
||||
* CONFIG_CPU_HAS_MSA variant. Only lower 64 bits of FP context's
|
||||
* general register slots are copied to buffer slots.
|
||||
* general register slots are copied to buffer slots. Only general
|
||||
* registers are copied.
|
||||
*/
|
||||
static int fpr_get_msa(struct task_struct *target,
|
||||
unsigned int *pos, unsigned int *count,
|
||||
|
@ -458,20 +459,29 @@ static int fpr_get_msa(struct task_struct *target,
|
|||
return 0;
|
||||
}
|
||||
|
||||
/* Copy the floating-point context to the supplied NT_PRFPREG buffer. */
|
||||
/*
|
||||
* Copy the floating-point context to the supplied NT_PRFPREG buffer.
|
||||
* Choose the appropriate helper for general registers, and then copy
|
||||
* the FCSR register separately.
|
||||
*/
|
||||
static int fpr_get(struct task_struct *target,
|
||||
const struct user_regset *regset,
|
||||
unsigned int pos, unsigned int count,
|
||||
void *kbuf, void __user *ubuf)
|
||||
{
|
||||
const int fcr31_pos = NUM_FPU_REGS * sizeof(elf_fpreg_t);
|
||||
int err;
|
||||
|
||||
/* XXX fcr31 */
|
||||
|
||||
if (sizeof(target->thread.fpu.fpr[0]) == sizeof(elf_fpreg_t))
|
||||
err = fpr_get_fpa(target, &pos, &count, &kbuf, &ubuf);
|
||||
else
|
||||
err = fpr_get_msa(target, &pos, &count, &kbuf, &ubuf);
|
||||
if (err)
|
||||
return err;
|
||||
|
||||
err = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
|
||||
&target->thread.fpu.fcr31,
|
||||
fcr31_pos, fcr31_pos + sizeof(u32));
|
||||
|
||||
return err;
|
||||
}
|
||||
|
@ -479,7 +489,7 @@ static int fpr_get(struct task_struct *target,
|
|||
/*
|
||||
* Copy the supplied NT_PRFPREG buffer to the floating-point context,
|
||||
* !CONFIG_CPU_HAS_MSA variant. Buffer slots correspond 1:1 to FP
|
||||
* context's general register slots.
|
||||
* context's general register slots. Only general registers are copied.
|
||||
*/
|
||||
static int fpr_set_fpa(struct task_struct *target,
|
||||
unsigned int *pos, unsigned int *count,
|
||||
|
@ -487,13 +497,14 @@ static int fpr_set_fpa(struct task_struct *target,
|
|||
{
|
||||
return user_regset_copyin(pos, count, kbuf, ubuf,
|
||||
&target->thread.fpu,
|
||||
0, sizeof(elf_fpregset_t));
|
||||
0, NUM_FPU_REGS * sizeof(elf_fpreg_t));
|
||||
}
|
||||
|
||||
/*
|
||||
* Copy the supplied NT_PRFPREG buffer to the floating-point context,
|
||||
* CONFIG_CPU_HAS_MSA variant. Buffer slots are copied to lower 64
|
||||
* bits only of FP context's general register slots.
|
||||
* bits only of FP context's general register slots. Only general
|
||||
* registers are copied.
|
||||
*/
|
||||
static int fpr_set_msa(struct task_struct *target,
|
||||
unsigned int *pos, unsigned int *count,
|
||||
|
@ -518,6 +529,8 @@ static int fpr_set_msa(struct task_struct *target,
|
|||
|
||||
/*
|
||||
* Copy the supplied NT_PRFPREG buffer to the floating-point context.
|
||||
* Choose the appropriate helper for general registers, and then copy
|
||||
* the FCSR register separately.
|
||||
*
|
||||
* We optimize for the case where `count % sizeof(elf_fpreg_t) == 0',
|
||||
* which is supposed to have been guaranteed by the kernel before
|
||||
|
@ -530,18 +543,30 @@ static int fpr_set(struct task_struct *target,
|
|||
unsigned int pos, unsigned int count,
|
||||
const void *kbuf, const void __user *ubuf)
|
||||
{
|
||||
const int fcr31_pos = NUM_FPU_REGS * sizeof(elf_fpreg_t);
|
||||
u32 fcr31;
|
||||
int err;
|
||||
|
||||
BUG_ON(count % sizeof(elf_fpreg_t));
|
||||
|
||||
/* XXX fcr31 */
|
||||
|
||||
init_fp_ctx(target);
|
||||
|
||||
if (sizeof(target->thread.fpu.fpr[0]) == sizeof(elf_fpreg_t))
|
||||
err = fpr_set_fpa(target, &pos, &count, &kbuf, &ubuf);
|
||||
else
|
||||
err = fpr_set_msa(target, &pos, &count, &kbuf, &ubuf);
|
||||
if (err)
|
||||
return err;
|
||||
|
||||
if (count > 0) {
|
||||
err = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
|
||||
&fcr31,
|
||||
fcr31_pos, fcr31_pos + sizeof(u32));
|
||||
if (err)
|
||||
return err;
|
||||
|
||||
ptrace_setfcr31(target, fcr31);
|
||||
}
|
||||
|
||||
return err;
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue